C504 [INFINEON]

8-Bit CMOS Microcontroller; 8位CMOS微控制器
C504
型号: C504
厂家: Infineon    Infineon
描述:

8-Bit CMOS Microcontroller
8位CMOS微控制器

微控制器
文件: 总49页 (文件大小:962K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Microcomputer Components  
8-Bit CMOS Microcontroller  
C504  
Data Sheet 05.96  
C504  
Revision History:  
Current Version: 05.96  
Previous Version:  
Page  
Page  
Subjects (major changes since last revision)  
(in previous (in  
new  
Version)  
Version)  
Edition 05.96  
This edition was realized using the software system FrameMaker .  
Published by Siemens AG,  
Bereich Halbleiter, Marketing-  
Kommunikation, Balanstraße 73,  
81541 München  
© Siemens AG 1996.  
All Rights Reserved.  
Attention please!  
As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for applications, processes  
and circuits implemented within components or assemblies.  
The information describes the type of component and shall not be considered as assured characteristics.  
Terms of delivery and rights to change design reserved.  
For questions on technology, delivery and prices please contact the Semiconductor Group Offices in Germany or the Siemens Companies  
and Representatives worldwide (see address list).  
Due to technical requirements components may contain dangerous substances. For information on the types in question please contact  
your nearest Siemens Office, Semiconductor Group.  
Siemens AG is an approved CECC manufacturer.  
Packing  
Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we  
will take packing material back, if it is sorted. You must bear the costs of transport.  
For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs in-  
curred.  
Components used in life-support devices or systems must be expressly authorized for such purpose!  
1
2
Critical components of the Semiconductor Group of Siemens AG, may only be used in life-support devices or systems with the express  
written approval of the Semiconductor Group of Siemens AG.  
1 A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the  
failure of that life-support device or system, or to affect its safety or effectiveness of that device or system.  
2 Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain hu-  
man life. If they fail, it is reasonable to assume that the health of the user may be endangered.  
8-Bit CMOS Microcontroller  
Advance Information  
C504  
Fully compatible to standard 8051 microcontroller  
Up to 40 MHz operating frequency  
16 K×8 ROM (C504-2R only, optional ROM protection)  
256×8 RAM  
256×8 XRAM  
Four 8-bit ports, (2 ports with mixed analog/digital I/O capability)  
Three 16-bit timers/counters (timer 2 with up/down counter feature)  
Capture/compare unit for PWM signal generation and signal capturing  
- 3-channel, 16-bit capture/compare unit  
- 1-channel, 10-bit compare unit  
Compare unit  
USART  
10-bit A/D Converter with 8 multiplexed inputs  
Twelve interrupt sources with two priority levels  
On-chip emulation support logic (Enhanced Hooks Technology TM  
Programmable 15-bit Watchdog Timer  
Oscillator Watchdog  
)
Fast Power On Reset  
Power Saving Modes  
M-QFP-44 package  
Temperature ranges: SAB-C504 TA : 0 to 70°C  
SAF-C504  
TA : – 40 to 85°C  
SAH-C504 TA : – 40 to 110°C (max. operating frequency.: TBD)  
SAK-C504 TA : – 40 to 125°C (max. operating frequency.: 12 MHz)  
Semiconductor Group  
3
05.96  
C504  
The C504 with its capture compare unit (CCU) especially provides a functionality, which allows to  
use the microcontroller in motor control applications. Further, the C504 is functionally upward  
compatible with the SAB 80C52/C501 microcontroller and can replace it in existing applications.  
The C504-2R contains a non-volatile 16K×8 read-only program memory, a volatile on-chip 512×8  
read/write data memory, four 8-bit wide ports, three 16-bit timers/counters, a 16-bit capture/  
compare unit with compare timer, a 10-bit compare timer, a twelve source, two priority level interrupt  
structure, a serial port, versatile fail save mechanisms, on-chip emulation support logic, and a  
genuine 10-bit A/D converter. The C504-L is identical to the C504-2R, except that it lacks the  
program memory on chip. Therefore, the term C504 refers to all versions within this data sheet  
unless otherwise noted.  
Ordering Information  
Type  
Ordering Code Package  
Description  
(8-Bit CMOS microcontroller)  
SAB-C504-LM  
Q67120-C1048 P-MQFP-44 for external memory (12 MHz)  
Q67120-C1049 P-MQFP-44 for external memory (24 MHz)  
Q67120-C1050 P-MQFP-44 for external memory (40 MHz)  
Q67120-DXXXX P-MQFP-44 with mask-programmable ROM (12 MHz)  
SAB-C504-L24M  
SAB-C504-L40M  
SAB-C504-2RM  
SAB-C504-2R24M Q67120-DXXXX P-MQFP-44 with mask-programmable ROM (24 MHz)  
SAB-C504-2R40M Q67120-DXXXX P-MQFP-44 with mask-programmable ROM (40 MHz)  
Note: Versions for extended temperature ranges – 40 ˚C to 110 ˚C (SAH-C504) and – 40 ˚C to  
125 ˚C (SAK-C504) are available on request.  
The ordering number of ROM types (DXXXX extensions) is defined after program release  
(verification) of the customer.  
Semiconductor Group  
4
C504  
Figure 1  
Logic Symbol  
Semiconductor Group  
5
C504  
Figure 2  
Pin Configuration (top view)  
Semiconductor Group  
6
C504  
Table 1  
Pin Definitions and Functions  
Symbol  
Pin Number I/O  
(P-MQFP-44) *)  
Function  
Port 1  
P1.0-P1.7  
40-44,  
1-3  
I/O  
is an 8-bit bidirectional port. Port pins can be used for  
digital input/output. P1.0 - P1.3 can also be used as analog  
inputs of the A/D-converter. As secondary digital functions,  
port 1 contains the timer 2 pins and the capture/compare  
inputs/outputs. Port 1 pins are assigned to be used as  
analog inputs via the register P1ANA.  
The functions are assigned to the pins of port 1 as follows:  
40  
41  
P1.0 / AN0 / T2  
Analog input channel 0 /  
input to counter 2  
Analog input channel 1 /  
capture/reload trigger of timer 2 /  
up-down count  
P1.1 / AN1 / T2EX  
42  
43  
P1.2 / AN2 / CC0  
Analog input channel 2 /  
input/output of capture/compare  
channel 0  
P1.3 / AN3 / COUT0 Analog input channel 3 /  
output of capture/compare  
channel 0  
44  
1
P1.4 / CC1  
Input/output of capture/compare  
channel 1  
Output of capture/compare  
channel 1  
Input/output of capture/compare  
channel 2  
P1.5 / COUT1  
P1.6 / CC2  
2
3
P1.7 / COUT2  
Output of capture/compare  
channel 2  
RESET  
4
I
RESET  
A high level on this pin for one machine cycle while the  
oscillator is running resets the device. An internal diffused  
resistor to VSS permits power-on reset using only an  
external capacitor to VCC.  
*) I = Input  
O = Output  
Semiconductor Group  
7
C504  
Table 1  
Pin Definitions and Functions (cont’d)  
Symbol  
Pin Number I/O  
(P-MQFP-44) *)  
Function  
P3.0-P3.7  
5, 7-13  
I/O  
Port 3  
is an 8-bit bidirectional port. P3.0 (R×D) and P3.1 (T×D)  
operate as defined for the C501. P3.2 to P3.7 contain the  
external interrupt inputs, timer inputs, input and as an  
additional optinal function four of the analog inputs of the  
A/D-converter. Port 3 pins are assigned to be used as  
analog inputs via the bits of SFR P3ANA.  
P3.6/WR can be assigned as a third interrupt input. The  
functions are assigned to the pins of port 3 as follows:  
5
7
8
9
P3.0 / RxD  
P3.1 / TxD  
Receiver data input (asynch.) or data  
input/output (synch.) of serial  
