CPV364MU [INFINEON]

IGBT SIP MODULE Ultra-Fast IGBT; IGBT模块SIP超高速IGBT
CPV364MU
型号: CPV364MU
厂家: Infineon    Infineon
描述:

IGBT SIP MODULE Ultra-Fast IGBT
IGBT模块SIP超高速IGBT

双极性晶体管
文件: 总8页 (文件大小:422K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Previous Datasheet  
Index  
Next Data Sheet  
PD - 5.025A  
CPV364MU  
IGBT SIP MODULE  
Ultra-Fast IGBT  
1
Features  
• Fully isolated printed circuit board mount package  
• Switching-loss rating includes all "tail" losses  
• HEXFREDTM soft ultrafast diodes  
• Optimized for high operating frequency (over 5kHz)  
See Fig. 1 for Current vs. Frequency curve  
D1  
D2  
D3  
D4  
D5  
D6  
Q1  
Q2  
Q3  
Q4  
Q5  
3
6
9
4
15  
10  
16  
Q6  
12  
18  
Product Summary  
7
13  
19  
Output Current in a Typical 20 kHz Motor Drive  
5.4 ARMS per phase (1.7 kW total) with T C = 90°C, TJ = 125°C, Supply Voltage 360Vdc,  
Power Factor 0.8, Modulation Depth 80% (See Figure 1)  
Description  
The IGBT technology is the key to International Rectifier's advanced line of  
IMS (Insulated Metal Substrate) Power Modules. These modules are more  
efficient than comparable bipolar transistor modules, while at the same time  
having the simpler gate-drive requirements of the familiar power MOSFET.  
This superior technology has now been coupled to a state of the art materials  
system that maximizes power throughput with low thermal resistance. This  
package is highly suited to motor drive applications and where space is at a  
premium.  
IMS-2  
Absolute Maximum Ratings  
Parameter  
Max.  
Units  
VCES  
Collector-to-Emitter Voltage  
600  
V
IC @ TC = 25°C  
Continuous Collector Current, each IGBT  
Continuous Collector Current, each IGBT  
Pulsed Collector Current  
20  
IC @ TC = 100°C  
10  
60  
ICM  
A
ILM  
Clamped Inductive Load Current  
Diode Continuous Forward Current  
Diode Maximum Forward Current  
Gate-to-Emitter Voltage  
60  
IF @ TC = 100°C  
9.3  
IFM  
60  
VGE  
±20  
V
VRMS  
W
VISOL  
Isolation Voltage, any terminal to case, 1 min.  
Maximum Power Dissipation, each IGBT  
2500  
63  
PD @ TC = 25°C  
PD @ TC = 100°C Maximum Power Dissipation, each IGBT  
25  
TJ  
Operating Junction and  
-40 to +150  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 sec.  
Mounting torque, 6-32 or M3 screw.  
°C  
300 (0.063 in. (1.6mm) from case)  
5-7 lbf•in (0.55-0.8 N•m)  
Thermal Resistance  
Parameter  
Typ.  
Max.  
Units  
R
R
R
θJC (IGBT)  
Junction-to-Case, each IGBT, one IGBT in conduction  
Junction-to-Case, each diode, one diode in conduction  
Case-to-Sink,flat,greased surface  
2.0  
3.0  
θJC (DIODE)  
θCS (MODULE)  
°C/W  
0.1  
Wt  
Weight of module  
20 (0.7)  
g (oz)  
Revision 1  
C-757  
To Order  
 
