CPU165MU [INFINEON]

IGBT SIP MODULE Ultra-Fast IGBT; IGBT模块SIP超高速IGBT
CPU165MU
型号: CPU165MU
厂家: Infineon    Infineon
描述:

IGBT SIP MODULE Ultra-Fast IGBT
IGBT模块SIP超高速IGBT

晶体 晶体管 功率控制 双极性晶体管 栅 局域网
文件: 总8页 (文件大小:406K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Previous Datasheet  
Index  
Next Data Sheet  
PD - 5.029  
CPU165MU  
IGBT SIP MODULE  
Ultra-Fast IGBT  
Features  
1,2  
• Fully isolated printed circuit board mount package  
• Switching-loss rating includes all "tail" losses  
• HEXFREDTM soft ultrafast diodes  
• Optimized for high operating frequency (over 5kHz)  
See Fig. 1 for Current vs. Frequency curve  
Q1  
Q2  
D1  
D2  
4
5
6,7  
9
Product Summary  
Output Current in a Typical 20 kHz Motor Drive  
10 ARMS with TC = 90°C, TJ = 125°C, Supply Voltage 360Vdc,  
Power Factor 0.8, Modulation Depth 80% (See Figure 1)  
11,12  
Description  
The IGBT technology is the key to International Rectifier's advanced line of  
IMS (Insulated Metal Substrate) Power Modules. These modules are more  
efficient than comparable bipolar transistor modules, while at the same time  
having the simpler gate-drive requirements of the familiar power MOSFET.  
This superior technology has now been coupled to a state of the art materials  
system that maximizes power throughput with low thermal resistance. This  
package is highly suited to motor drive applications and where space is at a  
premium.  
IMS-1  
Absolute Maximum Ratings  
Parameter  
Collector-to-Emitter Voltage  
Max.  
600  
Units  
V
VCES  
IC @ TC = 25°C  
Continuous Collector Current, each IGBT  
Continuous Collector Current, each IGBT  
Pulsed Collector Current  
33  
IC @ TC = 100°C  
17  
ICM  
100  
A
ILM  
Clamped Inductive Load Current  
Diode Continuous Forward Current  
Diode Maximum Forward Current  
Gate-to-Emitter Voltage  
100  
IF @ TC = 100°C  
15  
IFM  
100  
VGE  
±20  
V
VRMS  
W
VISOL  
Isolation Voltage, any terminal to case, 1 minute  
Maximum Power Dissipation, each IGBT  
2500  
83  
PD @ TC = 25°C  
PD @ TC = 100°C Maximum Power Dissipation, each IGBT  
33  
TJ  
Operating Junction and  
-40 to +150  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 sec.  
Mounting torque, 6-32 or M3 screw.  
°C  
300 (0.063 in. (1.6mm) from case)  
5-7 lbf•in (0.55-0.8 N•m)  
Thermal Resistance  
Parameter  
Typ.  
Max.  
Units  
R
R
R
θJC (IGBT)  
Junction-to-Case, each IGBT, one IGBT in conduction  
Junction-to-Case, each diode, one diode in conduction  
Case-to-Sink,flat,greased surface  
1.5  
2.0  
θJC (DIODE)  
θCS (MODULE)  
°C/W  
0.1  
Wt  
Weight of module  
20 (0.7)  
g (oz)  
Revision 1  
C-733  
To Order  
 