interface  
Transmitter data output (asynch.) or  
clock output (synch.) of serial  
interface  
P3.2 / AN4 / INT0 Analog input channel 4 / external  
interrupt 0 input / timer 0 gate control  
input  
P3.3 / AN5 / INT1 Analog input channel 5 / external  
interrupt 1 input / timer 1 gate control  
input  
10  
11  
12  
P3.4 / AN6 / T0  
Analog input channel 6 / timer 0  
counter input  
Analog input channel 7 / timer 1  
counter input  
P3.5 / AN7 / T1  
P3.6 / WR / INT2 WR control output; latches the data  
byte from port 0 into the external data  
memory /  
external interrupt 2 input  
13  
6
P3.7 / RD  
RD control output; enables the  
external data memory  
CTRAP  
I
CCU Trap Input  
With CTRAP = low the compare outputs of the CAPCOM  
unit are switched to the logic level as defined in the COINI  
register (if they are enabled by the bits in SFR TRCON).  
CTRAP is an input pin with an internal pullup resistor. For  
power saving reasons, the signal source which drives the  
CTRAP input should be at high or floating level during  
power-down mode.  
*) I = Input  
O = Output  
Semiconductor Group  
8
C504  
Table 1  
Pin Definitions and Functions (cont’d)  
Symbol  
XTAL2  
XTAL1  
Pin Number I/O  
(P-MQFP-44) *)  
Function  
14  
XTAL2  
Output of the inverting oscillator amplifier.  
15  
XTAL1  
Input to the inverting oscillator amplifier and input to the  
internal clock generator circuits.  
To drive the device from an external clock source, XTAL1  
should be driven, while XTAL2 is left unconnected. There  
are no requirements on the duty cycle of the external clock  
signal, since the input to the internal clocking circuitry is  
divided down by a divide-by-two flip-flop. Minimum and  
maximum high and low times as well as rise/fall times  
specified in the AC characteristics must be observed.  
P2.0-P2.7  
18-25  
I/O  
Port 2  
is a bidirectional I/O port with internal pullup resistors. Port  
2 pins that have 1s written to them are pulled high by the  
internal pullup resistors, and in that state can be used as  
inputs. As inputs, port 2 pins being externally pulled low  
will source current (IIL, in the DC characteris-tics) because  
of the internal pullup resistors. Port 2 emits the high-order  
address byte during fetches from external program  
memory and during accesses to external data memory that  
use 16-bit addresses (MOVX @DPTR). In this application  
it uses strong internal pullup resistors when issuing 1s.  
During accesses to external data memory that use 8-bit  
addresses (MOVX @Ri), port 2 issues the contents of the  
P2 special function register.  
PSEN  
ALE  
26  
27  
O
O
The Program Store Enable  
output is a control signal that enables the external program  
memory to the bus during external fetch operations. It is  
activated every six oscillator periodes except during  
external data memory accesses. Remains high during  
internal program execution.  
The Address Latch Enable  
output is used for latching the low-byte of the address into  
external memory during normal operation. It is activated  
every six oscillator periodes except during an external data  
memory access. When instructions are executed from  
internal ROM (EA=1) the ALE generation can be disabled  
by bit EALE in SFR SYSCON.  
*) I = Input  
O = Output  
Semiconductor Group  
9
C504  
Table 1  
Pin Definitions and Functions (cont’d)  
Symbol  
Pin Number I/O  
(P-MQFP-44) *)  
Function  
COUT3  
28  
O
I
10-Bit compare channel output  
This pin is used for the output signal of the 10-bit compare  
timer 2 unit. COUT3 can be disabled and set to a high or  
low state.  
EA  
29  
External Access Enable  
When held at high level, instructions are fetched from the  
internal ROM (C504-2R only) when the PC is less than  
4000 .When held at low level, the C504 fetches all  
H
instructions from external program memory.  
For the C504-L this pin must be tied low.  
P0.0-P0.7  
37-30  
I/O  
Port 0  
is an 8-bit open-drain bidirectional I/O port. Port 0 pins that  
have 1s written to them float, and in that state can be used  
as high-impendance inputs.Port 0 is also the multiplexed  
low-order address and data bus during accesses to  
external program or data memory. In this application it  
uses strong internal pullup resistors when issuing 1 s.  
Port 0 also outputs the code bytes during program  
verification in the C504-2R. External pullup resistors are  
required during program (ROM) verification.  
VAREF  
VAGND  
VSS  
38  
39  
16  
17  
Reference voltage for the A/D converter.  
Reference ground for the A/D converter.  
Ground (0V)  
VCC  
Power Supply (+5V)  
*) I = Input  
O = Output  
Semiconductor Group  
10  
C504  
Functional Description  
The C504 basic architecture is fully compatible to the standard 8051 microcontroller family. While  
maintaining all architectural and operational characteristics of the SAB 80C52 / C501, the C504  
incorporates some enhancements such as on-chip XRAM, A/D converter, fail save mechanisms,  
and a versatile capture/compare unit.  
Figure 3 shows a block diagram of the C504.  
Figure 3  
Block Diagram of the C504  
Semiconductor Group  
11  
C504  
CPU  
The C504 is efficient both as a controller and as an arithmetic processor. It has extensive facilities  
for binary and BCD arithmetic and excels in its bit-handling capabilities. Efficient use of program  
memory results from an instruction set consisting of 44 % one-byte, 41 % two-byte, and 15 % three-  
byte instructions. With a 12 MHz crystal, 58 % of the instructions are executed in 1.0µs (24 MHz:  
500 ns, 40 MHz : 300 ns).  
Special Function Register PSW (Address D0 )  
H
Reset Value : 00  
H
Bit No. MSB  
LSB  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
P
H
H
H
H
H
H
H
H
D0  
CY  
AC  
F0  
RS1  
RS0  
OV  
F1  
PSW  
H
Bit  
Function  
CY  
Carry Flag  
Used by arithmetic instruction.  
AC  
F0  
Auxiliary Carry Flag  
Used by instructions which execute BCD operations.  
General Purpose Flag  
RS1  
RS0  
Register Bank select control bits  
These bits are used to select one of the four register banks.  
RS1  
RS0  
Function  
Bank 0 selected, data address 00 -07  
0
0
1
1
0
1
0
1
H
H
Bank 1 selected, data address 08 -0F  
H
H
Bank 2 selected, data address 10 -17  
H
H
Bank 3 selected, data address 18 -1F  
H
H
OV  
Overflow Flag  
Used by arithmetic instruction.  
General Purpose Flag  
Parity Flag  
F1  
P
Set/cleared by hardware after each instruction to indicate an odd/even  
number of "one" bits in the accumulator, i.e. even parity.  
Semiconductor Group  
12  
C504  
Memory Organization  
The C504 CPU manipulates operands in the following four address spaces:  
– up to 64 Kbyte of external program memory  
– up to 64 Kbyte of external data memory  
– 256 bytes of internal data memory  
– 256 bytes of internal XRAM data memory  
– a 128 byte special function register area  
Figure 4 illustrates the memory address spaces of the C504.  
Figure 4  
C504 Memory Map  
The XRAM in the C504 is a memory area that is logically located at the upper end of the external  
memory space, but is integrated on the chip. Because the XRAM is used in the same way as  
external data memory the same instruction types (MOVX instructions) must be used for accessing  
the XRAM. The XRAM can be enabled and disabled by the XMAP bit in the SYSCON register.  
