BTT6200-1ENA [INFINEON]

The power transistor is built by an N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 HV technology. It is especially designed to drive lamps up to 1 x R10W 24 V or 1 x R5W 12 V, as well as LEDs in the harsh automotive environment.;
BTT6200-1ENA
型号: BTT6200-1ENA
厂家: Infineon    Infineon
描述:

The power transistor is built by an N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 HV technology. It is especially designed to drive lamps up to 1 x R10W 24 V or 1 x R5W 12 V, as well as LEDs in the harsh automotive environment.

驱动 接口集成电路
文件: 总46页 (文件大小:1416K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PROFET™+ 24 V  
BTT6200-1ENA  
Smart High-Side Power Switch Single Channel, 200 m  
Package PG-TDSO-8-31  
Marking 6200-ENA  
1
Overview  
Application  
Suitable for resistive, inductive and capacitive loads  
Replaces electromechanical relays, fuses and discrete circuits  
Most suitable for loads with high inrush current, such as lamps  
Suitable for 12 V and 24 V trucks and transportation system  
VBAT  
Voltage Regulator  
OUT VS  
T1  
GND  
DZ  
CVDD  
CVS  
VS  
VDD  
GPIO  
RDEN  
DEN  
Microcontroller  
GPIO  
OUT  
IN  
IS  
RIN  
COUT  
Bulb  
RSENSE  
ADC IN  
GND  
GND  
CSENSE  
D
Application_example_Single.emf  
Application Diagram with BTT6200-1ENA  
Data Sheet  
www.infineon.com  
1
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
Overview  
Basic Features  
Single channel device  
Very low stand-by current  
3.3 V and 5 V compatible logic inputs  
Electrostatic discharge protection (ESD)  
Optimized electromagnetic compatibility  
Logic ground independent from load ground  
Very low power DMOS leakage current in OFF state  
Green product (RoHS compliant)  
AEC qualified  
Description  
The BTT6200-1ENA is a 200 msingle channel Smart High-Side Power Switch, embedded in a PG-TDSO-8-31,  
Exposed Pad package, providing protective functions and diagnosis. The power transistor is built by an  
N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 HV technology. It is  
especially designed to drive lamps up to 1 x R10W 24 V or 1 x R5W 12 V, as well as LEDs in the harsh automotive  
environment.  
Table 1  
Product Summary  
Parameter  
Symbol  
VS(OP)  
VS(LD)  
Value  
5 V ... 36 V  
65 V  
Operating voltage range  
Maximum supply voltage  
Maximum ON state resistance at TJ = 150°C  
Nominal load current  
RDS(ON)  
IL(NOM)  
kILIS  
400 mΩ  
1.5 A  
Typical current sense ratio  
300  
Minimum current limitation  
IL5(SC)  
IS(OFF)  
9 A  
Maximum standby current with load at TJ = 25°C  
500 nA  
Diagnostic Functions  
Proportional load current sense  
Open load detection in ON and OFF  
Short circuit to battery and ground indication  
Overtemperature switch off detection  
Stable diagnostic signal during short circuit  
Enhanced kILIS dependency with temperature and load current  
Protection Functions  
Stable behavior during undervoltage  
Reverse polarity protection with external components  
Secure load turn-off during logic ground disconnection with external components  
Overtemperature protection with latch  
Overvoltage protection with external components  
Enhanced short circuit operation  
Data Sheet  
2
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
Block Diagram  
2
Block Diagram  
VS  
voltage sen sor  
int ern al  
power  
supply  
over  
T
temperatu re  
clamp for  
ind uctive load  
gate control  
&
charge p ump  
driver  
logic  
over current  
switch limit  
IN  
ESD  
protection  
DEN  
load cu rrent sense and  
OUT  
open load detection  
IS  
forward voltage drop detection  
Block diagram.emf  
GND  
Figure 1  
Block Diagram for the BTT6200-1ENA  
Data Sheet  
3
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment  
1
2
8
7
GND  
IN  
OUT  
OUT  
3
4
6
5
DEN  
IS  
OUT  
NC  
Pinout Single.vsd  
Figure 2  
Pin Configuration  
3.2  
Pin Definitions and Functions  
Table 2  
Pin Definitions and Functions  
Symbol Function  
Pin  
1
GND  
IN  
GrouND; Ground connection  
2
INput channel; Input signal for channel activation  
3
DEN  
Diagnostic ENable; Digital signal to enable/disable the diagnosis of the  
device  
4
IS  
Sense; Sense current of the selected channel  
Not Connected; No internal connection to the chip  
OUTput; Protected high side power output channel1)  
Voltage Supply; Battery voltage  
5
NC  
OUT  
VS  
6, 7, 8  
Cooling Tab  
1) All output pins must be connected together on the PCB. All pins of the output are internally connected together. PCB  
traces have to be designed to withstand the maximum current which can flow.  
Data Sheet  
4
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
Pin Configuration  
3.3  
Voltage and Current Definition  
Figure 3 shows all terms used in this data sheet, with associated convention for positive values.  
IVS  
VS  
IIN  
VS  
IN  
VIN  
VDS  
IDEN  
IOUT  
DEN  
OUT  
VDEN  
IIS  
VOUT  
IS  
GND  
VIS  
IGND  
voltage and current convention single.vsd  
Figure 3  
Voltage and Current Definition  
Data Sheet  
5
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
General Product Characteristics  
4
General Product Characteristics  
4.1  
Absolute Maximum Ratings  
Table 3  
Absolute Maximum Ratings1)  
TJ = -40°C to 150°C; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or  
Test Condition  
Number  
Min.  
Max.  
Supply Voltages  
Supply voltage  
VS  
-0.3  
0
48  
28  
V
V
P_4.1.1  
P_4.1.2  
Reverse polarity voltage  
-VS(REV)  
t < 2 min  
TA = 25°C  
RL 47 Ω  
ZGND = Diode+27 Ω  
Supply voltage for short  
circuit protection  
VBAT(SC)  
0
36  
V
RSupply= 10 mΩ  
LSupply= 5 µH  
P_4.1.3  
RECU = 20 mΩ  
RCable= 16 mΩ/m  
LCable= 1 µH/m,  
l = 0 or 5 m  
See Chapter 6 and  
Figure 28  
2) RI = 2 Ω  
RL = 47 Ω  
Supply voltage for Load  
dump protection  
VS(LD)  
nRSC1  
VIN  
65  
V
P_4.1.12  
P_4.1.4  
Short Circuit Capability  
3)  
Permanent short circuit  
IN pin toggles  
100  
k cycles  
V
Input Pins  
Voltage at INPUT pin  
-0.3  
6
7
P_4.1.13  
t < 2 min  
Current through INPUT pin IIN  
-2  
2
mA  
V
P_4.1.14  
P_4.1.15  
Voltage at DEN pin  
VDEN  
-0.3  
6
7
t < 2 min  
Current through DEN pin IDEN  
-2  
2
mA  
P_4.1.16  
Sense Pin  
Voltage at IS pin  
Current through IS pin  
Power Stage  
VIS  
IIS  
-0.3  
-25  
VS  
V
P_4.1.19  
P_4.1.20  
50  
mA  
Load current  
| IL |  
IL(LIM)  
A
P_4.1.21  
P_4.1.22  
Power dissipation (DC)  
PTOT  
1.8  
W
TA = 85°C  
TJ < 150°C  
Data Sheet  
6
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
General Product Characteristics  
Table 3  
Absolute Maximum Ratings1)  
TJ = -40°C to 150°C; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or  
Test Condition  
Number  
Min.  
Max.  
Maximum energy  
dissipation  
Single pulse  
EAS  
20  
mJ  
IL(0) = 1 A  
TJ(0) = 150°C  
VS = 28 V  
P_4.1.23  
Voltage at power  
transistor  
VDS  
65  
V
P_4.1.26  
P_4.1.27  
Currents  
Current through ground  
pin  
I GND  
-20  
-150  
20  
20  
mA  
t < 2 min  
Temperatures  
