CO2 Sensor

更新时间:2024-10-30 05:41:26
品牌:INFINEON
描述:小尺寸高性能——基于光声光谱 (PAS) 的具有颠覆性意义的二氧化碳传感器

CO2 Sensor 概述

小尺寸高性能——基于光声光谱 (PAS) 的具有颠覆性意义的二氧化碳传感器

CO2 Sensor 数据手册

通过下载CO2 Sensor数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
PASCO2V01  
XENSIVTM PAS CO2 Datasheet  
Description  
Infineon has leveraged its knowledge in sensors and MEMS technologies to  
develop a disruptive gas sensor for CO2 sensing. The XENSIVTM PAS CO2 is a real  
CO2 sensor in an exceptionally small form factor based on the photoacoustic  
spectroscopy (PAS) principle.  
Infineon's MEMS microphone, which is optimized for low-frequency operation,  
detects the pressure change generated by CO2 molecules within the sensor  
cavity. CO2 concentration is then delivered in the form of a direct ppm readout  
thanks to the integrated microcontroller. Highly accurate CO2 readings are  
guaranteed.  
Features  
Operating range: 0 ppm to 32000 ppm  
Accuracy: ± (30 ppm +3%) of reading between 400 ppm and 5000 ppm  
Lifetime: 10 years  
Interface: I2C, UART, and PWM  
Package dimension: 13.8 x 14 x 7.5 mm3  
RoHs compliant  
Potential applications  
High accuracy, compact size, and SMD capability make the XENSIVTM PAS CO2 ideal for indoor air quality  
monitoring solutions in the market with numerous potential applications.  
HVAC (Heating, Ventilation, Air Conditioning)  
Home appliances  
Smart home IoT devices  
Agriculture/ Greenhouses  
In-cabin air quality monitoring unit  
Table 1  
Order information of PASCO2V01  
OPN Number  
SP Number  
RoHS Compliant  
PASCO2V01BUMA1  
SP005825756  
Yes  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 1 of 24  
V 1.3  
2022-11-21  
 
 
 
PASCO2V01  
Table of contents  
Description .................................................................................................................................... 1  
Features ........................................................................................................................................ 1  
Potential applications..................................................................................................................... 1  
Table of contents............................................................................................................................ 2  
1
2
3
Block diagram........................................................................................................................ 3  
Pin-out diagram..................................................................................................................... 4  
The typical sensor response to the CO2 concentration change ..................................................... 5  
4
4.1  
Characteristics and parameters ............................................................................................... 6  
Specification............................................................................................................................................6  
Operating condition...........................................................................................................................6  
Storage condition...............................................................................................................................6  
Timing characteristics........................................................................................................................7  
Absolute maximum ratings................................................................................................................8  
The current rating and power consumption.....................................................................................8  
CO2 Transfer Function .......................................................................................................................9  
Peripheral timing...................................................................................................................................10  
I2C characteristics............................................................................................................................10  
UART characteristics ........................................................................................................................12  
Application Circuit Example..................................................................................................................12  
I2C application circuit example .......................................................................................................12  
UART application circuit example ...................................................................................................13  
PWM application circuit example ....................................................................................................13  
Functional description ..........................................................................................................................14  
Operating Modes..............................................................................................................................14  
Data post-processing .......................................................................................................................15  
