CY14V104LA-BA25XI [INFINEON]

nvSRAM (non-volatile SRAM);
CY14V104LA-BA25XI
型号: CY14V104LA-BA25XI
厂家: Infineon    Infineon
描述:

nvSRAM (non-volatile SRAM)

静态存储器 内存集成电路
文件: 总24页 (文件大小:918K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Please note that Cypress is an Infineon Technologies Company.  
The document following this cover page is marked as “Cypress” document as this is the  
company that originally developed the product. Please note that Infineon will continue  
to offer the product to new and existing customers as part of the Infineon product  
portfolio.  
Continuity of document content  
The fact that Infineon offers the following product as part of the Infineon product  
portfolio does not lead to any changes to this document. Future revisions will occur  
when appropriate, and any changes will be set out on the document history page.  
Continuity of ordering part numbers  
Infineon continues to support existing part numbers. Please continue to use the  
ordering part numbers listed in the datasheet for ordering.  
www.infineon.com  
CY14V104LA  
CY14V104NA  
4-Mbit (512 K × 8 / 256 K × 16) nvSRAM  
4-Mbit (512  
K × 8 / 256 K × 16) nvSRAM  
Features  
Functional Description  
25 ns and 45 ns access times  
The Cypress CY14V104LA/CY14V104NA is a fast static RAM,  
with a non-volatile element in each memory cell. The memory is  
Internally organized as 512 K × 8 (CY14V104LA) or 256 K × 16  
(CY14V104NA)  
organized as 512 K bytes of 8 bits each or 256 K words of 16 bits  
each. The embedded non-volatile elements incorporate  
QuantumTrap technology, producing the world’s most reliable  
non-volatile memory. The SRAM provides infinite read and write  
cycles, while independent non-volatile data resides in the highly  
reliable QuantumTrap cell. Data transfers from the SRAM to the  
non-volatile elements (the STORE operation) takes place  
automatically at power-down. On power-up, data is restored to  
the SRAM (the RECALL operation) from the non-volatile  
memory. Both the STORE and RECALL operations are also  
available under software control.  
Hands off automatic STORE on power-down with only a small  
capacitor  
STORE to QuantumTrap non-volatile elements initiated by  
software, device pin, or AutoStore on power-down  
RECALL to SRAM initiated by software or power-up  
Infinite read, write, and recall cycles  
1-million STORE cycles to QuantumTrap  
20 year data retention  
For a complete list of related documentation, click here.  
Core VCC = 3.0 V to 3.6 V; IO VCCQ = 1.65 V to 1.95 V  
Industrial temperature  
48-ball fine-pitch ball grid array (FBGA) package  
Pb-free and restriction of hazardous substances (RoHS)  
compliance  
Logic Block Diagram [1, 2, 3]  