 
Previous Datasheet  
Index  
Next Data Sheet  
CPU165MU  
Electrical Characteristics @ T = 25°C (unless otherwise specified)  
J
Parameter  
Min. Typ. Max. Units  
Conditions  
VGE = 0V, IC = 250µA  
V(BR)CES  
Collector-to-Emitter Breakdown Voltage  
600  
3.0  
16  
V
V(BR)CES/TJ Temperature Coeff. of Breakdown Voltage  
0.60  
V/°C VGE = 0V, IC = 1.0mA  
IC = 17A  
VCE(on)  
Collector-to-Emitter Saturation Voltage  
1.8 2.3  
VGE = 15V  
2.2  
1.6  
V
IC = 33A  
See Fig. 2, 5  
IC = 17A, TJ = 150°C  
VCE = VGE, IC = 250µA  
VGE(th)  
Gate Threshold Voltage  
5.5  
VGE(th)/TJ Temperature Coeff. of Threshold Voltage  
-13  
24  
mV/°C VCE = VGE, IC = 250µA  
gfe  
Forward Transconductance  
S
VCE = 100V, IC = 27A  
VGE = 0V, VCE = 600V  
ICES  
Zero Gate Voltage Collector Current  
250  
6500  
µA  
VGE = 0V, VCE = 600V, TJ = 150°C  
VFM  
IGES  
Diode Forward Voltage Drop  
1.3 1.7  
1.2 1.5  
V
IC = 25A  
See Fig. 13  
IC = 25A, TJ = 150°C  
VGE = ±20V  
Gate-to-Emitter Leakage Current  
±500 nA  
Switching Characteristics @ T = 25°C (unless otherwise specified)  
J
Parameter  
Min. Typ. Max. Units  
108 140  
Conditions  
Qg  
Total Gate Charge (turn-on)  
Gate - Emitter Charge (turn-on)  
Gate - Collector Charge (turn-on)  
Turn-On Delay Time  
Rise Time  
IC = 27A  
Qge  
Qgc  
td(on)  
tr  
17  
52  
23  
28  
21  
70  
nC  
VCC = 400V  
See Fig. 8  
TJ = 25°C  
ns  
IC = 27A, VCC = 480V  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
100 200  
VGE = 15V, RG = 5.0Ω  
45  
140  
Energy losses include "tail" and  
diode reverse recovery.  
See Fig. 9, 10, 11, 18  
Eon  
Eoff  
Ets  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Turn-On Delay Time  
Rise Time  
0.76  
0.26  
mJ  
ns  
1.0 2.0  
td(on)  
tr  
td(off)  
tf  
24  
27  
75  
TJ = 150°C,  
See Fig. 9, 10, 11, 18  
IC = 27A, VCC = 480V  
VGE = 15V, RG = 5.0Ω  
Energy losses include "tail" and  
diode reverse recovery.  
VGE = 0V  
Turn-Off Delay Time  
Fall Time  
180  
130  
3.7  
2900  
330  
41  
Ets  
Total Switching Loss  
Input Capacitance  
mJ  
pF  
ns  
A
Cies  
Coes  
Cres  
trr  
Output Capacitance  
Reverse Transfer Capacitance  
Diode Reverse Recovery Time  
VCC = 30V  
See Fig. 7  
ƒ = 1.0MHz  
50  
TJ = 25°C See Fig.  
105 160  
TJ = 125°C  
TJ = 25°C See Fig.  
TJ = 125°C 15  
TJ = 25°C See Fig.  
TJ = 125°C 16  
A/µs TJ = 25°C See Fig.  
TJ = 125°C 17  
14  
IF = 25A  
Irr  
Diode Peak Reverse Recovery Current  
Diode Reverse Recovery Charge  
4.5  
8.0  
10  
15  
V R = 200V  
Qrr  
112 375  
420 1200  
nC  
di/dt = 200A/µs  
di(rec)M/dt  
Diode Peak Rate of Fall of Recovery  
During tb  
250  
160  
Notes:  
Repetitive rating; V GE=20V, pulse width  
limited by max. junction temperature.  
( See fig. 20 )  
VCC=80%(VCES), VGE=20V, L=10µH,  
RG= 5.0, ( See fig. 19 )  
Pulse width 5.0µs,  
single shot.  
Pulse width 80µs; duty factor 0.1%.  
C-734  
To Order  
Previous Datasheet  