4.1.1  
4.1.2  
4.1.3  
4.1.4  
4.1.5  
4.1.6  
4.2  
4.2.1  
4.2.2  
4.3  
4.3.1  
4.3.2  
4.3.3  
4.4  
4.4.1  
4.4.2  
4.4.2.1  
4.4.2.2  
4.4.2.3  
4.4.2.4  
4.5  
Pressure compensation..............................................................................................................15  
Automatic Baseline Offset Correction........................................................................................15  
Forced compensation.................................................................................................................15  
Alarm Threshold..........................................................................................................................15  
Monitoring mechanism as advanced functionality..............................................................................16  
Digital interface .....................................................................................................................................17  
I2C interface .....................................................................................................................................17  
I2C transaction format .....................................................................................................................17  
UART Interface..................................................................................................................................18  
Register map..........................................................................................................................................19  
4.6  
4.6.1  
4.6.2  
4.6.3  
4.7  
5
6
7
8
Assembly instruction .............................................................................................................20  
Package information .............................................................................................................21  
Packing for shipment.............................................................................................................22  
Revision history ....................................................................................................................23  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 2 of 24  
V 1.3  
2022-11-21  
 
PASCO2V01  
CO2 sensor based on Photo Acoustic Spectroscopy principle  
1
Block diagram  
Figure 1  
Block diagram of XENSIVTM PAS CO2  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 3 of 24  
V 1.3  
2022-11-21  
PASCO2V01  
CO2 sensor based on Photo Acoustic Spectroscopy principle  
2
Pin-out diagram  
Figure 2  
Pin-out diagram (Bottom view)  
Pin Description  
Table 2  
PIN  
1
Symbol  
VDD3.3  
Rx  
Type  
Description  
Power supply (3.3V)  
Input/ Output  
Input/ Output  
Output  
3.3V digital power supply  
UART receiver pin (3.3V domain)  
I2C clock pin (3.3V domain)  
2
3
SCL  
4
TX/ SDA  
UART transmitter pin (3.3V domain) / I2C data pin (3.3V  
domain)  
5
6
PWM_DIS  
GND  
Input  
PWM disable input pin (3.3V domain)  
Ground  
Ground  
7
INT  
Output  
Interrupt output pin (3.3V domain)  
Communication interface select input pin (3.3V domain)  
PWM output pin (3.3V domain)  
12V power supply for the IR emitter  
8
PSEL  
Input  
9
PWM  
Output  
10  
VDD12  
Power supply (12V)  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 4 of 24  
V 1.3  
2022-11-21  
PASCO2V01  
CO2 sensor based on Photo Acoustic Spectroscopy principle  
3
The typical sensor response to the CO2 concentration change  
Measurement condition: VDD12 = 12V, VDD3.3=3.3V, Tamb = 25°C, P = 1013 hPa and %r.H. = 30%  
Figure 3  
The typical sensor response to the CO2 concentration change.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
V 1.3  
2022-11-21  
page 5 of 24  
PASCO2V01  
CO2 sensor based on Photo Acoustic Spectroscopy principle  
4
Characteristics and parameters  
Specification  
4.1  
4.1.1  
Operating condition  
All parameters specified in the following sections refer to these operating conditions unless otherwise  
specified.  
Table 3  
Operating range  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
CO2 measurement range1)  
Functional  
measurement range  
CCO2  
0
32000  
ppm  
Ambient temperature1)  
Relative humidity1)  
Pressure1)  
Tamb  
r.H.  
0
0
50  
85  
°C  
%
Non-condensing  
p
750  
3
1013  
3.3  
12  
1150  
3.6  
hPa  
V
Supply voltage1)  
VDD3.3  
VDD12  
tlife  
10.8  
13.2  
V
Lifetime1)  
Depends on the mission  
profile  
10  
Year  
4.1.2  
Storage condition  
Storage condition refers to Dry pack: Packed, non-evacuated, desiccant2, Humidity Indicator Card (HIC) sealed  
moisture barrier bag.  
Table 4  
Storage condition  
Parameter  
Symbol  
Values  
Min. Typ.  
Unit Note or Test Condition  
Max.  
<90% r.H.3  
Storage temperature1)  
Storage time1)  
Tstorage  
tstorage  
5
40  
°C  
1
Year  
Storage temperature during  
transport1)  
Tstorage_transport -20  
tstorage_transport  
60  
°C  
Storage time during transport1)  
10  
Day  
1) Not subject to production test. This parameter is verified by design/ characterization.  
2) Number of desiccant units to be calculated according to JEDEC Standard 033.  
