C161RI [INFINEON]

16-Bit CMOS Single-Chip Microcontroller; 16位CMOS单芯片微控制器
C161RI
型号: C161RI
厂家: Infineon    Infineon
描述:

16-Bit CMOS Single-Chip Microcontroller
16位CMOS单芯片微控制器

微控制器
文件: 总60页 (文件大小:605K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Microcomputer Components  
16-Bit CMOS Single-Chip Microcontroller  
C161RI  
Preliminary 05.98 Preliminary  
C161RI  
Revision History:  
1998-05-01 Preliminary  
Previous Releases:  
1998-01 Advance Information  
1997-12 Advance Information  
Page  
7
Subjects  
XTAL pin numbers (MQFP) corrected.  
34  
VDDMIN corrected, special threshold parameters added (VILS, VIHS, HYS).  
35, 37  
41  
Specification of IIDO improved.  
ADCTC value in converter timing example timing corrected.  
We Listen to Your Comments  
Any information within this document that you feel is wrong, unclear or missing at all?  
Your feedback will help us to continuously improve the quality of this document.  
Please send your proposal (including a reference to this document) to:  
mcdocu.comments@siemens-scg.com  
Edition 1998-05-01  
Published by Siemens AG,  
Bereich Halbleiter, Marketing-  
Kommunikation, Balanstraße 73,  
81541 München  
©
Siemens AG 1998.  
All Rights Reserved.  
Attention please!  
As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for applications, processes  
and circuits implemented within components or assemblies.  
The information describes the type of component and shall not be considered as assured characteristics.  
Terms of delivery and rights to change design reserved.  
For questions on technology, delivery and prices please contact the Semiconductor Group Offices in Germany or the Siemens Companies  
and Representatives worldwide (see address list).  
Due to technical requirements components may contain dangerous substances. For information on the types in question please contact  
your nearest Siemens Office, Semiconductor Group.  
Siemens AG is an approved CECC manufacturer.  
Packing  
Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will  
take packing material back, if it is sorted. You must bear the costs of transport.  
For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs in-  
curred.  
Components used in life-support devices or systems must be expressly authorized for such purpose!  
1
2
Critical components of the Semiconductor Group of Siemens AG, may only be used in life-support devices or systems with the express  
written approval of the Semiconductor Group of Siemens AG.  
1
A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the  
failure of that life-support device or system, or to affect its safety or effectiveness of that device or system.  
2
Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain hu-  
man life. If they fail, it is reasonable to assume that the health of the user may be endangered.  
C166-Family of  
High-Performance CMOS 16-Bit Microcontrollers  
C161RI  
Preliminary  
C161RI 16-Bit Microcontroller  
High Performance 16-bit CPU with 4-Stage Pipeline  
125 ns Instruction Cycle Time at 16 MHz CPU Clock  
625 ns Multiplication (16 × 16 bits), 1.25 µs Division (32 / 16 bit)  
Enhanced Boolean Bit Manipulation Facilities  
Additional Instructions to Support HLL and Operating Systems  
Register-Based Design with Multiple Variable Register Banks  
Single-Cycle Context Switching Support  
Clock Generation via Prescaler or via Direct Clock Input  
Up to 8 MBytes Linear Address Space for Code and Data  
1 KByte On-Chip Internal RAM (IRAM)  
2 KBytes On-Chip Extension RAM (XRAM)  
Programmable External Bus Characteristics for Different Address Ranges  
8-Bit or 16-Bit External Data Bus  
Multiplexed or Demultiplexed External Address/Data Bus  
5 Programmable Chip-Select Signals  
1024 Bytes On-Chip Special Function Register Area  
8-Channel Interrupt-Driven Single-Cycle Data Transfer Facilities via Peripheral Event  
Controller (PEC)  
16-Priority-Level Interrupt System, 11 External Interrupts  
4-Channel 8-bit A/D Converter, conversion time down to 7.625 µs  
2 Multi-Functional General Purpose Timer Units with five 16-bit Timers  
Synchronous/Asynchronous Serial Channel (USART)  
High-Speed Synchronous Serial Channel  
I2C Bus Interface (10-bit Addressing, 400 KHz) with 2 Channels (multiplexed)  
Up to 76 General Purpose I/O Lines  
Programmable Watchdog Timer  
On-Chip Real Time Clock  
Idle and Power Down Modes with Flexible Power Management  
Ambient temperature range – 40 to 85 °C  
Supported by a Large Range of Development Tools like C-Compilers, Macro-Assembler  
Packages, Emulators, Evaluation Boards, HLL-Debuggers, Simulators, Logic Analyzer  
Disassemblers, Programming Boards  
On-Chip Bootstraploader  
100-Pin MQFP / TQFP Package  
This document describes the SAB-C161RI-LM, the SAB-C161RI-LF, the SAF-C161RI-LM and the  
SAB-C161RI-LF.  
For simplicity all versions are referred to by the term C161RI throughout this document.  
Semiconductor Group  
3
1998-05-01  
C161RI  
Introduction  
The C161RI is a new derivative of the Siemens C166 Family of 16-bit single-chip CMOS  
microcontrollers. It combines high CPU performance (up to 8 million instructions per second) with  
high peripheral functionality and enhanced IO-capabilities. The C161RI derivative is especially  
suited for cost sensitive applications.  
VDD SS VAREFVAGND  
V
PORT0  
16 bit  
XTAL1  
XTAL2  
PORT1  
16 bit  
RSTIN  
RSTOUT  
Port 2  
8 bit  
NMI  
EA  
Port 3  
15 bit  
C161RI  
Port 4  
7 bit  
ALE  
RD  
WR/WRL  
Port 6  
8 bit  
Port 5  
6 bit  
Figure 1  
Logic Symbol  
Ordering Information  
The ordering code for Siemens microcontrollers provides an exact reference to the required  
product. This ordering code identifies:  
the derivative itself, i.e. its function set  
the specified temperature range  
the package  
the type of delivery.  
For the available ordering codes for the C161RI please refer to the  
Product Information Microcontrollers”, which summarizes all available microcontroller variants.  
Note: The ordering codes for the Mask-ROM versions are defined for each product after  
verification of the respective ROM code.  
Semiconductor Group  
4
1998-05-01  
C161RI  
Pin Configuration MQFP Package  
(top view)  
P5.2/AN2  
P5.3/AN3  
P5.14/T4EUD  
P5.15/T2EUD  
1
2
3
4
5
6
7
8
NMI  
RSTOUT  
RSTIN  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
V
DD  
V
SS  
V
SS  
XTAL1  
XTAL2  
P1H.7/A15  
P1H.6/A14  
P1H.5/A13  
P1H.4/A12  
P1H.3/A11  
P1H.2/A10  
P1H.1/A9  
P1H.0/A8  
V
DD  
P3.0/SCL0  
P3.1/SDA0  
P3.2/CAPIN  
P3.3/T3OUT  
P3.4/T3EUD  
P3.5/T4IN  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
C161RI  
DD  
P3.6/T3IN  
P3.7/T2IN  
V
SS  
P1L.7/A7  
P1L.6/A6  
P1L.5/A5  
P1L.4/A4  
P1L.3/A3  
P1L.2/A2  
P1L.1/A1  
P1L.0/A0  
P0H.7/AD15  
P0H.6/AD14  
P0H.5/AD13  
P0H.4/AD12  
P0H.3/AD11  
P0H.2/AD10  
P0H.1/AD9  
P3.8/MRST  
P3.9/MTSR  
P3.10/TxD0  
P3.11/RxD0  
P3.12/BHE/WRH  
P3.13/SCLK  
P3.15/CLKOUT  
V
SS  
V
DD  
P4.0/A16  
P4.1/A17  
P4.2/A18  
P4.3/A19  
P4.4/A20  
Figure 2  
Semiconductor Group  
5
1998-05-01  
C161RI  
Pin Configuration TQFP Package  
(top view)  
P5.14/T4EUD  
P5.15/T2EUD  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
V
V
1
2
3
4
5
6
7
8
DD  
SS  
V
P1H.7/A15  
P1H.6/A14  
P1H.5/A13  
P1H.4/A12  
P1H.3/A11  
P1H.2/A10  
P1H.1/A9  
P1H.0/A8  
SS  
XTAL1  
XTAL2  
V
DD  
P3.0/SCL0  
P3.1/SDA0  
P3.2/CAPIN  
P3.3/T3OUT  
P3.4/T3EUD  
P3.5/T4IN  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
V
V
DD  
SS  
P3.6/T3IN  
P3.7/T2IN  
P1L.7/A7  
P1L.6/A6  
P1L.5/A5  
P1L.4/A4  
P1L.3/A3  
P1L.2/A2  
P1L.1/A1  
P1L.0/A0  
P0H.7/AD15  
P0H.6/AD14  
P0H.5/AD13  
P0H.4/AD12  
P0H.3/AD11  
C161RI  
P3.8/MRST  
P3.9/MTSR  
P3.10/TxD0  
P3.11/RxD0  
P3.12/BHE/WRH  
P3.13/SCLK  
P3.15/CLKOUT  
V
SS  
V
DD  
P4.0/A16  
P4.1/A17  
Figure 3  
Semiconductor Group  
6
1998-05-01  
C161RI  
Pin Definitions and Functions  
Symbol Pin No. Pin No. Input Function  
TQFP MQFP Outp  
P5.0 –  
P5.3,  
P5.14 – 1 –  
97 –  
100,  
99 –  
2,  
3 –  
4
I
I
I
I
Port 5 is a 6-bit input-only port with Schmitt-Trigger  
characteristics. The pins of Port 5 also serve as the (up to 4)  
analog input channels for the A/D converter, where P5.x  
equals ANx (Analog input channel x, x=0...3).  
P5.15  
2
The following pins of Port 5 also serve as timer inputs:  
P5.14  
P5.15  
T4EUD  
T2EUD  
GPT1 Timer T4 Ext.Up/Down Ctrl.Input  
GPT1 Timer T5 Ext.Up/Down Ctrl.Input  
XTAL1  
XTAL2  
4
5
6
7
I
XTAL1:  
Input to the oscillator amplifier and input to the  
internal clock generator  
Output of the oscillator amplifier circuit.  
O
XTAL2:  
To clock the device from an external source, drive XTAL1,  
while leaving XTAL2 unconnected. Minimum and maximum  
high/low and rise/fall times specified in the AC  
Characteristics must be observed.  
P3.0 –  
P3.13,  
P3.15  
7 –  
20,  
21  
9 –  
22,  
23  
I/O  
I/O  
I/O  
Port 3 is a 15-bit bidirectional I/O port. It is bit-wise  
programmable for input or output via direction bits. For a pin  
configured as input, the output driver is put into high-  
impedance state.  
The following Port 3 pins also serve for alternate functions:  
7
8
9
10  
11  
12  
9
I/O  
I/O  
I
O
I
P3.0  
P3.1  
P3.2  
P3.3  
P3.4  
P3.5  
SCL0  
I2C Bus Clock Line 0  
10  
11  
12  
13  
14  
SDA0  
CAPIN  
T3OUT  
T3EUD  
T4IN  
I2C Bus Data Line 0  
GPT2 Register CAPREL Capture Input  
GPT1 Timer T3 Toggle Latch Output  
GPT1 Timer T3 Ext.Up/Dwn Ctrl.Input  
GPT1 Timer T4 Input for  
I
Count/Gate/Reload/Capture  
13  
14  
15  
16  
I
I
P3.6  
P3.7  
T3IN  
T2IN  
GPT1 Timer T3 Count/Gate Input  
GPT1 Timer T2 Input for  
Count/Gate/Reload/Capture  
15  
16  
17  
18  
19  
17  
18  
19  
20  
21  
I/O  
I/O  
O
I/O  
O
O
I/O  
O
P3.8  
P3.9  
P3.10  
P3.11  
P3.12  
MRST  
MTSR  
T×D0  
R×D0  
BHE  
SSC Master-Rec./Slave-Transmit I/O  
SSC Master-Transmit/Slave-Rec. O/I  
ASC0 Clock/Data Output (Asyn./Syn.)  
ASC0 Data Input (Asyn.) or I/O (Syn.)  
Ext. Memory High Byte Enable Signal,  
Ext. Memory High Byte Write Strobe  
SSC Master Clock Outp./Slave Cl. Inp.  
WRH  
SCLK  
20  
21  
22  
23  
P3.13  
P3.15  
Note:  
CLKOUT System Clock Output (=CPU Clock)  
Pins P3.0 and P3.1 are open drain outputs only.  
Semiconductor Group  
7
1998-05-01  
C161RI  
Pin Definitions and Functions (cont’d)  
Symbol Pin No. Pin No. Input Function  
TQFP MQFP Outp  
P4.0 –  
P4.6  
24 –  
30  
26 -  
32  
I/O  
I/O  
Port 4 is a 7-bit bidirectional I/O port. It is bit-wise  
programmable for input or output via direction bits. For a pin  
configured as input, the output driver is put into high-  
impedance state.  
In case of an external bus configuration, Port 4 can be used  
to output the segment address lines:  
24  
...  
30  
26  
...  
32  
O
...  
O
P4.0  
...  
P4.6  
A16  
...  
A22  
Least Significant Segment Addr. Line  
...  
Most Significant Segment Addr. Line  
RD  
31  
33  
O
External Memory Read Strobe. RD is activated for every  
external instruction or data read access.  