Index  
Next Data Sheet  
CPU165MU  
24  
16  
8
7.4  
5.0  
S
2.5  
TC= 90°C  
TJ = 125°C  
Power Factor = 0.8  
Modulation Depth = 0.8  
VCC = 60% of Rated Voltage  
0
0
0.1  
1
10  
100  
f, Frequency (kH z)  
Fig. 1 - RMS Current and Output Power, Synthesized Sine Wave  
1000  
100  
10  
1000  
T
= 25°C  
J
100  
10  
1
T = 150°C  
J
T
= 150°C  
J
TJ = 25°C  
VCC = 100V  
5µs PULSE WIDTH  
V
= 15V  
G E  
20µs P ULSE W IDTH  
1
5
10  
15  
20  
0.1  
1
10  
V
, Gate-to-Emitter Voltage (V)  
VCE , Collector-to-Emitter Voltage (V)  
GE  
Fig. 3 - Typical Transfer Characteristics  
Fig. 2 - Typical Output Characteristics  
C-735  
To Order  
Previous Datasheet  
Index  
Next Data Sheet  
CPU165MU  
60  
50  
40  
30  
20  
10  
0
3.0  
2.5  
2.0  
1.5  
1.0  
V
= 15V  
G E  
V
= 15V  
G E  
80µs P ULSE W IDTH  
I
I
= 54A  
C
= 27A  
= 14A  
C
I
C
25  
50  
75  
100  
125  
150  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140 160  
TC , Case Temperature (°C)  
TC , Case Temperature (°C)  
Fig. 5 - Collector-to-Emitter Voltage vs.  
Fig. 4 - Maximum Collector Current vs.  
Case Temperature  
Case Temperature  
1
D = 0.50  
0.20  
0.1  
0.10  
P
DM  
0.05  
t
1
SINGLE PULSE  
(THERMAL RESPONSE)  
t
2
0.02  
0.01  
N otes:  
1 . D uty factor D  
=
t
/ t  
2
1
2. Pea k T = P  
x Z  
+ T  
C
D M  
J
thJC  
1
0.01  
0.00001  
0.0001  
0.001  
0.01  
0.1  
10  
t1 , Rectangular Pulse Duration (sec)  
Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case  
C-736  
To Order  
Previous Datasheet  
Index  
Next Data Sheet  
CPU165MU  
7000  
20  
16  
12  
8
V
C
C
C
= 0V,  
f = 1MHz  
V
I
= 480V  
= 27A  
CE  
C
GE  
ies  
res  
oes  
= C + C  
,
C
SHORTED  
ge  
gc  
ce  
= C  
gc  
6000  
5000  
4000  
3000  
2000  
1000  
0
= C + C  
ce  
gc  
C
ies  
C
oes  
4
C
res  
0
1
10  
100  
0
30  
60  
90  
120  
VC E , Collector-to-Emitter Voltage (V)  
Q g , Total Gate Charge (nC)  
Fig. 7 - Typical Capacitance vs.  
Fig. 8 - Typical Gate Charge vs.  
Collector-to-Emitter Voltage  
Gate-to-Emitter Voltage  
2.50  
2.25  
2.00  
1.75  
1.50  
10  
= 2.0  
= 15V  
= 480V  
V
= 480V  
= 15V  
= 25°C  
= 27A  
R
V
V
CC  
G E  
C
G
GE  
CC  
V
T
I
I
I
= 54A  
= 27A  
C
C
C
1
I
= 14A  
C
0.1  
0
10  
20  
30  
40  
50  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140 16 0  
T , Case Temperature (°C)  
R G , Gate Resistance (  
)  
C
W
Fig. 9 - Typical Switching Losses vs. Gate  
Fig. 10 - Typical Switching Losses vs.  
Resistance  
Case Temperature  
C-737  
To Order  
Previous Datasheet  
Index  
Next Data Sheet  
CPU165MU  
6.0  
1000  
100  
10  
R
T
V
V
= 2.0 Ω  
G
V
T
= 20V  
= 125°C  
G E  
= 150°C  
= 480V  
= 15V  
C
J
CC  
G E  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
SAFE OPE RA TING A RE A  
1
0
10  
20  
30  
40  
50  
60  
1
10  
100  
1000  
I
, Collector-to-Em itter C urrent (A )  
V
, C olle ctor-to-E m itter V oltage (V )  
CE  
C
Fig. 12 - Turn-Off SOA  