Junction temperature  
Storage temperature  
ESD Susceptibility  
TJ  
-40  
-55  
150  
150  
°C  
°C  
P_4.1.28  
P_4.1.30  
TSTG  
ESD susceptibility (all  
pins)  
VESD  
-2  
-4  
2
4
kV  
kV  
4) HBM  
4) HBM  
P_4.1.31  
P_4.1.32  
ESD susceptibility OUT Pin VESD  
vs. GND and VS connected  
ESD susceptibility  
VESD  
VESD  
-500  
-750  
500  
750  
V
V
5) CDM  
5) CDM  
P_4.1.33  
P_4.1.34  
ESD susceptibility pin  
(corner pins)  
1) Not subject to production test. Specified by design.  
2) VS(LD) is setup without the DUT connected to the generator per ISO 7637-1.  
3) Threshold limit for short circuit failures : 100 ppm. Please refer to the legal disclaimer for short circuit capability on  
the Back Cover of this document.  
4) ESD susceptibility, Human Body Model “HBM”, according to AEC Q100-002.  
5) ESD susceptibility, Charge Device Model “CDM”, according to AEC Q100-011.  
Notes  
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are  
not designed for continuous repetitive operation.  
Data Sheet  
7
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
General Product Characteristics  
4.2  
Functional Range  
Table 4  
Functional RangeTJ = -40°C to 150°C; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
28  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
36  
Nominal operating voltage VNOM  
Extended operating voltage VS(OP)  
8
5
V
V
2)  
P_4.2.1  
P_4.2.2  
48  
V = 4.5 V  
IN  
RL = 47 Ω  
DS < 0.5 V  
V
1)  
Minimum functional supply VS(OP)_MIN  
voltage  
3.8  
3
4.3  
3.5  
5
V
V
V
= 4.5 V  
P_4.2.3  
P_4.2.4  
IN  
RL = 47 Ω  
From IOUT = 0 A  
to VDS < 0.5 V;  
See Figure 15  
1)  
Undervoltage shutdown  
VS(UV)  
4.1  
V = 4.5 V  
IN  
V
DEN = 0 V  
RL = 47 Ω  
From VDS < 1 V;  
to IOUT = 0 A  
See Chapter 9.1  
See Figure 15  
2)  
Undervoltage shutdown  
hysteresis  
VS(UV)_HYS  
850  
2
4
mV  
mA  
P_4.2.13  
P_4.2.5  
Operating current channel IGND_1  
VIN = 5.5 V  
active  
VDEN = 5.5 V  
Device in RDS(ON)  
VS = 36 V  
See Chapter 9.1  
Standby current for whole IS(OFF)  
device with load (ambient)  
0.1  
0.5  
5
µA  
µA  
mA  
1) VS = 36 V  
VOUT = 0 V  
P_4.2.7  
P_4.2.10  
P_4.2.8  
V
V
IN floating  
DEN floating  
TJ 85°C  
Maximum standby current IS(OFF)_150  
for whole device with load  
VS = 36 V  
V
V
OUT = 0 V  
IN floating  
VDEN floating  
TJ = 150°C  
2)VS = 36 V  
Standby current for whole IS(OFF_DEN)  
device with load, diagnostic  
active  
0.6  
V
V
OUT = 0 V  
IN floating  
VDEN = 5.5 V  
1) Test at TJ = -40°C only  
2) Not subject to production test. Specified by design.  
Data Sheet  
8
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
General Product Characteristics  
Note:  
Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics  
table.  
4.3  
Thermal Resistance  
Table 5  
Thermal Resistance  
Parameter  
Symbol  
Values  
Typ.  
6
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)  
Junction to case  
RthJC  
RthJA  
K/W  
K/W  
P_4.3.1  
P_4.3.2  
1) 2)  
Junction to ambient  
All channels active  
39  
1) Not subject to production test. Specified by design.  
2) Specified RthJA value is according to JEDEC JESD51-2,-5,-7 at natural convection on FR4 2s2p board with 1 W power  
dissipation at TA=105°C. The product (chip + package) was simulated on a 76.4 x 114.3 x 1.5 mm board with 2 inner  
copper layers (2 x 70 µm Cu, 2 x 35 µm Cu). Where applicable, a thermal via array under the exposed pad contacts the  
first inner copper layer. Please refer to Figure 4.  
4.3.1  
PCB Set-Up  
70µm  
35µm  
1.5mm  
0.3mm  
PCB 2s2p.vsd  
Figure 4  
2s2p PCB Cross Section  
PCB bottom view  
PCB top view  
1
2
3
4
8
7
6
5
COOLING  
TAB  
VS  
thermique So8.vsd  
Figure 5  
PC Board Top and Bottom View for Thermal Simulation with 600 mm² Cooling Area  
Data Sheet  
9
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
General Product Characteristics  
4.3.2  
Thermal Impedance  
100  
10  
1
2s2p  
1s0p - 600 mm²  
1s0p - 300 mm²  
1s0p - footprint  
0,1  
0,0001  
0,001  
0,01  
0,1  
1
10  
100  
1000  
Time (s)  
Figure 6  
Typical Thermal Impedance. 2s2p PCB set-up according to Figure 4  
150  
1s0p - Tambient = 105°C  
130  
110  
90  
70  
50  
30  
0
100  
200  
300  
400  
500  
600  
Cooling area (mm²)  
Figure 7  
Typical Thermal Impedance. PCB set-up according 1s0p  
Data Sheet  
10  
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
Power Stage  
5
Power Stage  
The power stage is built using an N-channel vertical power MOSFET (DMOS) with charge pump.  
5.1  
Output ON-State Resistance  
The ON-state resistance RDS(ON) depends on the supply voltage as well as the junction temperature TJ. Figure 8  
shows the dependencies in terms of temperature and supply voltage for the typical ON-state resistance. The  
behavior in reverse polarity is described in Chapter 6.4.  
400  
320  
350  
300  
250  
200  
150  
100  
300  
280  
260  
240  
220  
200  
180  
160  
140  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
160  
0
5
10  
15  
20  
25  
30  
35  
Junction Temperature T [°C]  
Supply Voltage V [V]  
J
S
Figure 8  
Typical ON-State Resistance  
A high signal at the input pin (see Chapter 8) causes the power DMOS to switch ON with a dedicated slope,  
which is optimized in terms of EMC emission.  
5.2  
Turn ON/OFF Characteristics with Resistive Load  
Figure 9 shows the typical timing when switching a resistive load.  
IN  
VIN_H  
VIN_L  
t
VOUT  
dV/dt ON  
dV/dt OFF  
tON  
90% VS  
tOFF_delay  
70% VS  
30% VS  
10% VS  
tON_delay  
tOFF  
t
Switching times.vsd  
Figure 9  
Switching a Resistive Load Timing  
Data Sheet  
11  
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
Power Stage  
5.3  
Inductive Load  
5.3.1  
Output Clamping  
When switching OFF inductive loads with high side switches, the voltage VOUT drops below ground potential,  
because the inductance intends to continue driving the current. To prevent the destruction of the device by  
avalanche due to high voltages, there is a voltage clamp mechanism ZDS(AZ) implemented that limits negative  
output voltage to a certain level (VS - VDS(AZ)). Please refer to Figure 10 and Figure 11 for details. Nevertheless,  
the maximum allowed load inductance is limited.  
VS  
ZDS(AZ)  
VDS  
IN  
LOGIC  
IL  
VBAT  
GND  
ZGND  
OUT  
VOUT  
VIN  
L, RL  
Output_clamp.vsd  
Figure 10 Output Clamp  
IN  
t
VOUT  
VS  
t
VS-VDS(AZ)  
IL  
t
Switching an inductance.vsd  
Figure 11 Switching an Inductive Load Timing  
Data Sheet  
12  
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
Power Stage  
5.3.2  
Maximum Load Inductance  
During demagnetization of inductive loads, energy has to be dissipated in the BTT6200-1ENA. This energy can  
be calculated with the following equation:  
VS VDS(AZ)  
RL IL  
ln 1 ------------------------------ + IL  
L
RL  
E = VDS(AZ)  
(5.1)  
----- ------------------------------  
RL  
VS VDS(AZ)  
Following equation simplifies under the assumption of RL = 0 .  
VS  
2
1
2