3) Condensation and bedewing shall be avoided.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 6 of 24  
V 1.3  
2022-11-21  
PASCO2V01  
CO2 sensor based on Photo Acoustic Spectroscopy principle  
4.1.3  
Timing characteristics  
Table 5  
Timing characteristics  
Note or Test Condition  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Min.  
Max.  
Sensor accuracy might be  
reduced for sampling rates  
faster than 1 meas/ min.  
Sampling time1)  
tsampling  
5
60  
4095  
s
Time to sensor ready1)  
tsensor_rdy  
tearly_noti  
1
s
s
Time to early notification1), 2)  
2
100  
400  
80  
I2C Clock frequency1)  
fI2C  
kHz  
PWM frequency1)  
UART baud rate1)  
fpwm  
fbaud  
Hz  
kBps  
9.6  
Typical measurement timing sequence has been illustrated in figure 4.  
Figure 4  
Illustration of the timing characteristic parameters  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 7 of 24  
V 1.3  
2022-11-21  
PASCO2V01  
CO2 sensor based on Photo Acoustic Spectroscopy principle  
1) Not subject to production test. This parameter is verified by design/ characterization.  
2) Relevant for continuous mode of operation.  
4.1.4  
Absolute maximum ratings  
Table 6  
Absolute maximum ratings1)  
Symbol  
Note or Test Condition  
Parameter  
Values  
Typ.  
3
Unit  
Min.  
Max.  
MSL  
Moisture Sensitivity Level  
Tamb_max  
-10  
0
60  
95  
°C  
%
V
Maximum ambient temperature  
rHmax  
VVDD12  
VVDD3.3  
Tr  
Maximum relative humidity  
12V Supply voltage  
9.6  
3.0  
14.4  
3.6  
245  
2
3.3V Supply voltage  
V
JEDEC J-STD-020E  
HBM (JS001)  
Reflow temperature  
°C  
kV  
V
ESD Human Body Model  
ESD Charge Discharge Model  
VESD_HBM  
VESD_CDM  
-2  
500  
CDM (JS002)  
Note:  
Stresses above the values listed as "Absolute Maximum Ratings" may cause permanent damage  
to the devices. Exposure to absolute maximum rating conditions for extended period of time may  
affect device reliability.  
4.1.5  
The current rating and power consumption  
All parameters specified in the following sections refer to the operating conditions unless otherwise specified:  
VDD3.3 = 3.3V, VDD12 = 12V, Tamb = 25°C, % r.H. = 30 %, p = 1013 hPa.  
Table 7  
Current rating  
Symbol Pin  
Parameter  
Values  
Min. Typ.  
Unit Note or Test Condition  
Max.  
Peak current1)  
Ipeak 12  
Ipeak 3.3  
VDD12  
130  
10  
150  
mA  
mA  
Peak current1)  
VDD3.3  
VDD12  
VDD3.3  
Average current1)  
Average current1)  
Average power1)  
Iavg 12  
Iavg 3.3  
Pavg  
0.8  
6.1  
30  
mA  
mA  
mW  
Power consumption can be optimized further. For more details please refer to our application note section at  
the product web page.  
1) Not subject to production test. This parameter is verified by design/ characterization.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 8 of 24  
V 1.3  
2022-11-21  
PASCO2V01  
CO2 sensor based on Photo Acoustic Spectroscopy principle  
4.1.6  
CO2 Transfer Function  
All parameters specified in the following sections refer to the operating conditions unless otherwise specified:  
VDD3.3 = 3.3V, VDD12 = 12V, Tamb = 25°C, % r.H. = 30 %, p = 1013 hPa and tsampling = 1 meas/ min.  
Table 8  
CO2 Transfer Function  
Symbol  
Parameter  
Values  
Unit Note or Test Condition  
Min.  
Typ  
.
Max.  