ROM Protection  
The C504-2R ROM version allows to protect the content of the internal ROM against read out by  
non authorized people. The type of ROM protection (protected or unprotected) is fixed with the  
ROM mask. Therefore, the customer of a C504-2R ROM version has to define whether ROM  
protection has to be selected or not.  
Semiconductor Group  
13  
C504  
Special Function Registers  
All registers, except the program counter and the four general purpose register banks, reside in the  
special function register area.  
The 63 special function register (SFR) include pointers and registers that provide an interface  
between the CPU and the other on-chip peripherals. There are also 128 directly addressable bits  
within the SFR area.  
The SFRs of the C504 are listed in table 2 and table 3. In table 2 they are organized in groups  
which refer to the functional blocks of the C504. Table 3 illustrates the contents of the SFRs in  
numeric order of their addresses.  
Semiconductor Group  
14  
C504  
Table 2  
Special Function Registers - Functional Blocks  
Block  
Symbol Name  
Address Contents after  
Reset  
1)  
CPU  
ACC  
B
DPH  
DPL  
PSW  
SP  
Accumulator  
B-Register  
Data Pointer, High Byte  
Data Pointer, Low Byte  
Program Status Word Register  
Stack Pointer  
E0  
F0  
83  
82  
00  
00  
00  
00  
00  
07  
H
H
H
H
H
H
H
1)  
H
H
H
1)  
D0  
H
81  
B1  
H
H
3)  
SYSCON System Control Register  
XX10XXX0  
B
1)  
3)  
Interrupt  
System  
IEN0  
IEN1  
CCIE2)  
IP0  
IP1  
ITCON  
Interrupt Enable Register 0  
Interrupt Enable Register 1  
Capture/Compare Interrupt Enable Reg.  
Interrupt Priority Register 0  
Interrupt Priority Register 1  
A8  
0X000000  
XX000000  
H
B
B
3)  
A9  
H
D6  
B8  
B9  
00  
H
H
H
1)  
3)  
3)  
XX000000  
XX000000  
00101010  
B
B
B
H
H
Interrupt Trigger Condition Register  
9A  
1)  
Ports  
P0  
P1  
Port 0  
Port 1  
80  
90  
90  
FF  
FF  
H
H
H
H
H
1)  
1) 4)  
1)  
3)  
P1ANA2) Port 1 Analog Input Selection Register  
XXXX1111  
FF  
FF  
H
XX1111XX  
B
P2  
P3  
Port 2  
Port 3  
A0  
B0  
B0  
H
H
H
H
1)  
1) 4)  
3)  
P3ANA2) Port 3 Analog Input Selection Register  
B
B
1
3)  
A/D-  
Converter  
ADCON0 A/D Converter Control Register 0  
ADCON1 A/D Converter Control Register 1  
ADDATH A/D Converter Data Register High Byte  
ADDATL A/D Converter Data Register Low Byte  
P1ANA2) Port 1 Analog Input Selection Register  
P3ANA2) Port 3 Analog Input Selection Register  
D8  
DC  
D9  
XX000000  
01XXX000  
H
B
3)  
H
00  
H
H
H
3)  
DA  
00XXXXXX  
XXXX1111  
B
B
B
4)  
4)  
3)  
3)  
90  
B0  
H
H
XX1111XX  
Serial  
Channels  
PCON2) Power Control Register  
87  
99  
98  
000X0000  
H
H
H
B
3)  
SBUF  
SCON  
Serial Channel Buffer Register  
Serial Channel Control Register  
XX  
00  
H
H
1)  
1)  
Timer 0/  
Timer 1  
TCON  
TH0  
TH1  
Timer 0/1 Control Register  
Timer 0, High Byte  
Timer 1, High Byte  
Timer 0, Low Byte  
88  
00  
00  
00  
00  
00  
00  
H
H
8C  
8D  
8A  
H
H
H
H
H
H
H
H
H
TL0  
TL1  
Timer 1, Low Byte  
8B  
89  
TMOD  
Timer Mode Register  
H
1) Bit-addressable special function registers  
2) This special function register is listed repeatedly since some bits of it also belong to other functional blocks.  
3) X means that the value is undefined and the location is reserved  
4) SFR is located in the mapped SFR area. For accessing this SFR, bit RMAP in SFR SYSCON must be set.  
Semiconductor Group  
15  
C504  
Table 2  
Special Function Registers - Functional Blocks (cont’d)  
Block  
Symbol Name  
Address Contents after  
Reset  
1)  
Timer 2  
T2CON Timer 2 Control Register  
T2MOD Timer 2 Mode Register  
C8  
00  
H
H
3)  
C9  
XXXXXXX0  
H
B
RC2H  
RC2L  
TH2  
Timer 2 Reload Capture Register, High Byte CB  
Timer 2 Reload Capture Register, Low Byte CA  
Timer 2 High Byte  
Timer 2 Low Byte  
00  
H
H
H
H
H
00  
H
CD  
CC  
00  
H
TL2  
00  
H
Capture /  
Compare  
Unit  
CT1CON Compare timer 1 control register  
E1  
DE  
DF  
00010000  
B
H
H
CCPL  
CCPH  
Compare timer 1 period register, low byte  
Compare timer 1 period register, high byte  
00  
H
00  
H
H
H
H
H
H
H
CT1OFL Compare timer 1 offset register, low byte  
CT1OFH Compare timer 1 offset register, high byte  
CMSEL0 Capture/compare mode select register 0  
CMSEL1 Capture/compare mode select register 1  
E6  
E7  
E3  
E4  
E2  
00  
H
00  
H
00  
H
00  
H
COINI  
Compare output initialization register  
FF  
H
TRCON Trap enable control register  
CF  
C2  
00  
H
H
CCL0  
CCH0  
CCL1  
CCH1  
CCL2  
CCH2  
CCIR  
CCIE2)  
Capture/compare register 0, low byte  
00  
H
H
H
H
H
H
H
H
Capture/compare register 0, high byte  
Capture/compare register 1, low byte  
Capture/compare register 1, high byte  
Capture/compare register 2, low byte  
Capture/compare register 2, high byte  
C3  
C4  
C5  
C6  
C7  
00  
H
00  
H
00  
H
00  
H
00  
H
Capture/compare interrupt request flag reg. E5  
Capture/compare interrupt enable register D6  
00  
H
00  
H
H
H
H
H
H
H
H
CT2CON Compare timer 2 control register  
C1  
D2  
D3  
00010000  
B
CP2L  
CP2H  
CMP2L  
Compare timer 2 period register, low byte  
Compare timer 2 period register, high byte  
Compare timer 2 compare register, low byte D4  
00  
H
3)  
XXXXXX00  
B
00  
H
3))  
CMP2H Compare timer 2 compare register, high byte D5  
XXXXXX00  
B
BCON  
Block commutation control register  
D7  
00  
H
1)  
3)  
Watchdog WDCON Watchdog Timer Control Register  
WDTREL Watchdog Timer Reload Register  
C0  
XXXX0000  
H
B
86  
00  
H
H
3)  
Power  
PCON2) Power Control Register  
87  
88  
000X0000  
0XXXXXXX  
H
H
B
4)  
3)  
Save Mode PCON1 Power Control Register 1  
B
1) Bit-addressable special function registers  
2) This special function register is listed repeatedly since some bits of it also belong to other functional blocks.  
3) X means that the value is undefined and the location is reserved  
4) SFR is located in the mapped SFR area. For accessing this SFR, bit RMAP in SFR SYSCON must be set.  
Semiconductor Group  
16  
C504  
Table 3  
Contents of the SFRs, SFRs in Numeric Order of their Addresses  
Addr Register Content Bit 7  
after  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1)  
Reset  
2)  
80  
81  
82  
83  
86  
P0  
FF  
07  
.7  
.7  
.7  
.7  
.6  
.6  
.6  
.6  
.6  
.5  
.5  
.5  
.5  
.5  
.4  
.4  
.4  
.4  
.4  
.3  
.3  
.3  
.3  
.3  
.2  
.2  
.2  
.2  
.2  
.1  
.1  
.1  
.1  
.1  
.0  
.0  
.0  
.0  
.0  
H
H
H
H
H
H
SP  
H
H
H
H
DPL  
DPH  
00  
00  
WDTREL 00  
WDT  
PSEL  
87  
PCON  
000X-  
0000  
SMOD PDS  
IDLS  
GF1  
GF0  
PDE  
IDLE  
H
B
2)  
3)  
88  
88  
TCON  
00  
TF1 TR1  
TF0  
TR0  
IE1  
IT1  
IE0  
IT0  
H
H
H
PCON1 0XXX- EWPD –  
XXXX  
B
89  
TMOD  
TL0  
00  
00  
00  
00  
00  
GATE C/T  
M1  
.5  
.5  
.5  
.5  
.5  
M0  
.4  
.4  
.4  
.4  
.4  
GATE C/T  
M1  
.1  
M0  
.0  
H
H
H
H
H
H
8A  
8B  
.7  
.7  
.7  
.7  
.7  
.6  
.6  
.6  
.6  
.6  
.3  
.3  
.3  
.3  
.3  
.2  
.2  
.2  
.2  
.2  
H
TL1  
.1  
.0  
H
8C  
8D  
90  
TH0  
TH1  
P1  
.1  
.0  
H
.1  
.0  
H
2)  
FF  
T2EX T2  
H
H
90 2)3) P1ANA XXXX-  
EAN3 EAN2 EAN1 EAN0  
H
1111  
B
2)  
98  
99  
SCON  
SBUF  
ITCON  
00  
SM0  
.7  
SM1  
.6  
SM2  
.5  
REN  
.4  
TB8  
.3  
RB8  
.2  
TI  
.1  
RI  
.0  
H
H
XX  
H
H
9A  
0010-  
1010  
IT2  
IE2  
I2ETF I2ETR I1ETF I1ETR I0ETF I0ETR  
H
B
2)  
A0  
A8  
P2  