E = L I 1 ------------------------------  
(5.2)  
--  
VS VDS(AZ)  
The energy, which is converted into heat, is limited by the thermal design of the component. See Figure 12 for  
the maximum allowed energy dissipation as a function of the load current.  
100  
10  
1
0
0.5  
1
1.5  
2
2.5  
3
IL(A)  
Figure 12 Maximum Energy Dissipation Single Pulse, TJ_START = 150°C; VS = 28 V  
Data Sheet  
13  
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
Power Stage  
5.4  
Inverse Current Capability  
In case of inverse current, meaning a voltage VINV at the OUTput higher than the supply voltage VS, a current  
IINV will flow from output to VS pin via the body diode of the power transistor (please refer to Figure 13). The  
output stage follows the state of the IN pin, except if the IN pin goes from OFF to ON during inverse. In that  
particular case, the output stage is kept OFF until the inverse current disappears. Nevertheless, the current IINV  
should not be higher than IL(INV). If the channel is OFF, the diagnostic will detect an open load at OFF. If the  
channel is ON, the diagnostic will detect open load at ON (the overtemperature signal is inhibited). At the  
appearance of VINV, a parasitic diagnostic can be observed. After, the diagnosis is valid and reflects the output  
state. At VINV vanishing, the diagnosis is valid and reflects the output state. During inverse current, no  
protection functions are available.  
VBAT  
VS  
Gate  
driver  
Device  
logic  
VINV  
INV  
Comp.  
IL(INV)  
OUT  
GND  
ZGND  
inverse current.vsd  
Figure 13 Inverse Current Circuitry  
Data Sheet  
14  
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
Power Stage  
5.5  
Electrical Characteristics Power Stage  
Table 6  
Electrical Characteristics: Power Stage  
VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 28 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
360  
Unit Note or  
Test Condition  
Number  
Min.  
RDS(ON)_150 300  
Max.  
ON-state resistance  
400  
mΩ  
IL = IL4 = 1 A  
VIN = 4.5 V  
P_5.5.1  
TJ = 150°C  
See Figure 8  
ON-state resistance  
Nominal load current  
RDS(ON)_25  
IL(NOM)1  
200  
1.5  
mΩ  
1) TJ = 25°C  
1) TA = 85°C  
TJ < 150°C  
P_5.5.21  
P_5.5.2  
A
Output voltage drop limitation at VDS(NL)  
small load currents  
10  
70  
22  
75  
mV  
V
IL = IL0 = 25 mA  
See Chapter 9.3  
P_5.5.4  
P_5.5.5  
Drain to source clamping voltage VDS(AZ)  
65  
IDS = 20 mA  
See Figure 11  
See Chapter 9.1  
2)  
VDS(AZ) = [VS - VOUT  
]
Output leakage current  
IL(OFF)  
0.1  
1
0.5  
5
µA  
µA  
A
V
floating  
P_5.5.6  
P_5.5.8  
IN  
TJ 85°C  
VOUT = 0 V  
TJ 85°C  
Output leakage current  
IL(OFF)_150  
VIN floating  
VOUT = 0 V  
TJ = 150°C  
1) Vs< VOUTX  
TJ = 150°C  
Inverse current capability  
IL(INV)  
1
P_5.5.9  
See Figure 13  
Slew rate  
30% to 70% VS  
dV/dtON  
-dV/dtOFF  
ΔdV/dt  
tON  
0.3  
0.3  
-0.15  
20  
20  
-50  
0.8  
0.8  
0
1.3  
1.3  
0.15  
150  
150  
50  
V/µs RL = 47 Ω  
VS = 28 V  
P_5.5.11  
P_5.5.12  
P_5.5.13  
P_5.5.14  
P_5.5.15  
P_5.5.16  
P_5.5.17  
P_5.5.18  
See Figure 9  
See Chapter 9.1  
Slew rate  
70% to 30% VS  
V/µs  
V/µs  
µs  
Slew rate matching  
dV/dtON - dV/dtOFF  
Turn-ON time to  
VOUT = 90% VS  
70  
70  
0
Turn-OFF time to  
VOUT = 10% VS  
tOFF  
µs  
Turn-ON / OFF matching  
tOFF - tON  
tSW  
µs  
Turn-ON time to  
VOUT = 10% VS  
tON_delay  
tOFF_delay  
35  
35  
70  
µs  
Turn-OFF time to  
70  
µs  
VOUT = 90% VS  
Data Sheet  
15  
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
Power Stage  
Table 6  
Electrical Characteristics: Power Stage (cont’d)  
VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 28 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
209  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Switch ON energy  
EON  
µJ  
1) RL = 47 Ω  
OUT= 90% VS  
P_5.5.19  
V
VS = 36 V  
See Chapter 9.1  
Switch OFF energy  
EOFF  
219  
µJ  
1) RL = 47 Ω  
P_5.5.20  
VOUT= 10% VS  
VS = 36 V  
See Chapter 9.1  
1) Not subject to production test, specified by design.  
2) Test at TJ = -40°C only  
Data Sheet  
16  
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
Protection Functions  
6
Protection Functions  
The device provides integrated protection functions. These functions are designed to prevent the destruction  
of the IC from fault conditions described in the data sheet. Fault conditions are considered as “outside”  
normal operating range. Protection functions are designed for neither continuous nor repetitive operation.  
6.1  
Loss of Ground Protection  
In case of loss of the module ground and the load remains connected to ground, the device protects itself by  
automatically turning OFF (when it was previously ON) or remains OFF, regardless of the voltage applied on IN  
pins.  
In case of loss of device ground, it’s recommended to use input resistors between the microcontroller and the  
BTT6200-1ENA to ensure switching OFF the channel.  
In case of loss of module or device ground, a current (IOUT(GND)) can flow out of the DMOS as illustrated in  
Figure 14.  
ZGND is recommended to be a resistor in series to a diode .  
ZIS(AZ)  
VS  
ZD(AZ)  
VBAT  
ZDS(AZ)  
IS  
DEN  
IN  
RSENSE  
RDEN  
RIN  
IOUT(GND)  
LOGIC  
OUT  
L, RL  
ZDESD  
GND  
RIS  
ZGND  
Loss of ground protection single.vsd  
Figure 14 Loss of Ground Protection with External Components  
6.2  
Undervoltage Protection  
Between VS(UV) and VS(OP), the undervoltage mechanism is triggered. VS(OP) represents the minimum voltage  
where the switching ON and OFF can takes place. VS(UV) represents the minimum voltage the switch can hold  
ON. If the supply voltage is below the undervoltage mechanism VS(UV), the device is OFF (turns OFF). As soon as  
the supply voltage is above the undervoltage mechanism VS(OP), then the device can be switched ON. When the  
switch is ON, protection functions are operational. Nevertheless, the diagnosis is not guaranteed until VS is in  
the VNOM range. Figure 15 sketches the undervoltage mechanism.  
Data Sheet  
17  
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
Protection Functions  
VOUT  
undervoltage behavio.rvsd  
VS  
VS(UV)  
VS(OP)  
Figure 15 Undervoltage Behavior  
6.3  
Overvoltage Protection  
There is an integrated clamp mechanism for overvoltage protection (ZD(AZ)). To guarantee this mechanism  
operates properly in the application, the current in the Zener diode has to be limited by a ground resistor.  
Figure 16 shows a typical application to withstand overvoltage issues. In case of supply voltage higher than  
VS(AZ), the power transistor switches ON and in addition the voltage across the logic section is clamped. As a  
result, the internal ground potential rises to VS - VS(AZ). Due to the ESD Zener diodes, the potential at pin IN and  
DEN rises almost to that potential, depending on the impedance of the connected circuitry. In the case the  
device was ON, prior to overvoltage, the BTT6200-1ENA remains ON. In the case the BTT6200-1ENA was OFF,  