 
Previous Datasheet  
Index  
Next Data Sheet  
CPV364MU  
Electrical Characteristics @ T = 25°C (unless otherwise specified)  
J
Parameter  
Min. Typ. Max. Units  
Conditions  
VGE = 0V, IC = 250µA  
V(BR)CES  
Collector-to-Emitter Breakdown Voltage  
600  
3.0  
11  
V
V(BR)CES/TJ Temp. Coeff. of Breakdown Voltage  
0.63  
V/°C VGE = 0V, IC = 1.0mA  
IC = 10A  
VCE(on)  
Collector-to-Emitter Saturation Voltage  
2.0 2.6  
VGE = 15V  
2.3  
1.7  
V
IC = 20A  
See Fig. 2, 5  
IC = 10A, TJ = 150°C  
VCE = VGE, IC = 250µA  
VGE(th)  
Gate Threshold Voltage  
5.5  
VGE(th)/TJ Temp. Coeff. of Threshold Voltage  
-13  
18  
mV/°C VCE = VGE, IC = 250µA  
gfe  
Forward Transconductance  
S
VCE = 100V, IC = 20A  
VGE = 0V, VCE = 600V  
ICES  
Zero Gate Voltage Collector Current  
250  
3500  
µA  
VGE = 0V, VCE = 600V, TJ = 150°C  
VFM  
IGES  
Diode Forward Voltage Drop  
1.3 1.7  
1.2 1.6  
V
IC = 15A  
See Fig. 13  
IC = 15A, TJ = 150°C  
VGE = ±20V  
Gate-to-Emitter Leakage Current  
±500 nA  
Switching Characteristics @ T = 25°C (unless otherwise specified)  
J
Parameter  
Min. Typ. Max. Units  
Conditions  
Qg  
Total Gate Charge (turn-on)  
Gate - Emitter Charge (turn-on)  
Gate - Collector Charge (turn-on)  
Turn-On Delay Time  
Rise Time  
51  
8.8  
19  
25  
21  
67  
11  
33  
IC = 20A  
Qge  
Qgc  
td(on)  
tr  
nC  
ns  
VCC = 400V  
See Fig. 8  
TJ = 25°C  
IC = 20A, VCC = 480V  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
96 190  
43 120  
VGE = 15V, RG = 10Ω  
Energy losses include "tail" and  
diode reverse recovery.  
See Fig. 9, 10, 11, 18  
Eon  
Eoff  
Ets  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Turn-On Delay Time  
Rise Time  
0.32  
0.13  
mJ  
ns  
0.45 0.8  
td(on)  
tr  
td(off)  
tf  
25  
23  
60  
TJ = 150°C,  
See Fig. 9, 10, 11, 18  
IC = 20A, VCC = 480V  
VGE = 15V, RG = 10Ω  
Energy losses include "tail" and  
diode reverse recovery.  
VGE = 0V  
Turn-Off Delay Time  
Fall Time  
175  
140  
1.6  
1500  
190  
17  
Ets  
Total Switching Loss  
Input Capacitance  
mJ  
pF  
ns  
A
Cies  
Coes  
Cres  
trr  
Output Capacitance  
Reverse Transfer Capacitance  
Diode Reverse Recovery Time  
VCC = 30V  
See Fig. 7  
ƒ = 1.0MHz  
42  
TJ = 25°C See Fig.  
74 120  
4.0 6.0  
TJ = 125°C  
TJ = 25°C See Fig.  
TJ = 125°C 15  
TJ = 25°C See Fig.  
TJ = 125°C 16  
A/µs TJ = 25°C See Fig.  
TJ = 125°C 17  
14  
IF = 15A  
Irr  
Diode Peak Reverse Recovery Current  
Diode Reverse Recovery Charge  
6.5  
10  
V R = 200V  
Qrr  
80 180  
220 600  
nC  
di/dt = 200A/µs  
di(rec)M/dt  
Diode Peak Rate of Fall of Recovery  
During tb  
188  
160  
Notes:  
Repetitive rating; V GE=20V, pulse width  
limited by max. junction temperature.  
( See fig. 20 )  
VCC=80%(VCES), VGE=20V, L=10µH,  
RG= 10, ( See fig. 19 )  
Pulse width 5.0µs,  
single shot.  
Pulse width 80µs; duty factor 0.1%.  
C-758  
To Order  
Previous Datasheet  
