C515C-8EM [INFINEON]

8-Bit Single-Chip Microcontroller; 8位单芯片微控制器
C515C-8EM
型号: C515C-8EM
厂家: Infineon    Infineon
描述:

8-Bit Single-Chip Microcontroller
8位单芯片微控制器

微控制器
文件: 总96页 (文件大小:1236K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet, Feb. 2003  
C515C  
8-Bit Single-Chip Microcontroller  
Microcontrollers  
N e v e r s t o p t h i n k i n g .  
Edition 2003-02  
Published by Infineon Technologies AG,  
St.-Martin-Strasse 53,  
81669 München, Germany  
© Infineon Technologies AG 2003.  
All Rights Reserved.  
Attention please!  
The information herein is given to describe certain components and shall not be considered as a guarantee of  
characteristics.  
Terms of delivery and rights to technical change reserved.  
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding  
circuits, descriptions and charts stated herein.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest  
Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide  
(www.infineon.com).  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in  
question please contact your nearest Infineon Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or systems with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
Data Sheet, Feb. 2003  
C515C  
8-Bit Single-Chip Microcontroller  
Microcontrollers  
N e v e r s t o p t h i n k i n g .  
C515C Data Sheet  
Revision History:  
2003-02  
Previous Version:  
2000-08  
Page  
Subjects (major changes since last revision)  
Enhanced Hooks Technology™ is a trademark of Infineon Technologies.  
We Listen to Your Comments  
Any information within this document that you feel is wrong, unclear or missing at all?  
Your feedback will help us to continuously improve the quality of this document.  
Please send your proposal (including a reference to this document) to:  
mcdocu.comments@infineon.com  
8-Bit Single-Chip Microcontroller  
Features  
C515C  
• Full upward compatibility with SAB 80C515A  
• On-chip program memory (with optional memory protection)  
– C515C-8R 64 Kbytes on-chip ROM  
– C515C-8E 64 Kbytes on-chip OTP  
– alternatively up to 64 Kbytes external program memory  
• 256 bytes on-chip RAM  
• 2 Kbytes of on-chip XRAM  
• Up to 64 Kbytes external data memory  
• Superset of the 8051 architecture with 8 datapointers  
• Up to 10 MHz external operating frequency (1 µs instruction cycle time at 6 MHz  
external clock)  
• On-chip emulation support logic (Enhanced Hooks Technology)  
• Current optimized oscillator circuit and EMI optimized design  
(further features are on next page)  
SSC (SPI)  
Interface  
Full-CAN  
Controller  
XRAM  
2k x 8  
RAM  
256 x 8  
Port 0  
Port 1  
Port 2  
Port 3  
I/O  
I/O  
I/O  
I/O  
Oscillator  
Watchdog  
10 Bit ADC  
(8 inputs)  
T0  
T1  
Power  
Save Modes  
Idle/  
Power down  
Slow down  
8 Bit  
USART  
CPU  
8 Datapointer  
Timer 2  
Capture/Compare Unit  
Program Memory  
C515C-8R : 64k x 8 ROM  
C515C-8E : 64k x 8 OTP  
Port 7  
I/O  
Port 6  
Port 5  
I/O  
Port 4  
Analog/  
Digital  
Input  
I/O  
MCA03646  
Figure 1  
C515C Functional Units  
Data Sheet  
1
2003-02  
C515C  
• Eight ports: 48 + 1 digital I/O lines, 8 analog inputs  
– Quasi-bidirectional port structure (8051 compatible)  
– Port 5 selectable for bidirectional port structure (CMOS voltage levels)  
• Full-CAN controller on-chip  
– 256 register/data bytes are located in external data memory area  
– max. 1 MBaud at 8 - 10 MHz operating frequency  
• Three 16-bit timer/counters  
– Timer 2 can be used for compare/capture functions  
• 10-bit A/D converter with multiplexed inputs and built-in self calibration  
• Full duplex serial interface with programmable baudrate generator (USART)  
• SSC synchronous serial interface (SPI compatible)  
– Master and slave capable  
– Programmable clock polarity/clock-edge to data phase relation  
– LSB/MSB first selectable  
– 2.5 MHz transfer rate at 10 MHz operating frequency  
• Seventeen interrupt vectors, at four priority levels selectable  
• Extended watchdog facilities  
– 15-bit programmable watchdog timer  
– Oscillator watchdog  
• Power saving modes  
– Slow-down mode  
– Idle mode (can be combined with slow-down mode)  
– Software power-down mode with wake-up capability through INT0 or RXDC pin  
– Hardware power-down mode  
• CPU running condition output pin  
• ALE can be switched off  
• Multiple separate VDD/VSS pin pairs  
• P-MQFP-80-1 package  
• Temperature Ranges:  
SAB-C515C versions: TA = 0 to 70 °C  
SAF-C515C versions: TA = -40 to 85 °C  
SAH-C515C versions: TA = -40 to 110 °C  
Note: Versions for extended temperature range -40 °C to 110 °C (SAH-C515C) are  
available on request.  
The C515C is an enhanced, upgraded version of the SAB 80C515A 8-bit microcontroller  
which additionally provides a full CAN interface, a SPI compatible synchronous serial  
interface, extended power save provisions, additional on-chip RAM, 64K of on-chip  
program memory, two new external interrupts and RFI related improvements. With a  
maximum external clock rate of 10 MHz it achieves a 600 ns instruction cycle time (1 µs  
at 6 MHz).  
Data Sheet  
2
2003-02  
C515C  
The C515C-8R contains a non-volatile 64 Kbytes read-only program memory. The  
C515C-L is identical to the C515C-8R, except that it lacks the on-chip program memory.  
The C515C-8E is the OTP version in the C515C microcontroller with an on-chip  
64 Kbytes one-time programmable (OTP) program memory. The C515C is mounted in  
a P-MQFP-80-1 package.  
If compared to the C515C-8R and C515C-L, the C515C-8E OTP version additionally  
provides two features:  
• The wake-up from software power down mode can, additionally to the external pin  
P3.2/INT0 wake-up capability, also be triggered alternatively by a second pin  
P4.7/RXDC.  
• For power consumption reasons the on-chip CAN controller can be switched off.  
Table 1  
Device  
Differences in Internal Program Memory of the C505 MCUs  
Internal Program Memory  
ROM  
OTP  
C515C-LM  
C515C-8RM  
C515C-8EM  
64 Kbytes  
64 Kbytes  
Note: The term C515C refers to all versions described within this document unless  
otherwise noted.  
Ordering Information  
The ordering code for Infineon Technologies’ microcontrollers provides an exact  
reference to the required product. This ordering code identifies:  
• The derivative itself, i.e. its function set  
• The specified temperature rage  
• The package and the type of delivery  
For the available ordering codes for the C515C please refer to the “Product information  
Microcontrollers”, which summarizes all available microcontroller variants.  
Note: The ordering codes for the Mask-ROM versions are defined for each product after  
verification of the respective ROM code.  
Data Sheet  
3
2003-02  
C515C  
VAGND  
VAREF  
Port 0  
8 Bit Digital I/O  
Port 1  
8 Bit Digital I/O  
XTAL1  
XTAL2  
Port 2  
8 Bit Digital I/O  
ALE  
PSEN  
EA  
Port 3  
8 Bit Digital I/O  
RESET  
PE/SWD  
HWPD  
CPUR  
Port 4  
8 Bit Digital I/O  
C515C  
Port 5  
8 Bit Digital I/O  
Port 6  
8 Bit Analog/  
Digital Inputs  
VSSE1  
VDDE1  
VSSE2  
VDDE2  
Port 7  
1 Bit Digital I/O  
VSS1  
VDD1  
VSSCLK  
VDDCLK  
VSSEXT  
VDDEXT  
MCL02714  
Figure 2  
Logic Symbol  
Data Sheet  
4
2003-02  
C515C  
V
V
60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41  
P5.6  
P5.5  
P5.4  
P5.3  
P5.2  
P5.1  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
P2.2/A10  
P2.1/A9  
P2.0/A8  
XTAL1  
XTAL2  
VSSE1  
VSS1  
VDD1  
VDDE1  
P5.0  
VDDE2  
HWPD  
VSSE2  
N.C.  
P1.0/INT3/CC0  
P1.1/INT4/CC1  
P1.2/INT5/CC2  
P1.3/INT6/CC3  
P1.4/INT2  
P1.5/T2EX  
P1.6/CLKOUT  
P1.7/T2  
C515C  
P4.0/ADST  
P4.1/SCLK  
P4.2/SRI  
PE/SWD  
P4.3/STO  
P4.4/SLS  
P4.5/INT8  
P4.6/TXDC  
P4.7/RXDC  
P7.0/INT7  
P3.7/RD  
P3.6/WR  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
V
V
V
V
MCP02715  
Figure 3  
C515C Pin Configuration P-MQFP-80-1 (top view)  
Data Sheet  
5
2003-02  
C515C  
Table 2  
Symbol  
Pin Definitions and Functions  
Pin Number I/O1) Function  
P-MQFP-80-1  
RESET  
1
I
RESET  
A low level on this pin for the duration of two  
machine cycles while the oscillator is running resets  
the C515C. A small internal pullup resistor permits  
power-on reset using only a capacitor connected to  
VSS.  
VAREF  
VAGND  
3
4
I
Reference voltage for the A/D converter  
Reference ground for the A/D converter  
P6.0-P6.7 12-5  
Port 6  
is an 8-bit unidirectional input port to the  
A/D converter. Port pins can be used for digital  
input, if voltage levels simultaneously meet the  
specifications high/low input voltages and for the  
eight multiplexed analog inputs.  
P7.0 / INT7 23  
I/O Port 7  
is an 1-bit quasi-bidirectional I/O port with internal  
pull-up resistor. When a 1 is written to P7.0 it is  
pulled high by an internal pull-up resistor, and in that  
state can be used as input. As input, P7.0 being  
externally pulled low will source current (IIL, in the  
DC characteristics) because of the internal pull-up  
resistor. If P7.0 is used as interrupt input, its output  
latch must be programmed to a one (1). The  
secondary function is assigned to the port 7 pin as  
follows:  
P7.0 INT7, Interrupt 7 input  
Data Sheet  
6
2003-02  
C515C  
Table 2  
Symbol  
Pin Definitions and Functions (cont’d)  
Pin Number I/O1) Function  
P-MQFP-80-1  
P3.0-P3.7 15-22  
I/O Port 3  
is an 8-bit quasi-bidirectional I/O port with internal  
pullup resistors. Port 3 pins that have 1's written to  
them are pulled high by the internal pullup resistors,  
and in that state can be used as inputs. As inputs,  
port 3 pins being externally pulled low will source  
current (IIL, in the DC characteristics) because of  
the internal pullup resistors. Port 3 also contains the  
interrupt, timer, serial port and external memory  
strobe pins that are used by various options. The  
output latch corresponding to a secondary function  
must be programmed to a one (1) for that function to  
operate. The secondary functions are assigned to  
the pins of port 3, as follows:  
15  
16  
P3.0 RXD  
Receiver data input (asynch.) or  
data input/output (synch.) of  
serial interface  
Transmitter data output (asynch.)  
or clock output (synch.) of serial  
interface  
P3.1 TXD  
17  
18  
P3.2 INT0  
P3.3 INT1  
External interrupt 0 input / timer 0  
gate control input  
External interrupt 1 input / timer 1  
gate control input  
19  
20  
21  
P3.4 T0  
P3.5 T1  
P3.6 WR  
Timer 0 counter input  
Timer 1 counter input  
WR control output; latches the  
data byte from port 0 into the  
external data memory  
22  
P3.7 RD  
RD control output; enables the  
external data memory  
Data Sheet  
7
2003-02  
C515C  
Table 2  
Symbol  
Pin Definitions and Functions (cont’d)  
Pin Number I/O1) Function  
P-MQFP-80-1  
P1.0 - P1.7 31-24  
I/O Port 1  
is an 8-bit quasi-bidirectional I/O port with internal  
pullup resistors. Port 1 pins that have 1's written to  
them are pulled high by the internal pullup resistors,  
and in that state can be used as inputs. As inputs,  
port 1 pins being externally pulled low will source  
current (IIL, in the DC characteristics) because of  
the internal pullup resistors. The port is used for the  
low-order address byte during program verification.  
Port 1 also contains the interrupt, timer, clock,  
capture and compare pins that are used by various  
options. The output latch corresponding to a  
secondary function must be programmed to a one  
(1) for that function to operate (except when used for  
the compare functions). The secondary functions  
are assigned to the port 1 pins as follows:  
P1.0 INT3 CC0 Interrupt 3 input / compare 0  
output / capture 0 input  
31  
30  
29  
28  
P1.1 INT4 CC1 Interrupt 4 input / compare 1  
output / capture 1 input  
P1.2 INT5 CC2 Interrupt 5 input / compare 2  
output / capture 2 input  
P1.3 INT6 CC3 Interrupt 6 input / compare 3  
output / capture 3 input  
27  
26  
P1.4 INT2  
P1.5 T2EX  
Interrupt 2 input  
Timer 2 external reload / trigger  
input  
25  
24  
P1.6 CLKOUT System clock output  
P1.7 T2  
Counter 2 input  
XTAL2  
36  
I
XTAL2  
Input to the inverting oscillator amplifier and input to  
the internal clock generator circuits.  
To drive the device from an external clock source,  
XTAL2 should be driven, while XTAL1 is left  
unconnected. Minimum and maximum high and low  
times as well as rise/fall times specified in the AC  
characteristics must be observed.  
Data Sheet  
8
2003-02  
C515C  
Table 2  
Symbol  
Pin Definitions and Functions (cont’d)  
Pin Number I/O1) Function  
P-MQFP-80-1  
XTAL1  
37  
O
XTAL1  
Output of the inverting oscillator amplifier.  
P2.0-P2.7 38-45  
I/O Port 2  
is an 8-bit quasi-bidirectional I/O port with internal  
pullup resistors. Port 2 pins that have 1's written to  
them are pulled high by the internal pullup resistors,  
and in that state can be used as inputs. As inputs,  
port 2 pins being externally pulled low will source  
current (IIL, in the DC characteristics) because of  
the internal pullup resistors.  
Port 2 emits the high-order address byte during  
fetches from external program memory and during  
accesses to external data memory that use 16-bit  
addresses (MOVX @DPTR). In this application it  
uses strong internal pullup resistors when issuing  
1's. During accesses to external data memory that  
use 8-bit addresses (MOVX @Ri), port 2 issues the  
contents of the P2 special function register.  
CPUR  
46  
O
CPU Running Condition  
This output pin is at low level when the CPU is  
running and program fetches or data accesses in  
the external data memory area are executed. In idle  