Accuracy  
-30 ppm- 3% of  
reading  
+30 ppm+3%  
of reading  
Acc  
t63  
ppm  
s
CCO2: 400 - 5000 ppm  
Response time1)  
Resolution1)  
90  
1
Res  
ppm  
3 times standard deviation at  
fixed CCO2: 1000 ppm  
Repeatability1, 2)  
Pressure stability1)  
Drift1)  
R
10  
ppm  
With pressure compensation  
feature enabled  
At 1 meas/ min with ABOC  
enabled in continuous mode  
Up to 95 dB for Pink noise  
from 100 Hz to 10 kHz  
perror  
derror  
0
6
%/hPa  
1
%/ year  
Acoustic stability1)  
SPLerror  
3
15  
ppm  
1) Not subject to production test. This parameter is verified by design/ characterization.  
2) Stepwise Reactive IIR filter is enabled.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 9 of 24  
V 1.3  
2022-11-21  
PASCO2V01  
CO2 sensor based on Photo Acoustic Spectroscopy principle  
4.2  
4.2.1  
Peripheral timing  
I2C characteristics  
Table 9  
I2C Standard mode timing1)  
Parameter  
Symbol  
Values  
Unit Note or Test Condition  
Min. Typ. Max.  
Fall time of both SDA and SCL  
Rise time of both SDA and SCL  
Data hold time  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
300  
ns  
ns  
μs  
ns  
μs  
μs  
μs  
1000  
0
Data set-up time  
250  
4.7  
4.0  
4.0  
LOW period of SCL clock  
HIGH period of SCL clock  
Hold time for a (repeated) START  
condition  
t8  
4.7  
μs  
Set-up time for (repeated) START  
condition  
Set-up time for STOP condition  
t9  
t10  
Cb  
4.0  
4.7  
400  
μs  
μs  
pF  
Bus free time between a STOP and  
START condition  
Capacitive load for each bus line  
1) Due to the wired-AND configuration of an I2C bus system, the port drivers on the SCL and SDA signal lines need to operate in  
open-drain mode. The high level of these lines must be held by an external pull-up device, approximately 10 kOhm for  
operation at 100 kbits/s, approximately 2 kOhm for operation at 400 kbits/s.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 10 of 24  
V 1.3  
2022-11-21  
PASCO2V01  
CO2 sensor based on Photo Acoustic Spectroscopy principle  
Table 10  
I2C fast mode timing1)  
Parameter  
Symbol  
Values  
Min. Typ. Max.  
20 +  
Unit Note or Test Condition  
Cb refers to the total  
ns capacitance of one bus  
line in pF.  
Fall time of both SDA and SCL  
Rise time of both SDA and SCL  
t1  
t2  
0.1*Cb  
300  
Cb refers to the total  
20 +  
0.1*Cb  
capacitance of one bus  
line in pF.  
300  
ns  
Data hold time  
0
μs  
ns  
μs  
μs  
μs  
t3  
t4  
t5  
t6  
t7  
Data set-up time  
100  
1.3  
0.6  
0.6  
LOW period of SCL clock  
HIGH period of SCL clock  
Hold time for a (repeated) START  
condition  
t8  
Set-up time for (repeated) START  
condition  
0.6  
μs  
Set-up time for STOP condition  
0.6  
1.3  
μs  
μs  
pF  
t9  
t10  
Cb  
Bus free time between a STOP and  
START condition  
400  
Capacitive load for each bus line  
Figure 5  
I2C Standard and Fast mode timing.  
1) Due to the wired-AND configuration of an I2C bus system, the port drivers on the SCL and SDA signal lines need to operate in  
open-drain mode. The high level of these lines must be held by an external pull-up device, approximately 10 kOhm for  
operation at 100 kbits/s, approximately 2 kOhm for operation at 400 kbits/s.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 11 of 24  
V 1.3  
2022-11-21  
PASCO2V01  
CO2 sensor based on Photo Acoustic Spectroscopy principle  
4.2.2  
UART characteristics  
The main characteristics of the UART interface are described below:  
Point to point operation no bus support.  