WR/WRL 32  
READY 33  
34  
O
External Memory Write Strobe. In WR-mode this pin is  
activated for every external data write access. In WRL-mode  
this pin is activated for low byte data write accesses on a 16-  
bit bus, and for every data write access on an 8-bit bus. See  
WRCFG in register SYSCON for mode selection.  
35  
I
Ready Input. When the Ready function is enabled, a high  
level at this pin during an external memory access will force  
the insertion of memory cycle time waitstates until the pin  
returns to a low level.  
ALE  
EA  
34  
35  
36  
37  
O
I
Address Latch Enable Output. Can be used for latching the  
address into external memory or an address latch in the  
multiplexed bus modes.  
External Access Enable pin. A low level at this pin during and  
after Reset forces the C161RI to begin instruction execution  
out of external memory. A high level forces execution out of  
the internal ROM. The C161RI must have this pin tied to ‘0’.  
Note: This pin is expected to be used to accept the  
programming voltage for OTP versions of the C161RI.  
Semiconductor Group  
8
1998-05-01  
C161RI  
Pin Definitions and Functions (cont’d)  
Symbol Pin No. Pin No. Input Function  
TQFP MQFP Outp  
PORT0:  
P0L.0 – 38 –  
P0L.7,  
P0H.0 - 48 –  
P0H.7  
I/O  
PORT0 consists of the two 8-bit bidirectional I/O ports P0L  
and P0H. It is bit-wise programmable for input or output via  
direction bits. For a pin configured as input, the output driver  
is put into high-impedance state.  
In case of external bus configurations, PORT0 serves as the  
address (A) and address/data (AD) bus in multiplexed bus  
modes and as the data (D) bus in demultiplexed bus modes.  
Demultiplexed bus modes:  
40 –  
47,  
50 –  
57  
45,  
55  
Data Path Width:  
P0L.0 – P0L.7:  
P0H.0 – P0H.7:  
8-bit  
D0 – D7  
I/O  
16-bit  
D0 - D7  
D8 - D15  
Multiplexed bus modes:  
Data Path Width:  
P0L.0 – P0L.7:  
P0H.0 – P0H.7:  
8-bit  
AD0 – AD7  
A8 - A15  
16-bit  
AD0 - AD7  
AD8 - AD15  
PORT1:  
I/O  
PORT1 consists of the two 8-bit bidirectional I/O ports P1L  
and P1H. It is bit-wise programmable for input or output via  
direction bits. For a pin configured as input, the output driver  
is put into high-impedance state. PORT1 is used as the 16-  
bit address bus (A) in demultiplexed bus modes and also  
after switching from a demultiplexed bus mode to a  
multiplexed bus mode.  
P1L.0 – 56 –  
P1L.7, 63,  
P1H.0 - 66 –  
58 -  
65,  
68 -  
75  
P1H.7  
73  
RSTIN  
76  
78  
I
Reset Input with Schmitt-Trigger characteristics. A low level  
at this pin for a specified duration while the oscillator is  
running resets the C161RI. An internal pullup resistor permits  
power-on reset using only a capacitor connected to VSS.  
In bidirectional reset mode (enabled by setting bit BDRSTEN  
in register SYSCON) the RSTIN line is internally pulled low  
for the duration of the internal reset sequence upon a  
software reset, a WDT reset and a hardware reset. 1)  
RSTOUT 77  
79  
80  
O
I
Internal Reset Indication Output. This pin is set to a low level  
when the part is executing either a hardware-, a software- or  
a watchdog timer reset. RSTOUT remains low until the EINIT  
(end of initialization) instruction is executed.  
NMI  
78  
Non-Maskable Interrupt Input. A high to low transition at this  
pin causes the CPU to vector to the NMI trap routine. When  
the PWRDN (power down) instruction is executed, the NMI  
pin must be low in order to force the C161RI to go into power  
down mode. If NMI is high, when PWRDN is executed, the  
part will continue to run in normal mode.  
If not used, pin NMI should be pulled high externally.  
Semiconductor Group  
9
1998-05-01  
C161RI  
Pin Definitions and Functions (cont’d)  
Symbol Pin No. Pin No. Input Function  
TQFP MQFP Outp  
P6.0 –  
P6.7  
79 –  
86  
81 –  
88  
I/O  
I/O  
Port 6 is an 8-bit bidirectional I/O port. It is bit-wise  
programmable for input or output via direction bits. For a pin  
configured as input, the output driver is put into high-  
impedance state.  
The Port 6 pins also serve for alternate functions:  
79  
...  
81  
...  
O
...  
P6.0  
...  
CS0  
...  
Chip Select 0 Output  
...  
83  
84  
85  
86  
85  
86  
87  
88  
O
P6.4  
P6.5  
P6.6  
P6.7  
Note:  
CS4  
SDA1  
SCL1  
SDA2  
Chip Select 4 Output  
I2C Bus Data Line 1  
I2C Bus Clock Line 1  
I2C Bus Data Line 2  
I/O  
I/O  
I/O  
Pins P6.5-P6.7 are open drain outputs only.  
P2.8 –  
P2.15  
87 –  
94  
89 –  
96  
I/O  
I/O  
Port 2 is an 8-bit bidirectional I/O port. It is bit-wise  
programmable for input or output via direction bits. For a pin  
configured as input, the output driver is put into high-  
impedance state.  
The following Port 2 pins also serve for alternate functions:  
87  
...  
94  
89  
...  
96  
I
...  
I
P2.8  
...  
P2.15  
EX0IN  
...  
EX7IN  
Fast External Interrupt 0 Input  
...  
Fast External Interrupt 7 Input  
VAREF  
VAGND  
VDD  
95  
96  
97  
98  
-
-
-
Reference voltage for the A/D converter.  
Reference ground for the A/D converter.  
6, 23, 8, 25,  
37, 47, 39, 49,  
65, 75 67, 77  
Digital Supply Voltage:  
+ 5 V during normal operation and idle mode.  
2.5 V during power down mode  
VSS  
3, 22, 5, 24,  
36, 46, 38, 48,  
64, 74 66, 76  
-
Digital Ground.  
1) The following behavior differences must be observed when the bidirectional reset is active:  
Bit BDRSTEN in register SYSCON cannot be changed after EINIT.  
After a reset bit BDRSTEN is cleared.  
The reset indication flags always indicate a long hardware reset.  
The PORT0 configuration is treated like on a hardware reset. Especially the bootstrap loader  
may be activated when P0L.4 is low.  
Pin RSTIN may only be connected to external reset devices with an open drain output driver.  
A short hardware reset is extended to the duration of the internal reset sequence.  
Semiconductor Group  
10  
1998-05-01  
C161RI  
Functional Description  
The C161RI is a low cost downgrade of the high performance microcontroller C167CR with OTP or  
internal ROM, reduced peripheral functionality and a high performance Capture Compare Unit with  
an additional functionality.  
The architecture of the C161RI combines advantages of both RISC and CISC processors and of  
advanced peripheral subsystems in a very well-balanced way. The following block diagram gives an  
overview of the different on-chip components and of the advanced, high bandwidth internal bus  
structure of the C161RI.  
Note: All time specifications refer to a CPU clock of 16 MHz  
(see definition in the AC Characteristics section).  
&ꢁꢂꢂꢃ&RUH  
ꢀꢁ  
&38  
3(&  
,QWHUUXSWꢂ&RQWUROOHU  
Figure 4  
Block Diagram  
Semiconductor Group  
11  
1998-05-01  
C161RI  
Memory Organization  
The memory space of the C161RI is configured in a Von Neumann architecture which means that  
code memory, data memory, registers and I/O ports are organized within the same linear address  
space which includes 16 MBytes. The entire memory space can be accessed bytewise or  
wordwise. Particular portions of the on-chip memory have additionally been made directly  
bitaddressable.  
1 KByte of on-chip Internal RAM is provided as a storage for user defined variables, for the system  
stack, general purpose register banks and even for code. A register bank can consist of up to 16  
wordwide (R0 to R15) and/or bytewide (RL0, RH0, …, RL7, RH7) so-called General Purpose  
Registers (GPRs).  
1024 bytes (2 × 512 bytes) of the address space are reserved for the Special Function Register  
areas (SFR space and ESFR space). SFRs are wordwide registers which are used for controlling  
and monitoring functions of the different on-chip units. Unused SFR addresses are reserved for  
future members of the C166 family.  
In order to meet the needs of designs where more memory is required than is provided on chip, up  
to 8 MBytes of external RAM and/or ROM can be connected to the microcontroller.  
Semiconductor Group  
12  
1998-05-01  
C161RI  
External Bus Controller  
All of the external memory accesses are performed by a particular on-chip External Bus Controller  
(EBC). It can be programmed either to Single Chip Mode when no external memory is required, or  
to one of four different external memory access modes, which are as follows:  
– 16-/18-/20-/23-bit Addresses, 16-bit Data, Demultiplexed  
– 16-/18-/20-/23-bit Addresses, 16-bit Data, Multiplexed  
– 16-/18-/20-/23-bit Addresses, 8-bit Data, Multiplexed  
– 16-/18-/20-/23-bit Addresses, 8-bit Data, Demultiplexed  
In the demultiplexed bus modes, addresses are output on PORT1 and data is input/output on  
PORT0 or P0L, respectively. In the multiplexed bus modes both addresses and data use PORT0 for  
input/output.  
Important timing characteristics of the external bus interface (Memory Cycle Time, Memory  
Tri-State Time, Length of ALE and Read Write Delay) have been made programmable to allow the  
user the adaption of a wide range of different types of memories and external peripherals.  
In addition, up to 4 independent address windows may be defined (via register pairs ADDRSELx /  
BUSCONx) which allow to access different resources with different bus characteristics. These  
address windows are arranged hierarchically where BUSCON4 overrides BUSCON3 and  
BUSCON2 overrides BUSCON1. All accesses to locations not covered by these 4 address windows  
are controlled by BUSCON0.  
Up to 5 external CS signals (4 windows plus default) can be generated in order to save external glue  
logic. Access to very slow memories is supported via a particular ‘Ready’ function.  
For applications which require less than 8 MBytes of external memory space, this address space  
can be restricted to 1 MByte, 256 KByte or to 64 KByte. In this case Port 4 outputs four, two or no  
address lines at all. It outputs all 7 address lines, if an address space of 8 MBytes is used.  
Semiconductor Group  
13  
1998-05-01  
C161RI  
Central Processing Unit (CPU)  
The main core of the CPU consists of a 4-stage instruction pipeline, a 16-bit arithmetic and logic unit  
(ALU) and dedicated SFRs. Additional hardware has been spent for a separate multiply and divide  
unit, a bit-mask generator and a barrel shifter.  
Based on these hardware provisions, most of the C161RI’s instructions can be executed in just one  
machine cycle which requires 125 ns at 16 MHz CPU clock. For example, shift and rotate  
instructions are always processed during one machine cycle independent of the number of bits to  
be shifted. All multiple-cycle instructions have been optimized so that they can be executed very fast  
as well: branches in 2 cycles, a 16 × 16 bit multiplication in 5 cycles and a 32-/16 bit division in  
10 cycles. Another pipeline optimization, the so-called ‘Jump Cache’, allows reducing the execution  
time of repeatedly performed jumps in a loop from 2 cycles to 1 cycle.  
CPU  
16  
Internal  
RAM  
SP  
STKOV  
STKUN  
MDH  
MDL  
R15  