mode, hardware and software power down mode,  
and with an active RESET signal CPUR is set to  
high level.  
CPUR can be typically used for switching external  
memory devices into power saving modes.  
PSEN  
47  
O
The Program Store Enable  
output is a control signal that enables the external  
program memory to the bus during external fetch  
operations. It is activated every six oscillator  
periods, except during external data memory  
accesses. The signal remains high during internal  
program execution.  
Data Sheet  
9
2003-02  
C515C  
Table 2  
Symbol  
Pin Definitions and Functions (cont’d)  
Pin Number I/O1) Function  
P-MQFP-80-1  
ALE  
48  
O
The Address Latch Enable  
output is used for latching the address into external  
memory during normal operation. It is activated  
every six oscillator periods, except during an  
external data memory access. ALE can be switched  
off when the program is executed internally.  
EA  
49  
I
External Access Enable  
When held high, the C515C executes instructions  
always from the internal ROM. When held low, the  
C515C fetches all instructions from external  
program memory.  
Note: For the ROM protection version EA pin is  
latched during reset.  
P0.0-P0.7 52-59  
I/O Port 0  
is an 8-bit open-drain bidirectional I/O port.  
Port 0 pins that have 1's written to them float, and in  
that state can be used as high-impedance inputs.  
Port 0 is also the multiplexed low-order address and  
data bus during accesses to external program and  
data memory. In this application it uses strong  
internal pullup resistors when issuing 1's.  
Port 0 also outputs the code bytes during program  
verification in the C515C. External pullup resistors  
are required during program verification.  
P5.0-P5.7 67-60  
I/O Port 5  
is an 8-bit quasi-bidirectional I/O port with internal  
pullup resistors. Port 5 pins that have 1's written to  
them are pulled high by the internal pullup resistors,  
and in that state can be used as inputs. As inputs,  
port 5 pins being externally pulled low will source  
current (IIL, in the DC characteristics) because of  
the internal pullup resistors.  
Port 5 can also be switched into a bidirectional  
mode, in which CMOS levels are provided. In this  
bidirectional mode, each port 5 pin can be  
programmed individually as input or output.  
Data Sheet  
10  
2003-02  
C515C  
Table 2  
Symbol  
Pin Definitions and Functions (cont’d)  
Pin Number I/O1) Function  
P-MQFP-80-1  
HWPD  
69  
I
Hardware Power Down  
A low level on this pin for the duration of one  
machine cycle while the oscillator is running resets  
the C515C.  
A low level for a longer period will force the part to  
power down mode with the pins floating.  
P4.0-P4.7 72-74, 76-80 I/O Port 4  
is an 8-bit quasi-bidirectional I/O port with internal  
pull-up resistors. Port 4 pins that have 1’s written to  
them are pulled high by the internal pull-up resistors,  
and in that state can be used as inputs. As inputs,  
port 4 pins being externally pulled low will source  
current (IIL, in the DC characteristics) because of  
the internal pull-up resistors.  
P4 also contains the external A/D converter control  
pin, the SSC pins, the CAN controller input/output  
lines, and the external interrupt 8 input. The output  
latch corresponding to a secondary function must  
be programmed to a one (1) for that function to  
operate. The alternate functions are assigned to  
port 4 as follows:  
72  
73  
P4.0 ADST External A/D converter start pin  
P4.1 SCLK SSC Master Clock Output /  
SSC Slave Clock Input  
74  
76  
77  
78  
79  
P4.2 SRI  
P4.3 STO  
P4.4 SLS  
P4.5 INT8  
SSC Receive Input  
SSC Transmit Output  
Slave Select Input  
External interrupt 8 input  
P4.6 TXDC Transmitter output of the CAN  
controller  
80  
P4.7 RXDC Receiver input of the CAN controller  
Data Sheet  
11  
2003-02  
C515C  
Table 2  
Symbol  
Pin Definitions and Functions (cont’d)  
Pin Number I/O1) Function  
P-MQFP-80-1  
PE/SWD  
75  
I
Power saving mode enable / Start watchdog  
timer  
A low level on this pin allows the software to enter  
the power down, idle and slow down mode. In case  
the low level is also seen during reset, the watchdog  
timer function is off on default.  
Use of the software controlled power saving modes  
is blocked, when this pin is held on high level. A high  
level during reset performs an automatic start of the  
watchdog timer immediately after reset. When left  
unconnected this pin is pulled high by a weak  
internal pull-up resistor.  
VSSCLK  
13  
14  
Ground (0 V) for on-chip oscillator  
This pin is used for ground connection of the on-chip  
oscillator circuit.  
VDDCLK  
Supply voltage for on-chip oscillator  
This pin is used for power supply of the on-chip  
oscillator circuit.  
VDDE1  
VDDE2  
32  
68  
Supply voltage for I/O ports  
These pins are used for power supply of the I/O  
ports during normal, idle, and power down mode.  
VSSE1  
VSSE2  
35  
70  
Ground (0 V) for I/O ports  
These pins are used for ground connections of the  
I/O ports during normal, idle, and power down  
mode.  
VDD1  
33  
34  
Supply voltage for internal logic  
This pins is used for the power supply of the internal  
logic circuits during normal, idle, and power down  
mode.  
VSS1  
Ground (0 V) for internal logic  
This pin is used for the ground connection of the  
internal logic circuits during normal, idle, and power  
down mode.  
Data Sheet  
12  
2003-02  
C515C  
Table 2  
Symbol  
Pin Definitions and Functions (cont’d)  
Pin Number I/O1) Function  
P-MQFP-80-1  
VDDEXT  
50  
Supply voltage for external access pins  
This pin is used for power supply of the I/O ports and  
control signals which are used during external  
accesses (for Port 0, Port 2, ALE, PSEN, P3.6/WR,  
and P3.7/RD).  
VSSEXT  
51  
Ground (0 V) for external access pins  
This pin is used for the ground connection of the I/O  
ports and control signals which are used during  
external accesses (for Port 0, Port 2, ALE, PSEN,  
P3.6/WR, and P3.7/RD).  
N.C.  
2, 71  
Not connected  
These pins should not be connected.  
1)  
I = Input; O = Output  
Data Sheet  
13  
2003-02  
C515C  
Multiple  
Oscillator Watchdog  
OSC & Timing  
V
DD/VSS  
XRAM  
2k x 8  
RAM  
256 x 8  
ROM/OTP  
64k x 8  
Lines  
XTAL1  
XTAL2  
ALE  
CPU  
PSEN  
EA  
8 Datapointers  
Emulation  
Support  
Logic  
Programmable  
CPUR  
PE/SWD  
HWPD  
RESET  
Watchdog Timer  
Timer 0  
Timer 1  
Timer 2  
Port 0  
8 Bit Digital I/O  
Port 0  
Port 1  
Port 2  
Port 3  
Port 4  
Port 5  
Port 6  
Port 7  
Port 1  
8 Bit Digital I/O  
Port 2  
8 Bit Digital I/O  
Capture  
Compare Unit  
Port 3  
8 Bit Digital I/O  
USART  
Baud Rate Generator  
Port 4  
8 Bit Digital I/O  
SSC (SPI) Interface  
Port 5  
8 Bit Digital I/O  
Full-CAN  
Controller  
Port 6  
8 Bit Analog/  
Digital Inputs  
Interrupt Unit  
VAREF  
VAGND  
Port 7  
1 Bit Digital I/O  
A/D Converter  
10 Bit  
S & H  
MUX  
C515C  
MCB03647  
Figure 4  
Block Diagram of the C515C  
Data Sheet  
14  
2003-02  
C515C  
CPU  
The C515C is efficient both as a controller and as an arithmetic processor. It has  
extensive facilities for binary and BCD arithmetic and excels in its bit-handling  
capabilities. Efficient use of program memory results from an instruction set consisting  
of 44% one-byte, 41% two-byte, and 15% three-byte instructions. With a 6 MHz crystal,  
58% of the instructions are executed in 1 µs (10 MHz: 600 ns).  
PSW  
Special Function Register  
(D0 )  
Reset Value: 00  
H
H
Bit No. MSB  
LSB  
D7H  
CY  
D6H  
AC  
D5H  
F0  
D4H  
RS1  
D3H  
RS0  
D2H  
OV  
D1H  
F1  
D0H  
P
D0H  
PSW  
Bit  
Function  
CY  
Carry Flag  
Used by arithmetic instruction.  
AC  
Auxiliary Carry Flag  
Used by instructions which execute BCD operations.  
General Purpose Flag  
F0  
RS1  
RS0  
Register Bank select control bits  
These bits are used to select one of the four register banks.  
RS1  
RS0  
Function  
Bank 0 selected, data address 00 -07  
0
0
1
1
0
1
0
1
H
H
Bank 1 selected, data address 08 -0F  
H
H
Bank 2 selected, data address 10 -17  
H
H
Bank 3 selected, data address 18 -1F  
H
H
OV  
Overflow Flag  
Used by arithmetic instruction.  
General Purpose Flag  
Parity Flag  
F1  
P
Set/cleared by hardware after each instruction to indicate an  
odd/even number of “one” bits in the accumulator, i.e. even parity.  
Data Sheet  
15  
2003-02  
C515C  
Memory Organization  
The C515C CPU manipulates data and operands in the following five address spaces:  
• up to 64 Kbytes of internal/external program memory  
• up to 64 Kbytes of external data memory  
• 256 bytes of internal data memory  
• 256 bytes CAN controller registers / data memory  
• 2 Kbytes of internal XRAM data memory  
• a 128 byte special function register area  
Figure 5 illustrates the memory address spaces of the C515C.  
Alternatively  
FFFF  
FFFF  
H
H
Internal  
XRAM  
(2 KByte)  
External  
Data  
F800  
F7FF  
H
H
Memory  
Internal  
(EA = 1)  
Int. CAN  
Controller  
(256 Byte)  
F700  
H
Indirect  
Address  
Direct  
Address  
F6FF  
H
FF  
80  
FF  
80  
H
H
H
H
External  
(EA = 0)  
Special  
Function  
Register  
Internal  
RAM  
External  
7F  
H
Internal  
RAM  
0000  
0000  
00  
H
H
H
"Code Space"  
"Data Space"  
"Internal Data Space"  
MCD02717  
Figure 5  
C515C Memory Map  
Data Sheet  
16  
2003-02  
C515C  
Control of XRAM/CAN Controller Access  
The XRAM in the C515C is a memory area that is logically located at the upper end of  
the external memory space, but is integrated on the chip. Because the XRAM and the  
CAN controller is used in the same way as external data memory the same instruction  
types (MOVX) must be used for accessing the XRAM. Two bits in SFR SYSCON,  
XMAP0 and XMAP1, control the accesses to the XRAM and the CAN controller.  
SYSCON  
Special Function Register  
(B1 ) C515C-8R Reset Value: X010XX01  
H
B
B
C515C-8E Reset Value: X010X001  
Bit No. MSB  
LSB  
7
6
5
4
3
2
1
0
PMOD  
EALE RMAP  
B1  
CSWO XMAP1 XMAP0  
SYSCON  
H
The function of the shaded bits is not described in this section.  
Bit  
XMAP1  
Function  
XRAM/CAN controller visible access control  
Control bit for RD/WR signals during XRAM/CAN Controller  
accesses. If addresses are outside the XRAM/CAN controller  
address range or if XRAM is disabled, this bit has no effect.  
XMAP1 = 0: The signals RD and WR are not activated during  
accesses to the XRAM/CAN Controller  
XMAP1 = 1: Ports 0, 2 and the signals RD and WR are activated  
during accesses to XRAM/CAN Controller. In this  
mode, address and data information during  
XRAM/CAN Controller accesses are visible externally.  
XMAP0  
Global XRAM/CAN controller access enable/disable control  
XMAP0 = 0: The access to XRAM and CAN controller is enabled.  
XMAP0 = 1: The access to XRAM and CAN controller is disabled  
(default after reset). All MOVX accesses are  
performed via the external bus. Further, this bit is  
hardware protected.  
Bit XMAP0 is hardware protected. If it is reset once (XRAM/CAN controller access  
enabled) it cannot be set by software. Only a reset operation will set the XMAP0 bit  
again.  
Data Sheet  
17  
2003-02  
C515C  
The XRAM/CAN controller can be accessed by read/write instructions (MOVX A,DPTR,  
MOVX @DPTR,A), which use the 16-bit DPTR for indirect addressing. For accessing the  
XRAM or CAN controller, the effective address stored in DPTR must be in the range of  
F700 to FFFF .  
H
H
The XRAM can be also accessed by read/write instructions (MOVX A,@Ri, MOVX  
@Ri,A), which use only an 8-bit address (indirect addressing with registers R0 or R1).  
Therefore, a special page register XPAGE which provides the upper address information  
(A8-A15) during 8-bit XRAM accesses. The behaviour of Port 0 and P2 during a MOVX  
access depends on the control bits XMAP0 and XMAP1 in register SYSCON and on the  
state of pin EA. Table 3 lists the various operating conditions.  
Data Sheet  
18  
2003-02  
C515C  
Table 3  
Behaviour of P0/P2 and RD/WR During MOVX Accesses  
XMAP1, XMAP0  
00  
10  
X1  
EA = 0 MOVX  
DPTR  
<
XRAM/CAN  
address range is used  
a) P0/P2Bus  
b) RD/WR active  
c) ext.memory  
a) P0/P2Bus  
b) RD/WR active  
c) ext.memory  
is used  
a) P0/P2Bus  
b) RD/WR active  
c) ext.memory  
is used  
@DPTR  
DPTR  
a) P0/P2Bus  
(RD/WR-Data)  
b) RD/WR inactive  
a) P0/P2Bus  
(RD/WR-Data)  
b) RD/WR active  
c) XRAM is used  
a) P0/P2Bus  
XRAMCAN  
address range c) XRAM is used  
b) RD/WR active  
c) ext.memory  
is used  
MOVX  
@ Ri  
XPAGE  
<
a) P0Bus  
P2I/O  
a) P0Bus  
P2I/O  
a) P0Bus  
P2I/O  
XRAMCAN  
addr. page  
range  
b) RD/WR active  
c) ext.memory  
is used  
b) RD/WR active  
c) ext.memory  
is used  
b) RD/WR active  
c) ext.memory  
is used  
XPAGE  
XRAMCAN  
addr. page  
range  
a) P0Bus  
(RD/WR-Data)  
P2I/O  
b) RD/WR inactive  
c) XRAM is used  
a) P0Bus  
(RD/WR-Data only) P2I/O  
P2I/O  
b) RD/WR active  
c) XRAM is used  
a) P0Bus  
b) RD/WR active  
c) ext.memory  
is used  
EA = 1 MOVX  
DPTR  
<
XRAM/CAN  
address range is used  
a) P0/P2Bus  
b) RD/WR active  
c) ext.memory  
a) P0/P2Bus  
b) RD/WR active  
c) ext.memory  
is used  
a) P0/P2Bus  
b) RD/WR active  
c) ext.memory  
is used  
@DPTR  
DPTR  
a) P0/P2→Ι/0  
a) P0/P2Bus  
(RD/WR-Data)  
b) RD/WR active  
c) XRAM is used  
a) P0/P2Bus  
XRAMCAN  
address range c) XRAM is used  
b) RD/WR inactive  
b) RD/WR active  
c) ext.memory  
is used  
MOVX  
@ Ri  
XPAGE  
<
a) P0Bus  
P2I/O  
a) P0Bus  
P2I/O  
a) P0Bus  
P2I/O  
XRAMCAN  
addr. page  
range  
b) RD/WR active  