prior to overvoltage, the power transistor can be activated. In the case the supply voltage is in above VBAT(SC)  
and below VDS(AZ), the output transistor is still operational and follows the input. If the channel is in the ON  
state, parameters are no longer guaranteed and lifetime is reduced compared to the nominal supply voltage  
range. This especially impacts the short circuit robustness, as well as the maximum energy EAS capability. ZGND  
is recommended to be a resistor in series to a diode.  
ISOV  
ZIS(AZ)  
VS  
ZD(AZ)  
I N 1  
VBAT  
ZDS(AZ)  
IS  
RSENSE  
DEN  
IN  
RDEN  
RIN  
LOGIC  
I N 0  
OUT  
ZDESD  
GND  
RIS  
ZGND  
L, RL  
Overvoltage protection single.vsd  
Figure 16 Overvoltage Protection with External Components  
Data Sheet  
18  
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
Protection Functions  
6.4  
Reverse Polarity Protection  
In case of reverse polarity, the intrinsic body diode of the power DMOS causes power dissipation. The current  
in this intrinsic body diode is limited by the load itself. Additionally, the current into the ground path and the  
logic pins has to be limited to the maximum current described in Chapter 4.1 with an external resistor.  
Figure 17 shows a typical application. RGND resistor is used to limit the current in the Zener protection of the  
device. Resistors RDEN, and RIN are used to limit the current in the logic of the device and in the ESD protection  
stage. RSENSE is used to limit the current in the sense transistor which behaves as a diode. The recommended  
value for RDEN = RIN = RSENSE = 10 k. It is recommended to use a resistor in series to a diode in the ground path.  
During reverse polarity, no protection functions are available.  
Microcontroller  
ZIS(AZ)  
VS  
protection diodes  
ZD(AZ)  
ZDS(AZ)  
IS  
RSENSE  
VDS(REV)  
DEN  
IN  
RDEN  
RIN  
LOGIC  
-VS(REV)  
OUT  
ZDESD  
GND  
L, RL  
RGND  
RIS  
ZGND  
Reverse Polarity single.vsd  
Figure 17 Reverse Polarity Protection with External Components  
6.5  
Overload Protection  
In case of overload, such as high inrush of cold lamp filament, or short circuit to ground, the BTT6200-1ENA  
offers several protection mechanisms.  
6.5.1  
Current Limitation  
At first step, the instantaneous power in the switch is maintained at a safe value by limiting the current to the  
maximum current allowed in the switch IL(SC). During this time, the DMOS temperature is increasing, which  
affects the current flowing in the DMOS.  
6.5.2  
Temperature Limitation in the Power DMOS  
The channel incorporates both an absolute (TJ(SC)) and a dynamic (TJ(SW)) temperature sensor. Activation of  
either sensor will cause an overheated channel to switch OFF to prevent destruction. Any protective switch  
OFF latches the output until the temperature has reached an acceptable value. Figure 18 gives a sketch of the  
situation.  
No retry strategy is implemented such that when the DMOS temperature has cooled down enough, the switch  
is switched ON again. Only the IN pin signal toggling can re-activate the power stage (latch behavior).  
Data Sheet  
19  
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
Protection Functions  
IN  
t
IL  
LOAD CURRENT BELOW  
LIMITATION PHASE  
LOAD CURRENT LIMITATION PHASE  
IL(x)SC  
IL(NOM)  
t
TDMOS  
TJ(SC)  
Temperature  
protection phase  
ΔTJ(SW)  
TA  
tsIS(FAULT)  
t
t
tsIS(OC_blank)  
IIS  
IIS(FAULT)  
IL(NOM) / kILIS  
0A  
VDEN  
tsIS(OF F)  
0V  
t
Hard start.vsd  
Figure 18 Overload Protection  
Note:  
For better understanding, the time scale is not linear. The real timing of this drawing is application  
dependant and cannot be described.  
Data Sheet  
20  
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
Protection Functions  
6.6  
Electrical Characteristics for the Protection Functions  
Table 7  
Electrical Characteristics: Protection  
VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 28 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Loss of Ground  
Output leakage current  
while GND disconnected  
IOUT(GND)  
0.1  
650  
70  
mA  
mV  
V
1)2) VS = 28 V  
See Figure 14  
P_6.6.1  
P_6.6.2  
P_6.6.3  
P_6.6.4  
Reverse Polarity  
Drain source diode voltage VDS(REV)  
during reverse polarity  
200  
65  
9
700  
75  
3) IL = - 1 A  
See Figure 17  
Overvoltage  
Overvoltage protection  
VS(AZ)  
ISOV = 5 mA  
See Figure 16  
Overload Condition  
4)  
Load current limitation  
IL5(SC)  
11  
80  
14  
A
K
V
= 5 V  
DS  
See Figure 18 and  
Chapter 9.3  
5) See Figure 18  
Dynamic temperature  
increase while switching  
TJ(SW)  
TJ(SC)  
P_6.6.8  
Thermal shutdown  
temperature  
150  
1705) 2005) °C  
30  
3) See Figure 18  
P_6.6.10  
P_6.6.11  
2)  
Thermal shutdown  
hysteresis  
TJ(SC)  
K
1) All pins are disconnected except VS and OUT.  
2) Not Subject to production test, specified by design  
3) Test at TJ = +150°C only  
4) Test at TJ = -40°C only  
5) Functional test only  
Data Sheet  
21  
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
Diagnostic Functions  
7
Diagnostic Functions  
For diagnosis purposes, the BTT6200-1ENA provides a combination of digital and analog signals at pin IS.  
These signals are called SENSE. In case the diagnostic is disabled via DEN, pin IS becomes high impedance. In  
case DEN is activated, the sense current of the channel is enabled.  
7.1  
IS Pin  
The BTT6200-1ENA provides a sense signal called IIS at pin IS. As long as no “hard” failure mode occurs (short  
circuit to GND / current limitation / overtemperature / excessive dynamic temperature increase or open load  
at OFF) a proportional signal to the load current (ratio kILIS = IL / IIS) is provided. The complete IS pin and  
diagnostic mechanism is described in Figure 19. The accuracy of the sense current depends on temperature  
and load current. Due to the ESD protection, in connection to VS, it is not recommended to share the IS pin with  
other devices if these devices are using another battery feed. The consequence is that the unsupplied device  
would be fed via the IS pin of the supplied device.  
VS  
IIS = IL / kILIS  
FAULT  
IIS(FAULT)  
ZIS(AZ)  
1
0
1
IS  
0
DEN  
Sense schematic single.vsd  
Figure 19 Diagnostic Block Diagram  
Data Sheet  
22  
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
Diagnostic Functions  
7.2  
SENSE Signal in Different Operating Modes  
Table 8 gives a quick reference for the state of the IS pin during device operation.  
Table 8  
Sense Signal, Function of Operation Mode  
Operation Mode  
Normal operation  
Short circuit to GND  
Overtemperature  
Short circuit to VS  
Open Load  
Input level Channel X DEN1)  
Output Level Diagnostic Output  
OFF H  
Z
Z
~ GND  
Z
Z
Z
VS  
IIS(FAULT)  
< VOL(OFF)  
> VOL(OFF)  
Z
2)  
IIS(FAULT)  
Inverse current  
~ VINV  
~ VS  
< VS  
~ GND  
Z
IIS(FAULT)  
IIS = IL / kILIS  
IIS(FAULT)  
IIS(FAULT)  
IIS(FAULT)  
Normal operation  
Current limitation  