FF  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
H
H
H
2)  
IEN0  
0X00-  
0000  
EA  
ET2  
ES  
ET1  
EX1  
ET0  
EX0  
B
A9  
IEN1  
XX00-  
ECT1 ECCM ECT2 ECEM EX2  
EADC  
RxD  
H
H
0000  
B
2)  
B0  
P3  
FF  
H
RD  
WR  
T1 T0 INT1 INT0 TxD  
1) X means that the value is undefined and the location is reserved  
2) Bit-addressable special function registers  
3) SFR is located in the mapped SFR area. For accessing this SFR, bit RMAP in SFR SYSCON must be set.  
Semiconductor Group  
17  
C504  
Table 3  
Contents of the SFRs, SFRs in Numeric Order of their Addresses (cont’d)  
Addr Register Content Bit 7  
after  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1)  
Reset  
B0 2)3) P3ANA XX11-  
EAN7 EAN6 EAN5 EAN4  
H
11XX  
B
B1  
B8  
B9  
SYSCON XX10-  
XXX0  
EALE RMAP –  
PT2 PS PT1  
XMAP  
PX0  
H
H
H
B
2)  
IP0  
XX00-  
PX1  
PT0  
0000  
B
IP1  
XX00-  
PCT1 PCCM PCT2 PCEM PX2  
OWDS WDTS WDT  
PADC  
SWDT  
0000  
B
2)  
WDCON  
C0  
XXXX-  
H
0000  
B
C1  
CT2CON 0001-  
0000  
CT2P ECT2O STE2 CT2  
RES  
CT2R CLK2 CLK1 CLK0  
H
B
C2  
C3  
C4  
C5  
C6  
C7  
C8  
CCL0  
CCH0  
CCL1  
CCH1  
CCL2  
CCH2  
00  
00  
00  
00  
00  
00  
.7  
.6  
.6  
.6  
.6  
.6  
.6  
.5  
.5  
.5  
.5  
.5  
.5  
.4  
.4  
.4  
.4  
.4  
.4  
.3  
.3  
.3  
.3  
.3  
.3  
.2  
.2  
.2  
.2  
.2  
.2  
.1  
.0  
.0  
.0  
.0  
.0  
.0  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
.7  
.1  
.7  
.1  
.7  
.1  
.7  
.1  
.7  
.1  
2)  
T2CON 00  
TF2  
EXF2 RCLK TCLK EXEN2 TR2  
C/T2  
CP/  
RL2  
C9  
T2MOD XXXX-  
XXX0  
DCEN  
H
B
CA  
CB  
RC2L  
RC2H  
TL2  
00  
00  
00  
00  
.7  
.7  
.7  
.7  
.6  
.6  
.6  
.6  
.5  
.5  
.5  
.5  
.4  
.4  
.4  
.4  
.3  
.3  
.3  
.3  
.2  
.2  
.2  
.2  
.1  
.1  
.1  
.1  
.0  
.0  
.0  
.0  
H
H
H
H
H
H
H
H
H
CC  
CD  
CF  
H
H
TH2  
TRCON 00  
TRPEN TRF  
TREN5 TREN4 TREN3 TREN2 TREN1 TREN0  
H
2)  
D0  
D2  
PSW  
CP2L  
00  
00  
CY  
.7  
AC  
.6  
F0  
.5  
RS1  
.4  
RS0  
.3  
OV  
.2  
F1  
.1  
P
H
.0  
H
1) X means that the value is undefined and the location is reserved  
2) Bit-addressable special function registers  
3) SFR is located in the mapped SFR area. For accessing this SFR, bit RMAP in SFR SYSCON must be set.  
Semiconductor Group  
18  
C504  
Table 3  
Contents of the SFRs, SFRs in Numeric Order of their Addresses (cont’d)  
Addr Register Content Bit 7  
after  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1)  
Reset  
D3  
CP2H  
XXXX.  
XX00  
.1  
.0  
H
B
D4  
D5  
CMP2L 00  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.1  
.0  
.0  
H
H
H
CMP2H XXXX.  
XX00  
B
D6  
D7  
D8  
D9  
CCIE  
00  
ECTP ECTC CC2  
FEN  
CC2  
REN  
CC1  
FEN  
CC1  
REN  
CC0  
FEN  
CC0  
REN  
H
H
H
H
H
BCERR  
BCON  
00  
BCMP PWM1 PWM0 EBCE  
BCEM  
BCEN BCM1 BCM0  
H
2)  
ADCON0 XX00-  
IADC BSY  
ADM  
MX2  
MX1  
MX0  
0000  
B
ADDATH 00  
H
.9  
.1  
.8  
.0  
.7  
.6  
.5  
.4  
.3  
.2  
DA  
ADDATL 00XX-  
XXXX  
H
B
DC  
ADCON1 01XX-  
X000  
ADCL1 ADCL0 –  
MX2  
MX1  
MX0  
H
B
DE  
CCPL  
CCPH  
ACC  
00  
00  
00  
.7  
.6  
.6  
.6  
.5  
.5  
.5  
.4  
.4  
.4  
.3  
.3  
.3  
.2  
.2  
.2  
.1  
.1  
.1  
.0  
.0  
.0  
H
H
H
H
H
DF  
E0  
.7  
2)  
.7  
H
E1  
E2  
E3  
E4  
CT1CON 0001-  
0000  
CTM  
ETRP STE1 CT1  
RES  
CT1R CLK2 CLK1 CLK0  
H
B
COINI  
FF  
COUT COUTX COUT CC2I  
3I 2I  
COUT CC1I  
1I  
COUT CC0I  
0I  
H
H
H
H
H
H
I
CMSEL CMSEL CMSEL CMSEL CMSEL CMSEL CMSEL CMSEL  
CMSEL0 00  
CMSEL1 00  
13  
12  
11  
10  
03  
CMSEL CMSEL CMSEL CMSEL  
23 22 21 20  
CT1FP CT1FC CC2F CC2R CC1F CC1R CC0F CC0R  
02  
01  
00  
0
0
0
0
E5  
E6  
E7  
F0  
CCIR  
00  
H
H
H
H
H
H
H
CT1OFL 00  
CT1OFH 00  
.7  
.7  
.7  
.6  
.6  
.6  
.5  
.5  
.5  
.4  
.4  
.4  
.3  
.3  
.3  
.2  
.2  
.2  
.1  
.1  
.1  
.0  
.0  
.0  
2)  
B
00  
H
1) X means that the value is undefined and the location is reserved  
2) Bit-addressable special function registers  
Semiconductor Group  
19  
C504  
Timer / Counter 0 and 1  
Timer/Counter 0 and 1 can be used in four operating modes as listed in table 4.  
Table 4  
Timer/Counter 0 and 1 Operating Modes  
Mode Description  
TMOD  
Gate C/T M1  
Input Clock  
internal external (max)  
M0  
0
8-bit timer/counter with a  
X
X
0
0
fOSC 12 × 32  
/
fOSC/24 × 32  
divide-by-32 prescaler  
1
2
16-bit timer/counter  
X
X
X
X
1
0
1
0
fOSC 12  
/
fOSC 24  
/
8-bit timer/counter with  
8-bit autoreload  
fOSC 12  
/
fOSC 24  
/
3
Timer/counter 0 used as one  
8-bit timer/counter and one  
8-bit timer  
X
X
1
1
fOSC 12  
/
fOSC/24  
Timer 1 stops  
In the “timer” function (C/T = ‘0’) the register is incremented every machine cycle. Therefore the  
count rate is fOSC/12.  
In the “counter” function the register is incremented in response to a 1-to-0 transition at its  
corresponding external input pin (P3.4/T0, P3.5/T1). Since it takes two machine cycles to detect a  
falling edge the max. count rate is fOSC/24. External inputs INT0 and INT1 (P3.2, P3.3) can be  
programmed to function as a gate to facilitate pulse width measurements. Figure 5 illustrates the  
input clock logic.  
Figure 5  
Timer/Counter 0 and 1 Input Clock Logic  
Semiconductor Group  
20  
C504  
Timer 2  
Timer 2 is a 16-bit Timer/Counter with an up/down count feature. It can operate either as timer or as  
an event counter which is selected by bit C/T2 (T2CON.1). It has three operating modes as shown  
in table 5.  
Table 5  
Timer/Counter 2 Operating Modes  
T2CON  
T2MOD T2CON  
Input Clock  
external  
P1.1/  
T2EX  
R×CLK  
Mode  
Remarks  
CP/  
or  
TR2  
internal  
RL2  
(P1.0/T2)  
DCEN  
EXEN  
T×CLK  
16-bit  
Auto-  
reload  
0
0
0
1
1
0
0
X
reload upon  
overflow  
reload trigger  
(falling edge)  
Down counting  
Up counting  
0
0
1
max  
OSC/24  
f
f
OSC/12  
f
f
f
0
0
0
0
1
1
1
1
X
X
0
1
16-bit  
Cap-  
ture  
0
1
1
X
0
X
16 bit Timer/  
Counter (only  
up-counting)  
capture TH2,  
TL2 RC2H,  
RC2L  
max  
OSC/24  
OSC/12  
0
1
1
X
1
Baud  
Rate  
Gene-  
rator  
1
1
X
X
1
1
X
X
0
1
X
no overflow  
interrupt  
request (TF2)  
extra external  
interrupt  
max  
OSC/24  
f
OSC/2  
(“Timer 2”)  
off  
X
X
0
X
X
X
Timer 2 stops  
Note: =  
falling edge  
Semiconductor Group  
21  
C504  
Capture/Compare Unit  
The Capture / Compare Unit (CCU) of the C504 is built up by a 16-bit 3-channel capture/compare  
unit (CAPCOM) and a 10-bit 1-channel compare unit (COMP). In compare mode, the CAPCOM unit  
provides two output signals per channel, which can have inverted signal polarity and non-  
overlapping pulse transitions. The COMP unit can generate a single PWM output signal and is  
further used to modulate the CAPCOM output signals. In capture mode, the value of the compare  
timer 1 is stored in the capture registers if a signal transition occurs at the pins CCx. Figure 6 shows  
the block diagram of the CCU.  
Figure 6  
Block Diagram of the CCU  
Semiconductor Group  
22  
C504  
The compare timer 1 and 2 are free running, processor clock coupled 16-bit / 10-bit timers which  
have each a count rate with a maximum of fOSC/2 up to fOSC/256. The compare timer operations with  
its possible compare output signal waveforms are shown in figure 7.  
Figure 7  
Basic Operating Modes of the CAPCOM Unit  
Compare timer 1 runs only in operating mode 1 with one output signal of selectable signal polarity  
at the pin COUT3.  
Semiconductor Group  
23  