Fig. 11 - Typical Switching Losses vs.  
Collector-to-Emitter Current  
100  
10  
1
T = 150°C  
J
T = 125°C  
J
T = 25°C  
J
0.6  
1.0  
1.4  
1.8  
2.2  
2.6  
Forward Voltage Drop - V  
(V)  
FM  
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current  
C-738  
To Order  
Previous Datasheet  
Index  
Next Data Sheet  
CPU165MU  
100  
10  
1
140  
120  
100  
VR = 200V  
TJ = 125°C  
TJ = 25°C  
VR = 200V  
TJ = 125°C  
TJ = 25°C  
I
= 50A  
F
I
= 25A  
F
I
= 50A  
= 25A  
80  
60  
40  
20  
F
I
F
I
= 10A  
F
I
= 10A  
F
100  
1000  
100  
1000  
di /dt - (A/µs)  
f
di /dt - (A/µs)  
f
Fig. 15 - Typical Recovery Current vs. dif/dt  
Fig. 14 - Typical Reverse Recovery vs. dif/dt  
10000  
1500  
VR = 200V  
TJ = 125°C  
TJ = 25°C  
VR = 200V  
TJ = 125°C  
TJ = 25°C  
1200  
900  
I
= 10A  
F
I
= 50A  
F
1000  
600  
300  
0
I
= 25A  
F
I
= 25A  
F
I
= 50A  
I
= 10A  
F
F
100  
100  
1000  
100  
1000  
di /dt - (A/µs)  
di /dt - (A/µs)  
f
f
Fig. 16 - Typical Stored Charge vs. dif/dt  
Fig. 17 - Typical di(rec)M/dt vs. dif/dt  
C-739  
To Order  
Previous Datasheet  
Index  
Next Data Sheet  
CPU165MU  
90% Vge  
+Vge  
Same type  
device as  
D.U.T.  
Vce  
90% Ic  
10% Vce  
Ic  
Ic  
430µF  
80%  
5% Ic  
of Vce  
D.U.T.  
td(off)  
tf  
t1+5µS  
Eoff = Vce ic dt  
t1  
Fig.18a - Test Circuit for Measurement of  
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf  
t1  
t2  
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining  
Eoff, td(off), tf  
trr  
id dt  
tx  
trr  
GATE VOLTAGE D.U.T.  
Qrr =  
Ic  
10% +Vg  
+Vg  
tx  
10% Irr  
10% Vcc  
Vcc  
DUT VOLTAGE  
AND CURRENT  
Vce  
Vpk  
Irr  
10% Ic  
Vcc  
Ipk  
90% Ic  
Ic  
DIODE RECOVERY  
WAVEFORMS  
5% Vce  
tr  
td(on)  
t2  
Vce ie dt  
Eon =  
t2  
t4  
Erec = Vd id dt  
t3  
t1  
DIODE REVERSE  
t1  
RECOVERY ENERGY  
t3  
t4  
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,  
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,  
Defining Erec, trr, Qrr, Irr  
Defining Eon, td(on), tr  
Refer to Section D for the following:  
Appendix D: Section D - page D-6  
Fig. 18e - Macro Waveforms for Test Circuit of Fig. 18a  
Fig. 19 - Clamped Inductive Load Test Circuit  
Fig. 20 - Pulsed Collector Current Test Circuit  
Package Outline 4 - IMS-1 Package (10 pins)  
Section D - page D-13  
C-740  
To Order  

相关型号:

CPU16RM

M68HC16 Family CPU16 Reference Manual
ETC

CPU32RM

CPU32 Reference Manual
ETC

CPU362MF

Insulated Gate Bipolar Transistor, 600V V(BR)CES, N-Channel
INFINEON

CPU362MU

Insulated Gate Bipolar Transistor, 600V V(BR)CES, N-Channel
INFINEON

CPU362MUPBF

Insulated Gate Bipolar Transistor, 600V V(BR)CES, N-Channel
INFINEON

CPU93

INVERTER
SUMIDA

CPU9D25

INVERTER
SUMIDA

CPU9D25B

INVERTER
SUMIDA

CPUD0806MN-1R0M-N

Leaded Power Chokes
ETC

CPUD0806MN-1R5M-N

Leaded Power Chokes
ETC

CPUD0806MN-2R2M-N

Leaded Power Chokes
ETC

CPUD0806MN-3R3M-N

Leaded Power Chokes
ETC