c) ext.memory  
is used  
b) RD/WR active  
c) ext.memory is  
used  
b) RD/WR active  
c) ext.memory  
is used  
XPAGE  
XRAMCAN  
addr. page  
range  
a) P2I/O  
P0/P2I/O  
a) P0Bus  
(RD/WR-Data)  
P2I/O  
b) RD/WR active  
c) XRAM is used  
a) P0Bus  
P2I/O  
b) RD/WR inactive  
c) XRAM is used  
b) RD/WR active  
c) ext.memory  
is used  
modes compatible to 8051/C501 family  
19  
Data Sheet  
2003-02  
C515C  
Reset and System Clock  
The reset input is an active low input at pin RESET. Since the reset is synchronized  
internally, the RESET pin must be held low for at least two machine cycles (12 oscillator  
periods) while the oscillator is running. A pullup resistor is internally connected to VDD to  
allow a power-up reset with an external capacitor only. An automatic reset can be  
obtained when VDD is applied by connecting the RESET pin to VSS via a capacitor.  
Figure 6 shows the possible reset circuitries.  
a)  
b)  
&
+
RESET  
RESET  
C515C  
C515C  
c)  
+
RESET  
C515C  
MCS02721  
Figure 6  
Reset Circuitries  
Figure 7 shows the recommended oscillator circiutries for crystal and external clock  
operation.  
Data Sheet  
20  
2003-02  
C515C  
Crystal/Resonator Oscillator Mode  
Driving from External Source  
C
N.C.  
XTAL1  
XTAL2  
XTAL1  
XTAL2  
2 - 10 MHz  
External Oscillator  
Signal  
C
Crystal Mode  
: C = 20 pF ± 10 pF (incl. stray capacitance)  
Resonator Mode : C = depends on selected ceramic resonator  
MCT02765  
Figure 7  
Recommended Oscillator Circuitries  
Multiple Datapointers  
As a functional enhancement to the standard 8051 architecture, the C515C contains  
eight 16-bit datapointers instead of only one datapointer. The instruction set uses just  
one of these datapointers at a time. The selection of the actual datapointer is done in the  
special function register DPSEL. Figure 8 illustrates the datapointer addressing  
mechanism.  
- - - - - .2 .1 .0  
DPSEL(92  
)
H
DPTR7  
DPTR0  
DPSEL  
Selected  
Data-  
pointer  
.2  
.1  
.0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
DPTR 0  
DPTR 1  
DPTR 2  
DPTR 3  
DPTR 4  
DPTR 5  
DPTR 6  
DPTR 7  
DPH(83  
)
DPL(82 )  
H
H
External Data Memory  
MCD00779  
Figure 8  
External Data Memory Addressing using Multiple Datapointers  
Data Sheet  
21  
2003-02  
C515C  
Enhanced Hooks Emulation Concept  
The Enhanced Hooks Emulation Concept of the C500 microcontroller family is a new,  
innovative way to control the execution of C500 MCUs and to gain extensive information  
on the internal operation of the controllers. Emulation of on-chip ROM based programs  
is possible, too.  
Each production chip has built-in logic for the support of the Enhanced Hooks Emulation  
Concept. Therefore, no costly bond-out chips are necessary for emulation. This also  
ensure that emulation and production chips are identical.  
The Enhanced Hooks Technology, which requires embedded logic in the C500 allows  
the C500 together with an EH-IC to function similar to a bond-out chip. This simplifies the  
design and reduces costs of an ICE-system. ICE-systems using an EH-IC and a  
compatible C500 are able to emulate all operating modes of the different versions of the  
C500 microcontrollers. This includes emulation of ROM, ROM with code rollover and  
ROMless modes of operation. It is also able to operate in single step mode and to read  
the SFRs after a break.  
ICE-System Interface  
to Emulation Hardware  
RESET  
SYSCON  
PCON  
RSYSCON  
RPCON  
EA  
ALE  
EH-IC  
TCON  
RTCON  
PSEN  
C500  
MCU  
Enhanced Hooks  
Interface Circuit  
Port 0  
Port 2  
Optional  
I/O Ports  
Port 3 Port 1  
RPort 2 RPort 0  
TEA TALE TPSEN  
MCS03280  
Target System Interface  
Figure 9  
Basic C500 MCU Enhanced Hooks Concept Configuration  
Port 0, port 2 and some of the control lines of the C500 based MCU are used by  
Enhanced Hooks Emulation Concept to control the operation of the device during  
emulation and to transfer informations about the program execution and data transfer  
between the external emulation hardware (ICE-system) and the C500 MCU.  
Data Sheet  
22  
2003-02  
C515C  
Special Function Registers  
The registers, except the program counter and the four general purpose register banks,  
reside in the special function register area. The special function register area consists of  
two portions: the standard special function register area and the mapped special function  
register area. Two special function registers of the C515C (PCON1 and DIR5) are  
located in the mapped special function register area. For accessing the mapped special  
function register area, bit RMAP in special function register SYSCON must be set. All  
other special function registers are located in the standard special function register area  
which is accessed when RMAP is cleared (“0”). As long as bit RMAP is set, mapped  
special function register area can be accessed. This bit is not cleared by hardware  
automatically. Thus, when non-mapped/mapped registers are to be accessed, the bit  
RMAP must be cleared/set by software, respectively each.  
SYSCON  
Special Function Register  
(B1 ) C515C-8R Reset Value: X010XX01  
H
B
B
C515C-8E Reset Value: X010X001  
Bit No. MSB  
LSB  
7
6
5
4
3
2
1
0
PMOD  
EALE RMAP  
B1  
CSWO XMAP1 XMAP0  
SYSCON  
H
The function of the shaded bits is not described in this section.  
Bit  
RMAP  
Function  
Special function register map bit  
RMAP = 0: The access to the non-mapped (standard) special  
function register area is enabled (reset value).  
RMAP = 1: The access to the mapped special function register  
area is enabled.  
The 59 special function registers (SFRs) in the standard and mapped SFR area include  
pointers and registers that provide an interface between the CPU and the other on-chip  
peripherals. The SFRs of the C515C are listed in Table 4 and Table 5. In Table 4 they  
are organized in groups which refer to the functional blocks of the C515C. The CAN-  
SFRs are also included in Table 4. Table 5 illustrates the contents of the SFRs in  
numeric order of their addresses. Table 6 list the CAN-SFRs in numeric order of their  
addresses.  
Data Sheet  
23  
2003-02  
C515C  
Table 4  
Block  
Special Function Registers - Functional Block  
Symbol  
Name  
Addr  
Contents after  
Reset  
2)  
CPU  
ACC  
B
Accumulator  
B-Register  
E0H2)  
00H  
00H  
00H  
00H  
XXXXX000B  
00H  
07H  
F0H  
83H  
DPH  
DPL  
DPSEL  
PSW  
SP  
Data Pointer, High Byte  
Data Pointer, Low Byte  
Data Pointer Select Register  
Program Status Word Register  
Stack Pointer  
82H  
3)  
92H 2)  
D0H  
81H  
SYSCON1) System Control Register  
C515C-8R B1H  
C515C-8E B1H  
X010XX01B3)  
3)  
X010X001B  
A/D-  
ADCON01) A/D Converter Control Register 0  
D8H  
00H  
2)  
3)  
Converter  
ADCON1  
ADDATH  
ADDATL  
A/D Converter Control Register 1  
A/D Converter Data Register High Byte  
A/D Converter Data Register Low Byte  
DCH  
D9H  
DAH  
0XXXX000B  
00H  
3)  
00XXXXXXB  
2)  
Interrupt  
System  
IEN01)  
IEN11)  
IEN2  
Interrupt Enable Register 0  
Interrupt Enable Register 1  
Interrupt Enable Register 2  
Interrupt Priority Register 0  
Interrupt Priority Register 1  
Timer Control Register  
Timer 2 Control Register  
Serial Channel Control Register  
Interrupt Request Control Register  
A8H2)  
B8H  
9AH  
00H  
00H  
XX00X00XB  
00H  
0X000000B  
00H  
00H  
00H  
00H  
3)  
IP01)  
A9H  
3)  
IP1  
B9H2)  
88H 2)  
C8H  
TCON1)  
T2CON1)  
SCON1)  
IRCON  
2)  
98H 2)  
C0H  
XRAM  
Ports  
XPAGE  
Page Address Register for Extended  
on-chip XRAM and CAN Controller  
91H  
00H  
SYSCON1) System Control Register  
C515C-8R B1H  
C515C-8E B1H  
X010XX01B3)  
3)  
X010X001B  
2)  
P0  
P1  
P2  
P3  
P4  
P5  
DIR5  
P6  
P7  
Port 0  
Port 1  
Port 2  
Port 3  
Port 4  
Port 5  
80H2)  
90H 2)  
A0H2)  
B0H2)  
E8H2)  
FFH  
FFH  
FFH  
FFH  
FFH  
F8H2)4) FFH  
Port 5 Direction Register  
Port 6, Analog/Digital Input  
Port 7  
F8H  
DBH  
FFH  
XXXXXXX1B  
3)  
FAH  
SYSCON1) System Control Register  
C515C-8R B1H  
C515C-8E  
X010XX01B3)  
3)  
X010X001B  
Watchdog  
WDTREL  
Watchdog Timer Reload Register  
86H 2)  
A8H2)  
B8H  
00H  
00H  
00H  
00H  
IEN01)  
IEN11)  
IP01)  
Interrupt Enable Register 0  
Interrupt Enable Register 1  
Interrupt Priority Register 0  
A9H  
Data Sheet  
24  
2003-02  
C515C  
Table 4  
Block  
Special Function Registers - Functional Block (cont’d)  
Symbol  
Name  
Addr  
Contents after  
Reset  
2)  
Serial  
Channel  
ADCON01) A/D Converter Control Register 0  
D8H  
87H  
00H  
PCON1)  
SBUF  
Power Control Register  
00H 3)  
XXH  
00H  
D9H  
XXXXXX11B  
Serial Channel Buffer Register  
Serial Channel Control Register  
99H2)  
SCON  
SRELL  
SRELH  
98H  
Serial Channel Reload Register, low byte AAH  
Serial Channel Reload Register, high byte BAH  
3)  
CAN  
Controller  
CR  
SR  
IR  
Control Register  
Status Register  
Interrupt Register  
F700H  
101H  
6)  
F701H  
F702H  
F704H  
F705H  
F706H  
F707H  
F708H  
F709H  
F70AH  
F70BH  
XXH6)  
XXH6)  
BTR0  
BTR1  
GMS0  
GMS1  
UGML0  
UGML1  
LGML0  
LGML1  
UMLM0  
Bit Timing Register Low  
Bit Timing Register High  
Global Mask Short Register Low  
Global Mask Short Register High  
Upper Global Mask Long Register Low  
Upper Global Mask Long Register High  
Lower Global Mask Long Register Low  
Lower Global Mask Long Register High  
Upper Mask of Last Message Register  
Low  
Upper Mask of Last Message Register  
High  
Lower Mask of Last Message Register  
Low  
Lower Mask of Last Message Register  
High  
UUH  
6)  
0UUUUUUUB  
6)  
UUH  
6)  
UUU11111B  
6)  
UUH6)  
UUH6)  
UUH  
6)  
UUUUU000B  
6)  
F70CH UUH  
6)  
6)  
UMLM1  
LMLM0  
LMLM1  
F70DH UUH  
F70EH  
F70FH  
UUH  
6)  
UUUUU000B  
Message Object Registers:  
Message Control Register Low  
Message Control Register High  
Upper Arbitration Register Low  
Upper Arbitration Register High  
Lower Arbitration Register Low  
Lower Arbitration Register High  
Message Configuration Register  
Message Data Byte 0  
Message Data Byte 1  
Message Data Byte 2  
Message Data Byte 3  
Message Data Byte 4  
5)  
6)  
MCR0  
MCR1  
UAR0  
UAR1  
LAR0  
LAR1  
MCFG  
DB0n  
DB1n  
DB2n  
DB3n  
DB4n  
DB5n  
DB6n  
DB7n  
F7n0H5) UUH6)  
F7n1H5) UUH6)  
F7n2H5) UUH6)  
F7n3H5) UUH6)  
F7n4H5) UUH  
6)  
F7n5H5) UUUUU000B 6)  
F7n6H5) UUUUUU00B  
6)  
F7n7H5) XXH6)  
F7n8H5) XXH6)  
F7n9H5) XXH6)  
F7nAH5) XXH6)  
F7nBH5) XXH6)  
F7nCH5) XXH6)  
F7nDH5) XXH6)  
Message Data Byte 5  
Message Data Byte 6  
Message Data Byte 7  
F7nEH  
XXH  
Data Sheet  
25  
2003-02  
C515C  
Table 4  
Block  
Special Function Registers - Functional Block (cont’d)  
Symbol  
Name  
Addr  
Contents after  
Reset  
2)  
SSC  
Interface  
SSCCON SSC Control Register  
93H  
94H  
07H 3)  
XXH3)  
XXH  
STB  
SSC Transmit Buffer  
SRB  
SCF  
SSC Receive Register  
SSC Flag Register  
95H 2)  
ABH  
ACH  
96H  
3)  
XXXXXX00B3)  
SCIEN  
SSC Interrupt Enable Register  
XXXXXX00B  
00H  
SSCMOD SSC Mode Test Register  
2)  
Timer 0/  
Timer 1  
TCON  
TH0  
TH1  
TL0  
TL1  
Timer 0/1 Control Register  
Timer 0, High Byte  
Timer 1, High Byte  
Timer 0, Low Byte  
Timer 1, Low Byte  
Timer Mode Register  
88H  
00H  
00H  
00H  
00H  
00H  
00H  
8CH  
8DH  
8AH  
8BH  
89H  
TMOD  
Compare/  
CaptureUnit/ CCH1  
Timer 2  
CCEN  
Comp./Capture Enable Reg.  
Comp./Capture Reg. 1, High Byte  
Comp./Capture Reg. 2, High Byte  
Comp./Capture Reg. 3, High Byte  
Comp./Capture Reg. 1, Low Byte  
Comp./Capture Reg. 2, Low Byte  
Comp./Capture Reg. 3, Low Byte  
Com./Rel./Capt. Reg. High Byte  
Com./Rel./Capt. Reg. Low Byte  
Timer 2, High Byte  
C1H  
C3H  
C5H  
C7H  
C2H  
C4H  
C6H  
CBH  
CAH  
CDH  
CCH  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
CCH2  
CCH3  
CCL1  
CCL2  
CCL3  
CRCH  
CRCL  
TH2  
TL2  
T2CON  
Timer 2, Low Byte  
Timer 2 Control Register  
2)  
C8H  
Power Save PCON1)  
Power Control Register  
Power Control Register 1  
87H7)  
00H  
3)  
Modes  
PCON1  
C515C-8R 88H7)  
C515C-8E 88H  
0XXXXXXXB3)  
0XX0XXXXB  
1)  
This special function register is listed repeatedly since some bits of it also belong to other functional blocks.  
Bit-addressable special function registers  
2)  
3)  
4)  
5)  
6)  
“X” means that the value is undefined and the location is reserved.  
This SFR is a mapped SFR. For accessing this SFR, bit PDIR in SFR IP1 must be set.  
The notation “n” in the message object address definition defines the number of the related message object.  
“X” means that the value is undefined and the location is reserved. “U” means that the value is unchanged by  
a reset operation. “U” values are undefined (as “X”) after a power-on reset operation.  
7)  
SFR is located in the mapped SFR area. For accessing this SFR, bit RMAP in SFR SYSCON must be set.  
Data Sheet  
26  
2003-02  
C515C  
Table 5  
Contents of the SFRs, SFRs in Numeric Order  
of their Addresses  
Addr. Register  
Content Bit 7  
after  
Reset  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1)  
2)  
80  
81  
82  
83  
86  
P0  
FF  
.7  
.7  
.7  
.7  
.6  
.6  
.6  
.6  
.6  
.5  
.5  
.5  
.5  
.5  
.4  
.4  
.4  
.4  
.4  
.3  
.3  
.3  
.3  
.3  
.2  
.2  
.2  
.2  
.2  
.1  
.1  
.1  
.1  
.1  
.0  
.0  
.0  
.0  
.0  
H
H
H
H
H
H
H
H
H
H
SP  
07  
00  
00  
00  
DPL  
DPH  
WDTREL  
WDT  
PSEL  
87  
88  
88  
PCON  
TCON  
00  
00  
SMOD PDS  
IDLS  
TF0  
SD  
TR0  
GF1  
IE1  
GF0  
IT1  
PDE  
IE0  
IDLE  
IT0  
H
H
H
H
2)  
3)  
TF1  
TR1  
H
4)  
PCON1  
0XXX-  
XXXX  
EWPD  
B
3)  
5)  
88  
PCON1  
0XX0-  
XXXX  
EWPD  
WS  
H
B
89  
TMOD  
TL0  
00  
00  
00  
00  