Short circuit to GND  
ON  
Overtemperature TJ(SW  
)
event  
Short circuit to VS  
Open Load  
VS  
IIS < IL / kILIS  
IIS < IIS(OL)  
3)  
~ VS  
4)  
Inverse current  
Underload  
~ VINV  
IIS < IIS(OL)  
5)  
~ VS  
IIS(OL) < IIS < IL / kILIS  
Don’t care  
Don’t care  
L
Don’t care  
Z
1) The table doesn’t indicate but it is assumed that the appropriate channel is selected via the DSEL pins.  
2) Stable with additional pull-up resistor.  
3) The output current has to be smaller than IL(OL)  
4) After maximum tINV  
.
.
5) The output current has to be higher than IL(OL)  
.
Data Sheet  
23  
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
Diagnostic Functions  
7.3  
SENSE Signal in the Nominal Current Range  
Figure 20 shows the current sense as a function of the load current in the power DMOS. Usually, a pull-down  
resistor RIS is connected to the current sense IS pin. This resistor has to be higher than 560 to limit the power  
losses in the sense circuitry. A typical value is 1.2 k. The blue curve represents the ideal sense current,  
assuming an ideal kILIS factor value. The red curves shows the accuracy the device provides across full  
temperature range at a defined current.  
6
5
4
3
2
1
min/max Sense Current  
typical Sense Current  
0
0
0.5  
1
1.5  
I
[A]  
L
Figure 20 Current Sense for Nominal Load  
7.3.1  
SENSE Signal Variation as a Function of Temperature and Load Current  
In some applications a better accuracy is required at smaller currents. To achieve this accuracy requirement,  
a calibration on the application is possible. To avoid multiple calibration points at different load and  
temperature conditions, the BTT6200-1ENA allows limited derating of the kILIS value, at a given point  
(IL3; TJ= +25°C). This derating is described by the parameter ΔkILIS. Figure 21 shows the behavior of the sense  
current, assuming one calibration point at nominal load at +25°C.  
The blue line indicates the ideal kILIS ratio.  
The green lines indicate the derating on the parameter across temperature and voltage, assuming one  
calibration point at nominal temperature and nominal battery voltage.  
The red lines indicate the kILIS accuracy without calibration.  
Data Sheet  
24  
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
Diagnostic Functions  
500  
450  
400  
350  
300  
250  
200  
calibrated k  
min/max k  
ILIS  
ILIS  
typical k  
ILIS  
150  
0
0.5  
1
1.5  
I
[A]  
L
BTT6200-1EJA  
Figure 21 Improved Current Sense Accuracy with One Calibration Point at 0.2 A  
7.3.2  
SENSE Signal Timing  
Figure 22 shows the timing during settling and disabling of the SENSE.  
VIN  
t
IL  
tON  
tOFF  
tON  
90% of  
IL static  
t
t
VDEN  
IIS  
tsIS(LC)  
tsIS(OFF)  
tsIS(ON)  
tsIS(ON_DEN)  
90% of  
IIS static  
t
current sense settling disabling time .vsd  
Figure 22 Current Sense Settling / Disabling Timing  
Data Sheet  
25  
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
Diagnostic Functions  
7.3.3  
SENSE Signal in Open Load  
7.3.3.1 Open Load in ON Diagnostic  
If the channel is ON, a leakage current can still flow through an open load, for example due to humidity. The  
parameter IL(OL) gives the threshold of recognition for this leakage current. If the current IL flowing out the  
power DMOS is below this value, the device recognizes a failure, if the DEN is selected. In that case, the SENSE  
current is below IIS(OL). Otherwise, the minimum SENSE current is given above parameter IIS(OL). Figure 23  
shows the SENSE current behavior in this area. The red curve shows a typical product curve. The blue curve  
shows the ideal current sense.  
IIS  
IIS(OL)  
IL  
IL(OL)  
Sense for OL .vsd  
Figure 23 Current Sense Ratio for Low Currents  
7.3.3.2 Open Load in OFF Diagnostic  
For open load diagnosis in OFF-state, an external output pull-up resistor (ROL) is recommended. For the  
calculation of pull-up resistor value, the leakage currents and the open load threshold voltage VOL(OFF) have to  
be taken into account. Figure 24 gives a sketch of the situation. Ileakage defines the leakage current in the  
complete system, including IL(OFF) (see Chapter 5.5) and external leakages, e.g, due to humidity, corrosion,  
etc... in the application.  
To reduce the stand-by current of the system, an open load resistor switch SOL is recommended. If the channel  
is OFF, the output is no longer pulled down by the load and VOUT voltage rises to nearly VS. This is recognized  
by the device as an open load. The voltage threshold is given by VOL(OFF). In that case, the SENSE signal is  
switched to the IIS(FAULT)  
.
An additional RPD resistor can be used to pull VOUT to 0 V. Otherwise, the OUT pin is floating. This resistor can  
be used as well for short circuit to battery detection, see Chapter 7.3.4.  
Data Sheet  
26  
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
Diagnostic Functions  
Vbat  
SOL  
VS  
IIS(FAULT)  
ROL  
OL  
comp.  
OUT  
IS  
ILOFF  
Ileakage  
GND  
ZGND  
RIS  
RPD  
VOL(OFF)  
Rleakage  
Open Load in OFF.vsd  
Figure 24 Open Load Detection in OFF Electrical Equivalent Circuit  
7.3.3.3 Open Load Diagnostic Timing  
Figure 25 shows the timing during either Open Load in ON or OFF condition when the DEN pin is HIGH. Please  
note that a delay tsIS(FAULT_OL_OFF) has to be respected after the falling edge of the input, when applying an open  
load in OFF diagnosis request, otherwise the diagnosis can be wrong.  
Load is present  
Open load  
VIN  
VOUT  
t
VS-VOL(OFF)  
shutdown with load  
RDS(ON) x IL  
t
t
IOUT  
tsIS(FAULT_OL_ON_OFF)  
IIS  
tsIS(LC)  
t
Error Settling Disabling Time.vsd  
Figure 25 Sense Signal in Open Load Timing  
Data Sheet  
27  
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
Diagnostic Functions  
7.3.4  
SENSE Signal in Short Circuit to VS  
In case of a short circuit between the OUTput-pin and the VS pin, all or portion (depending on the short circuit  
impedance) of the load current will flow through the short circuit. As a result, a lower current compared to the  
normal operation will flow through the DMOS of the BTT6200-1ENA, which can be recognized at the current  
sense signal. The open load at OFF detection circuitry can also be used to distinguish a short circuit to VS. In  
that case, an external resistor to ground RSC_VS is required. Figure 26 gives a sketch of the situation.  
Vbat  
VS  
IIS(FAULT)  
VBAT  
OL  
comp.  
IS  
OUT  
GND  
ZGND  
VOL(OFF)  
RSC_VS  
RIS  
Sh or t c irc uit to Vs .vsd  
Figure 26 Short Circuit to Battery Detection in OFF Electrical Equivalent Circuit  
7.3.5  
SENSE Signal in Case of Overload  
An overload condition is defined by a current flowing out of the DMOS reaching the current limitation and / or  
the absolute dynamic temperature swing TJ(SW) is reached, and / or the junction temperature reaches the  
thermal shutdown temperature TJ(SC). Please refer to Chapter 6.5 for details.  
In that case, the SENSE signal given is by IIS(FAULT) when the diagnostic is selected.  