Slave operation only.  
fbaud = 9.6 kBps  
Format: 1 start bit, 8 Data bits, no parity bit, 1 stop bit.  
Supports direct connection with terminal program.  
For further details on UART and I2C communication protocol, please refer to our application note section in the  
product webpage.  
4.3  
Application Circuit Example  
4.3.1  
I2C application circuit example  
Figure 6  
Application circuit example for I2C  
With this configuration the device will start in idle mode of operation. Internal pull up is present on PWM_DIS  
pin.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 12 of 24  
V 1.3  
2022-11-21  
PASCO2V01  
CO2 sensor based on Photo Acoustic Spectroscopy principle  
4.3.2  
UART application circuit example  
Figure 7  
Application circuit example for UART  
With this configuration the device will start in idle mode of operation. Internal pull up is present on PWM_DIS  
pin.  
4.3.3  
PWM application circuit example  
Figure 8  
Application circuit example for PWM  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
V 1.3  
2022-11-21  
page 13 of 24  
PASCO2V01  
CO2 sensor based on Photo Acoustic Spectroscopy principle  
4.4  
Functional description  
This section describes the operation of the sensor while measuring CO2 concentrations. At any moment the  
device can be in one out of two different states: active and inactive. At active state, the CPU controlling the  
device is operating and can perform tasks such as: running a measurement sequence, serving an interrupt, etc.  
When the device has no specific task to perform, it goes to an inactive state. A transition from active to inactive  
state may occur at the end of a measurement sequence. In an inactive state, the CPU controlling the device is in  
sleep mode to optimize power consumption. Several events can wake up the device: the reception of a  
message on the serial communication interface, a falling edge on pin PWM_DIS, the internal generation of a  
measurement request in continuous measurement mode.  
4.4.1  
Operating Modes  
The operating mode can be programmed via the serial communication interface by using the bit field  
MEAS_CFG.OP_MODE.  
The sensor module supports three operating modes:  
Idle mode: The device does not perform any CO2 concentration measurement. The device remains inactive  
until it becomes active shortly to serve interrupts before going back to an inactive state.  
Continuous mode: In this mode, the device periodically triggers a CO2 concentration measurement  
sequence. Once a measurement sequence is completed, the device goes back to an inactive state and wakes  
up automatically for the next measurement sequence. The measurement period is programmable from 5  
sec to 4095 sec.  
Single-shot mode: In this mode, the device triggers a single measurement sequence. At the end of the  
measurement sequence, the device goes back automatically to idle mode.  
Figure 9  
Operating mode transition  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 14 of 24  
V 1.3  
2022-11-21  
PASCO2V01  
CO2 sensor based on Photo Acoustic Spectroscopy principle  
4.4.2  
Data post-processing  
Once the CO2 concentration data has been acquired, several post-processing schemes can be applied to utilize  
different functionality.  
4.4.2.1 Pressure compensation  
The CO2 concentration value acquired by the sensor is dependent on the external atmospheric pressure. To  
compensate for this effect, the application system can provide the value of the atmospheric pressure by writing  
into the specific registers, i.e. PRESSREF_H and PRESSREF_L. At the end of a measurement sequence, the  
device reads the pressure value and applies for compensation on the CO2 concentration value before storing it  
into the result registers.  
4.4.2.2 Automatic Baseline Offset Correction  
To correct slow drifts caused by aging during operation, the device supports Automatic Baseline Offset  
Compensation. Every week of operation, the device computes an offset to correct the baseline of the device.  
The device must be in contact with the reference concentration (e.g. fresh air at. 400 ppm of CO2  
concentration) at least 30 minutes per operating week to make sure proper baseline compensation. The device  
supports different configurations for compensation. The ABOC setpoint may only be set between 350 and  
1500 ppm.  