00  
GATE  
.7  
C/T  
.6  
M1  
.5  
M0  
.4  
GATE C/T  
M1  
.1  
M0  
.0  
H
H
H
H
H
H
8A  
8B  
.3  
.2  
H
TL1  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
H
8C  
8D  
TH0  
TH1  
P1  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
H
H
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
2)  
90  
FF  
T2  
CLK-  
OUT  
T2EX INT2  
INT6  
INT5  
INT4  
INT3  
H
H
91  
92  
XPAGE  
DPSEL  
00  
.7  
.6  
.5  
.4  
.3  
.2  
.2  
.1  
.1  
.0  
.0  
H
H
H
XXXX-  
X000  
B
93  
94  
95  
96  
98  
99  
SSCCON  
STB  
07  
SCEN  
.7  
TEN  
.6  
MSTR CPOL CPHA BRS2 BRS1  
BRS0  
H
H
H
H
H
H
H
XX  
XX  
.5  
.4  
.3  
.3  
0
.2  
.1  
.1  
0
.0  
H
H
SRB  
.7  
.6  
.5  
.4  
.2  
.0  
SSCMOD 00  
LOOPB TRIO  
0
0
0
LSBSM  
H
2)  
SCON  
SBUF  
IEN2  
00  
SM0  
.7  
SM1  
.6  
SM2  
.5  
REN  
.4  
TB8  
.3  
RB8  
.2  
TI  
.1  
RI  
.0  
H
XX  
H
9A  
X00X-  
X00X  
EX8  
EX7  
ESSC ECAN  
H
B
2)  
2)  
A0  
A8  
A9  
P2  
FF  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
H
H
H
H
H
H
IEN0  
IP0  
00  
00  
EAL  
WDT  
ET2  
ES  
.4  
ET1  
.3  
EX1  
.2  
ET0  
.1  
EX0  
.0  
OWDS WDTS .5  
Data Sheet  
27  
2003-02  
C515C  
Table 5  
Contents of the SFRs, SFRs in Numeric Order  
of their Addresses (cont’d)  
Addr. Register  
Content Bit 7  
after  
Reset  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1)  
AA  
AB  
SRELL  
SCF  
D9  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
H
H
XXXX-  
XX00  
WCOL TC  
H
B
AC  
SCIEN  
XXXX-  
XX00  
WCEN TCEN  
H
B
2)  
B0  
B1  
P3  
FF  
RD  
WR  
T1  
T0  
INT1  
INT0  
TxD  
RxD  
H
H
4)  
5)  
SYSCON  
X010-  
XX01  
PMOD EALE RMAP –  
XMAP1 XMAP0  
H
B
B1  
SYSCON  
X010-  
X001  
PMOD EALE RMAP –  
CSWO XMAP1 XMAP0  
H
B
2)  
B8  
B9  
IEN1  
IP1  
00  
EXEN2 SWDT EX6  
EX5  
.4  
EX4  
.3  
EX3  
.2  
EX2  
.1  
EADC  
.0  
H
H
H
0X00-  
0000  
PDIR  
.5  
B
BA  
SRELH  
XXXX-  
XX11  
.1  
.0  
H
B
2)  
C0  
C1  
IRCON  
CCEN  
00  
00  
EXF2  
TF2  
IEX6  
IEX5  
IEX4  
IEX3  
IEX2  
IADC  
H
H
H
COCA COCA COCA COCA COCA COCA COCA COCA  
H
H3  
L3  
H2  
L2  
.4  
.4  
.4  
.4  
.4  
.4  
H1  
.3  
.3  
.3  
.3  
.3  
.3  
L1  
.2  
.2  
.2  
.2  
.2  
.2  
H0  
.1  
.1  
.1  
.1  
.1  
.1  
L0  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
CCL1  
CCH1  
CCL2  
CCH2  
CCL3  
CCH3  
T2CON  
CRCL  
CRCH  
TL2  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
.7  
.6  
.5  
.0  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
.7  
.6  
.5  
.0  
.7  
.6  
.5  
.0  
.7  
.6  
.5  
.0  
.7  
.6  
.5  
.0  
.7  
.6  
.5  
.0  
2)  
T2PS  
.7  
I3FR  
.6  
I2FR  
.5  
T2R1 T2R0 T2CM T2I1  
T2I0  
.0  
CA  
CB  
.4  
.4  
.4  
.4  
.3  
.3  
.3  
.3  
.2  
.2  
.2  
.2  
.1  
.1  
.1  
.1  
H
.7  
.6  
.5  
.0  
H
CC  
CD  
.7  
.6  
.5  
.0  
H
H
TH2  
.7  
.6  
.5  
.0  
Data Sheet  
28  
2003-02  
C515C  
Table 5  
Contents of the SFRs, SFRs in Numeric Order  
of their Addresses (cont’d)  
Addr. Register  
Content Bit 7  
after  
Reset  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1)  
2)  
D0  
D8  
D9  
PSW  
00  
00  
00  
CY  
BD  
.9  
AC  
CLK  
.8  
F0  
RS1  
RS0  
ADM  
.5  
OV  
MX2  
.4  
F1  
MX1  
.3  
P
H
H
H
H
H
H
2)  
ADCON0  
ADDATH  
ADDATL  
ADEX BSY  
MX0  
.2  
.7  
.6  
DA  
00XX-  
.1  
.0  
H
XXXX  
B
DB  
P6  
.7  
.6  
.5  
.4  
.3  
0
.2  
.1  
.0  
H
DC  
ADCON1  
0XXX-  
X000  
ADCL  
MX2  
MX1  
MX0  
H
B
2)  
E0  
E8  
ACC  
P4  
B
00  
.7  
.6  
.5  
.4  
.3  
.2  
.1  
.0  
H
H
2)  
FF  
RXDC  
TXDC INT8  
SLS  
.4  
STO  
.3  
SRI  
.2  
SCLK  
.1  
ADST  
.0  
H
H
H
2)  
2)  
2)  
F0  
F8  
F8  
00  
.7  
.7  
.7  
.6  
.6  
.6  
.5  
.5  
.5  
H
H
H
P5  
FF  
FF  
.4  
.3  
.2  
.1  
.0  
H
H
6)  
DIR5  
.4  
.3  
.2  
.1  
.0  
FA  
P7  
XXXX-  
XXX1  
INT7  
H
B
7)8)  
FC  
FD  
VR0  
C5  
1
1
0
1
0
0
0
0
0
0
1
0
0
0
0
1
1
0
0
0
1
1
1
0
H
H
7)8)  
VR1  
95  
H
H
H
7)8)  
9)  
FE  
VR2  
02  
H
1)  
“X” means that the value is undefined and the location is reserved.  
Bit-addressable special function registers  
2)  
3)  
4)  
5)  
6)  
7)  
8)  
9)  
SFR is located in the mapped SFR area. For accessing this SFR, bit RMAP in SFR SYSCON must be set.  
This SFR is available in the C515C-8R and C515C-L.  
This SFR is available in the C515C-8E.  
This SFR is a mapped SFR. For accessing this SFR, bit PDIR in SFR IP1 must be set.  
This SFR is a mapped SFR. For accessing this SFR, bit RMAP in SFR SYSCON must be set.  
These SFRs are read-only registers (C515C-8E only).  
The content of this SFR varies with the actual step of the C515C-8E (e.g. 01 for the first step).  
H
Data Sheet  
29  
2003-02  
C515C  
Table 6  
Contents of the CAN Registers in Numeric Order  
of their Addresses  
Addr.  
n = 1 to F  
Regis- Content Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1)  
ter  
after  
H
2)  
Reset  
F700  
F701  
F702  
F704  
F705  
CR  
01  
TEST CCE  
0
0
EIE  
SIE  
IE  
INIT  
H
H
H
H
H
H
SR  
XX  
XX  
BOFF EWRN –  
RXOK TXOK LEC2 LEC1 LEC0  
H
IR  
INTID  
BRP  
H
BTR0  
BTR1  
UU  
H
SJW  
0UUU.  
UUUU  
0
TSEG2  
TSEG1  
B
F706  
F707  
GMS0  
GMS1  
UU  
ID28-21  
H
H
H
UUU1.  
1111  
ID20-18  
1
1
1
0
1
0
0
1
0
0
B
F708  
F709  
UGML0 UU  
UGML1 UU  
LGML0 UU  
ID28-21  
ID20-13  
ID12-5  
H
H
H
H
H
F70A  
F70B  
H
H
LGML1 UUUU.  
U000  
ID4-0  
ID4-0  
B
F70C  
F70D  
UMLM0 UU  
ID28-21  
ID12-5  
H
H
H
H
H
H
H
UMLM1 UU  
LMLM0 UU  
ID20-18  
ID17-13  
0
F70E  
F70F  
LMLM1 UUUU.  
U000  
B
F7n0  
F7n1  
MCR0  
MCR1  
UU  
UU  
MSGVAL  
RMTPND  
TXIE  
RXIE  
INTPND  
H
H
H
H
TXRQ  
MSGLST  
CPUUPD  
NEWDAT  
F7n2  
F7n3  
F7n4  
F7n5  
UAR0  
UAR1  
LAR0  
LAR1  
UU  
UU  
UU  
ID28-21  
H
H
H
H
H
H
H
ID20-18  
ID17-13  
ID12-5  
UUUU.  
U000  
ID4-0  
DLC  
.5  
0
0
0
0
0
B
F7n6  
MCFG UUUU.  
UU00  
DIR  
XTD  
H
B
F7n7  
F7n8  
F7n9  
DB0n  
DB1n  
DB2n  
DB3n  
DB4n  
XX  
XX  
XX  
XX  
XX  
.7  
.7  
.7  
.7  
.7  
.6  
.6  
.6  
.6  
.6  
.4  
.4  
.4  
.4  
.4  
.3  
.3  
.3  
.3  
.3  
.2  
.2  
.2  
.2  
.2  
.1  
.1  
.1  
.1  
.1  
.0  
.0  
.0  
.0  
.0  
H
H
H
H
H
H
H
H
.5  
.5  
.5  
.5  
F7nA  
F7nB  
H
H
Data Sheet  
30  
2003-02  
C515C  
Table 6  
Contents of the CAN Registers in Numeric Order  
of their Addresses (cont’d)  
Addr.  
n = 1 to F  
Regis- Content Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1)  
ter  
after  
H
2)  
Reset  
F7nC  
F7nD  
DB5n  
DB6n  
DB7n  
XX  
XX  
XX  
.7  
.7  
.7  
.6  
.6  
.6  
.5  
.5  
.5  
.4  
.4  
.4  
.3  
.3  
.3  
.2  
.2  
.2  
.1  
.1  
.1  
.0  
.0  
.0  
H
H
H
H
H
H
F7nE  
1)  
The notation “n” in the address definition defines the number of the related message object.  
2)  
“X” means that the value is undefined and the location is reserved. “U” means that the value is  
unchanged by a reset operation. “U” values are undefined (as “X”) after a power-on reset operation.  
Data Sheet  
31  
2003-02  
C515C  
Digital I/O Ports  
The C515C allows for digital I/O on 49 lines grouped into 6 bidirectional 8-bit ports and  
one 1-bit port. Each port bit consists of a latch, an output driver and an input buffer. Read  
and write accesses to the I/O ports P0 through P7 are performed via their corresponding  
special function registers P0 to P7. The port structure of port 5 of the C515C is especially  
designed to operate either as a quasi-bidirectional port structure, compatible to the  
standard 8051-Family, or as a genuine bidirectional port structure. This port operating  
mode can be selected by software (setting or clearing the bit PMOD in the SFR  
SYSCON).  
The output drivers of port 0 and 2 and the input buffers of port 0 are also used for  
accessing external memory. In this application, port 0 outputs the low byte of the external  
memory address, time-multiplexed with the byte being written or read. Port 2 outputs the  
high byte of the external memory address when the address is 16 bits wide. Otherwise,  
the port 2 pins continue emitting the P2 SFR contents.  
Analog Input Ports  
Ports 6 is available as input port only and provides two functions. When used as digital  
inputs, the corresponding SFR P6 contains the digital value applied to the port 6 lines.  
When used for analog inputs the desired analog channel is selected by a three-bit field  
in SFR ADCON0 or SFR ADCON1. Of course, it makes no sense to output a value to  
these input-only ports by writing to the SFR P6. This will have no effect.  
If a digital value is to be read, the voltage levels are to be held within the input voltage  
specifications (VIL/VIH). Since P6 is not bit-addressable, all input lines of P6 are read at  
the same time by byte instructions.  
Nevertheless, it is possible to use port 6 simultaneously for analog and digital input.  
However, care must be taken that all bits of P6 that have an undetermined value caused  
by their analog function are masked.  
Data Sheet  
32  
2003-02  
C515C  
Port Structure Selection of Port 5  
After a reset operation of the C515C, the quasi-bidirectional 8051-compatible port  
structure is selected. For selection of the bidirectional (CMOS) port 5 structure the bit  
PMOD of SFR SYSCON must be set. Because each port 5 pin can be programmed as  
an input or an output, additionally, after the selection of the bidirectional mode the  
direction register DIR5 of port 5 must be written. This direction register is mapped to the  
port 5 register. This means, the port register address is equal to its direction register  
address. Figure 10 illustrates the port and direction register configuration.  
Internal  
Write to Port  
Bus  
Enable  
Int. Bus, Bit 7  
Write to IP 1  
D
R
Q
Q
Port Register  
PDIR  
Delay:  
2.5 Machine Cycles  
Enable  
Direction Register  
Read Port  
Instruction sequence for the programming of the direction registers:  
ORL IP1, #80H ; Set bit PDIR  
MOV DIRx, #OYYH ; Write port x direction register with value YYH  
MCS02649  
Figure 10  
Port Register, Direction Register  
Data Sheet  
33  
2003-02  
C515C  
Timer / Counter 0 and 1  
Timer / Counter 0 and 1 can be used in four operating modes as listed in Table 7:  
Table 7  
Timer/Counter 0 and 1 Operating Modes  
TMOD Timer/Counter Input Clock  
M1 M0 internal external (max)  
Mode Description  
0
8-bit timer/counter with a  
0
0
f
OSC/6 × 32  
f
OSC/12 × 32  
divide-by-32 prescaler  
1
2
16-bit timer/counter  
0
1
0
f
OSC/6  
f
OSC/12  
8-bit timer/counter with 8-bit 1  
autoreload  
3
Timer/counter 0 used as  
one 8-bit timer/counter and  
one 8-bit timer / Timer 1  
stops  
1
1
In the “timer” function (C/T = ‘0’) the register is incremented every machine cycle.  
Therefore the count rate is fOSC/6.  
In the “counter” function the register is incremented in response to a 1-to-0 transition at  
its corresponding external input pin (P3.4/T0, P3.5/T1). Since it takes two machine  
cycles to detect a falling edge the max. count rate is fOSC/12. External inputs INT0 and  
INT1 (P3.2, P3.3) can be programmed to function as a gate to facilitate pulse width  
measurements. Figure 11 illustrates the input clock logic.  
÷
6
fOSC/6  
OSC  
C/T = 0  
C/T = 1  
Timer 0/1  
Input Clock  
P3.4/T0  
P3.5/T1  
Control  
TR0  
TR1  
&
=1  
Gate  
(TMOD)  
_
<
1
P3.2/INT0  
P3.3/INT1  
MCS03117  
Figure 11  
Timer/Counter 0 and 1 Input Clock Logic  
Data Sheet  
34  
2003-02  
C515C  
Timer / Counter 2 with Compare/Capture/Reload  
The timer 2 of the C515C provides additional compare/capture/reload features, which  
allow the selection of the following operating modes:  
• Compare: up to 4 PWM signals with 16-bit/600 ns resolution  
• Capture: up to 4 high speed capture inputs with 600 ns resolution  
• Reload: modulation of timer 2 cycle time  
The block diagram in Figure 12 shows the general configuration of timer 2 with the  
additional compare/capture/reload registers. The I/O pins which can used for timer 2  
control are located as multifunctional port functions at port 1.  
P1.5/  
T2EX  
_
<
1
Sync.  
Sync.  
÷6  
EXF2  
Interrupt  
Request  
T2I0  
T2I1  
EXEN2  
Reload  
P1.7/  
T2  
&
Reload  
f OSC  
OSC  
÷12  
Timer 2  
TL2 TH2  
T2PS  
TF2  
Compare  
P1.0/  
INT3/  
CC0  
P1.1/  
INT4/  
CC1  
16 Bit  
Comparator  
16 Bit  
Comparator  
16 Bit  
Comparator  
16 Bit  
Comparator  
Input/  
Output  
Control  
P1.2/  
INT5/  
CC2  
Capture  
P1.2/  
INT6/  
CC3  
CCL3/CCH3  
CCL2/CCH2  
CCL1/CCH1  
CRCL/CRCH  
MCB02730  
Figure 12  
Timer 2 Block Diagram  
Data Sheet  
35  
2003-02  
C515C  
Timer 2 Operating Modes  
The timer 2, which is a 16-bit-wide register, can operate as timer, event counter, or gated  
timer. A roll-over of the count value in TL2/TH2 from all 1’s to all 0’s sets the timer  
overflow flag TF2 in SFR IRCON, which can generate an interrupt. The bits in register  
T2CON are used to control the timer 2 operation.  
Timer Mode: In timer function, the count rate is derived from the oscillator frequency. A  
prescaler offers the possibility of selecting a count rate of 1/6 or 1/12 of the oscillator  
frequency.  
Gated Timer Mode: In gated timer function, the external input pin T2 (P1.7) functions as  
a gate to the input of timer 2. If T2 is high, the internal clock input is gated to the timer.  
T2 = 0 stops the counting procedure. This facilitates pulse width measurements. The  
external gate signal is sampled once every machine cycle.  
Event Counter Mode: In the event counter function. the timer 2 is incremented in  
response to a 1-to-0 transition at its corresponding external input pin T2 (P1.7). In this  
function, the external input is sampled every machine cycle. Since it takes two machine  
cycles (12 oscillator periods) to recognize a 1-to-0 transition, the maximum count rate is  