The device has a thermal latch behavior, such that when the overtemperature or the exceed dynamic  
temperature condition has disappeared, the DMOS is reactivated only when the IN is toggled LOW to HIGH. If  
the DEN pin is activated the SENSE follows the output stage. If no reset of the latch occurs, the device remains  
in the latching phase and IIS(FAULT) at the IS pin, even though the DMOS is OFF.  
7.3.6  
SENSE Signal in Case of Inverse Current  
In the case of inverse current, the sense signal will indicate open load in OFF state and indicate open load in  
ON state.  
Data Sheet  
28  
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
Diagnostic Functions  
7.4  
Electrical Characteristics Diagnostic Function  
Table 9  
Electrical Characteristics: Diagnostics  
VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 28 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Load Condition Threshold for Diagnostic  
Open load detection  
threshold in OFF state  
VS - VOL(OFF)  
4
6
V
VIN = 0 V  
DEN = 4.5 V  
See Figure 25  
P_7.5.1  
P_7.5.2  
V
Open load detection  
threshold in ON state  
IL(OL)  
5
15  
mA VIN = VDEN = 4.5 V  
IIS(OL) = 33 μA  
See Figure 23  
See Chapter 9.4  
Sense Pin  
IS pin leakage current when IIS_(DIS)  
sense is disabled  
1
0.02  
1
µA VIN = 4.5 V  
P_7.5.4  
P_7.5.6  
VDEN = 0 V  
IL = IL4 = 1 A  
Sense signal saturation  
voltage  
VS - VIS  
3.5  
V
VIN = 0 V  
VOUT = VS > 10 V  
(RANGE)  
VDEN = 4.5 V  
IIS = 6 mA  
See Chapter 9.4  
Sense signal maximum  
current in fault condition  
IIS(FAULT)  
6
15  
35  
mA VIS = VIN = VDSEL = 0 V  
OUT = VS > 10 V  
P_7.5.7  
P_7.5.3  
V
VDEN = 4.5 V  
See Figure 19  
See Chapter 9.4  
Sense pin maximum voltage VIS(AZ)  
VS to IS  
65  
70  
75  
V
IIS = 5 mA  
See Figure 19  
Current Sense Ratio Signal in the Nominal Area, Stable Load Current Condition  
Current sense ratio  
L0 = 10 mA  
kILIS0  
kILIS1  
kILIS2  
kILIS3  
kILIS4  
kILIS  
-50% 330  
-40% 300  
-15% 300  
-11% 300  
+50%  
+40%  
+15%  
+11%  
+9%  
VIN = 4.5 V  
VDEN = 4.5 V  
See Figure 20  
P_7.5.8  
I
Current sense ratio  
IL1 = 0.05 A  
P_7.5.9  
TJ = -40°C; 150°C  
Current sense ratio  
IL2 = 0.2 A  
P_7.5.10  
P_7.5.11  
P_7.5.12  
P_7.5.17  
Current sense ratio  
IL3 = 0.5 A  
Current sense ratio  
IL4 = 1 A  
-9%  
-8  
300  
0
3)  
kILIS derating with current  
+8  
%
k
versus kILIS2  
ILIS3  
and temperature  
See Figure 21  
Data Sheet  
29  
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
Diagnostic Functions  
Table 9  
Electrical Characteristics: Diagnostics (cont’d)  
VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 28 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Diagnostic Timing in Normal Condition  
3)  
Current sense settling time tsIS(ON)  
to kILIS function stable after  
positive input slope on both  
INput and DEN  
150  
µs  
µs  
µs  
V
= VIN = 0 to 4.5 V P_7.5.18  
DEN  
VS = 28 V  
RIS = 1.2 kΩ  
C
IL = IL3 = 0.5 A  
See Figure 22  
SENSE < 100 pF  
Current sense settling time tsIS(ON_DEN)  
with load current stable and  
transition of the DEN  
10  
15  
VIN = 4.5 V  
P_7.5.19  
P_7.5.20  
VDEN = 0 to 4.5 V  
RIS = 1.2 kΩ  
CSENSE < 100 pF  
IL = IL3 = 0.5 A  
See Figure 22  
Current sense settling time tsIS(LC)  
to IIS stable after positive  
input slope on current load  
VIN = 4.5 V  
V
DEN = 4.5 V  
RIS = 1.2 kΩ  
SENSE < 100 pF  
C
IL = IL2 = 0.2 A to  
IL = IL3 = 0.5 A  
See Figure 22  
Diagnostic Timing in Open Load Condition  
Current sense settling time tsIS(FAULT_OL_  
50  
µs  
µs  
VIN = 0 V  
VDEN = 0 to 4.5 V  
RIS = 1.2 kΩ  
P_7.5.22  
P_7.5.23  
to IIS stable for open load  
OFF)  
detection in OFF state  
CSENSE < 100 pF  
VOUT = VS = 28 V  
3)  
Current sense settling time tsIS(FAULT_OL_  
-
200  
V = 4.5 to 0 V  
IN  
for open load detection in  
VDEN = 4.5 V  
ON_OFF)  
ON-OFF transition  
RIS = 1.2 kΩ  
CSENSE < 100 pF  
VOUT = VS = 28 V  
See Figure 25  
Diagnostic Timing in Overload Condition  
1) 2)  
Current sense settling time tsIS(FAULT)  
to IIS stable for overload  
detection  
150  
µs  
V
= VDEN = 0 V to P_7.5.24  
IN  
4.5 V  
RIS = 1.2 kΩ  
CSENSE < 100 pF  
VDS = 5 V  
See Figure 18  
Data Sheet  
30  
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
Diagnostic Functions  
Table 9  
Electrical Characteristics: Diagnostics (cont’d)  
VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 28 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
350  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
3)  
Current sense over current tsIS(OC_blank)  
µs  
V
= VDEN = 4.5 V  
P_7.5.32  
IN  
blanking time  
RIS = 1.2 kΩ  
SENSE < 100 pF  
C
VDS = 5 V to 0 V  
See Figure 18  
Diagnostic disable time  
DEN transition to  
IIS < 50% IL /kILIS  
tsIS(OFF)  
20  
µs  
VIN = 4.5 V  
P_7.5.25  
VDEN = 4.5 V to 0 V  
RIS = 1.2 kΩ  
CSENSE < 100 pF  
IL = IL3 = 0.5 A  
See Figure 22  
1) Test at TJ = -40°C only  
2) Functional Test only  
3) Not subject to production test, specified by design  
Data Sheet  
31  
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
Input Pins  
8
Input Pins  
8.1  
Input Circuitry  
The input circuitry is compatible with 3.3 and 5 V microcontrollers. The concept of the input pin is to react to  
voltage thresholds. An implemented Schmitt trigger avoids any undefined state if the voltage on the input pin  
is slowly increasing or decreasing. The output is either OFF or ON but cannot be in a linear or undefined state.  
The input circuitry is compatible with PWM applications. Figure 27 shows the electrical equivalent input  
circuitry. In case the pin is not needed, it must be left opened, or must be connected to device ground (and not  
module ground) via a 10 kΩ input resistor.  
IN  
GND  
Input circuitry .vsd  
Figure 27 Input Pin Circuitry  
8.2  
DEN Pin  
The DEN pins enable and disable the diagnostic functionality of the device. This pin has the same structure as  
the INput pin, please refer to Figure 27.  
8.3  
Input Pin Voltage  
The IN and DEN use a comparator with hysteresis. The switching ON / OFF takes place in a defined region, set  
by the thresholds VIN(L) Max. and VIN(H) Min. The exact value where the ON and OFF take place are unknown and  
depends on the process, as well as the temperature. To avoid cross talk and parasitic turn ON and OFF, a  
hysteresis is implemented. This ensures a certain immunity to noise.  
Data Sheet  
32  
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
Input Pins  
8.4  
Electrical Characteristics  
Table 10 Electrical Characteristics: Input Pins  
VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 28 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
INput Pin Characteristics  
Low level input voltage range VIN(L)  
High level input voltage range VIN(H)  
-0.3  
2
0.8  
6
V
See Chapter 9.5  
See Chapter 9.5  
1)See Chapter 9.5 P_8.4.3  
P_8.4.1  
P_8.4.2  
V
Input voltage hysteresis  
Low level input current  