Exec. Unit  
Instr. Ptr.  
Instr. Reg.  
Mul/Div-HW  
Bit-Mask Gen  
General  
Purpose  
Registers  
R15  
ALU  
32  
4-Stage  
Pipeline  
(16-bit)  
ROM  
Barrel - Shifter  
Context Ptr.  
R0  
PSW  
SYSCON  
BUSCON 0  
BUSCON 1  
BUSCON 2  
BUSCON 3  
BUSCON 4  
16  
R0  
ADDRSEL 1  
ADDRSEL 2  
ADDRSEL 3  
ADDRSEL 4  
Data Page Ptr.  
Code Seg. Ptr.  
MCB02147  
Figure 5  
CPU Block Diagram  
Semiconductor Group  
14  
1998-05-01  
C161RI  
The CPU disposes of an actual register context consisting of up to 16 wordwide GPRs which are  
physically allocated within the on-chip RAM area. A Context Pointer (CP) register determines the  
base address of the active register bank to be accessed by the CPU at a time. The number of  
register banks is only restricted by the available internal RAM space. For easy parameter passing,  
a register bank may overlap others.  
A system stack of up to 1024 bytes is provided as a storage for temporary data. The system stack  
is allocated in the on-chip RAM area, and it is accessed by the CPU via the stack pointer (SP)  
register. Two separate SFRs, STKOV and STKUN, are implicitly compared against the stack  
pointer value upon each stack access for the detection of a stack overflow or underflow.  
The high performance offered by the hardware implementation of the CPU can efficiently be utilized  
by a programmer via the highly efficient C161RI instruction set which includes the following  
instruction classes:  
– Arithmetic Instructions  
– Logical Instructions  
– Boolean Bit Manipulation Instructions  
– Compare and Loop Control Instructions  
– Shift and Rotate Instructions  
– Prioritize Instruction  
– Data Movement Instructions  
– System Stack Instructions  
– Jump and Call Instructions  
– Return Instructions  
– System Control Instructions  
– Miscellaneous Instructions  
The basic instruction length is either 2 or 4 bytes. Possible operand types are bits, bytes and words.  
A variety of direct, indirect or immediate addressing modes are provided to specify the required  
operands.  
Semiconductor Group  
15  
1998-05-01  
C161RI  
Interrupt System  
With an interrupt response time within a range from just 315 ns to 750 ns (in case of internal  
program execution), the C161RI is capable of reacting very fast to the occurrence of non-  
deterministic events.  
The architecture of the C161RI supports several mechanisms for fast and flexible response to  
service requests that can be generated from various sources internal or external to the  
microcontroller. Any of these interrupt requests can be programmed to being serviced by the  
Interrupt Controller or by the Peripheral Event Controller (PEC).  
In contrast to a standard interrupt service where the current program execution is suspended and  
a branch to the interrupt vector table is performed, just one cycle is ‘stolen’ from the current CPU  
activity to perform a PEC service. A PEC service implies a single byte or word data transfer between  
any two memory locations with an additional increment of either the PEC source or the destination  
pointer. An individual PEC transfer counter is implicity decremented for each PEC service except  
when performing in the continuous transfer mode. When this counter reaches zero, a standard  
interrupt is performed to the corresponding source related vector location. PEC services are very  
well suited, for example, for supporting the transmission or reception of blocks of data. The C161RI  
has 8 PEC channels each of which offers such fast interrupt-driven data transfer capabilities.  
A separate control register which contains an interrupt request flag, an interrupt enable flag and an  
interrupt priority bitfield exists for each of the possible interrupt sources. Via its related register, each  
source can be programmed to one of sixteen interrupt priority levels. Once having been accepted  
by the CPU, an interrupt service can only be interrupted by a higher prioritized service request. For  
the standard interrupt processing, each of the possible interrupt sources has a dedicated vector  
location.  
Fast external interrupt inputs are provided to service external interrupts with high precision  
requirements. These fast interrupt inputs feature programmable edge detection (rising edge, falling  
edge or both edges).  
Software interrupts are supported by means of the ‘TRAP’ instruction in combination with an  
individual trap (interrupt) number.  
Semiconductor Group  
16  
1998-05-01  
C161RI  
The following table shows all of the possible C161RI interrupt sources and the corresponding  
hardware-related interrupt flags, vectors, vector locations and trap (interrupt) numbers:  
Source of Interrupt or  
PEC Service Request  
Request  
Flag  
Enable  
Flag  
Interrupt  
Vector  
Vector  
Location  
Trap  
Number  
External Interrupt 0  
External Interrupt 1  
External Interrupt 2  
External Interrupt 3  
External Interrupt 4  
External Interrupt 5  
External Interrupt 6  
External Interrupt 7  
GPT1 Timer 2  
CC8IR  
CC9IR  
CC10IR  
CC11IR  
CC12IR  
CC13IR  
CC14IR  
CC15IR  
T2IR  
CC8IE  
CC9IE  
CC10IE  
CC11IE  
CC12IE  
CC13IE  
CC14IE  
CC15IE  
T2IE  
CC8INT  
CC9INT  
CC10INT  
CC11INT  
CC12INT  
CC13INT  
CC14INT  
CC15INT  
T2INT  
00’0060H  
00’0064H  
00’0068H  
00’006CH  
00’0070H  
00’0074H  
00’0078H  
00’007CH  
00’0088H  
00’008CH  
00’0090H  
00’0094H  
00’0098H  
00’009CH  
00’00A0H  
00’00A4H  
00’00A8H  
00’011CH  
00’00ACH  
00’00B0H  
00’00B4H  
00’00B8H  
00’00BCH  
00’0100H  
00’0104H  
00’0108H  
00’010CH  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
47H  
2BH  
2CH  
2DH  
2EH  
2FH  
40H  
41H  
42H  
43H  
GPT1 Timer 3  
T3IR  
T3IE  
T3INT  
GPT1 Timer 4  
T4IR  
T4IE  
T4INT  
GPT2 Timer 5  
T5IR  
T5IE  
T5INT  
GPT2 Timer 6  
T6IR  
T6IE  
T6INT  
GPT2 CAPREL Register CRIR  
A/D Conversion Complete ADCIR  
CRIE  
CRINT  
ADCIE  
ADEIE  
S0TIE  
S0TBIE  
S0RIE  
S0EIE  
SCTIE  
SCRIE  
SCEIE  
XP0IE  
XP1IE  
XP2IE  
XP3IE  
ADCINT  
ADEINT  
S0TINT  
S0TBINT  
S0RINT  
S0EINT  
SCTINT  
SCRINT  
SCEINT  
XP0INT  
XP1INT  
XP2INT  
XP3INT  
A/D Overrun Error  
ASC0 Transmit  
ASC0 Transmit Buffer  
ASC0 Receive  
ADEIR  
S0TIR  
S0TBIR  
S0RIR  
S0EIR  
SCTIR  
SCRIR  
SCEIR  
XP0IR  
XP1IR  
XP2IR  
XP3IR  
ASC0 Error  
SSC Transmit  
SSC Receive  
SSC Error  
I2C Data Transfer Event  
I2C Protocol Event  
X-Peripheral Node 2  
PLL Unlock / RTC  
Semiconductor Group  
17  
1998-05-01  
C161RI  
The C161RI also provides an excellent mechanism to identify and to process exceptions or error  
conditions that arise during run-time, so-called ‘Hardware Traps’. Hardware traps cause immediate  
non-maskable system reaction which is similar to a standard interrupt service (branching to a  
dedicated vector table location). The occurence of a hardware trap is additionally signified by an  
individual bit in the trap flag register (TFR). Except when another higher prioritized trap service is in  
progress, a hardware trap will interrupt any actual program execution. In turn, hardware trap  
services can normally not be interrupted by standard or PEC interrupts.  
The following table shows all of the possible exceptions or error conditions that can arise during run-  
time:  
Exception Condition  
Trap  
Flag  
Trap  
Vector  
Vector  
Location  
Trap  
Number  
Trap  
Priority  
Reset Functions:  
Hardware Reset  
Software Reset  
Watchdog Timer Overflow  
RESET  
RESET  
RESET  
00’0000H  
00’0000H  
00’0000H  
00H  
00H  
00H  
III  
III  
III  
Class A Hardware Traps:  
Non-Maskable Interrupt  
Stack Overflow  
NMI  
STKOF  
STKUF  
NMITRAP 00’0008H  
STOTRAP 00’0010H  
STUTRAP 00’0018H  
02H  
04H  
06H  
II  
II  
II  
Stack Underflow  
Class B Hardware Traps:  
Undefined Opcode  
Protected Instruction  
Fault  
UNDOPC BTRAP  
00’0028H  
00’0028H  
0AH  
0AH  
I
I
PRTFLT  
BTRAP  
Illegal Word Operand  
Access  
ILLOPA  
BTRAP  
00’0028H  
0AH  
I
Illegal Instruction Access  
Illegal External Bus  
Access  
ILLINA  
ILLBUS  
BTRAP  
BTRAP  
00’0028H  
00’0028H  
0AH  
0AH  
I
I
Reserved  
[2CH – 3CH] [0BH – 0FH]  
Any Any  
Software Traps  
Current  
TRAP Instruction  
[00’0000H – [00H – 7FH] CPU  
00’01FCH]  
in steps  
of 4H  
Priority  
Semiconductor Group  
18  
1998-05-01  
C161RI  
General Purpose Timer (GPT) Unit  
The GPT unit represents a very flexible multifunctional timer/counter structure which may be used  
for many different time related tasks such as event timing and counting, pulse width and duty cycle  
measurements, pulse generation, or pulse multiplication.  
The GPT unit incorporates five 16-bit timers which are organized in two separate modules, GPT1  
and GPT2. Each timer in each module may operate independently in a number of different modes,  
or may be concatenated with another timer of the same module.  
Each of the three timers T2, T3, T4 of module GPT1 can be configured individually for one of four  
basic modes of operation, which are Timer, Gated Timer, Counter, and Incremental Interface Mode.  
In Timer Mode, the input clock for a timer is derived from the CPU clock, divided by a programmable  
prescaler, while Counter Mode allows a timer to be clocked in reference to external events.  
Pulse width or duty cycle measurement is supported in Gated Timer Mode, where the operation of  
a timer is controlled by the ‘gate’ level on an external input pin. For these purposes, each timer has  
one associated port pin (TxIN) which serves as gate or clock input. The maximum resolution of the  
timers in module GPT1 is 500 ns (@ 16 MHz CPU clock).  
The count direction (up/down) for each timer is programmable by software or may additionally be  
altered dynamically by an external signal on a port pin (TxEUD) to facilitate e.g. position tracking.  
In Incremental Interface Mode the GPT1 timers (T2, T3, T4) can be directly connected to the  
incremental position sensor signals A and B via their respective inputs TxIN and TxEUD. Direction  
and count signals are internally derived from these two input signals, so the contents of the  
respective timer Tx corresponds to the sensor position. The third position sensor signal TOP0 can  
be connected to an interrupt input.  
Timer T3 has an output toggle latch (T3OTL) which changes its state on each timer over-flow/  
underflow. The state of this latch may be output on a port pin (T3OUT) e.g. for time out monitoring  
of external hardware components, or may be used internally to clock timers T2 and T4 for  
measuring long time periods with high resolution.  
In addition to their basic operating modes, timers T2 and T4 may be configured as reload or capture  
registers for timer T3. When used as capture or reload registers, timers T2 and T4 are stopped. The  
contents of timer T3 are captured into T2 or T4 in response to a signal at their associated input pins  
(TxIN). Timer T3 is reloaded with the contents of T2 or T4 triggered either by an external signal or  