4.4.2.3 Forced compensation  
Forced compensation provides a means to speed up the offset compensation process. Before forced  
compensation is enabled, the device shall be physically exposed to the reference CO2 concentration. The  
device will use the 3 next measurements to calculate the compensation offset. The user shall ensure  
constant exposure to the reference CO2 concentration during that time. It is recommended to operate at 1  
measurement per 10 seconds while implementing the forced compensation scheme. When 3 measurement  
sequences are completed, the device automatically reconfigures itself with the newly computed offset applied  
to the subsequent CO2 concentration measurement results.  
4.4.2.4 Alarm Threshold  
The device can be configured via interrupt to perform an alarm threshold check each time a new CO2  
concentration data is acquired. At the end of each measurement sequence, the computed CO2 value (after all  
applicable offset compensations) is compared to the concatenated value in ALARM_TH_H and ALARM_TH_L.  
In case of a threshold violation, the sticky bit MEAS_STS.ALARM is set. This also sets pin INT to active level due  
to configuration as alarm. Bit MEAS_STS.ALARM is cleared by reading register MEAS_STS.ALARM_CLR.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 15 of 24  
V 1.3  
2022-11-21  
PASCO2V01  
CO2 sensor based on Photo Acoustic Spectroscopy principle  
4.5  
Monitoring mechanism as advanced functionality  
The device supports several mechanisms to monitor the correct operation of the sensor.  
Table 11  
Functionality description  
Description  
Mechanism  
Sensor Ready status  
Scratchpad register  
After each power-on reset, bit SENS_STS.SEN_RDY is set to confirm that the sensor  
has initialized correctly.  
To check the integrity of the communication layer of the serial communication  
interface, register SCRATCH_PAD can be used. This register can use this memory  
field to write any value and verify that the data received by the device is correct.  
It can also be used to verify that a soft reset has been executed, using the following  
sequence:  
1. The user writes a non-default value to register SCRATCH_PAD.  
2. The user reads back register SCRATCH_PAD to verify the writ  
commend has been correctly executed.  
3. The user writes register SENS_RST to trigger a soft reset.  
4. The user reads register SCRATCH_PAD to verify that it has been reset to its  
default value.  
VDD12V verification  
At power-up and the beginning of each measurement sequence, the device  
measures automatically the voltage at VDD12. If the measured voltage exceeds the  
specified operating range of the device, bit SENS_STS.ORVS is set. The  
measurement sequence is however completed normally. Bit SENS_STS.ORVS can  
be cleared by setting bit SENS_STS.ORVS_CLR  
Internal temperature  
verification  
At the beginning of each measurement sequence, the device measures  
automatically its internal temperature. If the measured temperature exceeds the  
specified operating ranged of the device, sticky bit SENS_STS.ORTMP is set. The  
measurement sequence is however completed normally. Bit SENS_STS.ORTMP  
can be cleared by setting bit SENS_STS.ORTMP_CLR.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 16 of 24  
V 1.3  
2022-11-21  
PASCO2V01  
CO2 sensor based on Photo Acoustic Spectroscopy principle  
4.6  
Digital interface  
The XENSIVTM PAS CO2 supports I2C, UART, and PWM. The communication protocols have been covered in  
separate application notes.  
4.6.1  
I2C interface  
The device complies with the I2C protocol. When I2C is selected as a serial communication interface,  
the device acts as an I2C slave. The main characteristics of the interface are described below:  
Slave mode only.  
I2C Clock frequency: 100 kHz and 400 kHz  
7-bit slave address: 0x28  
No CRC.  
The device supports clock stretching.  
8bit addressing mode supported (7bit address + RW)  
Bulk read and write supported (device auto-increments automatically the address).  
Address 0x00 not supported.  
Further details of the protocol are covered in the separate application note.  
4.6.2  
I2C transaction format  
The I2C transaction has the following structure: a start condition followed by four bytes followed a stop  
condition.  