High level input current  
VIN(HYS)  
IIN(L)  
IIN(H)  
250  
10  
10  
mV  
µA  
µA  
1
25  
25  
VIN = 0.8 V  
P_8.4.4  
P_8.4.5  
2
VIN = 5.5 V  
See Chapter 9.5  
DEN Pin  
Low level input voltage range VDEN(L)  
High level input voltage range VDEN(H)  
-0.3  
2
0.8  
6
V
P_8.4.6  
P_8.4.7  
P_8.4.8  
P_8.4.9  
P_8.4.10  
V
1)  
Input voltage hysteresis  
Low level input current  
High level input current  
VDEN(HYS)  
IDEN(L)  
250  
10  
10  
mV  
µA  
µA  
1
25  
25  
VDEN = 0.8 V  
VDEN = 5.5 V  
IDEN(H)  
2
1) Not subject to production test, specified by design  
Data Sheet  
33  
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
Characterization Results  
9
Characterization Results  
The characterization has been performed on 3 lots, with 3 devices each. Characterization has been performed  
at 8 V, 28 V and 36 V over temperature range.  
9.1  
General Product Characteristics  
P_4.2.3  
P_4.2.4  
6.000  
5.500  
5.000  
4.500  
4.000  
3.500  
3.000  
2.500  
5.000  
4.500  
4.000  
3.500  
3.000  
2.500  
2.000  
1.500  
8V  
8V  
28V  
36V  
28V  
36V  
2.000  
-50  
1.000  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature [°C]  
Temperature [°C]  
Minimum Functional Supply Voltage  
S(OP)_MIN = f(TJ)  
Undervoltage Threshold VS(UV) = f(TJ)  
V
P_4.2.5  
P_4.2.7, P_4.2.10  
3.000  
2.500  
2.000  
1.500  
1.000  
0.500  
1.200  
1.000  
0.800  
0.600  
0.400  
0.200  
0.000  
8V  
8V  
28V  
36V  
28V  
36V  
0.000  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature [°C]  
Temperature [°C]  
Current Consumption for Whole Device with Load Standby Current for Whole Device with Load  
Channel Active IGND_1 = f(TJ;VS)  
IS(OFF)= f(TJ;VS)  
Data Sheet  
34  
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
Characterization Results  
9.2  
Power Stage  
P_5.5.4  
P_5.5.5  
18.000  
16.000  
14.000  
12.000  
10.000  
8.000  
75.000  
74.000  
73.000  
72.000  
71.000  
70.000  
69.000  
68.000  
67.000  
66.000  
65.000  
6.000  
4.000  
8V  
8V  
28V  
36V  
28V  
36V  
2.000  
0.000  
-50  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature [°C]  
Temperature [°C]  
Output Voltage Drop Limitation at Low Load  
Drain to Source Clamp Voltage VDS(AZ) = f(TJ)  
Current VDS(NL) = f(TJ)  
P_5.5.11  
P_5.5.12  
1.000  
0.900  
0.800  
0.700  
0.600  
0.500  
0.400  
0.900  
0.800  
0.700  
0.600  
0.500  
0.400  
0.300  
0.300  
0.200  
8V  
28V  
0.200  
8V  
36V  
28V  
36V  
0.100  
0.000  
0.100  
0.000  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature [°C]  
Temperature [°C]  
Slew Rate at Turn ON  
dV/dtON = f(TJ;VS), RL = 47 Ω  
Slew Rate at Turn OFF  
-dV/dtOFF = f(TJ;VS), RL = 47 Ω  
Data Sheet  
35  
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
Characterization Results  
P_5.5.14  
P_5.5.15  
90.000  
80.000  
70.000  
60.000  
50.000  
40.000  
30.000  
20.000  
10.000  
0.000  
90.000  
80.000  
70.000  
60.000  
50.000  
40.000  
30.000  
20.000  
10.000  
8V  
28V  
36V  
8V  
28V  
36V  
0.000  
-50  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature [°C]  
Temperature [°C]  
Turn ON tON = f(TJ;VS), RL = 47 Ω  
Turn OFF tOFF = f(TJ;VS), RL = 47 Ω  
P_5.5.19  
P_5.5.20  
3.00E+02  
2.50E+02  
2.00E+02  
1.50E+02  
1.00E+02  
5.00E+01  
0.00E+00  
3.00E+02  
2.50E+02  
2.00E+02  
1.50E+02  
1.00E+02  
5.00E+01  
0.00E+00  
8V  
8V  
28V  
36V  
28V  
36V  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature [°C]  
Temperature [°C]  
Switch ON Energy EON = f(TJ;VS), RL = 47 Ω  
Switch OFF Energy EOFF = f(TJ;VS), RL = 47 Ω  
Data Sheet  
36  
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
Characterization Results  
9.3  
Protection Functions  
P_6.6.4  
16.000  
14.000  
12.000  
10.000  
8.000  
6.000  
4.000  
2.000  
0.000  
8V  
28V  
36V  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature [°C]  
Overload Condition in the Low Voltage Area  
IL5(SC) = f(TJ)  
Data Sheet  
37  
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
Characterization Results  
9.4  
Diagnostic Mechanism  
P_7.5.2  
1.600  
1.400  
1.200  
1.000  
0.800  
0.600  
0.400  
0.200  
0.000  
14.000  
12.000  
10.000  
8.000  
6.000  
8V  
8V  
28V  
36V  
28V  
36V  
4.000  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature [°C]  
Temperature [°C]  
Current Sense at no Load  
Open Load Detection ON State Threshold  
IIS = f(TJ;VS), IL = 0 A  
IL(OL)= f(TJ)  
P_7.5.3  
P_7.5.7  
75.000  
74.000  
73.000  
72.000  
71.000  
70.000  
69.000  
68.000  
67.000  
66.000  
65.000  
20.000  
18.000  
16.000  
14.000  
12.000  
10.000  
8.000  
6.000  
4.000  
8V  
8V  
28V  
36V  
28V  
36V  
2.000  
0.000  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature [°C]  
Temperature [°C]  
Sense Signal Maximum Voltage  
Sense Signal Maximum Current in Fault Condition  
VIS(AZ) = f(TJ)  
IIS(FAULT)= f(TJ;VS)  
Data Sheet  
38  
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
Characterization Results  
9.5  
Input Pins  
P_8.4.1  
P_8.4.2  
1.500  
1.400  
1.300  
1.200  
1.100  
1.000  
0.900  
0.800  
0.700  
0.600  
1.800  
1.700  
1.600  
1.500  
1.400  
1.300  
1.200  
1.100  
8V  
8V  
28V  
36V  
28V  
36V  
1.000  
-50  
0.500  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature [°C]  
Temperature [°C]  
Input Voltage Threshold  
Input Voltage Threshold  
VIN(L)= f(TJ;VS)  
VIN(H)= f(TJ;VS)  
P_8.4.3  
P_8.4.5  
600.000  
500.000  
400.000  
300.000  
200.000  
100.000  
0.000  
16.000  
14.000  
12.000  
10.000  
8.000  
6.000  
4.000  
2.000  
0.000  
8V  
8V  
28V  
36V  
28V  
36V  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature [°C]  
Temperature [°C]  
Input Voltage Hysteresis  
Input Current High Level  
VIN(HYS)= f(TJ;VS)  
IIN(H)= f(TJ)  
Data Sheet  
39  
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
Application Information  
10  
Application Information  
Note:  
The following information is given as a hint for the implementation of the device only and shall not  
be regarded as a description or warranty of a certain functionality, condition or quality of the device.  
VBAT  
Voltage Regulator  
OUT VS  
T1  
GND  
DZ  
CVDD  
CVS  
VS  
VDD  
GPIO  
RDEN  
DEN  
Microcontroller  
GPIO  
OUT  
IN  
IS  
RIN  
COUT  
Bulb  
RSENSE  
ADC IN  
GND  
GND  
CSENSE  
D
Application_example_Single.emf  
Figure 28 Application Diagram with BTT6200-1ENA  
Note:  
This is a very simplified example of an application circuit. The function must be verified in the real  
application.  
Table 11 Bill of Material  
Reference Value  
Purpose  
RIN  
10 kΩ  
Protection of the microcontroller during overvoltage, reverse polarity  
Guarantee BTT6200-1ENA channel is OFF during loss of ground  
RDEN  
RPD  
10 kΩ  
47 kΩ  
Protection of the microcontroller during overvoltage, reverse polarity  
Polarization of the output for short circuit to VS detection  
Improve BTT6200-1ENA immunity to electromagnetic noise  
Data Sheet  
40  
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