by a selectable state transition of its toggle latch T3OTL. When both T2 and T4 are configured to  
alternately reload T3 on opposite state transitions of T3OTL with the low and high times of a PWM  
signal, this signal can be constantly generated without software intervention.  
With its maximum resolution of 250 ns (@ 16 MHz), the GPT2 module provides precise event  
control and time measurement. It includes two timers (T5, T6) and a capture/reload register  
(CAPREL). Both timers can be clocked with an input clock which is derived from the CPU clock via  
a programmable prescaler. The count direction (up/down) for each timer is programmable by  
software. Concatenation of the timers is supported via the output toggle latch (T6OTL) of timer T6,  
which changes its state on each timer overflow/underflow.  
The state of this latch may be used to clock timer T5. The overflows/underflows of timer T6 can  
additionally be used to cause a reload from the CAPREL register. The CAPREL register may  
capture the contents of timer T5 based on an external signal transition on the corresponding port pin  
Semiconductor Group  
19  
1998-05-01  
C161RI  
(CAPIN), and timer T5 may optionally be cleared after the capture procedure. This allows absolute  
time differences to be measured or pulse multiplication to be performed without software overhead.  
The capture trigger (timer T5 to CAPREL) may also be generated upon transitions of GPT1 timer  
T3’s inputs T3IN and/or T3EUD. This is especially advantageous when T3 operates in Incremental  
Interface Mode.  
U/D  
T2EUD  
Interrupt  
Request  
GPT1 Timer T2  
CPU Clock  
2n n = 3...10  
T2  
Mode  
Control  
Reload  
T2IN  
Capture  
CPU Clock  
2n n = 3...10  
Toggle FF  
T3OTL  
T3  
Mode  
Control  
GPT1 Timer T3  
T3IN  
U/D  
T3EUD  
Interrupt  
Request  
Capture  
Reload  
T4  
Mode  
Control  
T4IN  
CPU Clock  
2n n = 3...10  
Interrupt  
Request  
GPT1 Timer T4  
U/D  
T4EUD  
MCB02141  
Figure 6  
Block Diagram of GPT1  
Semiconductor Group  
20  
1998-05-01  
C161RI  
CPU  
Clock  
T5  
Mode  
Control  
2n n=2...9  
Interrupt  
Request  
GPT2 Timer T5  
Clear  
Capture  
CAPIN  
Interrupt  
Request  
GPT2 CAPREL  
GPT2 Timer T6  
Interrupt  
Request  
CPU  
Clock  
T6  
Mode  
Control  
2n n=2...9  
T6OTL  
Figure 7  
Block Diagram of GPT2  
Watchdog Timer  
The Watchdog Timer represents one of the fail-safe mechanisms which have been implemented to  
prevent the controller from malfunctioning for longer periods of time.  
The Watchdog Timer is always enabled after a reset of the chip, and can only be disabled in the time  
interval until the EINIT (end of initialization) instruction has been executed. Thus, the chip’s start-up  
procedure is always monitored. The software has to be designed to service the Watchdog Timer  
before it overflows. If, due to hardware or software related failures, the software fails to do so, the  
Watchdog Timer overflows and generates an internal hardware reset and pulls the RSTOUT pin low  
in order to allow external hardware components to be reset.  
The Watchdog Timer is a 16-bit timer, clocked with the system clock divided either by 2 or by 128.  
The high byte of the Watchdog Timer register can be set to a prespecified reload value (stored in  
WDTREL) in order to allow further variation of the monitored time interval. Each time it is serviced  
by the application software, the high byte of the Watchdog Timer is reloaded. Thus, time intervals  
between 31 µs and 525 ms can be monitored (@ 16 MHz). The default Watchdog Timer interval  
after reset is 8.2 ms (@ 16 MHz).  
Semiconductor Group  
21  
1998-05-01  
C161RI  
Real Time Clock  
The Real Time Clock (RTC) module of the C161RI consists of a chain of 3 divider blocks, a fixed  
8-bit divider, the reloadable 16-bit timer T14 and the 32-bit RTC timer (accessible via registers  
RTCH and RTCL). The RTC module is directly clocked with the on-chip oscillator frequency divided  
by 32 via a separate clock driver and is therefore independent from the selected clock generation  
mode of the C161RI. All timers count up.  
The RTC module can be used for different purposes:  
System clock to determine the current time and date  
Cyclic time based interrupt  
48-bit timer for long term measurements  
T14REL  
Reload  
fRTC  
T14  
8:1  
Interrupt  
Request  
RTCL  
RTCL  
Figure 7-1  
RTC Block Diagram  
Note: The registers associated with the RTC are not effected by a reset in order to maintain the  
correct system time even when intermediate resets are executed.  
Semiconductor Group  
22  
1998-05-01  
C161RI  
A/D Converter  
For analog signal measurement, an 8-bit A/D converter with 4 multiplexed input channels and a  
sample and hold circuit has been integrated on-chip. It uses the method of successive  
approximation. The sample time (for loading the capacitors) and the conversion time is  
programmable and can so be adjusted to the external circuitry.  
Overrun error detection is provided for the conversion result register (ADDAT): an interrupt request  
will be generated when the result of a previous conversion has not been read from the result register  
at the time the next conversion is complete.  
For applications which require less than 4 analog input channels, the remaining channel inputs can  
be used as digital input port pins.  
The A/D converter of the C161RI supports two different conversion modes. In the standard Single  
Channel conversion mode, the analog level on a specified channel is sampled once and converted  
to a digital result. In the Single Channel Continuous mode, the analog level on a specified channel  
is repeatedly sampled and converted without software intervention.  
The 8-bit result can be left-aligned or right-aligned within a 10-bit result area.  
The Peripheral Event Controller (PEC) may be used to automatically store the conversion results  
into a table in memory for later evaluation, without requiring the overhead of entering and exiting  
interrupt routines for each data transfer.  
I2C Module  
The integrated I2C Bus Module handles the transmission and reception of frames over the two-line  
I2C bus in accordance with the I2C Bus specification. The on-chip I2C Module can receive and  
transmit data using 7-bit or 10-bit addressing and it can operate in slave mode, in master mode or  
in multi-master mode.  
Several physical interfaces (port pins) can be established under software control. Data can be  
transferred at speeds up to 400 Kbit/sec.  
Two interrupt nodes dedicated to the I2C module allow efficient interrupt service and also support  
operation via PEC transfers.  
Note: The port pins associated with the I2C interfaces feature open drain drivers only, as required  
by the I2C specification.  
Semiconductor Group  
23  
1998-05-01  
C161RI  
Serial Channels  
Serial communication with other microcontrollers, processors, terminals or external peripheral  
components is provided by two serial interfaces with different functionality, an Asynchronous/  
Synchronous Serial Channel (ASC0) and a High-Speed Synchronous Serial Channel (SSC).  
The ASC0 is upward compatible with the serial ports of the Siemens 8-bit microcontroller families  
and supports full-duplex asynchronous communication at up to 500 KBaud and half-duplex  
synchronous communication at up to 2 MBaud @ 16 MHz CPU clock.  
A dedicated baud rate generator allows to set up all standard baud rates without oscillator tuning.  
For transmission, reception and error handling 4 separate interrupt vectors are provided. In  
asynchronous mode, 8- or 9-bit data frames are transmitted or received, preceded by a start bit and  
terminated by one or two stop bits. For multiprocessor communication, a mechanism to distinguish  
address from data bytes has been included (8-bit data plus wake up bit mode).  
In synchronous mode, the ASC0 transmits or receives bytes (8 bits) synchronously to a shift clock  
which is generated by the ASC0. The ASC0 always shifts the LSB first. A loop back option is  
available for testing purposes.  
A number of optional hardware error detection capabilities has been included to increase the  
reliability of data transfers. A parity bit can automatically be generated on transmission or be  
checked on reception. Framing error detection allows to recognize data frames with missing stop  
bits. An overrun error will be generated, if the last character received has not been read out of the  
receive buffer register at the time the reception of a new character is complete.  
The SSC supports full-duplex synchronous communication at up to 4 Mbaud @ 16 MHz CPU clock.  
It may be configured so it interfaces with serially linked peripheral components. A dedicated baud  
rate generator allows to set up all standard baud rates without oscillator tuning. For transmission,  
reception and error handling 3 separate interrupt vectors are provided.  
The SSC transmits or receives characters of 2…16 bits length synchronously to a shift clock which  
can be generated by the SSC (master mode) or by an external master (slave mode). The SSC can  
start shifting with the LSB or with the MSB and allows the selection of shifting and latching clock  
edges as well as the clock polarity.  
A number of optional hardware error detection capabilities has been included to increase the  
reliability of data transfers. Transmit and receive error supervise the correct handling of the data  
buffer. Phase and baudrate error detect incorrect serial data.  
Semiconductor Group  
24  
1998-05-01  
C161RI  
Parallel Ports  
The C161RI provides up to 76 IO lines which are organized into six input/output ports and one input  
port. All port lines are bit-addressable, and all input/output lines are individually (bit-wise)  
programmable as inputs or outputs via direction registers. The I/O ports are true bidirectional ports  
which are switched to high impedance state when configured as inputs. The output drivers of three  
IO ports can be configured (pin by pin) for push/pull operation or open-drain operation via control  
registers. The other IO ports operate in push/pull mode, except for the I2C interface pins which are  
open drain pins only. During the internal reset, all port pins are configured as inputs.  
All port lines have programmable alternate input or output functions associated with them.  
PORT0 and PORT1 may be used as address and data lines when accessing external memory,  
while Port 4 outputs the additional segment address bits A22/19/17...A16 in systems where  
segmentation is enabled to access more than 64 KBytes of memory.  
Port 3 includes alternate functions of timers, serial interfaces, the optional bus control signal BHE  
and the system clock output (CLKOUT).  
Port 5 is used for the analog input channels to the A/D converter or timer control signals.  
Port 6 provides the optional chip select signals and interface lines for the I2C module.  