Figure 10  
I2C write and read transaction  
I2C transaction  
Table 12  
Byte  
Description  
Start condition  
Header  
Value  
Comments  
1
2
(Slave Address << 1) | R/W  
Read: data provided by the slave  
Write: data provided by the user  
First data-byte  
As per user  
request/register value  
N+2  
Read: data provided by the slave  
Write: data provided by the user  
Data byte N  
As per user  
request/register value  
End condition  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 17 of 24  
V 1.3  
2022-11-21  
PASCO2V01  
CO2 sensor based on Photo Acoustic Spectroscopy principle  
4.6.3  
UART Interface  
When UART is selected as a serial communication interface, the device acts as a UART slave. The device  
operates via UART for point-to-point communication. Bus operation is not supported. As a result, it is  
recommended that the master uses a time-out mechanism. The basic format of a valid UART frame is 1 start bit,  
8 data bits, no parity bit, and 1 stop bit. The master combines several UART frames into a message (read or  
write). The combination of master request and salve answer defines a transaction. The main characteristics of  
the interface are described below:  
Point to point operation no bus support.  
Slave operation only.  
UART clock frequency = 9.6 kHz  
Format: 1 start bit, 8 Data bits, no parity bit, 1 stop bit. Supports direct connection with a terminal program.  
For further details on UART communication, please have a look into our relevant application note titled as  
‘Programing guide for XENSIVTM PAS CO2’ in the application note section on the product website.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 18 of 24  
V 1.3  
2022-11-21  
PASCO2V01  
CO2 sensor based on Photo Acoustic Spectroscopy principle  
4.7  
Register map  
Complete 'Register-map description' has been covered in a separate application note titled as ‘Register-map  
description of XENSIVTM PAS CO2’ in the product webpage.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 19 of 24  
V 1.3  
2022-11-21  
PASCO2V01  
CO2 sensor based on Photo Acoustic Spectroscopy principle  
5
Assembly instruction  
XENSIVTM PAS CO2 module is classified as Moisture-Sensitivity Level 3 (MSL 3). The maximum reflow temperature  
during board assembly must not exceed 245°C according to IPC/JEDEC J-STD-020E. As shown in the figure 13,  
Pad 1 to 14 need to be soldered. Pad 1 to 10 need to be assembled as per functionality. Pad 11 and 13 need to be  
connected to the GND. Pad 12 and 14 are not internally connected but must be soldered to maintain mechanical  
stability. Pad 12 and 14 can be left open or connected to GND. Non-marked smaller pads should be kept open.  
Further details such as footprint drawing, board assembly guidelines, stencil recommendation can be found into  
CO2 product page under Infineon package name LG-MLGA-14’.  
Figure 11  
XENSIVTM PAS CO2 pads need to be connected to an application board.  
Note:  
1) One-time reflow is permitted and after assembly rework is not recommended.  
2) Vapor phase soldering may damage the sensor irreversibly.  
For the customer, the allocated floor time (Out of bag) is 168 hours (at ≤30°C and 60% r.H.) according to  
IPC/JEDEC J-STD-020. If floor time exceeds, then the parts (Out of moisture barrier bag) need to be baked  
according to the following table:  
Table 13  
Baking condition of the XENSIVTM PASCO2  
Package condition  
Bake temperature  
Bake time  
24 hours  
8 days  
Condition  
r.H. < 5%  
r.H. < 5%  
Sensors outside of tape  
Sensors within the tape  
125°C  
40°C  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 20 of 24  
V 1.3  
2022-11-21  
PASCO2V01  
CO2 sensor based on Photo Acoustic Spectroscopy principle  
6
Package information  
Figure 12  
Package dimensions of XENSIVTM PAS CO2.  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
V 1.3  
2022-11-21  
page 21 of 24  
PASCO2V01  
CO2 sensor based on Photo Acoustic Spectroscopy principle  
7
Packing for shipment  
The device will be shipped in tape and reel. Each tape and reel consist of 300 parts.  