C504  
Serial Interface (USART)  
The serial port is full duplex and can operate in four modes (one synchronous mode, three  
asynchronous modes) as illustrated in table 6. The possible baudrates can be calculated using the  
formulas given in table 6.  
Table 6  
USART Operating Modes  
SCON  
Baudrate  
Description  
Mode  
SM0  
SM1  
0
0
0
1
1
0
f
OSC/12  
Serial data enters and exits through R×D.  
T×D outputs the shift clock. 8-bit are  
transmitted/received (LSB first)  
1
2
3
1
0
1
Timer 1/2 overflow rate  
8-bit UART  
10 bits are transmitted (through T×D) or  
received (R×D)  
f
OSC/32 or fOSC/64  
9-bit UART  
11 bits are transmitted (T×D) or  
received (R×D)  
Timer 1/2 overflow rate  
9-bit UART  
Like mode 2 except the variable baud rate  
Figure 8  
Block Diagram of Baud Rate Generation for the Serial Interface  
Semiconductor Group  
24  
C504  
The possible baudrates can be calculated using the formulas given in table 7.  
Table 7  
Formulas for Calculating Baudrates  
Baud Rate  
Interface Mode  
Baudrate  
derived from  
Oscillator  
0
2
f
OSC/12  
(2SMOD × fOSC) / 64  
Timer 1 (16-bit timer)  
(8-bit timer with  
1,3  
1,3  
(2SMOD × timer 1 overflow rate) /32  
(2SMOD × fOSC) / (32 × 12 × (256-TH1))  
8-bit autoreload)  
Timer 2  
1,3  
fOSC / (32 × (65536-(RC2H, RC2L))  
Semiconductor Group  
25  
C504  
10-Bit A/D Converter  
The C504 has a high performance 10-bit A/D converter (figure 9) with 8 inputs included which uses  
successive approximation technique for the conversion of analog input voltages.  
Figure 9  
A/D Converter Block Diagram  
Semiconductor Group  
26  
C504  
The A/D converter uses two clock signals for operation : the conversion clock f  
(= 1/ t  
) and  
ADC  
ADC  
the input clock f (= 1/ t ). Both clock signals are derived from the C504 system clock f which  
IN  
IN  
OSC  
is applied at the XTAL pins. The duration of an A/D conversion is a multiple of the period of the f  
IN  
clock signal. The table in figure 10 shows the prescaler ratios and the resulting A/D conversion  
times which must be selected for typical system clock rates.  
MCUSystemClock f  
Prescaler  
f
A/DConversion  
IN  
ADC  
Rate (f  
)
[MHz]  
[MHz]  
Time [µs]  
OSC  
Ratio  
÷ 4  
ADCL1 ADCL0  
3.5 MHz  
12 MHz  
16 MHz  
24 MHz  
32 MHz  
40 MHz  
1.75  
6
0
0
0
0
0
1
0
0
0
1
1
0
.438  
1.5  
2
48 x t = 27.4  
IN  
÷ 4  
48 x t = 8  
IN  
8
÷ 4  
48 x t = 6  
IN  
12  
16  
20  
÷ 8  
1.5  
2
96 x t = 8  
IN  
÷ 8  
96 x t = 6  
IN  
÷ 16  
1.25  
192 x t = 9.6  
IN  
Figure 10  
A/D Converter Clock Selection  
The analog inputs are located at port 1 and port 3 (4 lines on each port). The corresponding port 1  
and port 3 pins have a port structure, which allows to use it either as digital I/Os or analog inputs.  
The analog input function of these mixed digital/analog port lines is selected via the registers  
P1ANA and P3ANA.  
Semiconductor Group  
27  
C504  
Interrupt System  
The C504 provides 12 interrupt sources with two priority levels. Figure 11 and 12 give a general  
overview of the interrupt sources and illustrate the interrupt request and control flags.  
Figure 11  
Interrupt Request Sources (Part 1)  
Semiconductor Group  
28  
C504  
Figure 12  
Interrupt Request Sources (Part 2)  
Semiconductor Group  
29  
C504  
Table 8  
Interrupt Vector Addresses  
Request Flags  
Interrupt Source  
Vector Address  
IE0  
TF0  
IE1  
TF1  
RI + TI  
TF2 + EXF2  
IADC  
IE2  
TRF, BCERR  
CT2P  
CC0F-CC2F, CC0R-CC2R  
CT1FP, CT1FC  
External interrupt 0  
Timer 0 interrupt  
External interrupt 1  
Timer 1 interrupt  
Serial port interrupt  
Timer 2 interrupt  
A/D converter interrupt  
External interrupt 2  
CAPCOM emergency interrupt  
Compare timer 2 interrupt  
Capture / compare match interrupt  
Compare timer 1 interrupt  
Power-down interrupt  
0003  
H
000B  
H
0013  
H
001B  
H
0023  
H
002B  
H
0043  
H
004B  
H
0053  
H
005B  
H
0063  
H
006B  
H
007B  
H
A low-priority interrupt can itself be interrupted by a high-priority interrupt, but not by another low-  
priority interrupt. A high-priority interrupt cannot be interrupted by any other interrupt source.  
If two requests of different priority level are received simultaneously, the request of higher priority is  
serviced. If requests of the same priority are received simultaneously, an internal polling sequence  
determines which request is serviced. Thus within each priority level there is a second priority  
structure determined by the polling sequence as shown in table 9.  
Table 9  
Interrupt Source Structure  
Interrupt Source  
Priority  
High Priority  
Low Priority  
External Interrupt 0  
Timer 0 Interrupt  
External Interrupt 1  
Timer 1 Interrupt  
Serial Channel  
A/D Converter  
External Interrupt 2  
CCU Emergency Interrupt  
Compare Timer 2 Interrupt  
Capture / Compare Match Interrupt  
Compare Timer 1 Interrupt  
High h  
Timer 2 Interrupt  
Low  
Semiconductor Group  
30  
C504  
Fail Save Mechanisms  
The C504 offers enhanced fail safe mechanisms, which allow an automatic recovery from software  
upset or hardware failure.  
– 15-bit reloadable watchdog timer  
– Oscillator Watchdog  
Watchdog Timer  
The watchdog timer in the C504 is a 15-bit timer, which is incremented by a count rate of either fSOC  
/
12 or fCYCLE/32. From the 15-bit watchdog timer count value only the upper 7 bits can be  
programmed. Figure 5 shows the block diagram of the programmable watchdog timer.  
Figure 13  
Block Diagram of the Programmable Watchdog Timer  
The watchdog timer can be started by software (bit SWDT in SFR WDCON), but it cannot be  
stopped during active mode of the device. If the software fails to refresh the running watchdog timer  
an internal reset will be initiated. The reset cause (external reset or reset caused by the watchdog)  
can be examined by software (status flag WDTS in WDCON is set). A refresh of the watchdog timer  
is done by setting bits WDT (SFR WDCON) and SWDT consecutively. This double instruction  
sequence has been implemented to increase system security.  
It must be noted, however, that the watchdog timer is halted during the idle mode and power down  
mode of the processor. Therefore, it is possible to use the idle mode in combination with the  
watchdog timer function.  
Semiconductor Group  
31  
C504  
Oscillator Watchdog  
The oscillator watchdog of the C504 serves for three functions :  
Monitoring of the on-chip oscillator's function  
The watchdog supervises the on-chip oscillator's frequency; if it is lower than the frequency  
of an auxiliary RC oscillator, the internal clock is supplied by this RC oscillator and the C504  
is put into reset state; if the failure condition again disappears, the part executes a final reset  
phase of typ. 1 ms in order to allow the oscillator to stabilize; then the oscillator watchdog reset  
is released and the part starts program execution again.  
Fast internal reset after power-on  
The oscillator watchdog unit provides a clock supply for the reset before the on-chip oscillator  
has started. The oscillator watchdog unit also works identically to the monitoring function.  
Control of external wake-up from software power-down mode  
When the power-down mode is left by a low level at the INT0 pin, the oscillator watchdog unit  
assures that the microcontroller resumes operation (execution of the power-down wake-up  