All port lines that are not used for these alternate functions may be used as general purpose IO  
lines.  
Semiconductor Group  
25  
1998-05-01  
C161RI  
Instruction Set Summary  
The table below lists the instructions of the C161RI in a condensed way.  
The various addressing modes that can be used with a specific instruction, the operation of the  
instructions, parameters for conditional execution of instructions, and the opcodes for each  
instruction can be found in the “C166 Family Instruction Set Manual”.  
This document also provides a detailed description of each instruction.  
Instruction Set Summary  
Mnemonic  
ADD(B)  
Description  
Bytes  
2 / 4  
2 / 4  
2 / 4  
2 / 4  
2
Add word (byte) operands  
ADDC(B)  
SUB(B)  
Add word (byte) operands with Carry  
Subtract word (byte) operands  
SUBC(B)  
MUL(U)  
DIV(U)  
Subtract word (byte) operands with Carry  
(Un)Signed multiply direct GPR by direct GPR (16-16-bit)  
(Un)Signed divide register MDL by direct GPR (16-/16-bit)  
(Un)Signed long divide reg. MD by direct GPR (32-/16-bit)  
Complement direct word (byte) GPR  
Negate direct word (byte) GPR  
2
DIVL(U)  
CPL(B)  
2
2
NEG(B)  
AND(B)  
2
Bitwise AND, (word/byte operands)  
Bitwise OR, (word/byte operands)  
Bitwise XOR, (word/byte operands)  
Clear direct bit  
2 / 4  
2 / 4  
2 / 4  
2
OR(B)  
XOR(B)  
BCLR  
BSET  
Set direct bit  
2
BMOV(N)  
BAND, BOR, BXOR  
BCMP  
Move (negated) direct bit to direct bit  
AND/OR/XOR direct bit with direct bit  
Compare direct bit to direct bit  
4
4
4
BFLDH/L  
Bitwise modify masked high/low byte of bit-addressable  
direct word memory with immediate data  
4
CMP(B)  
CMPD1/2  
CMPI1/2  
PRIOR  
Compare word (byte) operands  
2 / 4  
2 / 4  
2 / 4  
2
Compare word data to GPR and decrement GPR by 1/2  
Compare word data to GPR and increment GPR by 1/2  
Determine number of shift cycles to normalize direct  
word GPR and store result in direct word GPR  
SHL / SHR  
ROL / ROR  
ASHR  
Shift left/right direct word GPR  
2
2
2
Rotate left/right direct word GPR  
Arithmetic (sign bit) shift right direct word GPR  
Semiconductor Group  
26  
1998-05-01  
C161RI  
Instruction Set Summary (cont’d)  
Mnemonic  
MOV(B)  
Description  
Bytes  
Move word (byte) data  
2 / 4  
MOVBS  
Move byte operand to word operand with sign extension  
Move byte operand to word operand. with zero extension  
Jump absolute/indirect/relative if condition is met  
Jump absolute to a code segment  
2 / 4  
MOVBZ  
2 / 4  
4
JMPA, JMPI, JMPR  
JMPS  
4
J(N)B  
Jump relative if direct bit is (not) set  
4
JBC  
Jump relative and clear bit if direct bit is set  
Jump relative and set bit if direct bit is not set  
Call absolute/indirect/relative subroutine if condition is met  
Call absolute subroutine in any code segment  
4
JNBS  
4
CALLA, CALLI, CALLR  
CALLS  
4
4
PCALL  
Push direct word register onto system stack and call  
absolute subroutine  
4
TRAP  
Call interrupt service routine via immediate trap number  
Push/pop direct word register onto/from system stack  
2
2
4
PUSH, POP  
SCXT  
Push direct word register onto system stack and update  
register with word operand  
RET  
Return from intra-segment subroutine  
Return from inter-segment subroutine  
2
2
2
RETS  
RETP  
Return from intra-segment subroutine and pop direct  
word register from system stack  
RETI  
Return from interrupt service subroutine  
Software Reset  
2
4
4
4
SRST  
IDLE  
Enter Idle Mode  
PWRDN  
Enter Power Down Mode  
(supposes NMI-pin being low)  
SRVWDT  
DISWDT  
EINIT  
Service Watchdog Timer  
4
Disable Watchdog Timer  
4
Signify End-of-Initialization on RSTOUT-pin  
Begin ATOMIC sequence  
4
ATOMIC  
EXTR  
2
Begin EXTended Register sequence  
Begin EXTended Page (and Register) sequence  
Begin EXTended Segment (and Register) sequence  
Null operation  
2
EXTP(R)  
EXTS(R)  
NOP  
2 / 4  
2 / 4  
2
Semiconductor Group  
27  
1998-05-01  
C161RI  
Special Function Registers Overview  
The following table lists all SFRs which are implemented in the C161RI in alphabetical order.  
Bit-addressable SFRs are marked with the letter “b” in column “Name”. SFRs within the Extended  
SFR-Space (ESFRs) are marked with the letter “E” in column “Physical Address”. Registers within  
on-chip X-Peripherals (I2C) are marked with the letter “X” in column “Physical Address”.  
An SFR can be specified via its individual mnemonic name. Depending on the selected addressing  
mode, an SFR can be accessed via its physical address (using the Data Page Pointers), or via its  
short 8-bit address (without using the Data Page Pointers).  
Name  
Physical 8-Bit  
Address Address  
Description  
Reset  
Value  
ADCIC  
b FF98H  
CCH  
A/D Converter End of Conversion Interrupt  
Control Register  
0000H  
ADCON  
ADDAT  
b FFA0H  
D0H  
50H  
0CH  
0DH  
0EH  
0FH  
CDH  
A/D Converter Control Register  
A/D Converter Result Register  
Address Select Register 1  
Address Select Register 2  
Address Select Register 3  
Address Select Register 4  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
FEA0H  
ADDRSEL1 FE18H  
ADDRSEL2 FE1AH  
ADDRSEL3 FE1CH  
ADDRSEL4 FE1EH  
ADEIC  
b FF9AH  
A/D Converter Overrun Error Interrupt Control  
Register  
BUSCON0 b FF0CH  
BUSCON1 b FF14H  
BUSCON2 b FF16H  
BUSCON3 b FF18H  
BUSCON4 b FF1AH  
86H  
8AH  
8BH  
8CH  
8DH  
25H  
C4H  
C5H  
C6H  
C7H  
C8H  
C9H  
CAH  
CBH  
08H  
Bus Configuration Register 0  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
FC00H  
Bus Configuration Register 1  
Bus Configuration Register 2  
Bus Configuration Register 3  
Bus Configuration Register 4  
CAPREL  
CC8IC  
CC9IC  
CC10IC  
CC11IC  
CC12IC  
CC13IC  
CC14IC  
CC15IC  
CP  
FE4AH  
b FF88H  
b FF8AH  
b FF8CH  
b FF8EH  
b FF90H  
b FF92H  
b FF94H  
b FF96H  
FE10H  
GPT2 Capture/Reload Register  
External Interrupt 0 Control Register  
External Interrupt 1 Control Register  
External Interrupt 2 Control Register  
External Interrupt 3 Control Register  
External Interrupt 4 Control Register  
External Interrupt 5 Control Register  
External Interrupt 6 Control Register  
External Interrupt 7 Control Register  
CPU Context Pointer Register  
Semiconductor Group  
28  
1998-05-01  
C161RI  
Name  
Physical 8-Bit  
Address Address  
Description  
Reset  
Value  
CRIC  
CSP  
b FF6AH  
FE08H  
B5H  
04H  
GPT2 CAPREL Interrupt Control Register  
0000H  
0000H  
CPU Code Segment Pointer Register  
(8 bits, not directly writeable)  
DP0L  
DP0H  
DP1L  
DP1H  
DP2  
b F100H E 80H  
b F102H E 81H  
b F104H E 82H  
b F106H E 83H  
P0L Direction Control Register  
P0H Direction Control Register  
P1L Direction Control Register  
P1H Direction Control Register  
Port 2 Direction Control Register  
Port 3 Direction Control Register  
Port 4 Direction Control Register  
Port 6 Direction Control Register  
CPU Data Page Pointer 0 Register (10 bits)  
CPU Data Page Pointer 1 Register (10 bits)  
CPU Data Page Pointer 2 Register (10 bits)  
CPU Data Page Pointer 3 Register (10 bits)  
External Interrupt Control Register  
I2C Address Register  
00H  
00H  
00H  
00H  
b FFC2H  
b FFC6H  
b FFCAH  
b FFCEH  
FE00H  
E1H  
E3H  
E5H  
E7H  
00H  
01H  
02H  
03H  
0000H  
0000H  
00H  
DP3  
DP4  
DP6  
00H  
DPP0  
DPP1  
DPP2  
DPP3  
EXICON  
ICADR  
ICCFG  
ICCON  
ICRTB  
ICST  
0000H  
0001H  
0002H  
0003H  
0000H  
0XXXH  
XX00H  
0000H  
XXH  
FE02H  
FE04H  
FE06H  
b F1C0H E E0H  
ED06H X ---  
ED00H X ---  
I2C Configuration Register  
ED02H X ---  
I2C Control Register  
ED08H X ---  
I2C Receive/Transmit Buffer  
I2C Status Register  
ED04H X ---  
0000H  
09XXH  
1820H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
00H  
IDCHIP  
IDMANUF  
IDMEM  
IDPROG  
ISNC  
F07CH E 3EH  
F07EH E 3FH  
F07AH E 3DH  
F078H E 3CH  
b F1DEH E EFH  
Identifier  
Identifier  
Identifier  
Identifier  
Interrupt Subnode Control Register  
CPU Multiply Divide Control Register  
CPU Multiply Divide Register – High Word  
CPU Multiply Divide Register – Low Word  
Port 2 Open Drain Control Register  
Port 3 Open Drain Control Register  
Port 6 Open Drain Control Register  
Constant Value 1’s Register (read only)  
MDC  
b FF0EH  
FE0CH  
87H  
06H  
07H  
MDH  
MDL  
FE0EH  
ODP2  
ODP3  
ODP6  
ONES  
b F1C2H E E1H  
b F1C6H E E3H  
b F1CEH E E7H  
b FF1EH  
8FH  
FFFFH  
Semiconductor Group  
29  
1998-05-01  
C161RI  
Name  
Physical 8-Bit  
Address Address  
Description  
Reset  
Value  
P0L  
b FF00H  
80H  
81H  
82H  
83H  
E0H  
E2H  
E4H  
D1H  
D2H  
E6H  
60H  
61H  
62H  
63H  
64H  
65H  
66H  
67H  
88H  
Port 0 Low Register (Lower half of PORT0)  
Port 0 High Register (Upper half of PORT0)  
Port 1 Low Register (Lower half of PORT1)  
Port 1 High Register (Upper half of PORT1)  
Port 2 Register  
00H  
00H  
P0H  
b FF02H  
b FF04H  
b FF06H  
b FFC0H  
b FFC4H  
b FFC8H  
b FFA2H  
b FFA4H  
b FFCCH  
FEC0H  
P1L  
00H  
P1H  
00H  
P2  
0000H  
0000H  
00H  
P3  
Port 3 Register  
P4  
Port 4 Register (7 bits)  
P5  
Port 5 Register (read only)  
XXXXH  
0000H  
00H  
P5DIDIS  
P6  
Port 5 Digital Input Disable Register  
Port 6 Register (8 bits)  
PECC0  
PECC1  
PECC2  
PECC3  
PECC4  
PECC5  
PECC6  
PECC7  
PSW  
RP0H  
RTCH  
RTCL  
S0BG  
PEC Channel 0 Control Register  
PEC Channel 1 Control Register  
PEC Channel 2 Control Register  
PEC Channel 3 Control Register  
PEC Channel 4 Control Register  
PEC Channel 5 Control Register  
PEC Channel 6 Control Register  
PEC Channel 7 Control Register  
CPU Program Status Word  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
XXH  
FEC2H  
FEC4H  
FEC6H  
FEC8H  
FECAH  
FECCH  
FECEH  
b FF10H  
b F108H E 84H  
F0D6H E 6BH  
F0D4H E 6AH  
System Startup Configuration Register (Rd. only)  
RTC High Register  
no  
RTC Low Register  
no  
FEB4H  
5AH  
Serial Channel 0 Baud Rate Generator Reload  
Register  
0000H  
S0CON  
S0EIC  
b FFB0H  
b FF70H  
FEB2H  
D8H  
B8H  
59H  
Serial Channel 0 Control Register  
0000H  
0000H  
Serial Channel 0 Error Interrupt Control Register  
S0RBUF  
Serial Channel 0 Receive Buffer Register  
(read only)  
XXXXH  
S0RIC  
b FF6EH  
B7H  
Serial Channel 0 Receive Interrupt Control  
Register  
0000H  
0000H  
0000H  
S0TBIC  
S0TBUF  
b F19CH E CEH  
FEB0H 58H  
Serial Channel 0 Transmit Buffer Interrupt Control  
Register  
Serial Channel 0 Transmit Buffer Register  
Semiconductor Group  
30  
1998-05-01  
C161RI  
Name  
S0TIC  
Physical 8-Bit  
Address Address  
Description  
Reset  
Value  
b FF6CH  
B6H  
Serial Channel 0 Transmit Interrupt Control  
Register  
0000H  
SP  
FE12H  
09H  
CPU System Stack Pointer Register  
SSC Baudrate Register  
FC00H  
0000H  
0000H  
0000H  
XXXXH  
0000H  
0000H  
0000H  
FA00H  
FC00H  
SSCBR  
F0B4H E 5AH  
SSCCON b FFB2H  
D9H  
BBH  
SSC Control Register  
SSCEIC  
SSCRB  
SSCRIC  
SSCTB  
SSCTIC  
STKOV  
STKUN  
b FF76H  
SSC Error Interrupt Control Register  
SSC Receive Buffer (read only)  
SSC Receive Interrupt Control Register  
SSC Transmit Buffer (write only)  