VCAP  
VCC  
V
CCQ  
Quatrum Trap  
2048 X 2048  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
POWER  
R
O
W
CONTROL  
STORE  
RECALL  
STORE/RECALL  
CONTROL  
D
E
C
O
D
E
R
HSB  
STATIC RAM  
ARRAY  
2048 X 2048  
A7  
A8  
A17  
SOFTWARE  
DETECT  
A14 - A2  
A18  
DQ0  
DQ1  
DQ2  
DQ3  
I
DQ4  
DQ5  
DQ6  
N
P
U
T
B
U
F
F
E
R
S
DQ7  
COLUMN I/O  
DQ8  
DQ9  
DQ10  
OE  
COLUMN DEC  
WE  
DQ11  
DQ12  
DQ13  
DQ14  
CE  
BLE  
A9 A10 A11 A12 A13 A14 A15 A16  
DQ15  
BHE  
Notes  
1. Address A –A for × 8 configuration and Address A –A for × 16 configuration.  
0
18  
0
17  
2. Data DQ –DQ for × 8 configuration and Data DQ –DQ for × 16 configuration.  
0
7
0
15  
3. BHE and BLE are applicable for × 16 configuration only.  
Cypress Semiconductor Corporation  
Document Number: 001-53954 Rev. *H  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised November 5, 2014  
CY14V104LA  
CY14V104NA  
Contents  
Pinouts ..............................................................................3  
Pin Definitions ..................................................................3  
Device Operation ..............................................................4  
SRAM Read ................................................................4  
SRAM Write .................................................................4  
AutoStore Operation ....................................................4  
Hardware STORE Operation .......................................4  
Hardware RECALL (Power-Up) ..................................5  
Software STORE .........................................................5  
Software RECALL .......................................................5  
Preventing AutoStore ..................................................6  
Data Protection ............................................................6  
Maximum Ratings .............................................................7  
Operating Range ...............................................................7  
DC Electrical Characteristics ..........................................7  
Data Retention and Endurance .......................................8  
Capacitance ......................................................................8  
Thermal Resistance ..........................................................8  
AC Test Loads ..................................................................9  
AC Test Conditions ..........................................................9  
AC Switching Characteristics .......................................10  
Switching Waveforms ....................................................11  
AutoStore/Power-Up RECALL .......................................14  
Switching Waveforms ....................................................14  
Software Controlled STORE/RECALL Cycle ................15  
Switching Waveforms ....................................................15  
Hardware STORE Cycle .................................................16  
Switching Waveforms ....................................................16  
Truth Table For SRAM Operations ................................17  
Ordering Information ......................................................18  
Ordering Code Definitions .........................................18  
Package Diagrams ..........................................................19  
Acronyms ........................................................................20  
Document Conventions .................................................20  
Units of Measure .......................................................20  
Document History Page .................................................21  
Sales, Solutions, and Legal Information ......................23  
Worldwide Sales and Design Support .......................23  
Products ....................................................................23  
PSoC® Solutions ......................................................23  
Cypress Developer Community .................................23  
Technical Support .....................................................23  
Document Number: 001-53954 Rev. *H  
Page 2 of 23  
CY14V104LA  
CY14V104NA  
Pinouts  
Figure 1. Pin Diagram – 48-ball FBGA  
(× 8)  
Top View  
(not to scale)  
(× 16)  
Top View  
(not to scale)  
1
2
4
3
5
6
1
2
OE  
NC  
NC  
4
3
5
6
A
A
A
2
OE  
VCC  
BLE  
DQ8  
A
A
A
0
1
A
B
C
VCC  
NC  
NC  
0
1
2
A
B
C
A
A
4
BHE  
DQ10  
DQ11  
CE DQ0  
DQ1 DQ2  
V
A
A
3
CE NC  
NC DQ4  
3
4
A
A
6
DQ9  
A
A
6
DQ0  
V
5
5
A
V
A17  
A
DQ3  
DQ4  
DQ5  
CCQ  
D
E
F
SS  
7
A17  
DQ5 VCCQ  
D
E
F
SS DQ1  
7
A
V
SS  
V
A
VCAP  
V
V
SS  
CCQ DQ12  
16  
VCAP  
DQ6  
NC  
CCQ DQ2  
16  
A
A
15  
DQ13  
HSB  
DQ14  
DQ15  
DQ6  
A
A
15  
NC  
DQ3  
NC  
A18  
DQ7  
14  
14  
A
A
13  
G
H
A
A
WE DQ7  
A
G
H
HSB  
WE NC  
[4]  
12  
13  
12  
[4]  
A
A
9
A
A
8
A
9
A
NC  
A
8
10  
NC  
11  
10  
11  
NC  
Pin Definitions  
Pin Name  
A0–A18 Input  
A0–A17  
I/O Type  
Description  
Address Inputs Used to Select One of the 524,288 bytes of the nvSRAM for × 8 Configuration.  
Address Inputs Used to Select One of the 262,144 words of the nvSRAM for × 16 Configuration.  
DQ0–DQ7 Input/output Bidirectional Data I/O Lines for × 8 Configuration. Used as input or output lines depending on operation.  
DQ0–DQ15  
WE  
Bidirectional Data I/O Lines for × 16 Configuration. Used as input or output lines depending on operation.  
Input  
Write Enable Input, Active LOW. When selected LOW, data on the I/O pins is written to the specific  
address location.  
Input  
Input  
Chip Enable Input, Active LOW. When LOW, selects the chip. When HIGH, deselects the chip.  
CE  
OE  
Output Enable, Active LOW. The active LOW OE input enables the data output buffers during read cycles.  
I/O pins are tri-stated on deasserting OE HIGH.  
Input  
Byte High Enable, Active LOW. Controls DQ15–DQ8.  