interrupt) with the nominal clock rate. In the power-down mode the RC oscillator and the on-  
chip oscillator are stopped. Both oscillators are started again when power-down mode is  
released. When the on-chip oscillator has a higher frequency than the RC oscillator, the  
microcontroller starts operation after a final delay of typ. 1 ms in order to allow the on-chip  
oscillator to stabilize.  
Figure 14  
Block Diagram of the Programmable Watchdog Timer  
Semiconductor Group  
32  
C504  
Power Saving Modes  
Two power down modes are available, the idle mode and power down mode.  
– In the idle mode the oscillator of the C504 continues to run, but the CPU is gated off from the  
clock signal. However, the interrupt system, the serial port, the A/D converter, and all timers  
with the exception of the watchdog timer are further provided with the clock. The CPU status  
is preserved in its entirety: the stack pointer, program counter, program status word,  
accumulator, and all other registers maintain their data during idle mode.  
– In the power down mode, the RC oscillator and the on-chip oscillator which operates with the  
XTAL pins is stopped. Therefore all functions of the microcontroller are stopped and only the  
contents of the on-chip RAM, XRAM and the SFR's are maintained. The port pins, which are  
controlled by their port latches, output the values that are held by their SFR's.  
Table 10 gives a general overview of the power saving modes.  
Table 10  
Power Saving Modes Overview  
Mode  
Entering  
Leaving by  
Remarks  
2-Instruction  
Example  
Idle mode  
ORL PCON, #01H  
ORL PCON, #20H  
Ocurrence of an  
interrupt from a  
peripheral unit  
CPU clock is stopped;  
CPU maintains their data;  
peripheral units are active (if  
enabled) and provided with  
clock  
Hardware Reset  
Power-Down  
Mode  
ORL PCON, #02H  
ORL PCON, #40H  
Hardware Reset  
Oscillator is stopped;  
contents of on-chip RAM and  
SFR’s are maintained;  
Wake-up from power  
down  
In the power down mode of operation, VCC can be reduced to minimize power consumption. It must  
be ensured, however, that VCC is not reduced before the power down mode is invoked, and that VCC  
is restored to its normal operating level, before the power down mode is terminated.  
The idle mode can be terminated by activating any enabled peripheral interrupt or by resetting the  
C504. The power down mode can be terminated using an interrupt by a short low pulse at the pin  
P3.2/AN4/INT0 or by resetting the C504. If a power saving mode is left through an interrupt, the  
microcontroller state (CPU, ports, peripherals) remains preserved. If a power saving mode is left by  
a reset operation, the microcontroller state is disturbed and replaced by the reset state of the C504.  
Semiconductor Group  
33  
C504  
Absolute Maximum Ratings  
Ambient temperature under bias (TA) .............................................................. 0 ˚C to + 70 ˚C  
Storage temperature (TST)................................................................................– 65 ˚C to + 150 ˚C  
Voltage on VCC pins with respect to ground (VSS) ............................................– 0.5 V to 6.5 V  
Voltage on any pin with respect to ground (VSS)..............................................– 0.5 V to VCC + 0.5 V  
Input current on any pin during overload condition..........................................– 10 mA to + 10 mA  
Absolute sum of all input currents during overload condition ..........................| 100 mA |  
Power dissipation.............................................................................................TBD  
Note:  
Stresses above those listed under “Absolute Maximum Ratings” may cause permanent  
damage of the device. This is a stress rating only and functional operation of the device at  
these or any other conditions above those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for longer  
periods may affect device reliability. During overload conditions (VIN > VCC or VIN < VSS) the  
Voltage on VCC pins with respect to ground (VSS) must not exceed the values defined by the  
absolute maximum ratings.  
Semiconductor Group  
34  
C504  
DC Characteristics  
CC = 5 V + 10%, – 15%; VSS = 0 V  
V
TA = 0 to 70 °C  
for the SAB-C504  
for the SAF-C504  
for the SAH-C504  
for the SAK-C504  
TA = – 40 to 85 °C  
TA = – 40 to 110 °C  
TA = – 40 to 125 °C  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min.  
max.  
Input low voltage (except EA,  
RESET, CTRAP)  
VIL  
– 0.5  
0.2 VCC  
0.1  
+
V
V
V
V
Input low voltage (EA)  
VIL1  
VIL2  
– 0.5  
– 0.5  
0.2 VCC  
0.3  
Input low voltage (RESET,  
CTRAP)  
0.2 VCC  
0.1  
Input high voltage (except XTAL1, VIH  
0.2 VCC  
+
V
CC + 0.5  
RESET and CTRAP)  
0.9  
Input high voltage to XTAL1  
VIH1  
0.7 VCC  
0.6 VCC  
V
V
CC + 0.5  
CC + 0.5  
V
V
Input high voltage to RESET and VIH2  
CTRAP  
Output low voltage (ports 1, 2, 3, VOL  
COUT3)  
0.45  
0.45  
V
V
V
V
V
IOL = 1.6 mA 1)  
IOL = 3.2 mA 1)  
Output low voltage (port 0, ALE,  
PSEN)  
VOL1  
Output high voltage (ports 1, 2, 3) VOH  
2.4  
0.9 VCC  
I
I
OH = – 80 µA,  
OH = – 10 µA  
Output high voltage (ports 1,3 pins VOH1  
in push-pull mode and COUT3)  
0.9 VCC  
IOH = – 800 µA  
Output high voltage (port 0 in  
VOH2  
2.4  
0.9 VCC  
I
I
OH = – 800 µA 2),  
OH = – 80 µA 2)  
external bus mode, ALE, PSEN)  
Logic 0 input current (ports 1, 2, 3) IIL  
– 10  
– 65  
– 50  
µA  
µA  
VIN = 0.45 V  
VIN = 2 V  
Logical 1-to-0 transition current  
(ports 1, 2, 3)  
ITL  
– 650  
Input leakage current (port 0, EA) ILI  
± 1  
µA  
0.45 < VIN < VCC  
Pin capacitance  
CIO  
10  
pF  
fc = 1 MHz,  
TA = 25 °C  
7) 8)  
Overload current  
IOV  
± 5  
mA  
Semiconductor Group  
35  
C504  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
typ. 9)  
max.  
Power supply current:  
Active mode, 12 MHz 4)  
ICC  
ICC  
ICC  
ICC  
ICC  
ICC  
IPD  
16  
8
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
50  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
V
V
V
V
V
V
V
CC = 5 V, 4)  
CC = 5 V, 5)  
CC = 5 V, 4)  
CC = 5 V, 5)  
CC = 5 V, 4)  
CC = 5 V, 5)  
CC = 25.5 V 3)  
Idle mode, 12 MHz 5)  
Active mode, 24 MHz 4)  
Idle mode, 24 MHz 5)  
Active mode, 40 MHz 4)  
Idle mode, 40 MHz 5)  
Power-down mode  
25  
13  
38  
17  
1
1) Capacitive loading on ports 0 and 2 may cause spurious noise pulses to be superimposed on the VOL of ALE  
and port 3. The noise is due to external bus capacitance discharging into the port 0 and port 2 pins when these  
pins make 1-to-0 transitions during bus operation. In the worst case (capacitive loading > 100 pF), the noise  
pulse on ALE line may exceed 0.8 V. In such cases it may be desirable to qualify ALE with a schmitt-trigger,  
or use an address latch with a schmitt-trigger strobe input.  
2) Capacitive loading on ports 0 and 2 may cause the VOH on ALE and PSEN to momentarily fall below the  
0.9 VCC specification when the address lines are stabilizing.  
3) IPD (power-down mode) is measured under following conditions:  
EA = Port0 = VCC ; RESET = VSS ; XTAL2 = N.C.; XTAL1 = VSS ; VAGND = VSS ; all other pins are disconnected.  
4) ICC (active mode) is measured with:  
XTAL1 driven with tCLCH , tCHCL = 5 ns , VIL = VSS + 0.5 V, VIH = VCC – 0.5 V; XTAL2 = N.C.;  