SSC Transmit Interrupt Control Register  
CPU Stack Overflow Pointer Register  
CPU Stack Underflow Pointer Register  
CPU System Configuration Register  
CPU System Configuration Register 2  
CPU System Configuration Register 3  
RTC Timer 14 Register  
F0B2H E 59H  
b FF74H  
BAH  
F0B0H E 58H  
b FF72H  
B9H  
0AH  
0BH  
89H  
FE14H  
FE16H  
1)  
SYSCON b FF12H  
0XX0H  
SYSCON2 b F1D0H E E8H  
SYSCON3 b F1D4H E EAH  
0000H  
0000H  
no  
T14  
F0D2H E 69H  
F0D0H E 68H  
T14REL  
T2  
RTC Timer 14 Reload Register  
GPT1 Timer 2 Register  
no  
FE40H  
b FF40H  
b FF60H  
FE42H  
20H  
A0H  
B0H  
21H  
A1H  
B1H  
22H  
A2H  
B2H  
23H  
A3H  
B3H  
24H  
A4H  
B4H  
D6H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
0000H  
T2CON  
T2IC  
T3  
GPT1 Timer 2 Control Register  
GPT1 Timer 2 Interrupt Control Register  
GPT1 Timer 3 Register  
T3CON  
T3IC  
T4  
b FF42H  
b FF62H  
FE44H  
GPT1 Timer 3 Control Register  
GPT1 Timer 3 Interrupt Control Register  
GPT1 Timer 4 Register  
T4CON  
T4IC  
T5  
b FF44H  
b FF64H  
FE46H  
GPT1 Timer 4 Control Register  
GPT1 Timer 4 Interrupt Control Register  
GPT2 Timer 5 Register  
T5CON  
T5IC  
T6  
b FF46H  
b FF66H  
FE48H  
GPT2 Timer 5 Control Register  
GPT2 Timer 5 Interrupt Control Register  
GPT2 Timer 6 Register  
T6CON  
T6IC  
TFR  
b FF48H  
b FF68H  
b FFACH  
GPT2 Timer 6 Control Register  
GPT2 Timer 6 Interrupt Control Register  
Trap Flag Register  
Semiconductor Group  
31  
1998-05-01  
C161RI  
Name  
WDT  
Physical 8-Bit  
Address Address  
Description  
Reset  
Value  
FEAEH  
57H  
Watchdog Timer Register (read only)  
Watchdog Timer Control Register  
I2C Data Interrupt Control Register  
I2C Protocol Interrupt Control Register  
X-Peripheral 2 Interrupt Control Register  
RTC Interrupt Control Register  
0000H  
2)  
WDTCON b FFAEH  
D7H  
00XXH  
XP0IC  
XP1IC  
XP2IC  
XP3IC  
ZEROS  
b F186H E C3H  
b F18EH E C7H  
b F196H E CBH  
b F19EH E CFH  
0000H  
0000H  
0000H  
0000H  
0000H  
b FF1CH  
8EH  
Constant Value 0’s Register (read only)  
1)  
The system configuration is selected during reset.  
2)  
The reset value depends on the indicated reset source.  
Semiconductor Group  
32  
1998-05-01  
C161RI  
Absolute Maximum Ratings  
Ambient temperature under bias (TA):  
SAB-C161RI ...................................................................................................................0 to + 70 °C  
SAF-C161RI ..............................................................................................................– 40 to + 85 °C  
Storage temperature (TST)........................................................................................– 65 to + 150 °C  
Voltage on VDD pins with respect to ground (VSS) ..................................................... – 0.5 to + 6.5 V  
Voltage on any pin with respect to ground (VSS).................................................– 0.5 to VDD + 0.5 V  
Input current on any pin during overload condition.................................................. – 10 to + 10 mA  
Absolute sum of all input currents during overload condition ..............................................|100 mA|  
Power dissipation..................................................................................................................... 1.5 W  
Note: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent  
damage to the device. This is a stress rating only and functional operation of the device at  
these or any other conditions above those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for extended  
periods may affect device reliability.  
During absolute maximum rating overload conditions (VIN > VDD or VIN < VSS) the voltage on  
VDD pins with respect to ground (VSS) must not exceed the values defined by the absolute  
maximum ratings.  
Parameter Interpretation  
The parameters listed in the following partly represent the characteristics of the C161RI and partly  
its demands on the system. To aid in interpreting the parameters right, when evaluating them for a  
design, they are marked in column “Symbol”:  
CC (Controller Characteristics):  
The logic of the C161RI will provide signals with the respective timing characteristics.  
SR (System Requirement):  
The external system must provide signals with the respective timing characteristics to the C161RI.  
Semiconductor Group  
33  
1998-05-01  
C161RI  
DC Characteristics  
DD = 4.5 - 5.5 V;  
TA = 0 to + 70 °C  
TA = – 40 to + 85 °C for SAF-C161RI  
V
VSS = 0 V;  
for SAB-C161RI  
fCPU = 20 MHz  
Parameter  
Symbol  
Limit Values  
max.  
Unit Test Condition  
min.  
Input low voltage  
(P3.0, P3.1, P6.5, P6.6, P6.7)  
VIL1  
– 0.5  
0.3 VDD  
V
V
V
SR  
Input low voltage  
(TTL)  
VIL  
– 0.5  
– 0.5  
0.2 VDD  
– 0.1  
SR  
SR  
Input low voltage  
VILS  
2.0  
(Special Threshold)  
Input high voltage RSTIN  
VIH1  
VIH2  
0.6 VDD  
0.7 VDD  
V
DD + 0.5  
DD + 0.5  
V
V
SR  
SR  
Input high voltage XTAL1,  
P3.0, P3.1, P6.5, P6.6, P6.7  
V
Input high voltage  
(TTL)  
VIH  
0.2 VDD  
+ 0.9  
V
V
DD + 0.5  
V
SR  
SR  
Input high voltage  
(Special Threshold)  
VIHS  
HYS  
VOL  
0.8 VDD  
– 0.2  
DD + 0.5  
V
Input Hysteresis  
(Special Threshold)  
400  
mV  
V
Output low voltage  
0.45  
IOL = 2.4 mA  
CC  
(PORT0, PORT1, Port 4, ALE, RD,  
WR, BHE, CLKOUT, RSTOUT)  
Output low voltage  
(P3.0, P3.1, P6.5, P6.6, P6.7)  
VOL2  
VOL1  
VOH  
0.4  
0.45  
V
V
V
I
I
OL2 = 3 mA  
CC  
CC  
CC  
Output low voltage  
(all other outputs)  
OL1 = 1.6 mA  
Output high voltage  
(PORT0, PORT1, Port 4, ALE, RD,  
WR, BHE, CLKOUT, RSTOUT)  
0.9 VDD  
2.4  
I
I
OH = – 500 µA  
OH = – 2.4 mA  
1)  
Output high voltage  
(all other outputs)  
VOH1  
0.9 VDD  
2.4  
V
V
I
I
OH = – 250 µA  
OH = – 1.6 mA  
CC  
Input leakage current (Port 5)  
Input leakage current (all other)  
Overload current  
IOZ1  
IOZ2  
IOV  
± 200  
± 500  
± 5  
nA  
nA  
mA  
kΩ  
µA  
µA  
0.45 V < VIN < VDD  
CC  
CC  
SR  
CC  
0.45 V < VIN < VDD  
5) 8)  
RSTIN pullup resistor  
RRST  
IRWH  
IRWL  
50  
250  
– 40  
4)  
2)  
3)  
Read/Write inactive current  
V
V
OUT = 2.4 V  
4)  
Read/Write active current  
– 500  
OUT = VOLmax  
Semiconductor Group  
34  
1998-05-01  
C161RI  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min.  
max.  
40  
4)  
2)  
ALE inactive current  
IALEL  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
pF  
V
V
V
V
OUT = VOLmax  
4)  
3)  
ALE active current  
IALEH  
500  
OUT = 2.4 V  
OUT = 2.4 V  
OUT = VOL1max  
4)  
2)  
Port 6 inactive current  
IP6H  
– 40  
4)  
3)  
Port 6 active current  
IP6L  
– 500  
4)  
2)  
PORT0 configuration current  
IP0H  
– 10  
VIN = VIHmin  
3)  
IP0L  
– 100  
VIN = VILmax  
XTAL1 input current  
IIL  
± 20  
10  
0 V < VIN < VDD  
CC  
CC  
5)  
Pin capacitance  
CIO  
IDD  
IIDX  
IIDO  
f = 1 MHz  
TA = 25 °C  
(digital inputs/outputs)  
Power supply current (active)  
with all peripherals active  
7 +  
3 × fCPU  
mA  
mA  
µA  
RSTIN = VIL2  
f
CPU in [MHz] 6)  
Idle mode supply current  
with all peripherals active  
3 +  
1.1 × fCPU  
RSTIN = VIH1  
CPU in [MHz] 6)  
f
Idle mode supply current  
with all peripherals deactivated,  
PLL off, SDD factor = 32  
500 +  
50 × fOSC  
RSTIN = VIH1  
OSC in [MHz] 6)  
9)  
f
Power-down mode supply current IPDR  
with RTC running  
100 +  
25 × fOSC  
µA  
µA  
V
f
DD = 5.5 V  
9)  
OSC in [MHz] 7)  
Power-down mode supply current IPDO  
50  
V
DD = 5.5 V 7)  
with RTC disabled  
Semiconductor Group  
35  
1998-05-01  
C161RI  
Notes  
1)  
This specification is not valid for outputs which are switched to open drain mode. In this case the respective  
output will float and the voltage results from the external circuitry.  
2)  
3)  
4)  
5)  
6)  
The maximum current may be drawn while the respective signal line remains inactive.  
The minimum current must be drawn in order to drive the respective signal line active.  
This specification is only valid during Reset, or during Adapt-mode.  
Not 100% tested, guaranteed by design characterization.  
The supply current is a function of the operating frequency. This dependency is illustrated in the figure below.  
These parameters are tested at VDDmax and 20 MHz CPU clock with all outputs disconnected and all inputs at  
VIL or VIH.  
The oscillator also contributes to the total supply current. The given values refer to the worst case, i.e. IPDRmax  
.
For lower oscillator frequencies the respective supply current can be reduced accordingly.  
7)  
8)  
This parameter is tested including leakage currents. All inputs (including pins configured as inputs) at 0 V to  
0.1 V or at VDD – 0.1 V to VDD, VREF = 0 V, all outputs (including pins configured as outputs) disconnected.  
Overload conditions under operating conditions occur if the voltage on the respective pin exceeds the specified  
operating range (i.e. VOV > VDD + 0.5 V or VOV < VSS - 0.5 V). The absolute sum of input overload currents on  
all port pins may not exceed 50 mA. The supply voltage (VDD and VSS) must remain within the specified limits.  
9)  
This parameter is determined mainly by the current consumed by the oscillator. This current, however, is  
influenced by the external oscillator circuitry (crystal, capacitors). The values given for IPDR refer to a typical  
circuitry and may change in case of a not optimized external oscillator circuitry.  
A typical value for IPDR at room temperature and fCPU = 16 MHz is 300 µA.  
Semiconductor Group  
36  
1998-05-01  
C161RI  
IDDmax  
70  
40  
IDDtyp  
IIDXmax  
IIDXtyp  
10  
fCPU [MHz]  
5
10  
15  
20  
Figure 8  
Supply/Idle Current as a Function of Operating Frequency  
1500  
1250  
1000  
750  
IIDOmax  
IIDOtyp  
IPDRmax  
500  
250  
IPDOmax  
fOSC [MHz]  
4
8
12  
16  
Figure 9  
Power Down Supply Current as a Function of Oscillator Frequency  
Semiconductor Group  
37  
1998-05-01  
C161RI  
AC Characteristics  
Definition of Internal Timing  
The internal operation of the C161RI is controlled by the internal CPU clock fCPU. Both edges of the  
CPU clock can trigger internal (e.g. pipeline) or external (e.g. bus cycles) operations.  
The specification of the external timing (AC Characteristics) therefore depends on the time between  
two consecutive edges of the CPU clock, called “TCL” (see figure below).  
Direct Clock Drive  
fXTAL  
fCPU  
TCLTCL  
Prescaler Operation  
fXTAL  
fCPU  
TCL  
TCL  
Figure 10  
Generation Mechanisms for the CPU Clock  
The CPU clock signal can be generated via different mechanisms. The duration of TCLs and their  
variation (and also the derived external timing) depends on the used mechanism to generate fCPU  
.
This influence must be regarded when calculating the timings for the C161RI.  
The used mechanism to generate the CPU clock is selected during reset via the logic levels on pins  
P0.15-13 (P0H.7-5).  
Semiconductor Group  
38  
1998-05-01  
C161RI  
The table below associates the combinations of these three bits with the respective clock generation  