Application Information  
Table 11 Bill of Material (cont’d)  
Reference Value  
Purpose  
ROL  
1.5 kΩ  
Ensures polarization of the BTT6200-1ENA output during open load in OFF  
diagnostic  
RIS  
1.2 kΩ  
10 kΩ  
Sense resistor  
RSENSE  
Overvoltage, reverse polarity, loss of ground. Value to be tuned with  
microcontroller specification.  
CSENSE  
COUT  
RGND  
D
100 pF  
Sense signal filtering.  
10 nF  
Protection of the device during ESD and BCI  
Protection of the BTT6200-1ENA during overvoltage  
Protection of the BTT6200-1ENA during reverse polarity  
Protection of the device during overvoltage  
Filtering of voltage spikes at the battery line  
Switch the battery voltage for open load in OFF diagnostic  
27 Ω  
BAS21  
Z
58 V Zener diode  
100 nF  
CVS  
T1  
Dual NPN/PNP  
10.1  
Further Application Information  
Please contact us to get the pin FMEA  
Existing App. Notes  
For further information you may visit www.infineon.com  
Data Sheet  
41  
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
Package Outlines  
11  
Package Outlines  
Figure 29 PG-TDSO-8-31 (Plastic Dual Small Outline Package) (RoHS-Compliant)  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS-Compliant  
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
Data Sheet  
42  
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
Revision History  
12  
Revision History  
Version Date  
Changes  
1.0  
2018-05-14  
Creation of the document  
Data Sheet  
43  
Rev. 1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
Table of Contents  
1
2
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
3
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Voltage and Current Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3.1  
3.2  
3.3  
4
4.1  
4.2  
4.3  
4.3.1  
4.3.2  
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
PCB Set-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
5
Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Output ON-state Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Turn ON/OFF Characteristics with Resistive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Inductive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Output Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Maximum Load Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Inverse Current Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Electrical Characteristics Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.1  
5.2  
5.3  
5.3.1  
5.3.2  
5.4  
5.5  
6
Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Loss of Ground Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Undervoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Current Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Temperature Limitation in the Power DMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Electrical Characteristics for the Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
6.1  
6.2  
6.3  
6.4  
6.5  
6.5.1  
6.5.2  
6.6  
7
7.1  
7.2  
7.3  
Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
IS Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
SENSE Signal in Different Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
SENSE Signal in the Nominal Current Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
SENSE Signal Variation as a Function of Temperature and Load Current . . . . . . . . . . . . . . . . . . . . . . . 24  
SENSE Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
SENSE Signal in Open Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Open Load in ON Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Open Load in OFF Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Open Load Diagnostic Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
SENSE Signal in Short Circuit to VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
SENSE Signal in Case of Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
SENSE Signal in Case of Inverse Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Electrical Characteristics Diagnostic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
7.3.1  
7.3.2  
7.3.3  
7.3.3.1  
7.3.3.2  
7.3.3.3  
7.3.4  
7.3.5  
7.3.6  
7.4  
8
Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
8.1  
Input Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Data Sheet  
44  
Rev.1.0  
2018-05-14  
PROFET™+ 24 V  
BTT6200-1ENA  
8.2  
8.3  
8.4  
DEN Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Input Pin Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
9
Characterization Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Diagnostic Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
9.1  
9.2  
9.3  
9.4  
9.5  
10  
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
10.1  
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
11  
12  
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Data Sheet  
45  
Rev.1.0  
2018-05-14  
Please read the Important Notice and Warnings at the end of this document  
Trademarks of Infineon Technologies AG  
µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™,  
DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™,  
HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™,  
OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™,  
SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™.  
Trademarks updated November 2015  
Other Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
Legal Disclaimer for Short-Circuit Capability  
The information given in this document shall in no Infineon disclaims any warranties and liablilities,  
Edition 2018-05-14  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or whether expressed or implied, for any short-circuit  
characteristics ("Beschaffenheitsgarantie").  
failures below the threshold limit.  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
For further information on technology, delivery terms  
and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
© 2018 Infineon Technologies AG.  
All Rights Reserved.  
WARNINGS  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
Document reference  
BTT6200-1ENA  
Except as otherwise explicitly approved by Infineon  
Technologies in  
a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  

相关型号:

BTT6200-4EMA

Buffer/Inverter Based Peripheral Driver,
INFINEON

BTT6200-4ESA

The power transistor is built by an N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 HV technology. It is specially designed to drive lamps up to R10 W 24 V or R5 W 12 V, as well as LEDs in the harsh automotive environment.
INFINEON

BTT62001EJAXUMA1

Buffer/Inverter Based Peripheral Driver, 1A, PDSO8, DSO-8
INFINEON

BTT62004EMAXUMA1

Buffer/Inverter Based Peripheral Driver, 1A, PDSO24, SSOP-24
INFINEON

BTT62004ESAXUMA1

Buffer/Inverter Based Peripheral Driver, 1A, PDSO24, SOP-24
INFINEON

BTT9170KP

PCM Transceiver
ETC

BTT9170KPJ

PCM Transceiver
ETC

BTTLDL020

Logic IC
ETC

BTTLDL020M

Logic IC
ETC

BTTLDL020MX

Logic IC
ETC

BTTLDL020MY

Logic IC
ETC

BTTLDL025

Logic IC
ETC