EA = Port0 = Port1 = RESET = VCC ; all other pins are disconnected. ICC would be slightly higher if a crystal  
oscillator is used (appr. 1 mA).  
5) ICC (idle mode) is measured with all output pins disconnected and with all peripherals disabled;  
XTAL1 driven with tCLCH , tCHCL = 5 ns, VIL = VSS + 0.5 V, VIH = VCC – 0.5 V; XTAL2 = N.C.;  
RESET = EA = VSS ; Port0 = VCC ; all other pins are disconnected.  
6) ICC max at other frequencies is given by:  
active mode:  
idle mode:  
TBD  
TBD  
where f  
is the oscillator frequency in MHz. I  
values are given in mA and measured at V  
= 5 V.  
CC  
osc  
CC  
7) Overload conditions occur if the standard operating conditions are exceeded, i.e. the voltage on any pin  
exceeds the specified range (i.e. VOV > VCC + 0.5 V or VOV < VSS 0.5 V). The supply voltage VCC and VSS  
must remain within the specified limits. The absolute sum of input currents on all port pins may not exceed 50  
mA.  
8) Not 100 % tested, guaranteed by design characterization.  
9) The typical ICC values are periodically measured at TA = +25 ˚C but not 100% tested.  
Semiconductor Group  
36  
C504  
A/D Converter Characteristics  
CC = 5 V + 10%, – 15%; VSS = 0 V  
4V VAREF VCC + 0.1 V;  
V
TA = 0 to 70 °C  
for the SAB-C504  
for the SAF-C504  
for the SAH-C504  
for the SAK-C504  
TA = – 40 to 85 °C  
TA = – 40 to 110 °C  
TA = – 40 to 125 °C  
VSS – 0.1 V VAGND VSS + 0.2 V;  
Parameter  
Symbol  
Limit Values  
Unit Test Condition  
min.  
VAGND  
max.  
1)  
Analog input voltage  
Sample time  
VAIN  
tS  
VAREF  
V
64 x tIN  
32 x tIN  
16 x tIN  
8 x tIN  
ns  
Prescaler ÷ 32  
Prescaler ÷ 16  
Prescaler ÷ 8  
Prescaler ÷ 4  
2)  
3)  
Conversion cycle time  
Total unadjusted error  
tADCC  
384 x tIN ns  
192 x tIN  
96 x tIN  
Prescaler ÷ 32  
Prescaler ÷ 16  
Prescaler ÷ 8  
Prescaler ÷ 4  
48 x tIN  
TUE  
± 2  
± 4  
LSB VSS + 0.5V VIN VCC – 0.5V 4)  
LSB VSS < VIN < VSS + 0.5V  
4)  
VCC – 0.5V < VIN < VCC  
5) 6)  
t
ADC in [ns]  
Internal resistance of  
reference voltage source  
RAREF  
RASRC  
CAIN  
tADC / 250 kΩ  
– 0.25  
2) 6)  
tS in [ns]  
Internal resistance of  
analog source  
tS / 500  
kΩ  
– 0.25  
6)  
ADC input capacitance  
Notes see next page.  
50  
pF  
Clock calculation table :  
ClockPrescaler ADCL1, 0  
Ratio  
t
t
t
ADCC  
ADC  
S
÷ 32  
÷ 16  
÷ 8  
1
1
0
0
1
0
1
0
32 x t  
16 x t  
8 x t  
64 x t  
32 x t  
16 x t  
8 x t  
384 x t  
192 x t  
96 x t  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
÷ 4  
4 x t  
48 x t  
IN  
IN  
IN  
Further timing conditions : t  
t
min = 500 ns  
ADC  
IN  
= 2 / f  
= 2 t  
OSC  
CLCL  
Semiconductor Group  
37  
C504  
Notes:  
1) V  
may exceed V  
AGND  
or V  
up to the absolute maximum ratings. However, the conversion result in  
AREF  
AIN  
these cases will be X000 or X3FF , respectively.  
H
H
2) During the sample time the input capacitance C  
can be charged/discharged by the external source. The  
AIN  
internal resistance of the analog source must allow the capacitance to reach their final voltage level within t .  
After the end of the sample time t , changes of the analog input voltage have no effect on the conversion  
S
result.  
S
3) This parameter includes the sample time t , the time for determining the digital result and the time for the  
S
calibration. Values for the conversion clock t  
the previous page.  
depend on programming and can be taken from the table on  
ADC  
4) T  
is tested at V  
= 5.0 V, V = 0 V, V  
AGND  
= 4.9 V. It is guaranteed by design characterization for all  
CC  
UE  
AREF  
other voltages within the defined voltage range.  
If an overload condition occurs on maximum 2 not selected analog input pins and the absolute sum of input  
overload currents on all analog input pins does not exceed 10 mA, an additional conversion error of 1/2 LSB  
is permissible.  
5) During the conversion the ADC’s capacitance must be repeatedly charged or discharged. The internal  
resistance of the reference source must allow the capacitance to reach their final voltage level within the  
indicated time. The maximum internal resistance results from the programmed conversion timing.  
6) Not 100 % tested, but guaranteed by design characterization.  
Semiconductor Group  
38  
C504  
AC Characteristics for C504-L / C504-2R  
CC = 5 V + 10%, – 15%; VSS = 0 V  
V
TA = 0 to 70 °C  
for the SAB-C504  
for the SAF-C504  
for the SAH-C504  
for the SAK-C504  
TA = – 40 to 85 °C  
TA = – 40 to 110 °C  
TA = – 40 to 125 °C  
(CL for port 0, ALE and PSEN outputs = 100 pF; CL for all other outputs = 80 pF)  
Program Memory Characteristics  
Parameter  
Symbol  
Limit Values  
12-MHz clock Variable Clock  
Unit  
1/tCLCL = 3.5 MHz to  
12 MHz  
min.  
127  
43  
30  
max. min.  
max.  
ALE pulse width  
tLHLL  
tAVLL  
tLLAX  
tLLIV  
2tCLCL – 40  
ns  
ns  
ns  
Address setup to ALE  
Address hold after ALE  
ALE low to valid instr in  
ALE to PSEN  
t
t
CLCL – 40  
CLCL – 23  
233  
4tCLCL – 100 ns  
tLLPL  
tPLPH  
tPLIV  
tPXIX  
58  
215  
t
CLCL – 25  
ns  
ns  
PSEN pulse width  
3tCLCL – 35  
PSEN to valid instr in  
Input instruction hold after PSEN  
Input instruction float after PSEN  
Address valid after PSEN  
Address to valid instr in  
Address float to PSEN  
150  
0
3tCLCL – 100 ns  
0
ns  
ns  
ns  
*)  
tPXIZ  
63  
t
CLCL – 20  
*)  
tPXAV  
75  
t
CLCL – 8  
tAVIV  
tAZPL  
302  
0
5tCLCL – 115 ns  
– ns  
0
*)  
Interfacing the C504 to devices with float times up to 75 ns is permissible. This limited bus contention will not  
cause any damage to port 0 drivers.  
Semiconductor Group  
39  
C504  
AC Characteristics for C504-L / C504-2R (cont’d)  
External Data Memory Characteristics  
Parameter  
Symbol  
Limit Values  
12-MHz clock Variable Clock  
Unit  
1/tCLCL = 3.5 MHz to  
12 MHz  
min.  
400  
400  
114  
max. min.  
max.  
6tCLCL – 100 –  
6tCLCL – 100 –  
tRLRH  
tWLWH  
tLLAX2  
tRLDV  
tRHDX  
tRHDZ  
tLLDV  
RD pulse width  
ns  
ns  
ns  
WR pulse width  
Address hold after ALE  
RD to valid data in  
2tCLCL – 53  
252  
0
5tCLCL – 165 ns  
– ns  
Data hold after RD  
0
Data float after RD  
97  
517  
585  
300  
2tCLCL – 70 ns  
8tCLCL – 150 ns  
9tCLCL – 165 ns  
ALE to valid data in  
Address to valid data in  
ALE to WR or RD  
tAVDV  
tLLWL  
tAVWL  
tWHLH  
tQVWX  
tQVWH  
tWHQX  
tRLAZ  
200  
203  
43  
33  
433  
33  
3tCLCL – 50 3tCLCL + 50 ns  
Address valid to WR or RD  
WR or RD high to ALE high  
Data valid to WR transition  
Data setup before WR  
Data hold after WR  
Address float after RD  
4tCLCL – 130 –  
ns  
ns  
ns  
ns  
ns  
ns  
123  
t
t
CLCL – 40  
CLCL – 50  
tCLCL + 40  
7tCLCL – 150 –  
t
CLCL – 50  
0
0
External Clock Drive  
Parameter  
Symbol  
Limit Values  
Unit  
Variable Clock  
Freq. = 3.5 MHz to 12 MHz  
min.  
83.3  
20  
20  
max.  
tCLCL  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
Oscillator period  
High time  
294  
ns  
ns  
ns  
ns  
ns  
t
t
CLCL tCLCX  
CLCL tCHCX  
Low time  
Rise time  
20  
20  
Fall time  
Semiconductor Group  
40  
C504  
AC Characteristics for C504-L24 / C504-2R24  
CC = 5 V + 10 %, – 15 %; VSS = 0 V  
V
TA = 0 to 70 °C  
for the SAB-C504  
for the SAF-C504  
TA = – 40 to 85 °C  
(CL for port 0, ALE and PSEN outputs = 100 pF; CL for all other outputs = 80 pF)  
Program Memory Characteristics  
Parameter  
Symbol  
Limit Values  
24-MHz clock Variable Clock  