mode.  
C161RI Clock Generation Modes  
P0.15-13  
(P0H.7-5)  
CPU Frequency fCPU = Notes  
XTAL × F  
f
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
Reserved  
Reserved  
Reserved  
Reserved  
Default configuration without pull-downs  
f
XTAL × 1  
Reserved  
XTAL / 2  
Reserved  
Direct drive 1)  
f
CPU clock via prescaler  
1) The maximum frequency depends on the duty cycle of the external clock signal.  
Prescaler Operation  
When pins P0.15-13 (P0H.7-5) equal ‘001’ during reset the CPU clock is derived from the internal  
oscillator (input clock signal) by a 2:1 prescaler.  
The frequency of fCPU is half the frequency of fXTAL and the high and low time of fCPU (i.e. the duration  
of an individual TCL) is defined by the period of the input clock fXTAL  
.
The timings listed in the AC Characteristics that refer to TCLs therefore can be calculated using the  
period of fXTAL for any TCL.  
Direct Drive  
When pins P0.15-13 (P0H.7-5) equal ‘011’ during reset the on-chip phase locked loop is disabled  
and the CPU clock is directly driven from the internal oscillator with the input clock signal.  
The frequency of fCPU directly follows the frequency of fXTAL so the high and low time of fCPU (i.e. the  
duration of an individual TCL) is defined by the duty cycle of the input clock fXTAL  
.
The timings listed below that refer to TCLs therefore must be calculated using the minimum TCL  
that is possible under the respective circumstances. This minimum value can be calculated via the  
following formula:  
TCLmin = 1/fXTAL × DCmin  
(DC = duty cycle)  
For two consecutive TCLs the deviation caused by the duty cycle of fXTAL is compensated so the  
duration of 2TCL is always 1/fXTAL. The minimum value TCLmin therefore has to be used only once  
for timings that require an odd number of TCLs (1,3,...). Timings that require an even number of  
TCLs (2,4,...) may use the formula 2TCL = 1/fXTAL  
Note: The address float timings in Multiplexed bus mode (t11 and t45) use the maximum duration of  
TCL (TCLmax = 1/fXTAL × DCmax) instead of TCLmin  
.
.
Semiconductor Group  
39  
1998-05-01  
C161RI  
AC Characteristics  
External Clock Drive XTAL1  
V
DD = 4.5 - 5.5 V;  
VSS = 0 V  
TA = 0 to + 70 °C  
for SAB-C161RI  
TA = – 40 to + 85 °C for SAF-C161RI  
Parameter  
Symbol  
Direct Drive 1:1  
max.  
Prescaler 2:1  
Unit  
min.  
min.  
31  
6
max.  
4000  
Oscillator period  
High time  
tOSC  
62  
8000  
ns  
ns  
ns  
ns  
ns  
SR  
t1  
25 1) 2)  
SR  
Low time  
t2  
25 1) 2)  
6
SR  
Rise time  
t3  
10 1)  
10 1)  
6 1)  
6 1)  
SR  
Fall time  
t4  
SR  
1)  
The clock input signal must reach the defined levels VIL and VIH2.  
The specified minimum low and high times allow a duty cycle range of 40...60% at 16 MHz.  
2)  
t1  
t3  
t4  
VIH2  
VIL  
0.5 VDD  
t2  
tOSC  
MCT02534  
Figure 11  
External Clock Drive XTAL1  
Semiconductor Group  
40  
1998-05-01  
C161RI  
A/D Converter Characteristics  
V
DD = 4.5 - 5.5 V;  
VSS = 0 V  
TA = 0 to + 70 °C  
for SAB-C161RI  
TA = – 40 to + 85 °C for SAF-C161RI  
4.0 V VAREF VDD + 0.1 V; VSS - 0.1 V VAGND VSS + 0.2 V  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min.  
max.  
VAREF  
4
1)  
2)  
Analog input voltage range  
Basic clock frequency  
Sample time  
VAIN SR VAGND  
V
fBC  
tS  
0.5  
CC –  
CC –  
MHz  
6 tBC  
tBC = 1 / fBC  
3)  
Conversion time  
tC  
30 tBC  
+ 2 tCPU  
tCPU = 1 / fCPU  
4)  
Total unadjusted error  
TUE CC –  
± 2  
LSB  
tBC in [ns] 5) 6)  
Internal resistance of reference  
voltage source  
R
AREF SR –  
tBC / 125 kΩ  
- 0.25  
tS in [ns] 6) 7)  
Internal resistance of analog  
source  
R
ASRC SR –  
tS / 750  
- 0.25  
kΩ  
6)  
ADC input capacitance  
CAIN CC –  
50  
pF  
The conversion time of the C161RI’s A/D Converter is programmable. The table below should be  
used to calculate the above timings.  
The limit values for fBC must not be exceeded when selecting ADCTC.  
ADCON.15|14 A/D Converter Basic Clock  
2)  
(ADCTC)  
fBC  
00  
01  
10  
11  
f
f
f
f
CPU / 2  
CPU / 4  
CPU / 8  
CPU / 16  
Converter Timing Example:  
Assumptions:  
fCPU = 16 MHz (i.e. tCPU = 62.5 ns), ADCTC = ‘01’.  
fBC = fCPU / 4 = 4 MHz, i.e. tBC = 250 ns.  
Basic clock  
Sample time  
tS  
= tBC × 6 = 1500 ns.  
Conversion time tC  
= 30 tBC + 2 tCPU = (7500 + 125) ns = 7.625 µs.  
Semiconductor Group  
41  
1998-05-01  
C161RI  
Notes  
1)  
VAIN may exceed VAGND or VAREF up to the absolute maximum ratings. However, the conversion result in these  
cases will be X000 or X3FF , respectively.  
H
H
2)  
3)  
The limit values for fBC must not be exceeded when selecting the CPU frequency and the ADCTC setting.  
This parameter includes the sample time tS, the time for determining the digital result and the time to load the  
result register with the conversion result.  
Values for the basic clock tBC depend on programming and can be taken from the table above.  
This parameter depends on the ADC control logic. It is not a real maximum value, but rather a fixum.  
4)  
5)  
TUE is tested at VAREF = 5.0 V, VAGND = 0 V, VDD = 4.9 V. It is guaranteed by design for all other voltages within  
the defined voltage range.  
The specified TUE is guaranteed only if an overload condition (see IOV specification) occurs on maximum 2 not  
selected analog input pins and the absolute sum of input overload currents on all analog input pins does not  
exceed 10 mA.  
During the conversion the ADC’s capacitance must be repeatedly charged or discharged. The internal  
resistance of the reference voltage source must allow the capacitance to reach its respective voltage level  
within each conversion step. The maximum internal resistance results from the programmed conversion  
timing.  
6)  
7)  
Not 100% tested, guaranteed by design.  
During the sample time the input capacitance CI can be charged/discharged by the external source. The  
internal resistance of the analog source must allow the capacitance to reach its final voltage level within tS.  
After the end of the sample time tS, changes of the analog input voltage have no effect on the conversion result.  
Values for the sample time tS depend on programming and can be taken from the table above.  
Semiconductor Group  
42  
1998-05-01  
C161RI  
Testing Waveforms  
AC inputs during testing are driven at 2.4 V for a logic ‘1’ and 0.45 V for a logic ‘0’.  
Timing measurements are made at VIH min for a logic ‘1’ and VIL max for a logic ‘0’.  
Figure 12  
Input Output Waveforms  
For timing purposes a port pin is no longer floating when a 100 mV change from load  
voltageoccurs,butbeginstofloatwhena100 mVchangefromtheloadedVOH/VOL l e ve l o c c ur s  
(IOH/IOL = 20 mA).  
Figure 13  
Float Waveforms  
Semiconductor Group  
43  
1998-05-01  
C161RI  
Memory Cycle Variables  
The timing tables below use three variables which are derived from the BUSCONx registers and  
represent the special characteristics of the programmed memory cycle. The following table  
describes, how these variables are to be computed.  
Description  
Symbol  
Values  
ALE Extension  
tA  
tC  
tF  
TCL × <ALECTL>  
2TCL × (15 - <MCTC>)  
2TCL × (1 - <MTTC>)  
Memory Cycle Time Waitstates  
Memory Tristate Time  
AC Characteristics  
Multiplexed Bus  
V
DD = 4.5 - 5.5 V;  
VSS = 0 V  
for SAB-C161RI  
TA = 0 to + 70 °C  
TA = – 40 to + 85 °C for SAF-C161RI  
CL = 100 pF  
ALE cycle time = 6 TCL + 2tA + tC + tF (186 ns at 16 MHz CPU clock without waitstates)  
Parameter  
Symbol  
Max. CPU Clock  
= 16 MHz  
Variable CPU Clock  
1/2TCL = 1 to 16 MHz  
Unit  
min.  
CC 21 + tA  
max.  
min.  
max.  
ALE high time  
t5  
t6  
t7  
TCL - 10 + tA  
TCL - 16 + tA  
TCL - 10 + tA  
TCL - 10 + tA  
ns  
ns  
ns  
ns  
CC  
CC  
CC  
Address setup to ALE  
Address hold after ALE  
15 + tA  
21 + tA  
21 + tA  
t8  
ALE falling edge to RD,  
WR (with RW-delay)  
t9  
CC  
ALE falling edge to RD,  
WR (no RW-delay)  
– 10 + tA  
– 10 + tA  
ns  
ns  
ns  
ns  
ns  
t10 CC  
t11 CC  
Address float after RD,  
WR (with RW-delay)  
6
6
Address float after RD,  
WR (no RW-delay)  
37  
TCL + 6  
RD, WR low time  
(with RW-delay)  
t12 CC 53 + tC  
t13 CC 84 + tC  
2TCL - 10  
+ tC  
RD, WR low time  
(no RW-delay)  
3TCL - 10  
+ tC  
Semiconductor Group  
44  
1998-05-01  
C161RI  
Parameter  
Symbol  
Max. CPU Clock  
= 16 MHz  
Variable CPU Clock  
1/2TCL = 1 to 16 MHz  
Unit  
min.  
max.  
min.  
max.  
RD to valid data in  
(with RW-delay)  
t14 SR  
t15 SR  
t16 SR  
t17 SR  
t18 SR  
t19 SR  
0
43 + tC  
0
2TCL - 20  
+ tC  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RD to valid data in  
(no RW-delay)  
74 + tC  
3TCL - 20  
+ tC  
ALE low to valid data in  
74  
+ tA + tC  
3TCL - 20  
+ tA + tC  
Address to valid data in  
95  
+ 2tA + tC  
4TCL - 30  
+ 2tA + tC  
Data hold after RD  
rising edge  
Data float after RD  
Data valid to WR  
Data hold after WR  
49 + tF  
2TCL - 14  
+ tF  
t22 CC 43 + tC  
t23 CC 49 + tF  
2TCL - 20  
+ tC  
2TCL - 14  
+ tF  
ALE rising edge after RD, t25 CC 49 + tF  
WR  
2TCL - 14  
+ tF  
Address hold after RD,  
WR  
t27 CC 49 + tF  
t38 CC – 4 - tA  
2TCL - 14  
+ tF  
ALE falling edge to CS  
CS low to Valid Data In  
10 - tA  
– 4 - tA  
10 - tA  
ns  
ns  
t39 SR  
74  
3TCL - 20  
+ tC + 2tA  
+ tC + 2tA  
CS hold after RD, WR  
t40 CC 80 + tF  
t42 CC 27 + tA  
t43 CC – 4 + tA  
3TCL - 14  
+ tF  
ns  
ns  
ns  
ns  
ns  
ns  
ALE fall. edge to RdCS,  
WrCS (with RW delay)  
TCL - 4  
+ tA  
ALE fall. edge to RdCS,  
WrCS (no RW delay)  
-4  
+ tA  
Address float after RdCS, t44 CC  
WrCS (with RW delay)  
0
0
Address float after RdCS, t45 CC  
WrCS (no RW delay)  
31  
TCL  
RdCS to Valid Data In  
(with RW delay)  
t46 SR  
39 + tC  
2TCL - 24  
+ tC  
Semiconductor Group  
45  
1998-05-01  
C161RI  
Parameter  
Symbol  
Max. CPU Clock  
= 16 MHz  
Variable CPU Clock  
1/2TCL = 1 to 16 MHz  
Unit  
min.  
max.  
min.  
max.  
RdCS to Valid Data In  
(no RW delay)  
t47 SR  
70 + tC  
3TCL - 24  
+ tC  
ns  
ns  
ns  
ns  
RdCS, WrCS Low Time  
(with RW delay)  
t48 CC 53 + tC  
t49 CC 84 + tC  
t50 CC 49 + tC  
2TCL - 10  
+ tC  
RdCS, WrCS Low Time  
(no RW delay)  
3TCL - 10  
+ tC  
Data valid to WrCS  
2TCL - 14  
+ tC  
Data hold after RdCS  
Data float after RdCS  
t51 SR  
t52 SR  
0
0
ns  
ns  
43 + tF  
2TCL - 20  
+ tF  
Address hold after  
RdCS, WrCS  
t54 CC 43 + tF  
t56 CC 43 + tF  
2TCL - 20  
+ tF  
ns  
ns  
Data hold after WrCS  
2TCL - 20  
+ tF  
Semiconductor Group  
46  
1998-05-01  
C161RI  
t5  
t16  
t25  
ALE  
CSx  
t38  
t39  
t40  
t17  
t27  
A23-A16  
(A15-A8)  
BHE  
Address  
t6  
t7  
t54  
t19  
t18  
Read Cycle  
BUS  
Address  
t8  
Data In  
t10  
t14  
t12  
t46  
t48  
RD  
t51  
t44  
t42  
t52  
RdCSx  
Write Cycle  
t23  
BUS  
Address  
t8  
Data Out  
t56  
t10  
t22  
WR,  
WRL, WRH  
t12  
t44  
t42  
t50  
WrCSx  
t48  
Figure 14-1  
External Memory Cycle: Multiplexed Bus, With Read/Write Delay, Normal ALE  