Index  
Next Data Sheet  
CPV364MU  
16  
12  
8
5.0  
3.7  
S
2.5  
TC= 90°C  
TJ = 125°C  
1.2  
4
Power Factor = 0.8  
Modulation Depth = 0.8  
VCC = 60% of Rated Voltage  
0
0
0.1  
1
10  
100  
f, Frequency (kHz)  
Fig. 1 - RMS Current and Output Power, Synthesized Sine Wave  
1000  
100  
10  
1000  
100  
T
= 150°C  
J
T
= 25°C  
J
T
= 25°C  
J
T
= 150°C  
J
10  
1
V
= 15V  
V
= 100V  
G E  
20µs PULSE W IDTH  
C C  
5µs PULSE W IDTH  
1
0.1  
1
10  
5
10  
15 20  
V
, G ate-to-E m itter Voltage (V)  
VC E , Collector-to-Emitter Voltage (V)  
GE  
Fig. 3 - Typical Transfer Characteristics  
Fig. 2 - Typical Output Characteristics  
C-759  
To Order  
Previous Datasheet  
Index  
Next Data Sheet  
CPV364MU  
40  
30  
20  
10  
0
3.5  
3.0  
2.5  
2.0  
1.5  
VGE = 15V  
V
= 15V  
G E  
80µs P ULSE W IDTH  
I
= 40A  
C
I
= 20A  
= 10A  
C
C
I
A
25  
50  
75  
100  
125  
150  
-60 -40 -20  
0
20  
40  
60  
80 100 1 20 140 160  
T , Case Temperature (°C)  
TC , Case Temperature (°C)  
C
Fig. 5 - Collector-to-Emitter Voltage vs.  
Fig. 4 - Maximum Collector Current vs.  
Case Temperature  
Case Temperature  
10  
D = 0.50  
1
0.20  
0.10  
0.05  
P
DM  
0.1  
t
1
0.02  
0.01  
t
2
SINGLE PULSE  
(THERMAL RESPONSE)  
Notes:  
1. D uty factor D  
=
t
/ t  
1
2
2. P eak T = P  
x Z  
+ T  
C
DM  
J
thJC  
1
0.01  
0.00001  
0.0001  
0.001  
0.01  
0.1  
10  
t1 , Rectangular Pulse Duration (sec)  
Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case  
C-760  
To Order  
Previous Datasheet  
Index  
Next Data Sheet  
CPV364MU  
20  
16  
12  
8
3000  
V
I
= 400V  
= 20A  
V
C
C
C
= 0V,  
f = 1MHz  
C E  
C
GE  
ies  
= C + C  
,
C
ce  
SHORTED  
ge  
gc  
= C  
res  
oes  
gc  
2500  
2000  
1500  
1000  
500  
= C + C  
ce  
gc  
C
C
ies  
oes  
C
res  
4
0
0
0
10  
20  
30  
40  
50  
60  
1
10  
100  
VCE , Collector-to-Emitter Voltage (V)  
Q , Total G ate Charge (nC)  
g
Fig. 7 - Typical Capacitance vs.  
Fig. 8 - Typical Gate Charge vs.  
Collector-to-Emitter Voltage  
Gate-to-Emitter Voltage  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
10  
V
V
T
I
= 480V  
= 15V  
= 25°C  
= 20A  
R
V
V
= 10 Ω  
= 15V  
= 480V  
CC  
G E  
C
G
GE  
CC  
I
= 40A  
= 20A  
C
C
C
I
I
= 10A  
C
1
0.1  
0
10  
20  
30  
40  
50  
60  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140 160  
R
, G ate R esistance (  
)
T
, Case Temperature (°C)  
G
C
W
Fig. 9 - Typical Switching Losses vs. Gate  
Fig. 10 - Typical Switching Losses vs.  
Resistance  
Case Temperature  
C-761  
To Order  
Previous Datasheet  
Index  
Next Data Sheet  
CPV364MU  
6.0  
1000  
100  
10  
= 10  
R
T
V
V
G
V
T
= 20V  
= 125°C  
G E  
= 150°C  
= 480V  
= 15V  
C
J
C C  
G E  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
SAFE OP ERATING AREA  
1
0
10  
20  
30  
40  
50  
1
10  
100  
1000  
V
, C olle ctor-to-E m itter V oltage (V )  
I