Unit  
1/tCLCL = 3.5 MHz to  
24 MHz  
min.  
43  
17  
17  
max. min.  
max.  
ALE pulse width  
tLHLL  
tAVLL  
tLLAX  
tLLIV  
2tCLCL – 40  
ns  
ns  
ns  
Address setup to ALE  
Address hold after ALE  
ALE low to valid instr in  
ALE to PSEN  
t
t
CLCL – 25  
CLCL – 25  
80  
4tCLCL – 87 ns  
tLLPL  
tPLPH  
tPLIV  
tPXIX  
22  
95  
t
CLCL – 20  
ns  
ns  
PSEN pulse width  
3tCLCL – 30  
PSEN to valid instr in  
Input instruction hold after PSEN  
Input instruction float after PSEN  
Address valid after PSEN  
Address to valid instr in  
Address float to PSEN  
60  
0
3tCLCL – 65 ns  
0
ns  
ns  
ns  
*)  
tPXIZ  
32  
t
CLCL – 10  
*)  
tPXAV  
37  
t
CLCL – 5  
tAVIV  
tAZPL  
148  
0
5tCLCL – 60 ns  
– ns  
0
*)  
Interfacing the C504 to devices with float times up to 37 ns is permissible. This limited bus contention will not  
cause any damage to port 0 drivers.  
Semiconductor Group  
41  
C504  
AC Characteristics for C504-L24 / C504-2R24 (cont’d)  
External Data Memory Characteristics  
Parameter  
Symbol  
Limit Values  
24-MHz clock Variable Clock  
Unit  
1/tCLCL = 3.5 MHz to  
24 MHz  
min.  
180  
180  
56  
max. min.  
max.  
tRLRH  
tWLWH  
tLLAX2  
tRLDV  
tRHDX  
tRHDZ  
tLLDV  
RD pulse width  
6tCLCL – 70  
ns  
ns  
ns  
WR pulse width  
6tCLCL – 70  
Address hold after ALE  
RD to valid data in  
2tCLCL – 27  
118  
0
5tCLCL – 90 ns  
– ns  
Data hold after RD  
0
Data float after RD  
63  
200  
220  
175  
2tCLCL – 20 ns  
8tCLCL – 133 ns  
9tCLCL – 155 ns  
ALE to valid data in  
Address to valid data in  
ALE to WR or RD  
tAVDV  
tLLWL  
tAVWL  
tWHLH  
tQVWX  
tQVWH  
tWHQX  
tRLAZ  
75  
67  
17  
5
3tCLCL – 50 3tCLCL + 50 ns  
Address valid to WR  
WR or RD high to ALE high  
Data valid to WR transition  
Data setup before WR  
Data hold after WR  
Address float after RD  
4tCLCL – 97  
ns  
ns  
ns  
ns  
ns  
ns  
67  
t
t
CLCL – 25  
CLCL – 37  
t
CLCL + 25  
170  
15  
7tCLCL – 122 –  
t
CLCL – 27  
0
0
External Clock Drive  
Parameter  
Symbol  
Limit Values  
Unit  
Variable Clock  
Freq. = 3.5 MHz to 24 MHz  
min.  
41.7  
12  
12  
max.  
tCLCL  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
Oscillator period  
High time  
294  
ns  
ns  
ns  
ns  
ns  
t
t
CLCL tCLCX  
CLCL tCHCX  
Low time  
Rise time  
12  
12  
Fall time  
Semiconductor Group  
42  
C504  
AC Characteristics for C504-L40 / C504-2R40  
CC = 5 V + 10 %, – 15 %; VSS = 0 V  
V
TA = 0 to 70 °C  
for the SAB-C504  
for the SAF-C504  
TA = – 40 to 85 °C  
(CL for port 0, ALE and PSEN outputs = 100 pF; CL for all other outputs = 80 pF)  
Program Memory Characteristics  
Parameter  
Symbol  
Limit Values  
40-MHz clock Variable Clock  
Unit  
1/tCLCL = 3.5 MHz to  
40 MHz  
min.  
35  
10  
10  
max. min.  
max.  
ALE pulse width  
tLHLL  
tAVLL  
tLLAX  
tLLIV  
2tCLCL – 15  
ns  
ns  
ns  
Address setup to ALE  
Address hold after ALE  
ALE low to valid instr in  
ALE to PSEN  
t
t
CLCL – 15  
CLCL – 15  
55  
4tCLCL – 45 ns  
tLLPL  
tPLPH  
tPLIV  
tPXIX  
10  
60  
t
CLCL – 15  
ns  
ns  
PSEN pulse width  
3tCLCL – 15  
PSEN to valid instr in  
Input instruction hold after PSEN  
Input instruction float after PSEN  
Address valid after PSEN  
Address to valid instr in  
Address float to PSEN  
25  
0
3tCLCL – 50 ns  
0
ns  
ns  
ns  
*)  
tPXIZ  
20  
t
CLCL – 5  
*)  
tPXAV  
20  
t
CLCL – 5  
tAVIV  
tAZPL  
65  
5tCLCL – 60 ns  
– ns  
– 5  
– 5  
*)  
Interfacing the C504 to devices with float times up to 25 ns is permissible. This limited bus contention will not  
cause any damage to port 0 drivers.  
Semiconductor Group  
43  
C504  
AC Characteristics for C504-L40 / C504-2R40 (cont’d)  
External Data Memory Characteristics  
Parameter  
Symbol  
Limit Values  
40-MHz clock Variable Clock  
Unit  
1/tCLCL = 3.5 MHz to  
40 MHz  
min.  
120  
120  
35  
max. min.  
max.  
tRLRH  
tWLWH  
tLLAX2  
tRLDV  
tRHDX  
tRHDZ  
tLLDV  
RD pulse width  
6tCLCL – 30  
ns  
ns  
ns  
WR pulse width  
6tCLCL – 30  
Address hold after ALE  
RD to valid data in  
2tCLCL – 15  
75  
0
5tCLCL – 50 ns  
– ns  
Data hold after RD  
0
Data float after RD  
38  
150  
150  
90  
2tCLCL – 12 ns  
8tCLCL – 50 ns  
9tCLCL – 75 ns  
ALE to valid data in  
Address to valid data in  
ALE to WR or RD  
tAVDV  
tLLWL  
tAVWL  
tWHLH  
tQVWX  
tQVWH  
tWHQX  
tRLAZ  
60  
70  
10  
5
3tCLCL – 15 3tCLCL + 15 ns  
Address valid to WR  
WR or RD high to ALE high  
Data valid to WR transition  
Data setup before WR  
Data hold after WR  
Address float after RD  
4tCLCL – 30  
ns  
ns  
ns  
ns  
ns  
ns  
40  
t
t
CLCL – 15  
CLCL – 20  
t
CLCL + 15  
0
125  
5
7tCLCL – 50  
tCLCL – 20  
0
External Clock Drive  
Parameter  
Symbol  
Limit Values  
Unit  
Variable Clock  
Freq. = 3.5 MHz to 40 MHz  
min.  
25  
10  
10  
max.  
tCLCL  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
Oscillator period  
High time  
294  
ns  
ns  
ns  
ns  
ns  
t
t
CLCL tCLCX  
CLCL tCHCX  
Low time  
Rise time  
10  
10  
Fall time  
Semiconductor Group  
44  
C504  
Figure 15  
Program Memory Read Cycle  
Figure 16  
Data Memory Read Cycle  
Semiconductor Group  
45  
C504  
Figure 17  
Data Memory Write Cycle  
Figure 18  
External Clock Cycle  
Semiconductor Group  
46  
C504  
ROM Verification Characteristics for C504-2R  
ROM Verification Mode 1  
Parameter  
Symbol  
Limit Values  
max.  
Unit  
min.  
tAVQV  
tELQV  
Address to valid data  
ENABLE to valid data  
Data float after ENABLE  
Oscillator frequency  
0
4
48tCLCL  
48tCLCL  
48tCLCL  
6
ns  
ns  
tEHQZ  
1/tCLCL  
ns  
MHz  
Figure 19  
ROM Verification Mode 1  
Semiconductor Group  
47  
C504  
ROM Verification Mode 2  
Parameter  
Symbol  
Limit Values  
Unit  
min.  
typ  
2 tCLCL  
12 tCLCL  
max.  
tAWD  
tACY  
tDVA  
tDSA  
tAS  
ALE pulse width  
ns  
ALE period  
ns  
Data valid after ALE  
Data stable after ALE  
P3.5 setup to ALE low  
Oscillator frequency  
4 tCLCL  
ns  
8 tCLCL  
6
ns  
4
tCLCL  
ns  
1/tCLCL  
MHz  
Figure 20  
ROM Verification Mode 2  
Semiconductor Group  
48  
C504  
AC Inputs during testing are driven at VCC – 0.5 V for a logic ’1’ and 0.45 V for a logic ’0’.  
Timing measurements are made at VIHmin for a logic ’1’ and VILmax for a logic ’0’.  
Figure 21  
AC Testing: Input, Output Waveforms  
For timing purposes a port pin is no longer floating when a 100 mV change from load voltage  
occurs and begins to float when a 100 mV change from the loaded VOH/VOL level occurs.  
IOL/IOH ≥ ± 20 mA  
Figure 22  
AC Testing : Float Waveforms  
Figure 23  
Recommended Oscillator Circuits for Crystal Oscillator  
Semiconductor Group  
49  

相关型号:

C5043.41.01

C5043, Coaxial Cable, RG11/U Type, 14 AWG Solid Copper Clad Steel
GENERAL

C50434101

C5043, Coaxial Cable, RG11/U Type, 14 AWG Solid Copper Clad Steel
GENERAL

C5044.41.01

C5044, Coaxial Cable, RG11/U Type, 14 AWG Solid Copper Clad Steel
GENERAL

C50444101

C5044, Coaxial Cable, RG11/U Type, 14 AWG Solid Copper Clad Steel
GENERAL

C504_97

8-Bit CMOS Microcontroller
INFINEON

C505

8-Bit CMOS Microcontroller
INFINEON

C505

Standard 4-Pin DIP Package Enable Function
VECTRON

C505

250 WATTS (AC) DC/D CSINGLE OUTPUT
POWERBOX

C505-2R

8-Bit Single-Chip Microcontroller
INFINEON

C505-2RM

8-Bit CMOS Microcontroller
INFINEON

C505-L

8-Bit Single-Chip Microcontroller
INFINEON

C505-LM

8-Bit CMOS Microcontroller
INFINEON