Semiconductor Group  
47  
1998-05-01  
C161RI  
t5  
t16  
t25  
ALE  
CSx  
t38  
t39  
t40  
t17  
t27  
A23-A16  
(A15-A8)  
BHE  
Address  
t6  
t7  
t54  
t19  
t18  
Read Cycle  
BUS  
Address  
t8  
Data In  
t10  
t14  
t12  
t46  
t48  
RD  
t51  
t44  
t42  
t52  
RdCSx  
Write Cycle  
t23  
BUS  
Address  
t8  
Data Out  
t56  
t10  
t22  
WR,  
WRL, WRH  
t12  
t44  
t42  
t50  
WrCSx  
t48  
Figure 14-2  
External Memory Cycle: Multiplexed Bus, With Read/Write Delay, Extended ALE  
Semiconductor Group  
48  
1998-05-01  
C161RI  
t5  
t16  
t25  
ALE  
CSx  
t38  
t39  
t40  
t17  
t27  
A23-A16  
(A15-A8)  
BHE  
Address  
t6  
t7  
t54  
t19  
t18  
Read Cycle  
BUS  
Address  
t9  
Data In  
t11  
t15  
t13  
t47  
t49  
RD  
t51  
t43  
t45  
t52  
RdCSx  
Write Cycle  
t23  
BUS  
Address  
t9  
Data Out  
t56  
t11  
t22  
WR,  
WRL, WRH  
t13  
t50  
t43  
t45  
WrCSx  
t49  
Figure 14-3  
External Memory Cycle: Multiplexed Bus, No Read/Write Delay, Normal ALE  
Semiconductor Group  
49  
1998-05-01  
C161RI  
t5  
t16  
t25  
ALE  
CSx  
t38  
t39  
t40  
t17  
t27  
A23-A16  
(A15-A8)  
BHE  
Address  
t6  
t7  
t54  
t19  
t18  
Read Cycle  
BUS  
Address  
t9  
Data In  
t11  
t15  
t13  
t47  
t49  
RD  
t51  
t43  
t45  
t52  
RdCSx  
Write Cycle  
t23  
BUS  
Address  
t9  
Data Out  
t56  
t11  
t22  
WR,  
WRL, WRH  
t13  
t43  
t45  
t50  
WrCSx  
t49  
Figure 14-4  
External Memory Cycle: Multiplexed Bus, No Read/Write Delay, Extended ALE  
Semiconductor Group  
50  
1998-05-01  
C161RI  
AC Characteristics  
Demultiplexed Bus  
V
DD = 4.5 - 5.5 V;  
VSS = 0 V  
TA = 0 to + 70 °C  
for SAB-C161RI  
TA = – 40 to + 85 °C for SAF-C161RI  
CL = 100 pF  
ALE cycle time = 4 TCL + 2tA + tC + tF (125 ns at 16 MHz CPU clock without waitstates)  
Parameter  
Symbol  
Max. CPU Clock  
= 16 MHz  
Variable CPU Clock  
1/2TCL = 1 to 16 MHz  
Unit  
min.  
CC 21 + tA  
max.  
min.  
max.  
ALE high time  
t5  
t6  
TCL - 10 + tA  
TCL - 16 + tA  
ns  
ns  
ns  
CC  
CC  
Address setup to ALE  
15 + tA  
21 + tA  
t8  
ALE falling edge to RD,  
WR (with RW-delay)  
TCL - 10  
+ tA  
t9  
CC  
ALE falling edge to RD,  
WR (no RW-delay)  
– 10 + tA  
– 10  
+ tA  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RD, WR low time  
(with RW-delay)  
t12 CC 53 + tC  
t13 CC 84 + tC  
2TCL - 10  
+ tC  
RD, WR low time  
(no RW-delay)  
3TCL - 10  
+ tC  
RD to valid data in  
(with RW-delay)  
t14 SR  
t15 SR  
t16 SR  
t17 SR  
t18 SR  
t20 SR  
t21 SR  
0
43 + tC  
74 + tC  
0
2TCL - 20  
+ tC  
RD to valid data in  
(no RW-delay)  
3TCL - 20  
+ tC  
ALE low to valid data in  
74  
+ tA + tC  
3TCL - 20  
+ tA + tC  
Address to valid data in  
95  
+ 2tA + tC  
4TCL - 30  
+ 2tA + tC  
Data hold after RD  
rising edge  
Data float after RD rising  
edge (with RW-delay 1))  
49 +  
2tA + tF  
2TCL - 14  
+ 2tA + tF  
1)  
1)  
Data float after RD rising  
edge (no RW-delay 1))  
21 +  
2tA + tF  
TCL - 10  
+ 2tA + tF  
1)  
1)  
Data valid to WR  
t22 CC 43 + tC  
t24 CC 21 + tF  
2TCL - 20  
+ tC  
ns  
Data hold after WR  
TCL - 10 + tF  
– 10 + tF  
ns  
ns  
ALE rising edge after RD, t26 CC – 10 + tF  
WR  
Semiconductor Group  
51  
1998-05-01  
C161RI  
Parameter  
Symbol  
Max. CPU Clock  
= 16 MHz  
Variable CPU Clock  
1/2TCL = 1 to 16 MHz  
Unit  
min.  
max.  
min.  
max.  
2)  
Address hold after WR  
ALE falling edge to CS  
CS low to Valid Data In  
t28 CC 0 + tF  
t38 CC – 4 - tA  
0 + tF  
– 4 - tA  
ns  
ns  
ns  
10 - tA  
10 - tA  
t39 SR  
74  
3TCL - 20  
+ tC + 2tA  
+ tC + 2tA  
CS hold after RD, WR  
t41 CC 17 + tF  
TCL - 14  
+ tF  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ALE falling edge to RdCS, t42 CC 27 + tA  
WrCS (with RW-delay)  
TCL - 4  
+ tA  
ALE falling edge to RdCS, t43 CC – 4 + tA  
WrCS (no RW-delay)  
– 4  
+ tA  
RdCS to Valid Data In  
(with RW-delay)  
t46 SR  
t47 SR  
39 + tC  
2TCL - 24  
+ tC  
RdCS to Valid Data In  
(no RW-delay)  
70 + tC  
3TCL - 24  
+ tC  
RdCS, WrCS Low Time  
(with RW-delay)  
t48 CC 53 + tC  
t49 CC 84 + tC  
t50 CC 49 + tC  
2TCL - 10  
+ tC  
RdCS, WrCS Low Time  
(no RW-delay)  
3TCL - 10  
+ tC  
Data valid to WrCS  
2TCL - 14  
+ tC  
Data hold after RdCS  
t51 SR  
t53 SR  
0
0
ns  
ns  
Data float after RdCS  
(with RW-delay)  
43 + tF  
2TCL - 20  
+ tF  
Data float after RdCS  
(no RW-delay)  
t68 SR  
11 + tF  
TCL - 20  
+ tF  
ns  
ns  
ns  
Address hold after  
RdCS, WrCS  
t55 CC – 10 + tF  
t57 CC 17 + tF  
– 10  
+ tF  
Data hold after WrCS  
TCL - 14  
+ tF  
1) RW-delay and tA refer to the next following bus cycle.  
2) It is guaranteed by design that read data are latched before the address changes.  
Semiconductor Group  
52  
1998-05-01  
C161RI  
t5  
t16  
t26  
ALE  
CSx  
t38  
t39  
t41  
t17  
t28  
A23-A16  
A15-A0  
BHE  
Address  
t6  
t55  
t20  
Read Cycle  
BUS  
(D15-D8)  
D7-D0  
t18  
Data In  
t8  
t14  
RD  
t12  
t46  
t48  
t51  
t42  
t53  
RdCSx  
Write Cycle  
BUS  
(D15-D8)  
D7-D0  
t24  
Data Out  
t57  
t8  
t22  
WR,  
WRL, WRH  
t12  
t42  
t50  
WrCSx  
t48  
Figure 15-1  
External Memory Cycle: Demultiplexed Bus, With Read/Write Delay, Normal ALE  
Semiconductor Group  
53  
1998-05-01  
C161RI  
t5  
t16  
t39  
t17  
t26  
ALE  
CSx  
t38  
t41  
t28  
A23-A16  
A15-A0  
BHE  
Address  
t6  
t55  
t20  
t18  
Read Cycle  
BUS  
(D15-D8)  
D7-D0  
Data In  
t8  
t14  
t12  
t46  
t48  
RD  
t51  
t42  
t53  
RdCSx  
Write Cycle  
BUS  
(D15-D8)  
D7-D0  
t24  
Data Out  
t57  
t8  
t22  
WR,  
WRL, WRH  
t12  
t42  
t50  
WrCSx  
t48  
Figure 15-2  
External Memory Cycle: Demultiplexed Bus, With Read/Write Delay, Extended ALE  
Semiconductor Group  
54  
1998-05-01  
C161RI  
t5  
t16  
t26  
ALE  
CSx  
t38  
t39  
t41  
t17  
t28  
A23-A16  
A15-A0  
BHE  
Address  
t6  
t55  
t21  
Read Cycle  
BUS  
(D15-D8)  
D7-D0  
t18  
Data In  
t9  
t15  
t13  
t47  
t49  
RD  
t51  
t43  
t68  
RdCSx  
Write Cycle  
BUS  
(D15-D8)  
D7-D0  
t24  
Data Out  
t57  
t9  
t22  
WR,  
WRL, WRH  
t13  
t50  
t43  
WrCSx  
t49  
Figure 15-3  
External Memory Cycle: Demultiplexed Bus, No Read/Write Delay, Normal ALE  
Semiconductor Group  
55  
1998-05-01  
C161RI  
t5  
t16  
t39  
t17  
t26  
ALE  
CSx  
t38  
t41  
t28  
A23-A16  
A15-A0  
BHE  
Address  
t6  
t55  
t21  
t18  
Read Cycle  
BUS  
(D15-D8)  
D7-D0  
Data In  
t9  
t15  
t13  
t47  
t49  
RD  
t51  
t43  
t68  
RdCSx  
Write Cycle  
BUS  
(D15-D8)  
D7-D0  
t24  
Data Out  
t57  
t9  
t22  
WR,  
WRL, WRH  
t13  
t43  
t50  
WrCSx  
t49  
Figure 15-4  
External Memory Cycle: Demultiplexed Bus, No Read/Write Delay, Extended ALE  
Semiconductor Group  
56  
1998-05-01  
C161RI  
AC Characteristics  
CLKOUT and READY  
V
DD = 4.5 - 5.5 V;  
VSS = 0 V  
TA = 0 to + 70 °C  
for SAB-C161RI  
TA = – 40 to + 85 °C for SAF-C161RI  
CL = 100 pF  
Parameter  
Symbol  
Max. CPU Clock  
= 16 MHz  
Variable CPU Clock  
1/2TCL = 1 to 16 MHz  
Unit  
min.  
max.  
min.  
max.  
CLKOUT cycle time  
CLKOUT high time  
CLKOUT low time  
CLKOUT rise time  
CLKOUT fall time  
t29 CC 62  
62  
2TCL  
TCL – 6  
TCL – 10  
2TCL  
ns  
ns  
ns  
ns  
ns  
ns  
t30 CC  
t31 CC  
25  
21  
t32 CC  
t33 CC  
4
4
4
4
CLKOUT rising edge to  
ALE falling edge  
t34 CC 0 + tA  
10 + tA  
0 + tA  
10 + tA  
Synchronous READY  
setup time to CLKOUT  
t35 SR 14  
14  
ns  
ns  
ns  
ns  
ns  
ns  
Synchronous READY  
hold time after CLKOUT  
t36 SR  
4
4
Asynchronous READY  
low time  
t37 SR 76  
2TCL + 14  
t58 SR  
t59 SR  
t60 SR  
Asynchronous READY  
14  
4
14  
4
1)  
setup time  
Asynchronous READY  
1)  
hold time  
Async. READY hold time  
after RD, WR high  
(Demultiplexed Bus) 2)  
0
1
0
TCL - 30  
+ 2tA + tC  
+ tF  
+ 2tA + tC + tF  
2)  
2)  
Notes  
1)  
These timings are given for test purposes only, in order to assure recognition at a specific clock edge.  
2)  
Demultiplexed bus is the worst case. For multiplexed bus 2TCL are to be added to the maximum values. This  
adds even more time for deactivating READY.  
The 2t and tC refer to the next following bus cycle, tF refers to the current bus cycle.  
A
Semiconductor Group  
57  
1998-05-01  
C161RI  
READY  
waitstate  
Running cycle 1)  
MUX/Tristate 6)  
t32  
t33  
CLKOUT  
ALE  
t30  
t34  
t29  
t31  
7)  
Command  
RD, WR  
2)  
t35  
t36  
t35  
t36  
Sync  
READY  
3)  
3)  
4)  
t58  
t59  
t58  
t59  
t60  
Async  
READY  
3)  
3)  
t37  
5)  
see 6)  
Figure 16  
CLKOUT and READY  
Notes  
1)  
Cycle as programmed, including MCTC waitstates (Example shows 0 MCTC WS).  
The leading edge of the respective command depends on RW-delay.  
2)  
3)  
READY sampled HIGH at this sampling point generates a READY controlled waitstate,  
READY sampled LOW at this sampling point terminates the currently running bus cycle.  
4)  
5)  
READY may be deactivated in response to the trailing (rising) edge of the corresponding command (RD or  
WR).  
If the Asynchronous READY signal does not fulfill the indicated setup and hold times with respect to CLKOUT  
(eg. because CLKOUT is not enabled), it must fulfill t in order to be safely synchronized. This is guaranteed,  
37  
4)  
if READY is removed in reponse to the command (see Note ).  
6)  
7)  
Multiplexed bus modes have a MUX waitstate added after a bus cycle, and an additional MTTC waitstate may  
be inserted here.  
For a multiplexed bus with MTTC waitstate this delay is 2 CLKOUT cycles, for a demultiplexed bus without  
MTTC waitstate this delay is zero.  
The next external bus cycle may start here.  
Semiconductor Group  
58  
1998-05-01  
C161RI  
Package Outlines  
Plastic Package, P-MQFP-100-2 (SMD)  
(Plastic Metric Quad Flat Package)  
Figure 17  
Sorts of Packing  
Package outlines for tubes, trays etc. are contained in our  
Data Book “Package Information”.  
Dimensions in mm  
SMD = Surface Mounted Device  
Semiconductor Group  
59  
1998-05-01  
C161RI  
Package Outlines (cont’d)  
Plastic Package, P-TQFP-100-1 (SMD)  
(Plastic Thin Metric Quad Flat Package)  
Figure 18  
Sorts of Packing  
Package outlines for tubes, trays etc. are contained in our  
Data Book “Package Information”.  
Dimensions in mm  
SMD = Surface Mounted Device  
Semiconductor Group  
60  
1998-05-01  

相关型号:

C161RI_1

16-Bit CMOS Single-Chip Microcontroller
INFINEON

C161S

16-Bit Single-Chip Microcontroller
INFINEON

C161U

Embedded C166 with USB, USART and SSC
INFINEON

C161U-LF

Micro Peripheral IC
INFINEON

C161U-LM

Micro Peripheral IC
INFINEON

C161U_02

Embedded C166 with USB, USART and SSC SAF C161U-LF, Version 1.3
INFINEON

C161V

16-Bit CMOS Single-Chip Microcontrollers
INFINEON

C161V_96

16-Bit CMOS Single-Chip Microcontrollers
INFINEON

C163

16-Bit CMOS Single-Chip Microcontrollers
INFINEON

C163-L

16-bit CMOS Single-Chip Microcontroller
INFINEON

C1632C10012GAC

CERAMIC CAPACITOR ARRAY
KEMET

C1632C100K2GAC

ISOLATED C NETWORK, 200V, C0G, 0.00001uF, SURFACE MOUNT, CHIP-8, CHIP, ROHS COMPLIANT
KEMET