1/12 of the oscillator frequency. There are no restrictions on the duty cycle of the external  
input signal, but to ensure that a given level is sampled at least once before it changes,  
it must be held for at least one full machine cycle.  
Reload of Timer 2: Two reload modes are selectable:  
In mode 0, when timer 2 rolls over from all 1’s to all 0’s, it not only sets TF2 but also  
causes the timer 2 registers to be loaded with the 16-bit value in the CRC register, which  
is preset by software.  
In mode 1, a 16-bit reload from the CRC register is caused by a negative transition at the  
corresponding input pin P1.5/T2EX. This transition will also set flag EXF2 if bit EXEN2  
in SFR IEN1 has been set.  
Data Sheet  
36  
2003-02  
C515C  
Timer 2 Compare Modes  
The compare function of a timer/register combination operates as follows: the 16-bit  
value stored in a compare or compare/capture register is compared with the contents of  
the timer register; if the count value in the timer register matches the stored value, an  
appropriate output signal is generated at a corresponding port pin and an interrupt can  
be generated.  
Compare Mode 0  
In compare mode 0, upon matching the timer and compare register contents, the output  
signal changes from low to high. lt goes back to a low level on timer overflow. As long as  
compare mode 0 is enabled, the appropriate output pin is controlled by the timer circuit  
only and writing to the port will have no effect. Figure 13 shows a functional diagram of  
a port circuit when used in compare mode 0. The port latch is directly controlled by the  
timer overflow and compare match signals. The input line from the internal bus and the  
write-to-latch line of the port latch are disconnected when compare mode 0 is enabled.  
Port Circuit  
Read Latch  
VDD  
Compare Register  
Circuit  
Compare Reg.  
S
Q
Q
Port  
Pin  
Internal  
Bus  
16 Bit  
Comparator  
D
Port  
Latch  
Write to  
Latch  
Compare  
Match  
CLK  
16 Bit  
Timer Register  
Timer Circuit  
R
Timer  
Overflow  
Read Pin  
MCS02661  
Figure 13  
Port Latch in Compare Mode 0  
Data Sheet  
37  
2003-02  
C515C  
Compare Mode 1  
If compare mode 1 is enabled and the software writes to the appropriate output latch at  
the port, the new value will not appear at the output pin until the next compare match  
occurs. Thus, it can be choosen whether the output signal has to make a new transition  
(1-to-0 or 0-to-1, depending on the actual pin-level) or should keep its old value at the  
time when the timer value matches the stored compare value.  
In compare mode 1 (see Figure 14) the port circuit consists of two separate latches. One  
latch (which acts as a “shadow latch”) can be written under software control, but its value  
will only be transferred to the port latch (and thus to the port pin) when a compare match  
occurs.  
Port Circuit  
Read Latch  
VDD  
Compare Register  
Circuit  
Compare Reg.  
Internal  
Bus  
D
Q
D
Q
Q
Port  
Pin  
16 Bit  
Comparator  
Shadow  
Latch  
Port  
Latch  
Compare  
Match  
Write to  
Latch  
CLK  
CLK  
16 Bit  
Timer Register  
Timer Circuit  
Read Pin  
MCS02662  
Figure 14  
Compare Function in Compare Mode 1  
Data Sheet  
38  
2003-02  
C515C  
Serial Interface (USART)  
The serial port is full duplex and can operate in four modes (one synchronous mode,  
three asynchronous modes) as illustrated in Table 8.  
Table 8  
Mode  
0
USART Operating Modes  
SCON  
SM1  
Description  
SM0  
0
0
1
0
1
Shift register mode, fixed baud rate  
Serial data enters and exits through R×D; T×D outputs  
the shift clock; 8-bit are transmitted/received (LSB first)  
1
2
3
0
1
1
8-bit UART, variable baud rate  
10 bits are transmitted (through T×D) or received (at  
R×D)  
9-bit UART, fixed baud rate  
11 bits are transmitted (through T×D) or received (at  
R×D)  
9-bit UART, variable baud rate  
Like mode 2  
For clarification some terms regarding the difference between “baud rate clock” and  
“baud rate” should be mentioned. In the asynchronous modes the serial interfaces  
require a clock rate which is 16 times the baud rate for internal synchronization.  
Therefore, the baud rate generators/timers have to provide a “baud rate clock” (output  
signal in Figure 15 to the serial interface which - there divided by 16 - results in the  
actual “baud rate”. Further, the abbreviation fOSC refers to the oscillator frequency  
(crystal or external clock operation).  
The variable baud rates for modes 1 and 3 of the serial interface can be derived either  
from timer 1 or from a dedicated baud rate generator (see Figure 15).  
Data Sheet  
39  
2003-02  
C515C  
Timer 1  
Overflow  
SCON.7  
SCON.6  
(SM0/  
ADCON0.7  
(BD)  
PCON.7  
(SMOD)  
Baud  
Rate  
Generator  
Mode 1  
Mode 3  
SM1)  
0
1
÷2  
0
f OSC  
Baud  
Rate  
Clock  
1
(SRELH  
SRELL)  
Mode 2  
Mode 0  
Only one mode  
can be selected  
÷6  
Note: The switch configuration shows the reset state.  
MCS02733  
Figure 15  
Block Diagram of Baud Rate Generation for the Serial Interface  
Table 9 below lists the values/formulas for the baud rate calculation of the serial  
interface with its dependencies of the control bits BD and SMOD.  
Table 9  
Serial Interface - Baud Rate Dependencies  
Serial Interface  
Operating Modes  
Active Control Baud Rate Calculation  
Bits  
BD  
SMOD  
Mode 0 (Shift  
Register)  
fOSC / 6  
Mode 1 (8-bit UART) 0  
Mode 3 (9-bit UART)  
X
X
Controlled by timer 1 overflow:  
(2SMOD × timer 1 overflow rate) / 32  
1
Controlled by baud rate generator  
(2SMOD × fOSC) /  
(32 × baud rate generator overflow rate)  
Mode 2 (9-bit UART) –  
0
1
f
f
OSC / 32  
OSC / 16  
Data Sheet  
40  
2003-02  
C515C  
SSC Interface  
The C515C microcontroller provides a Synchronous Serial Channel unit, the SSC. This  
interface is compatible to the popular SPI serial bus interface. Figure 16 shows the block  
diagram of the SSC. The central element of the SSC is an 8-bit shift register. The input  
and the output of this shift register are each connected via a control logic to the pin P4.2  
/ SRI (SSC Receiver In) and P4.3 / STO (SSC Transmitter Out). This shift register can  
be written to (SFR STB) and can be read through the Receive Buffer Register SRB.  
P4.1/SCLK  
f OSC  
P4.2/SRI  
P4.3/STO  
P4.4/SLS  
Clock Divider  
Pin  
Control  
Logic  
STB  
Shift Register  
SRB  
Clock Selection  
Receive Buffer Register  
Interrupt  
SCIEN  
Int. Enable Reg.  
Control Logic  
SSCCON  
Control Register  
SCF  
Status Register  
Internal Bus  
MCB02735  
Figure 16  
SSC Block Diagram  
The SSC has implemented a clock control circuit, which can generate the clock via a  
baud rate generator in the master mode, or receive the transfer clock in the slave mode.  
The clock signal is fully programmable for clock polarity and phase. The pin used for the  
clock signal is P4.1 / SCLK. When operating in slave mode, a slave select input is  
provided which enables the SSC interface and also will control the transmitter output.  
The pin used for this is P4.4 / SLS.  
The SSC control block is responsible for controlling the different modes and operation of  
the SSC, checking the status, and generating the respective status and interrupt signals.  
Data Sheet  
41  
2003-02  
C515C  
CAN Controller  
The on-chip CAN controller is the functional heart which provides all resources that are  
required to run the standard CAN protocol (11-bit identifiers) as well as the extended  
CAN protocol (29-bit identifiers). It provides a sophisticated object layer to relieve the  
CPU of as much overhead as possible when controlling many different message objects  
(up to 15). This includes bus arbitration, resending of garbled messages, error handling,  
interrupt generation, etc. In order to implement the physical layer, external components  
have to be connected to the C515C.  
The internal bus interface connects the on-chip CAN controller to the internal bus of the  
microcontroller. The registers and data locations of the CAN interface are mapped to a  
specific 256 bytes wide address range of the external data memory area (F700 to  
H
F7FF ) and can be accessed using MOVX instructions. Figure 17 shows a block  
H
diagram of the on-chip CAN controller.  
Data Sheet  
42  
2003-02  
C515C  
TXDC  
RXDC  
Bit  
Timing  
Logic  
BTL-Configuration  
CRC  
Gen./Check  
Timing  
Generator  
TX/RX Shift Register  
Messages  
Clocks  
(to all)  
Control  
Messages  
Handlers  
Intelligent  
Memory  
Interrupt  
Register  
Status +  
Control  
Bit  
Stream  
Processor  
Error  
Management  
Logic  
Status  
Register  
to internal Bus  
MCB02736  
Figure 17  
CAN Controller Block Diagram  
The TX/RX Shift Register holds the destuffed bit stream from the bus line to allow the  
parallel access to the whole data or remote frame for the acceptance match test and the  
parallel transfer of the frame to and from the Intelligent Memory.  
The Bit Stream Processor (BSP) is a sequencer controlling the sequential data stream  
between the TX/RX Shift Register, the CRC Register, and the bus line. The BSP also  
controls the EML and the parallel data stream between the TX/RX Shift Register and the  
Intelligent Memory such that the processes of reception, arbitration, transmission, and  
error signalling are performed according to the CAN protocol. Note that the automatic  
retransmission of messages which have been corrupted by noise or other external error  
conditions on the bus line is handled by the BSP.  
Data Sheet  
43  
2003-02  
C515C  
The Cyclic Redundancy Check Register (CRC) generates the Cyclic Redundancy  
Check code to be transmitted after the data bytes and checks the CRC code of incoming  
messages. This is done by dividing the data stream by the code generator polynomial.  
The Error Management Logic (EML) is responsible for the fault confinement of the  
CAN device. Its counters, the Receive Error Counter and the Transmit Error Counter, are  
incremented and decremented by commands from the Bit Stream Processor. According  
to the values of the error counters, the CAN controller is set into the states error active,  
error passive and busoff.  
The Bit Timing Logic (BTL) monitors the busline input RXDC and handles the busline  
related bit timing according to the CAN protocol. The BTL synchronizes on a recessive  
to dominant busline transition at Start of Frame (hard synchronization) and on any further  
recessive to dominant busline transition, if the CAN controller itself does not transmit a  
dominant bit (resynchronization). The BTL also provides programmable time segments  
to compensate for the propagation delay time and for phase shifts and to define the  
position of the Sample Point in the bit time. The programming of the BTL depends on the  
baudrate and on external physical delay times.  
The Intelligent Memory (CAM/RAM array) provides storage for up to 15 message  
objects of maximum 8 data bytes length. Each of these objects has a unique identifier  
and its own set of control and status bits. After the initial configuration, the Intelligent  
Memory can handle the reception and transmission of data without further CPU actions.  
Switch-off Capability of the CAN Controller (C515C-8E only)  
For power consumption reasons, the on-chip CAN controller in the C515C-8E can be  
switched off by setting bit CSWO (bit 2) in SFR SYSCON. When the CAN controller is  
switched off its clock signal is turned off and the operation of the CAN controller is  
stopped. This switch-off state of the CAN controller is equal to its state in software power  
down mode. After clearing bit CSWO again the CAN controller has to be reconfigured.  
Data Sheet  
44  
2003-02  
C515C  
10-Bit A/D Converter  
The C515C includes a high performance / high speed 10-bit A/D-Converter (ADC) with  
8 analog input channels. It operates with a successive approximation technique and  
uses self calibration mechanisms for reduction and compensation of offset and linearity  
errors. The A/D converter provides the following features:  
• 8 multiplexed input channels (port 6), which can also be used as digital inputs  
• 10-bit resolution  
• Single or continuous conversion mode  
• Internal or external start-of-conversion trigger capability  
• Interrupt request generation after each conversion  
• Using successive approximation conversion technique via a capacitor array  
• Built-in hidden calibration of offset and linearity errors  
The main functional blocks of the A/D converter are shown in Figure 19.  
The A/D converter uses basically two clock signals for operation: the input clock fIN  
(= 1/tIN) and the conversion clock fADC (= 1/tADC). These clock signals are derived from  
the C515C system clock fOSC which is applied at the XTAL pins. The input clock fIN is  
equal to fOSC. The conversion clock is limited to a maximum frequency of 2 MHz and  
therefore must be adapted to fOSC by programming the conversion clock prescaler. The  
table in Figure 18 shows the prescaler ratios and the resulting A/D conversion times  
which must be selected for typical system clock rates.  
Data Sheet  
45  
2003-02  
C515C  
ADCL  
MUX  
f OSC  
÷4  
÷8  
Conversion Clock f ADC  
A/D  
Converter  
Clock Prescaler  
Input Clock f IN  
1
CLP  
_
<
Conditions:  
f ADC max 2 MHz  
f IN = f OSC =  
MCS02748  
MCU System  
Clock Rate  
ADCL  
Conversion  
Clock  
(fOSC  
)
fADC [MHz]  
2 MHz  
4 MHz  
6 MHz  
8 MHz  
10 MHz  
0
0
0
0
1
.5  
1
1.5  
2
1.25  
Figure 18  
A/D Converter Clock Selection  
Data Sheet  
46  
2003-02  
C515C  
Internal  
Bus  
IEN1 (B8  