Figure 13  
Tape and reel packing of XENSIVTM PAS CO2  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
V 1.3  
2022-11-21  
page 22 of 24  
PASCO2V01  
CO2 sensor based on Photo Acoustic Spectroscopy principle  
8
Revision history  
Table 14  
Datasheet versions tracking  
Reference Description  
Date  
0.1  
0.2  
1.0  
1.1  
First copy of the preliminary datasheet  
13.10.2020  
25.06.2021  
17.01.2022  
13.06.2022  
Second copy of the preliminary datasheet  
First release of the datasheet  
Updated Storage condition, assembly instruction and  
minor cosmetic changes  
1.2  
1.3  
Storage during transportation, resolved ambiguity before 21.09.2022  
paragraph 4.1.5, updated the baking time in assembly  
instruction and minor cosmetic changes  
Correction made in Storage condition section (non-  
evacuated instead of evacuated dry-pack). Note on  
typical sampling rate and sensor performance added.  
21.11.2022  
Parameter resolution added  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 23 of 24  
V 1.3  
2022-11-21  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on the product, technology,  
Edition 2022-11-21  
event be regarded as a guarantee of conditions or delivery terms and conditions and prices please  
Published by  
characteristics (“Beschaffenheitsgarantie”) .  
contact your nearest Infineon Technologies office  
(www.infineon.com).  
Infineon Technologies AG  
81726 München, Germany  
With respect to any examples, hints or any typical  
values stated herein and/or any information  
regarding the application of the product, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation warranties of non-infringement of  
intellectual property rights of any third party.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2022 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about this  
document?  
In addition, any information given in this document  
is subject to customer’s compliance with its  
obligations stated in this document and any  
applicable legal requirements, norms and standards  
concerning customer’s products and any use of the  
product of Infineon Technologies in customer’s  
applications.  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized  
representatives  
of  
Infineon  
Email: erratum@infineon.com  
Technologies, Infineon Technologies’ products may  
not be used in any applications where a failure of the  
product or any consequences of the use thereof can  
reasonably be expected to result in personal injury.  
Document reference  
ifx1  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  

CO2 Sensor 相关器件

型号 制造商 描述 价格 文档
CO2-B0-14-660-33D-D Carling Technologies Group : Circuit Protection; Series : C-Series; Product Type : C-Series Circuit Breaker; 3D CAD : Yes; Viewer Status (TEMP) : Complete; 获取价格
CO2016 RALTRON Frequency (kHz) : 32.768; Size (mm) : 2.0 x 1.6; 获取价格
CO2016-1.500-2.5-25-TR RALTRON CMOS Output Clock Oscillator, 1.5MHz Nom 获取价格
CO2016-1.500-2.5-30-TR RALTRON CMOS Output Clock Oscillator, 1.5MHz Nom 获取价格
CO2016-1.500-3.3-50-TR RALTRON CMOS Output Clock Oscillator, 1.5MHz Nom 获取价格
CO2016-12.800-2.5-100-TR RALTRON CMOS Output Clock Oscillator, 12.8MHz Nom 获取价格
CO2016-12.800-2.5-50-TR RALTRON CMOS Output Clock Oscillator, 12.8MHz Nom 获取价格
CO2016-24.000-3.3-25-TR-NS1 RALTRON Size (mm) : 2 x 1.6; 获取价格
CO2016-25.000-3.3-50-T-TR RALTRON Size (mm) : 2 x 1.6; 获取价格
CO2016-50.000-3.3-50-T-TR RALTRON Size (mm) : 2 x 1.6; 获取价格

CO2 Sensor 相关文章

  • HARTING(浩亭)圆形连接器产品选型手册
    2024-10-31
    6
  • HYCON(宏康科技)产品选型手册
    2024-10-31
    6
  • GREEGOO整流二极管和晶闸管产品选型手册
    2024-10-31
    7
  • 西门子豪掷106亿美元,战略收购工程软件巨头Altair
    2024-10-31
    8