, C ollecto r-to-E m itter C urrent (A )  
C
C E  
Fig. 12 - Turn-Off SOA  
Fig. 11 - Typical Switching Losses vs.  
Collector-to-Emitter Current  
100  
10  
T = 150°C  
J
T = 125°C  
J
T = 25°C  
J
1
0.8  
1.2  
1.6  
2.0  
2.4  
Forward Voltage Drop - V  
(V)  
FM  
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current  
C-762  
To Order  
Previous Datasheet  
Index  
Next Data Sheet  
CPV364MU  
100  
100  
10  
1
VR = 200V  
TJ = 125°C  
TJ = 25°C  
VR = 200V  
TJ = 125°C  
TJ = 25°C  
80  
I
= 30A  
F
I
= 30A  
F
I
= 15A  
F
60  
40  
20  
I
= 15A  
F
I
= 5.0A  
F
I
= 5.0A  
F
100  
1000  
100  
1000  
di /dt - (A/µs)  
f
di /dt - (A/µs)  
f
Fig. 15 - Typical Recovery Current vs. dif/dt  
Fig. 14 - Typical Reverse Recovery vs. dif/dt  
800  
1000  
VR = 200V  
TJ = 125°C  
TJ = 25°C  
VR = 200V  
TJ = 125°C  
TJ = 25°C  
600  
I
= 30A  
F
I
= 5.0A  
F
400  
200  
0
I
= 15A  
I
= 15A  
F
F
I
= 30A  
F
I
= 5.0A  
F
100  
100  
100  
1000  
1000  
di /dt - (A/µs)  
di /dt - (A/µs)  
f
f
Fig. 16 - Typical Stored Charge vs. dif/dt  
Fig. 17 - Typical di(rec)M/dt vs. dif/dt  
C-763  
To Order  
Previous Datasheet  
Index  
Next Data Sheet  
CPV364MU  
90% Vge  
+Vge  
Same type  
device as  
D.U.T.  
Vce  
90% Ic  
10% Vce  
Ic  
430µF  
80%  
Ic  
of Vce  
D.U.T.  
5% Ic  
td(off)  
tf  
t1+5µS  
Eoff = Vce ic dt  
t1  
Fig.18a - Test Circuit for Measurement of  
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf  
t1  
t2  
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining  
Eoff, td(off), tf  
trr  
id dt  
tx  
trr  
GATE VOLTAGE D.U.T.  
Qrr =  
Ic  
10% +Vg  
+Vg  
tx  
10% Irr  
10% Vcc  
Vcc  
DUT VOLTAGE  
AND CURRENT  
Vce  
Vpk  
Irr  
10% Ic  
Vcc  
Ipk  
90% Ic  
Ic  
DIODE RECOVERY  
WAVEFORMS  
5% Vce  
tr  
td(on)  
t2  
Vce ie dt  
Eon =  
t2  
t4  
Erec = Vd id dt  
t3  
t1  
DIODE REVERSE  
t1  
RECOVERY ENERGY  
t3  
t4  
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,  
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,  
Defining Erec, trr, Qrr, Irr  
Defining Eon, td(on), tr  
Refer to Section D for the following:  
Appendix D: Section D - page D-6  
Fig. 18e - Macro Waveforms for Test Circuit of Fig. 18a  
Fig. 19 - Clamped Inductive Load Test Circuit  
Fig. 20 - Pulsed Collector Current Test Circuit  
Package Outline 5 - IMS-2 Package (13 pins)  
Section D - page D-14  
C-764  
To Order  

相关型号:

FERROXCUBE
FERROXCUBE

CPVS-ER9.5-1S-8P-Z

ER cores and acces sories
FERROXCUBE

CPVS-RM4-1S-6P

RM cores and accessories
FERROXCUBE

CPW

Wirewound Resistors, Commercial Power, Axial Lead
VISHAY

CPW02100R0FB14

RES 100 OHM 2W 1% AXIAL
VISHAY

CPW02100R0JB14

RES 100 OHM 2W 5% AXIAL
VISHAY

CPW02100R0JE14

RES 100 OHM 2W 5% AXIAL
VISHAY

CPW0210R00FB14

RES 10 OHM 2W 1% AXIAL
VISHAY

CPW0212R00JE14

RES 12 OHM 2W 5% AXIAL
VISHAY

CPW02130R0FB14

RES 130 OHM 2W 1% AXIAL
VISHAY

CPW0217R80FE14

RES 17.8 OHM 2W 1% AXIAL
VISHAY