)
H
EXEN2 SWDT EX6  
IRCON (C0  
EX5  
IEX5  
P6.4  
-
EX4  
IEX4  
P6.3  
-
EX3  
IEX3  
P6.2  
MX2  
MX2  
EX2 EADC  
)
H
EXF2  
TF2  
IEX6  
P6.5  
-
IEX2  
P6.1  
MX1  
MX1  
IADC  
P6.0  
MX0  
MX0  
P6 (DB  
P6.7  
)
H
P6.6  
ADCON1 (DC  
)
H
ADCL  
-
ADCON0 (D8  
)
H
BD  
CLK  
ADEX BSY  
ADM  
ADDATH ADDATL  
(D9  
)
(DA )  
H
H
Single/  
Continuous  
Mode  
.2  
-
-
-
-
-
-
.3  
.4  
.5  
.6  
.7  
.8  
Port 6  
MUX  
S & H  
A/D  
LSB  
.1  
Converter  
MSB  
Conversion  
Clock  
Prescaler  
Conversion  
f OSC  
Clock fADC  
Input  
Clock fIN  
VAREF  
VAGND  
P4.0/ADST  
Start of  
Write to  
ADDATL  
Conversion  
Internal  
Bus  
Shaded bit locations are not used in ADC-functions.  
MCB02747  
Figure 19  
A/D Converter Block Diagram  
Data Sheet  
47  
2003-02  
C515C  
Interrupt System  
The C515C provides 17 interrupt sources with four priority levels. Seven interrupts can  
be generated by the on-chip peripherals (timer 0, timer 1, timer 2, serial interface,  
A/D converter, SSC interface, CAN controller), and ten interrupts may be triggered  
externally (P1.5/T2EX, P3.2/INT0, P3.3/INT1, P1.4/INT2, P1.0/INT3, P1.1/INT4,  
P1.2/INT5, P1.3/INT6, P7.0/INT7, P4.5/INT8). The wake-up from power-down mode  
interrupt has a special functionality which allows to exit from the software power-down  
mode by a short low pulse at pin P3.2/INT0.  
In the C515C the 17 interrupt sources are combined to six groups of two or three interrupt  
sources. Each interrupt group can be programmed to one of the four interrupt priority  
levels. Figure 20 to Figure 22 give a general overview of the interrupt sources and  
illustrate the interrupt request and control flags.  
Data Sheet  
48  
2003-02  
C515C  
Highest  
Priority Level  
P3.2/  
INT0  
IE0  
0003  
0043  
EX0  
IEN0.0  
H
H
TCON.1  
IT0  
TCON.0  
Lowest  
Priority Level  
A/D Converter  
IADC  
EADC  
IRCON.0  
IEN1.0  
IP1.0  
IP0.0  
Timer 0  
Overflow  
TF0  
000B  
008B  
ET0  
IEN0.1  
H
H
TCON.5  
Status  
Error  
_
SIE  
CR.2  
<
1
IE  
CR.1  
ECAN  
IEN2.1  
EIE  
CR.3  
Message  
Transmit  
see Note  
_
TXIE  
<
1
INTPND  
MCR0.3/2  
Message  
Receive  
MCR0.0/1  
RXIE  
MCR0.5/4  
P1.4/  
INT2  
IEX2  
004B  
EX2  
IEN1.1  
H
IRCON.1  
I2FR  
T2CON.5  
EAL  
IEN0.7  
IP1.1  
IP0.1  
Bit addressable  
MCS02752  
Request Flag is  
cleared by hardware  
Note: Each of the 15 CAN controller message objects provides the bits/flags in the shaded area.  
Figure 20  
Interrupt Request Sources (Part 1)  
Data Sheet  
49  
2003-02  
C515C  
Highest  
Priority Level  
P3.3/  
INT1  
IE1  
0013  
0093  
0053  
H
H
H
TCON.3  
IT1  
TCON.2  
EX1  
IEN0.2  
Lowest  
Priority Level  
WCOL  
SCF.1  
_
<
1
WCEN  
SCIEN.1  
SSC  
Inerface  
ESSC  
IEN2.2  
TC  
TCEN  
SCIEN.0  
SCF.0  
P1.0/  
INT3/  
CC0  
IEX3  
IRCON.2  
I3FR  
EX3  
T2CON.6  
IEN1.2  
IP1.2  
IP0.2  
Timer 1  
Overflow  
TF1  
001B  
005B  
H
H
TCON.7  
ET1  
IEN0.3  
P1.1/  
INT4/  
CC1  
IEX4  
IRCON.3  
EX4  
IEN1.3  
EAL  
IP1.3  
IP0.3  
IEN0.7  
Bit addressable  
Request Flag is  
cleared by hardware  
MCS02753  
Figure 21  
Interrupt Request Sources (Part 2)  
Data Sheet  
50  
2003-02  
C515C  
Highest  
Priority Level  
RI  
_
<
1
SCON.0  
USART  
0023  
00A3  
0063  
H
H
H
TI  
ES  
IEN0.4  
Lowest  
Priority Level  
SCON.1  
P7.0/  
INT7  
EX7  
IEN2.4  
P1.2/  
INT5/  
CC2  
IEX5  
IRCON.4  
EX5  
IEN1.4  
IP1.4  
IP0.4  
Timer 2  
Overflow  
TF2  
_
<
1
IRCON.6  
002B  
P1.5/  
T2EX  
H
EXF2  
ET2  
IEN0.5  
IRCON.7  
EXEN2  
IEN1.7  
P4.5/  
INT8  
00AB  
006B  
H
H
EX8  
IEN2.5  
P1.3/  
INT6/  
CC3  
IEX6  
IRCON.5  
EX6  
IEN1.5  
EAL  
IP1.5  
IP0.5  
IEN0.7  
Bit addressable  
Request Flag is  
MCS02754  
cleared by hardware  
Figure 22  
Interrupt Request Sources (Part 3)  
Data Sheet  
51  
2003-02  
C515C  
Table 10  
Interrupt Source and Vectors  
Interrupt Source  
Interrupt Vector  
Address  
Interrupt Request Flags  
External Interrupt 0  
Timer 0 Overflow  
External Interrupt 1  
Timer 1 Overflow  
Serial Channel  
0003  
IE0  
H
000B  
TF0  
H
0013  
IE1  
H
001B  
TF1  
H
0023  
RI / TI  
TF2 / EXF2  
IADC  
IEX2  
IEX3  
IEX4  
IEX5  
IEX6  
H
Timer 2 Overflow / Ext. Reload 002B  
H
A/D Converter  
0043  
H
External Interrupt 2  
External Interrupt 3  
External Interrupt 4  
External Interrupt 5  
External Interrupt 6  
004B  
H
0053  
H
005B  
H
0063  
H
006B  
007B  
H
Wake-up from power-down  
mode  
H
CAN controller  
008B  
00A3  
H
External Interrupt 7  
External Interrupt 8  
SSC interface  
H
00AB  
H
0093  
TC / WCOL  
H
Data Sheet  
52  
2003-02  
C515C  
Fail Save Mechanisms  
The C515C offers two on-chip peripherals which monitor the program flow and ensure  
an automatic “fail-safe” reaction for cases where the controller’s hardware fails or the  
software hangs up:  
• A programmable watchdog timer (WDT) with variable time-out period from  
512 microseconds up to approx. 1.1 seconds at 6 MHz.  
• An oscillator watchdog (OWD) which monitors the on-chip oscillator and forces the  
microcontroller into reset state in case the on-chip oscillator fails; it also provides the  
clock for a fast internal reset after power-on.  
Programmable Watchdog Timer  
The watchdog timer in the C515C is a 15-bit timer, which is incremented by a count rate  
of fOSC/12 up to fOSC/192. For programming of the watchdog timer overflow rate, the  
upper 7 bit of the watchdog timer can be written. Figure 23 shows the block diagram of  
the watchdog timer unit.  
0
7
f OSC /6  
÷2  
÷16  
WDTL  
14  
8
WDT Reset Request  
WDTH  
IP0 (A9  
-
)
H
-
WDTS  
-
-
-
-
-
External HW Reset  
WDTPSEL  
External HW Power-Down  
PE/SWD  
Control Logic  
7
6
0
-
-
WDT  
-
-
-
-
-
-
-
-
-
-
-
-
IEN0 (A8  
)
)
H
H
WDTREL (86  
)
H
SWDT  
IEN1 (B8  
MCB02755  
Figure 23  
Block Diagram of the Programmable Watchdog Timer  
The watchdog timer can be started by software (bit SWDT) or by hardware through pin  
PE/SWD, but it cannot be stopped during active mode of the C515C. If the software fails  
to refresh the running watchdog timer an internal reset will be initiated on watchdog timer  
overflow. For refreshing of the watchdog timer the content of the SFR WDTREL is  
transferred to the upper 7-bit of the watchdog timer. The refresh sequence consists of  
Data Sheet  
53  
2003-02  
C515C  
two consecutive instructions which set the bits WDT and SWDT each. The reset cause  
(external reset or reset caused by the watchdog) can be examined by software (flag  
WDTS). It must be noted, however, that the watchdog timer is halted during the idle  
mode and power down mode of the processor.  
Oscillator Watchdog  
The oscillator watchdog unit serves for four functions:  
Monitoring of the on-chip oscillator’s function  
The watchdog supervises the on-chip oscillator's frequency; if it is lower than the  
frequency of the auxiliary RC oscillator in the watchdog unit, the internal clock is  
supplied by the RC oscillator and the device is brought into reset; if the failure  
condition disappears (i.e. the on-chip oscillator has a higher frequency than the RC  
oscillator), the part executes a final reset phase of typ. 1 ms in order to allow the  
oscillator to stabilize; then the oscillator watchdog reset is released and the part starts  
program execution again.  
Fast internal reset after power-on  
The oscillator watchdog unit provides a clock supply for the reset before the on-chip  
oscillator has started. The oscillator watchdog unit also works identically to the  
monitoring function.  
Restart from the hardware power down mode  
If the hardware power down mode is terminated the oscillator watchdog has to control  
the correct start-up of the on-chip oscillator and to restart the program. The oscillator  
watchdog function is only part of the complete hardware power down sequence;  
however, the watchdog works identically to the monitoring function.  
Control of external wake-up from software power-down mode  
When the software power-down mode is left by a low level at the P3.2/INT0 pin, the  
oscillator watchdog unit assures that the microcontroller resumes operation  
(execution of the power-down wake-up interrupt) with the nominal clock rate. In the  
power-down mode the RC oscillator and the on-chip oscillator are stopped. Both  
oscillators are started again when power-down mode is released. When the on-chip  
oscillator has a higher frequency than the RC oscillator, the microcontroller starts  
operation after a final delay of typ. 1 ms in order to allow the on-chip oscillator to  
stabilize.  
Data Sheet  
54  
2003-02  
C515C  
EWPD  
(PCON1.7)  
Power-Down  
Mode Activated  
Power-Down Mode  
Wake-Up Interrupt  
Control  
Logic  
Control  
Logic  
P3.2/  
INT0  
Internal  
Reset  
Start/  
Stop  
RC  
Oscillator  
f RC  
f 1  
÷2  
÷5  
3 MHz  
f 2 < f 1  
Frequency  
Comparator  
_
<
1
Delay  
f 2  
Start/  
Stop  
XTAL1  
XTAL2  
On-Chip  
Oscillator  
IP0 (A9  
)
H
OWDS  
Internal  
Clock  
MCB02757  
Figure 24  
Block Diagram of the Oscillator Watchdog  
Data Sheet  
55  
2003-02  
C515C  
Power Saving Modes  
The C515C provides two basic power saving modes, the idle mode and the power down  
mode. Additionally, a slow down mode is available. This power saving mode reduces the  
internal clock rate in normal operating mode and it can be also used for further power  
reduction in idle mode.  
Idle mode  
The CPU is gated off from the oscillator. All peripherals are still provided with the clock  
and are able to work. Idle mode is entered by software and can be left by an interrupt  
or reset.  
Power down mode  
The operation of the C515C is completely stopped and the oscillator is turned off. This  
mode is used to save the contents of the internal RAM with a very low standby current.  
Software power down mode: Software power down mode is entered by software  
and can be left by reset or by a short low pulse at pin P3.2/INT0 (or P4.7/RXDC,  
C515C-8E only).  
Hardware power down mode: Hardware power down mode is entered when the pin  
HWPD is put to low level.  
Slow-down mode  
The controller keeps up the full operating functionality, but its normal clock frequency  
is internally divided by 32. This slows down all parts of the controller, the CPU and all  
peripherals, to 1/32th of their normal operating frequency. Slowing down the frequency  
significantly reduces power consumption. The slow down mode can be combined with  
the idle mode.  
Table 11 gives a general overview of the entry and exit conditions of the power saving  
modes.  
In the power down mode of operation, VDD can be reduced to minimize power  
consumption. It must be ensured, however, that VDD is not reduced before the power  
down mode is invoked, and that VDD is restored to its normal operating level, before the  
power down mode is terminated.  
If e.g. the idle mode is left through an interrupt, the microcontroller state (CPU, ports,  
peripherals) remains preserved. If a power saving mode is left by a hardware reset, the  
microcontroller state is disturbed and replaced by the reset state of the C515C.  
If WS (bit 4) is SFR PCON1 is set (C515C-8E only), pin P4.7/RXDC is alternatively  
selected as wake-up pin for the software power down mode. If WS (bit 4) is SFR PCON1  
is cleared (C515C-8E only), pin P3.2/INT0 is selected as wake-up pin for the software  
power down mode.  
For the C515C-8R, P3.2/INT0 is always selected as wake-up pin.  
Data Sheet  
56  
2003-02  
C515C  
Table 11  
Mode  
Power Saving Modes Overview  
Entering  
Leaving by  
Remarks  
(2-Instruction  
Example)  
Idle mode  
ORL PCON, #01H Occurrence of an  
ORL PCON, #20H interrupt from a  
peripheral unit  
CPU clock is stopped;  
CPU maintains their data;  
peripheral units are active (if  
enabled) and provided with  
clock  
Hardware Reset  
Software  
ORL PCON, #02H Hardware Reset  
Oscillator is stopped;  
Power-Down ORL PCON, #40H  
Mode  
contents of on-chip RAM  
and SFR’s are maintained;  
Short low pulse at  
pin P3.2/INT0  
(or P4.7/RXDC,  
C515C-8E only)  
Hardware  
Power-Down  
Mode  
HWPD = low  
HWPD = high  
C515C is put into its reset  
state and the oscillator is  
stopped;  
ports become floating  
outputs  
Slow Down  
Mode  
ORL PCON, #10H ANL PCON, #0EFH Oscillator frequency is  
or  
reduced to 1/32 of its  
nominal frequency  
Hardware Reset  
Data Sheet  
57  
2003-02  
C515C  
OTP Memory Operation (C515C-8E only)  
The C515C-8E contains a 64 Kbytes one-time programmable (OTP) program memory.  
With the C515C-8E fast programming cycles are achieved (1 byte in 100 µs). Also  
several levels of OTP memory protection can be selected.  
For programming of the device, the C515C-8E must be put into the programming mode.  
This typically is done not in-system but in a special programming hardware. In the  
programming mode the C515C-8E operates as a slave device similar as an EPROM  
standalone memory device and must be controlled with address/data information,  
control lines, and an external 11.5 V programming voltage. Figure 25 shows the pins of  
the C515C-8E which are required for controlling of the OTP programming mode.  
VDD  
VSS  
A0-7  
A8-A15  
Port 2  
Port 0  
P0-7  
EA/VPP  
PROG  
PRD  
PALE  
PMSEL0  
PMSEL1  
C515C-8E  
RESET  
PSEN  
PSEL  
XTAL1  
XTAL2  
MCP03651  
Figure 25  
Programming Mode Configuration of the C515C-8E  
Data Sheet  
58  
2003-02  
C515C  
C515C-8E Pin Configuration in Programming Mode  
V
V
V
60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
A2/A10  
A1/A9  
A0/A8  
XTAL1  
XTAL2  
VSS  
VSS  
VDD  
VDD  
N.C.  
VDD  
N.C.  
VSS  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
C515C-8E  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20  
V
V
MCP03652  
Figure 26  
P-MQFP-80-1 Pin Configuration of the C515C-8E in Programming  
Mode (top view)  
Data Sheet  
59  
2003-02  
C515C  
The following Table 12 contains the functional description of all C515C-8E pins which  
are required for OTP memory programming.  
Table 12  
Pin Definitions and Functions in Programming Mode  
Symbol Pin Number I/O1) Function  
RESET  
1
I
Reset  
This input must be at static “0” (active) level during the  
whole programming mode.  
PMSEL0 15  
PMSEL1 16  
I
I
Programming mode selection pins  
These pins are used to select the different access  
modes in programming mode. PMSEL1,0 must satisfy  
a setup time to the rising edge of PALE. When the logic  
level of PMSEL1,0 is changed, PALE must be at low  
level.  
PMSEL1 PMSEL0 Access Mode  
0
0
1
1
0
1
0
1
Reserved  
Read version bytes  
Program/read lock bits  
Program/read OTP memory  
byte  
PSEL  
PRD  
17  
18  
I
I
Basic programming mode select  
This input is used for the basic programming mode  
selection and must be switched according Figure 27.  
Programming mode read strobe  
This input is used for read access control for OTP  
memory read, version byte read, and lock bit read  
operations.  
PALE  
19  
I
Programming address latch enable  
PALE is used to latch the high address lines. The high  
address lines must satisfy a setup and hold time to/from  
the falling edge of PALE. PALE must be at low level  
whenever the logic level of PMSEL1,0 is changed.  
XTAL2  
XTAL1  
36  
37  
I
XTAL2  
Input to the oscillator amplifier.  
O
XTAL1  
Output of the inverting oscillator amplifier.  
Data Sheet  
60  
2003-02  
C515C  
Table 12  
Pin Definitions and Functions in Programming Mode (cont’d)  
Symbol Pin Number I/O1) Function  
A0/A8 - 38 - 45  
A7/A15  
I
I
I
Address lines  
P2.0-7 are used as multiplexed address input lines  
A0-A7 and A8-A15. A8-A15 must be latched with PALE.  
PSEN  
PROG  
47  
48  
Program store enable  
This input must be at static “0” level during the whole  
programming mode.  
Programming mode write strobe  
This input is used in programming mode as a write  
strobe for OTP memory program and lock bit write  
operations. During basic programming mode selection  
a low level must be applied to PROG.  
EA/VPP 49  
I
External Access / Programming voltage  
This pin must be at 11.5 V (VPP) voltage level during  
programming of an OTP memory byte or lock bit. During  
an OTP memory read operation this pin must be at high  
level (VIH). This pin is also used for basic programming  
mode selection. At basic programming mode selection  
a low level must be applied to EA/VPP.  
D0 - 7  
52 - 58  
I/O Data lines 0-7  
During programming mode, data bytes are read or  
written from or to the C515C-8E via the bidirectional  
D0-7 which are located at port 0.  
VSS  
VDD  
N.C.  
13, 34, 35,  
51, 70  
Circuit ground potential  
must be applied to these pins in programming mode.  
14, 32, 33,  
50, 69  
Power supply terminal  
must be applied to these pins in programming mode.  
2-12, 20-31, –  
46, 60-67,  
69, 71-80  
Not Connected  
These pins should not be connected in programming  
mode.  
1)  
I = Input; O = Output  
Data Sheet  
61  
2003-02  
C515C  
C515C-8E Basic Programming Mode Selection  
The basic programming mode selection scheme is shown in Figure 27.  
5 V  
VDD  
Clock  
(XTAL1/XTAL2)  
Stable  
"0"  
"0"  
RESET  
PSEN  
0.1  
PMSEL1, 0  
PROG  
PRD  
"0"  
"1"  
PSEL  
"0"  
PALE  
VPP  
VIH  
0 V  
EA/VPP  
Ready for access  
mode selection  
During this period signals  
are not actively driven  
MCT03653  
Figure 27  
C515C-8E Basic Programming Mode Selection  
Data Sheet  
62  
2003-02  
C515C  
Table 13  
Access Modes Selection  
EA/ PROG PRD  
Access Mode  
PMSEL Address  
Data  
VPP  
(Port 2)  
(Port 0)  
1
0
Program OTP memory  
byte  
VPP  
H
H
H
H
A0-7  
A8-15  
D0-7  
Read OTP memory byte VIH  
H
Program OTP lock bits  
Read OTP lock bits  
VPP  
VIH  
H
L
L
D1, D0  
see  
Table 14  
H
H
Read OTP version byte VIH  
H
Byte addr. D0-7  
of version  
byte  
C515C-8E Lock Bits Programming / Read  
The C515C-8E has two programmable lock bits which, when programmed according  
Table 14, provide four levels of protection for the on-chip OTP code memory. The state  
of the lock bits can also be read.  
Data Sheet  
63  
2003-02  
C515C  
Table 14  
Lock Bit Protection Types  
Lock Bits at  
D1, D0  
Protection Protection Type  
Level  
D1  
D0  
1
1
Level 0  
Level 1  
The OTP lock feature is disabled. During normal  
operation of the C515C-8E, the state of the EA pin is  
not latched on reset.  
1
0
During normal operation of the C515C-8E, MOVC  
instructions executed from external program memory  
are disabled from fetching code bytes from internal  
memory. EA is sampled and latched on reset. An OTP  
memory read operation is only possible according to  
ROM verification mode 2, as it is defined for a  
protected ROM version of the C515C-8R. Further  
programming of the OTP memory is disabled  
(reprogramming security).  
0
0
1
0
Level 2  
Level 3  
Same as level 1, but also OTP memory read operation  
using ROM verification mode 2 is disabled.  
Same as level 2; but additionally external code  
execution by setting EA = low during normal operation  
of the C515C-8E is no more possible.  
External code execution, which is initiated by an  
internal program (e.g. by an internal jump instruction  
above the ROM boundary), is still possible.  
Data Sheet  
64  
2003-02  
C515C  
Absolute Maximum Ratings  
Parameter  
Symbol  
Limit Values  
max.  
Unit Notes  
min.  
-65  
Storage temperature  
TST  
150  
°C  
Voltage on VDD pins with  
respect to ground (VSS)  
VDD  
-0.5  
6.5  
V
Voltage on any pin with respect VIN  
to ground (VSS)  
-0.5  
-10  
V
DD + 0.5 V  
Input current on any pin during –  
overload condition  
10  
mA  
mA  
Absolute sum of all input  
currents during overload  
condition  
|100 mA|  
Power dissipation  
PDISS  
1
W
Note: Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage of the device. This is a stress rating only and functional  
operation of the device at these or any other conditions above those  
indicated in the operational sections of this specification is not implied.  
Exposure to absolute maximum rating conditions for longer periods may  
affect device reliability. During absolute maximum rating overload  
conditions (VIN > VDD or VIN < VSS) the voltage on VDD pins with respect to  
ground (VSS) must not exceed the values defined by the absolute maximum  
ratings.  
Data Sheet  
65  
2003-02  
C515C  
Operating Conditions  
Parameter  
Symbol  
Limit Values  
max.  
Unit Notes  
min.  
Supply voltage  
VDD  
4.25  
5.5  
V
V
Active mode,  
f
OSCmax = 10 MHz  
2
5.5  
0
Power Down  
mode  
Ground voltage  
Ambient temperature:  
SAB-C515C  
VSS  
V
Reference voltage  
°C  
TA  
TA  
TA  
0
70  
SAF-C505  
-40  
-40  
4
85  
SAH-C505  
110  
Analog reference voltage VAREF  
VDD + 0.1 V  
Analog ground voltage  
Analog input voltage  
XTAL clock  
VAGND  
VAIN  
V
SS - 0.1  
VSS + 0.2 V  
VAGND  
VAREF  
10  
V
fOSC  
2
MHz –  
Data Sheet  
66  
2003-02  
C515C  
DC Characteristics (Operating Conditions apply)  
Parameter  
Sym-  
bol  
Limit Values  
max.  
Unit Test  
Condition  
min.  
Input low voltages all except  
EA, RESET, HWPD  
EA pin  
RESET and HWPD pins  
Port 5 in CMOS mode  
V
VIL  
-0.5  
0.2 VDD - 0.1  
VIL1 -0.5  
VIL2 -0.5  
VILC -0.5  
0.2 VDD - 0.3  
0.2 VDD + 0.1  
0.3 VDD  
Input high voltages  
all except XTAL2, RESET,  
and HWPD)  
V
VIH  
0.2 VDD + 0.9 VDD + 0.5  
XTAL2 pin  
RESET and HWPD pins  
Port 5 in CMOS mode  
VIH1 0.7 VDD  
VIH2 0.6 VDD  
VIHC 0.7 VDD  
V
V
V
DD + 0.5  
DD + 0.5  
DD + 0.5  
Output low voltages  
Ports 1, 2, 3, 4, 5, 7 (incl. CMOS) VOL  
Port 0, ALE, PSEN, CPUR  
P4.1, P4.3 in push-pull mode  
V
V
0.45  
0.45  
0.45  
I
I
I
OL = 1.6 mA1)  
VOL1  
VOL3  
OL = 3.2 mA1)  
OL = 3.75 mA1)  
Output high voltages  
Ports 1, 2, 3, 4, 5, 7  
VOH 2.4  
0.9 VDD  
VOH2 2.4  
0.9 VDD  
VOHC 0.9 VDD  
VOH3 0.9 VDD  
I
I
I
I
I
I
OH = -80 µA  
OH = -10 µA  
OH = -800 µA  
OH = -80 µA2)  
OH = -800 µA  
OH = -833 µA  
Port 0 in external bus mode,  
ALE, PSEN, CPUR  
Port 5 in CMOS mode  
P4.1, P4.3 in push-pull mode  
Logic 0 input current  
Ports 1, 2, 3, 4, 5, 7  
IIL  
ITL  
ILI  
-10  
-65  
-70  
-650  
±1  
µA  
VIN = 0.45 V  
Logical 0-to-1 transition current  
Ports 1, 2, 3, 4, 5, 7  
µA VIN = 2 V  
Input leakage current  
µA 0.45 < VIN < VDD  
Port 0, EA, P6, HWPD, AIN0-7  
Input low current  
To RESET for reset  
XTAL2  
µA  
ILI2  
ILI3  
ILI4  
-100  
-15  
-20  
VIN = 0.45 V  
VIN = 0.45 V  
VIN = 0.45 V  
PE/SWD  
Pin capacitance  
CIO  
10  
pF  
fc = 1 MHz,  
TA = 25 °C  
3)4)  
Overload current  
IOV  
±5  
mA  
V
Programming voltage  
VPP 10.9  
12.1  
11.5 V ± 5%  
Data Sheet  
67  
2003-02  
C515C  
1)  
Capacitive loading on ports 0 and 2 may cause spurious noise pulses to be superimposed on the VOL of ALE  
and port 3. The noise is due to external bus capacitance discharging into the port 0 and port 2 pins when these  
pins make 1-to-0 transitions during bus operation. In the worst case (capacitive loading > 100 pF), the noise  
pulse on ALE line may exceed 0.8 V. In such cases it may be desirable to qualify ALE with a Schmitt-trigger,  
or use an address latch with a Schmitt-trigger strobe input.  
2)  
3)  
Capacitive loading on ports 0 and 2 may cause the VOH on ALE and PSEN to momentarily fall below the  
0.9 VDD specification when the address lines are stabilizing.  
Overload conditions under operating conditions occur if the voltage on the respective pin exceeds the specified  
operating range (i.e. VOV > VDD + 0.5 V or VOV < VSS - 0.5 V). The absolute sum of input overload currents on  
all port pins may not exceed 50 mA. The supply voltage (VDD and VSS) must remain within the specified limits.  
4)  
Not 100% tested, guaranteed by design characterization.  
Data Sheet  
68  
2003-02  
C515C  
Power Supply Current  
Parameter  
Sym- Limit Values Unit Test Condition  
typ.1) max.2)  
bol  
3)  
Active mode  
C515C-8R/ 6 MHz IDD  
C515C-LM 10 MHz  
11.97 13.74 mA  
18.81 21.10  
C515C-8E 6 MHz IDD  
11.3  
17.66 20.10  
6.9 7.87  
10.46 11.87  
12.94 mA  
10 MHz  
4)  
5)  
6)  
Idle mode  
C515C-8R/ 6 MHz IDD  
C515C-LM 10 MHz  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
C515C-8E 6 MHz IDD  
3.95  
4.71  
4.70  
5.50  
10 MHz  
Active mode  
C515C-8R/ 6 MHz IDD  
withslow-down C515C-LM 10 MHz  
4.06  
4.62  
5.03  
5.75  
enabled  
C515C-8E 6 MHz IDD  
4.01  
4.65  
4.77  
5.53  
10 MHz  
Idle mode with C515C-8R/ 6 MHz IDD  
3.54  
3.86  
4.46  
4.90  
slow-down  
enabled  
C515C-LM 10 MHz  
C515C-8E 6 MHz IDD  
3.62  
4.14  
4.21  
4.77  
10 MHz  
Power-down  
mode  
C515C-8R/  
C515C-LM  
IPD  
26  
42.9  
VDD = 2 … 5.5 V  
7)  
C515C-8E  
C515C-8E  
IPD  
11.14 30  
30  
µA  
At EA/VPP in  
programming  
mode  
IDDP  
mA –  
1)  
The typical IDD values are periodically measured at TA = +25 °C and VDD = 5 V but not 100% tested.  
The maximum IDD values are measured under worst case conditions (TA = 0 °C or -40 °C and VDD = 5.5 V)  
2)  
3)  
IDD (active mode) is measured with:  
XTAL2 driven with tCLCH, tCHCL = 5 ns, VIL = VSS + 0.5 V, VIH = VDD - 0.5 V; XTAL1 = N.C.;  
EA = PE/SWD = Port 0 = Port 6 = VDD; HWPD = VDD; RESET = VSS; all other pins are disconnected.  
4)  
5)  
IDD (idle mode) is measured with all output pins disconnected and with all peripherals disabled;  
XTAL2 driven with tCLCH, tCHCL = 5 ns, VIL = VSS + 0.5 V, VIH = VDD - 0.5 V; XTAL1 = N.C.;  
RESET = VDD; EA = VSS; Port0 = VDD; all other pins are disconnected;  
IDD (active mode with slow-down mode) is measured with all output pins disconnected and with all peripherals  
disabled;  
XTAL2 driven with tCLCH, tCHCL = 5 ns, VIL = VSS + 0.5 V, VIH = VDD - 0.5 V; XTAL1 = N.C.;  
RESET = VDD; all other pins are disconnected; the microcontroller is put into slow-down mode by software.  
Data Sheet  
69  
2003-02  
C515C  
6)  
7)  
IDD (idle mode with slow-down mode) is measured with all output pins disconnected and with all peripherals  
disabled;  
XTAL2 driven with tCLCH, tCHCL = 5 ns, VIL = VSS + 0.5 V, VIH = VDD - 0.5 V; XTAL1 = N.C.;  
RESET = VDD; EA = VSS; Port0 = VDD; all other pins are disconnected; the microcontroller is put into idle mode  
with slow-down enabled by software.  
IPD (power-down mode) is measured under following conditions:  
EA = RESET = Port 0 = Port 6 = VDD; XTAL1 = N.C.; XTAL2 = VSS; PE/SWD = VSS; HWPD = VDD  
VAGND = VSS; VAREF = VDD; all other pins are disconnected.  
;
IPD (hardware power-down mode) is independent of any particular pin connection.  
Data Sheet  
70  
2003-02  
C515C  
Power Supply Current Calculation Formulas  
Parameter  
Symbol  
Formula  
Active mode  
C515C-8R/  
C515C-LM  
IDD typ  
IDD max  
1.71 × fOSC + 1.71  
1.84 × fOSC + 2.7  
C515C-8E  
IDD typ  
IDD max  
1.59 × fOSC + 1.76  
1.79 × fOSC + 2.2  
Idle mode  
C515C-8R/  
C515C-LM  
IDD typ  
IDD max  
0.89 × fOSC + 1.56  
1.00 × fOSC + 1.87  
C515C-8E  
IDD typ  
IDD max  
0.19 × fOSC + 2.81  
0.20 × fOSC + 3.5  
Active mode with  
slow-down enabled  
C515C-8R/  
C515C-LM  
IDD typ  
IDD max  
0.14 × fOSC + 3.22  
0.18 × fOSC + 3.95  
C515C-8E  
IDD typ  
IDD max  
0.16 × fOSC + 3.05  
0.19 × fOSC + 3.63  
Idle mode with slow-down C515C-8R/  
IDD typ  
IDD max  
0.08 × fOSC + 3.06  
0.11 × fOSC + 3.8  
enabled  
C515C-LM  
C515C-8E  
IDD typ  
IDD max  
0.13 × fOSC + 2.84  
0.14 × fOSC + 3.37  
Note: fOSC is the oscillator frequency in MHz. IDD values are given in mA.  
Data Sheet  
71  
2003-02  
C515C  
[mA]  
25  
C515C-8E  
C515C-LM  
20  
15  
10  
5
IDD max  
IDD typ  
e
d
o
M
e
l
d
I
e
d
o
M
n
w
o
d
-
w
o
l
S
n
w
o
-d  
w
lo  
S
+
le  
Id  
fOSC  
[MHz]  
2
4
6
8
10  
Figure 28  
I
DD Diagrams of C515C-8R/C515C-LM  
Data Sheet  
72  
2003-02  
C515C  
C515C-8E  
[mA]  
25  
20  
15  
10  
5
IDD max  
IDD typ  
fOSC  
[MHz]  
2
4
6
8
10  
Figure 29  
IDD Diagrams of C515C-8E  
Data Sheet  
73  
2003-02  
C515C  
A/D Converter Characteristics (Operating Conditions apply)  
Parameter  
Symbol  
Limit Values  
max.  
Unit Test Condition  
min.  
1)  
Analog input voltage  
Sample time  
VAIN  
tS  
VAGND  
VAREF  
V
16 × tIN  
8 × tIN  
ns  
Prescaler ÷ 8  
Prescaler ÷ 42)  
Conversion cycle time  
Total unadjusted error  
tADCC  
96 × tIN  
48 × tIN  
ns  
Prescaler ÷ 8  
Prescaler ÷ 43)  
4)  
TUE  
±2  
LSB  
5)6)  
Internal resistance of  
RAREF  
tADC / 250 ktADC in [ns]  
reference voltage source  
- 0.25  
2)6)  
Internal resistance of  
analog source  
RASRC  
tS / 500  
- 0.25  
kΩ  
tS in [ns]  
6)  
ADC input capacitance CAIN  
50  
pF  
1)  
VAIN may exceed VAGND or VAREF up to the absolute maximum ratings. However, the conversion result in  
these cases will be X000 or X3FF , respectively.  
H
H
2)  
3)  
4)  
During the sample time the input capacitance CAIN can be charged/discharged by the external source. The  
internal resistance of the analog source must allow the capacitance to reach their final voltage level within tS.  
After the end of the sample time tS, changes of the analog input voltage have no effect on the conversion result.  
This parameter includes the sample time tS, the time for determining the digital result and the time for the  
calibration. Values for the conversion clock tADC depend on programming and can be taken from the table on  
the previous page.  
T
is tested at VAREF = 5.0 V, VAGND = 0 V, VDD = 4.9 V. It is guaranteed by design characterization for all  
UE  
other voltages within the defined voltage range.  
If an overload condition occurs on maximum 2 not selected analog input pins and the absolute sum of input  
overload currents on all analog input pins does not exceed 10 mA, an additional conversion error of 1/2 LSB  
is permissible.  
5)  
6)  
During the conversion the ADC’s capacitance must be repeatedly charged or discharged. The internal  
resistance of the reference source must allow the capacitance to reach their final voltage level within the  
indicated time. The maximum internal resistance results from the programmed conversion timing.  
Not 100% tested, but guaranteed by design characterization.  
Data Sheet  
74  
2003-02  
C515C  
Clock Calculation Table  
Clock Prescaler Ratio  
ADCL  
tADC  
tS  
tADCC  
÷8  
÷4  
1
0
8 × tIN  
4 × tIN  
16 × tIN  
8 × tIN  
96 × tIN  
48 × tIN  
Further timing conditions:  
tADC min = 500 ns  
tIN = 1 / fOSC = tCLP  
Data Sheet  
75  
2003-02  
C515C  
AC Characteristics (Operating Conditions apply)  
(CL for port 0, ALE and PSEN outputs = 100 pF; CL for all other outputs = 80 pF)  
Program Memory Characteristics  
Parameter  
Symbol  
Limit Values  
Variable Clock  
Unit  
10-MHz Clock  
Duty Cycle  
0.4 to 0.6  
1/CLP = 2 MHz  
to 10 MHz  
min.  
60  
15  
15  
max. min.  
max.  
ALE pulse width  
tLHLL  
CLP - 40  
TCLHmin - 25 –  
TCLHmin - 25 –  
ns  
ns  
ns  
ns  
Address setup to ALE tAVLL  
Address hold after ALE tLLAX  
ALE to valid instruction tLLIV  
113  
2 CLP - 87  
in  
ALE to PSEN  
tLLPL  
20  
TCLLmin - 20 –  
ns  
ns  
PSEN pulse width  
tPLPH  
115  
CLP +  
TCLHmin - 30  
PSEN to valid  
instruction in  
tPLIV  
tPXIX  
75  
CLP +  
TCLHmin - 65  
ns  
ns  
Input instruction hold  
after PSEN  
0
0
1)  
Input instruction float  
after PSEN  
tPXIZ  
tPXAV  
tAVIV  
30  
TCLLmin - 10 ns  
1)  
Address valid after  
PSEN  
35  
TCLLmin - 5  
ns  
ns  
ns  
Address to valid  
instruction in  
180  
2 CLP +  
TCLHmin - 60  
Address float to PSEN tAZPL  
0
0
1)  
Interfacing the C515C to devices with float times up to 35 ns is permissible. This limited bus contention will not  
cause any damage to port 0 drivers.  
Data Sheet  
76  
2003-02  
C515C  
Unit  
External Data Memory Characteristics  
Parameter  
Symbol  
Limit Values  
Variable Clock  
10-MHz Clock  
Duty Cycle  
0.4 to 0.6  
1/CLP= 2 MHz to 10 MHz  
min.  
max. min. max.  
RD pulse width  
WR pulse width  
tRLRH  
230  
3 CLP - 70  
3 CLP - 70  
CLP - 15  
ns  
ns  
ns  
tWLWH 230  
Address hold after  
ALE  
tLLAX2  
48  
RD to valid data in  
tRLDV  
150  
2 CLP +  
ns  
TCLHmin - 90  
Data hold after RD  
Data float after RD  
tRHDX  
tRHDZ  
0
0
ns  
ns  
ns  
ns  
80  
CLP - 20  
4 CLP - 133  
4 CLP +  
ALE to valid data in tLLDV  
267  
285  
Address to valid data tAVDV  
in  
TCLHmin - 155  
ALE to WR or RD  
tLLWL  
90  
190  
CLP +  
CLP +  
ns  
ns  
TCLLmin - 50 TCLLmin + 50  
Address valid to WR tAVWL  
103  
15  
2 CLP - 97  
WR or RD high to  
ALE high  
tWHLH  
tQVWX  
65  
TCLHmin - 25 TCLHmin + 25 ns  
Data valid to WR  
transition  
5
TCLLmin - 35  
ns  
ns  
Data setup before  
WR  
tQVWH 218  
3 CLP +  
TCLLmin - 122  
Data hold after WR  
tWHQX 13  
tRLAZ  
0
TCLHmin - 27 –  
ns  
ns  
Address float after  
RD  
0
Data Sheet  
77  
2003-02  
C515C  
SSC Interface Characteristics  
Parameter  
Symbol  
Limit Values  
max.  
Unit  
min.  
Clock Cycle Time:  
Master Mode  
Slave Mode  
tSCLK  
tSCLK  
0.4  
1.0  
µs  
µs  
Clock high time  
Clock low time  
Data output delay  
Data output hold  
Data input setup  
Data input hold  
TC bit set delay  
tSCH  
tSCL  
tD  
360  
360  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
100  
tHO  
tS  
0
100  
100  
tHI  
tDTC  
8 CLP  
External Clock Drive at XTAL2  
Parameter  
Symbol CPU Clock = 10 MHz  
Duty cycle 0.4 to 0.6  
Variable CPU Clock  
1/CLP = 2 to 10 MHz  
Unit  
min.  
100  
40  
40  
max.  
100  
min.  
max.  
Oscillator period CLP  
100  
500  
ns  
ns  
High time  
Low time  
Rise time  
Fall time  
TCLH  
TCLL  
tR  
40  
CLP - TCLL  
40  
CLP - TCLH ns  
12  
12  
ns  
ns  
tF  
12  
12  
Oscillator duty  
cycle  
DC  
0.4  
0.6  
40 / CLP  
1 - 40 / CLP  
Clock cycle  
TCL  
40  
60  
CLP × DCmin CLP × DCmax ns  
Note: The 10 MHz values in the tables are given as an example for a typical duty cycle  
variation of the oscillator clock from 0.4 to 0.6.  
Data Sheet  
78  
2003-02  
C515C  
t LHLL  
ALE  
tAVLL  
t PLPH  
t LLPL  
t LLIV  
t PLIV  
PSEN  
t AZPL  
t LLAX  
t PXAV  
t PXIZ  
t PXIX  
Port 0  
A0 - A7  
Instr.IN  
A0 - A7  
t AVIV  
Port 2  
A8 - A15  
A8 - A15  
MCT00096  
Figure 30  
Program Memory Read Cycle  
Data Sheet  
79  
2003-02  
C515C  
tWHLH  
ALE  
PSEN  
RD  
t LLDV  
t LLWL  
t RLRH  
t RLDV  
t AVLL  
tRHDZ  
t LLAX2  
t RLAZ  
tRHDX  
A0 - A7 from  
Ri or DPL  
A0 - A7  
from PCL  
Instr.  
IN  
Port 0  
Data IN  
tAVWL  
t AVDV  
Port 2  
P2.0 - P2.7 or A8 - A15 from DPH  
A8 - A15 from PCH  
MCT00097  
Figure 31  
Data Memory Read Cycle  
Data Sheet  
80  
2003-02  
C515C  
tWHLH  
ALE  
PSEN  
WR  
t LLWL  
t WLWH  
tQVWX  
t AVLL  
tWHQX  
t LLAX2  
tQVWH  
A0 - A7 from  
Ri or DPL  
A0 - A7  
from PCL  
Instr.IN  
Port 0  
Port 2  
Data OUT  
tAVWL  
P2.0 - P2.7 or A8 - A15 from DPH  
A8 - A15 from PCH  
MCT00098  
Figure 32  
Data Memory Write Cycle  
t R  
t F  
TCLH  
VIH2  
XTAL2  
VIL  
TCLL  
CLP  
MCT02704  
Figure 33  
External Clock Drive at XTAL2  
Data Sheet  
81  
2003-02  
C515C  
tSCLK  
tSCL  
tSCH  
SCLK  
STO  
SRI  
tD  
tHD  
MSB  
LSB  
tS  
tHI  
MSB  
LSB  
tDTC  
TC  
MCT02417  
Figure 34  
Notes:  
SSC Timing  
1. Shown is the data/clock relationship for CPOL = CPHA = 1. The timing diagram is  
valid for the other cases accordingly.  
2. In the case of slave mode and CPHA = 0, the output delay for the MSB applies to the  
falling edge of SLS (if transmitter is enabled).  
3. In the case of master mode and CPHA = 0, the MSB becomes valid after the data  
has been written into the shift register, i.e. at least one half SCLK clock cycle before  
the first clock transition.  
Data Sheet  
82  
2003-02  
C515C  
OTP Memory Programming Mode Characteristics  
DD = 5 V ± 10%; VPP = 11.5 V ± 5%; TA = 25 °C ± 10 °C  
V
Parameter  
Symbol  
Limit Values  
Unit  
min.  
max.  
ALE pulse width  
tPAW  
tPMS  
tPAS  
35  
10  
10  
ns  
ns  
ns  
PMSEL setup to ALE rising edge  
Address setup to ALE, PROG, or PRD  
falling edge  
Address hold after ALE, PROG, or PRD  
falling edge  
tPAH  
10  
ns  
Address, data setup to PROG or PRD  
Address, data hold after PROG or PRD  
PMSEL setup to PROG or PRD  
PMSEL hold after PROG or PRD  
PROG pulse width  
tPCS  
tPCH  
tPMS  
tPMH  
tPWW  
tPRW  
tPAD  
tPRD  
tPDH  
tPDF  
tPWH1  
100  
0
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
µs  
10  
10  
100  
100  
PRD pulse width  
Address to valid data out  
PRD to valid data out  
75  
20  
Data hold after PRD  
0
Data float after PRD  
20  
PROG high between two consecutive  
PROG low pulses  
1
PRD high between two consecutive PRD tPWH2  
low pulses  
100  
2
ns  
XTAL clock period  
tCLKP  
10  
MHz  
Data Sheet  
83  
2003-02  
C515C  
t
PAW  
PMS  
PALE  
t
H, H  
PMSEL1,0  
t
t
PAH  
PAS  
A8-15  
A0-7  
D0-7  
Port 2  
Port 0  
PROG  
t
PWH  
t
t
t
PCH  
PCS  
PWW  
Notes: PRD must be high during a programming write cycle.  
MCT03690  
Figure 35  
Programming Code Byte - Write Cycle Timing  
Data Sheet  
84  
2003-02  
C515C  
t
PAW  
PMS  
PALE  
t
H, H  
PMSEL1,0  
t
t
PAH  
PAS  
A8-15  
A0-7  
Port 2  
Port 0  
PRD  
t
t
PDH  
PAD  
D0-7  
t
t
t
PRD  
PDF  
PCH  
t
PWH  
t
t
PCS  
PRW  
Notes: PROG must be high during a programming read cycle.  
MCT03689  
Figure 36  
Verify Code Byte - Read Cycle Timing  
Data Sheet  
85  
2003-02  
C515C  
H, L  
H, L  
PMSEL1,0  
Port 0  
D0, D1  
D0, D1  
t
t
PCH  
PCS  
t
t
PMS  
PMH  
PROG  
t
PDH  
t
t
PRD  
t
t
PMS  
PWW  
PDF  
t
PMH  
t
PRW  
PRD  
Note: PALE should be low during a lock bit read / write cycle.  
MCT03393  
Figure 37  
Lock Bit Access Timing  
Data Sheet  
86  
2003-02  
C515C  
L, H  
PMSEL1,0  
Port 2  
e. g. FD  
H
t
PCH  
D0-7  
Port 0  
PRD  
t
t
PCS  
PDH  
t
t
PRD  
PDF  
t
t
PMS  
PMH  
t
PRW  
Note: PROG must be high during a programming read cycle.  
MCT03394  
Figure 38  
Version Byte - Read Timing  
Data Sheet  
87  
2003-02  
C515C  
ROM/OTP Verification Characteristics for C515C-8R / C515C-8E  
ROM Verification Mode 1 (C515C-8R)  
Parameter  
Symbol  
Limit Values  
Unit  
min.  
max.  
Address to valid data  
tAVQV  
5 CLP  
ns  
P1.0 - P1.7  
P2.0 - P2.7  
Address  
New Address  
t AVQV  
Port 0  
Data:  
Data Out  
New Data Out  
P0.0 - P0.7 = D0 - D7  
Inputs: PSEN = VSS  
ALE, EA = VIH  
Addresses: P1.0 - P1.7 = A0 - A7  
P2.0 - P2.7 = A8 - A15  
RESET = VIL2  
MCT02764  
Figure 39  
ROM Verification Mode 1  
Data Sheet  
88  
2003-02  
C515C  
Unit  
ROM/OTP Verification Mode 2  
Parameter  
Symbol  
Limit Values  
min.  
typ.  
CLP  
6 CLP  
max.  
ALE pulse width  
tAWD  
tACY  
tDVA  
tDSA  
tAS  
ns  
ALE period  
ns  
Data valid after ALE  
Data stable after ALE  
P3.5 setup to ALE low  
Oscillator frequency  
2 CLP  
ns  
4 CLP  
6
ns  
4
tCL  
ns  
1 / CLP  
MHz  
t ACY  
t AWD  
ALE  
t DSA  
t DVA  
Port 0  
P3.5  
Data Valid  
t AS  
MCT02613  
Figure 40  
ROM/OTP Verification Mode 2  
Data Sheet  
89  
2003-02  
C515C  
VDD - 0.5 V  
0.2 VDD + 0.9  
Test Points  
0.2 VDD - 0.1  
0.45 V  
MCT00039  
AC Inputs during testing are driven at VDD - 0.5 V for a logic ‘1’ and 0.45 V for a logic ‘0’.  
Timing measurements are made at VIHmin for a logic ‘1’ and VILmax for a logic ‘0’.  
Figure 41  
AC Testing: Input, Output Waveforms  
-0.1 V  
VOH  
V
Load +0.1 V  
Timing Reference  
Points  
VLoad  
-0.1 V  
VLoad  
VOL +0.1 V  
MCT00038  
For timing purposes a port pin is no longer floating when a 100 mV change from load voltage  
occurs and begins to float when a 100 mV change from the loaded VOH/VOL level occurs.  
IOL/IOH ≥ ± 20 mA  
Figure 42  
AC Testing: Float Waveforms  
Crystal/Resonator Oscillator Mode  
Driving from External Source  
C
N.C.  
XTAL1  
XTAL2  
XTAL1  
XTAL2  
2 - 10 MHz  
External Oscillator  
Signal  
C
Crystal Mode  
: C = 20 pF ± 10 pF (incl. stray capacitance)  
Resonator Mode : C = depends on selected ceramic resonator  
MCT02765  
Figure 43  
Recommended Oscillator Circuits for Crystal Oscillator  
Data Sheet  
90  
2003-02  
C515C  
Package Outlines  
P-MQFP-80-1  
(Plastic Metric Quad Flat Package)  
H
0.65  
±0.08  
0.88  
80x  
0.3  
C
0.1  
12.35  
17.2  
14 1)  
M
0.12  
A-B D C  
0.2 A-B D 80x  
0.2 A-B D 4x  
H
D
B
A
80  
1
Index Marking  
0.6x45˚  
1) Does not include plastic or metal protrusions of 0.25 max per side  
GPM05249  
You can find all of our packages, sorts of packing and others in our  
Infineon Internet Page “Products”: http://www.infineon.com/products.  
Dimensions in mm  
2003-02  
SMD = Surface Mounted Device  
Data Sheet  
91  
w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

C515C-8R

8-Bit CMOS Microcontroller
INFINEON

C515C-8RM

8-Bit Single-Chip Microcontroller
INFINEON

C515C-LM

8-Bit Single-Chip Microcontroller
INFINEON

C515C8EMCAFXUMA2

Microcontroller, 8-Bit, OTPROM, 10MHz, CMOS, PQFP80, PLASTIC, MQFP-80
INFINEON

C515C_9711

8-Bit CMOS Microcontroller
INFINEON

C515_98

8-Bit CMOS Microcontroller
INFINEON

C517

8-bit CMOS MICROCONTROLLER
INFINEON

C517

PCB & Small Dimension Fuses
COOPER
ETC

C5174G

5000 WATTS (AC) DC/D CSINGLE OUTPUT
POWERBOX

C5174K

5000 WATTS (AC) DC/D CSINGLE OUTPUT
POWERBOX

C5174V

5000 WATTS (AC) DC/D CSINGLE OUTPUT
POWERBOX