BHE  
Input  
Byte Low Enable, Active LOW. Controls DQ7–DQ0.  
BLE  
VSS  
Ground  
Ground for the Device. Must be connected to the ground of the system.  
VCC  
Power supply Power Supply Inputs to the Core of the Device.  
VCCQ  
Power supply Power Supply Inputs for the Inputs and Outputs of the Device.  
Input/output Hardware Store Busy (HSB).  
HSB  
Output: Indicates busy status of nvSRAM when LOW. After each Hardware and Software STORE  
operation, HSB is driven HIGH for a short time (tHHHD) with standard output high current and then a weak  
internal pull-up resistor keeps this pin HIGH (external pull-up resistor connection optional).  
Input: Hardware STORE implemented by pulling this pin LOW externally.  
VCAP  
NC  
Power supply AutoStore Capacitor. Supplies power to the nvSRAM during power loss to store data from SRAM to  
non-volatile elements.  
No Connect No Connect. This pin is not connected to the die.  
Note  
4. Address expansion for 8-Mbit. NC pin not connected to die.  
Document Number: 001-53954 Rev. *H  
Page 3 of 23  
CY14V104LA  
CY14V104NA  
on VCAP pin, the device attempts an AutoStore operation without  
sufficient charge to complete the Store. This may corrupt the data  
stored in nvSRAM.  
Device Operation  
The CY14V104LA/CY14V104NA nvSRAM is made up of two  
functional components paired in the same physical cell. They are  
a SRAM memory cell and a non-volatile QuantumTrap cell. The  
SRAM memory cell operates as a standard fast static RAM. Data  
in the SRAM is transferred to the non-volatile cell (the STORE  
operation), or from the non-volatile cell to the SRAM (the  
RECALL operation). Using this unique architecture, all cells are  
stored and recalled in parallel. During the STORE and RECALL  
operations, SRAM read and write operations are inhibited. The  
CY14V104LA/CY14V104NA supports infinite reads and writes  
similar to a typical SRAM. In addition, it provides infinite RECALL  
operations from the non-volatile cells and up to 1 million STORE  
operations. See Truth Table For SRAM Operations on page 17  
for a complete description of read and write modes.  
Figure 2 shows the proper connection of the storage capacitor  
(VCAP) for automatic store operation. Refer to DC Electrical  
Characteristics on page 7 for the size of VCAP. The voltage on  
the VCAP pin is driven to VCC by a regulator on the chip. A pull-up  
should be placed on WE to hold it inactive during power-up. This  
pull-up is effective only if the WE signal is tristate during  
power-up. Many MPUs tristate their controls on power-up. This  
should be verified when using the pull-up. When the nvSRAM  
comes out of power-on-recall, the MPU must be active or the WE  
held inactive until the MPU comes out of reset.  
To reduce unnecessary non-volatile stores, AutoStore and  
hardware store operations are ignored unless at least one write  
operation has taken place since the most recent STORE or  
RECALL cycle. Software initiated STORE cycles are performed  
regardless of whether a write operation has taken place.  
SRAM Read  
The CY14V104LA/CY14V104NA performs a read cycle when  
CE and OE are LOW and WE and HSB are HIGH. The address  
specified on pins A0–18 or A0–17 determines which of the 524,288  
data bytes or 262,144 words of 16 bits each are accessed. Byte  
enables (BHE, BLE) determine which bytes are enabled to the  
output, in the case of 16-bit words. When the read is initiated by  
an address transition, the outputs are valid after a delay of tAA  
(read cycle 1). If the read is initiated by CE or OE, the outputs  
are valid at tACE or at tDOE, whichever is later (read cycle 2). The  
data output repeatedly responds to address changes within the  
tAA access time without the need for transitions on any control  
input pins. This remains valid until another address change or  
until CE or OE is brought HIGH, or WE or HSB is brought LOW.  
Figure 2. AutoStore Mode  
VCCQ  
VCC  
0.1 uF  
0.1 uF  
VCCQ  
VCC  
WE  
VCAP  
VCAP  
VSS  
SRAM Write  
A write cycle is performed when CE and WE are LOW and HSB  
is HIGH. The address inputs must be stable before entering the  
write cycle and must remain stable until CE or WE goes HIGH at  
the end of the cycle. The data on the common I/O pins DQ0–15  
are written into the memory if the data is valid tSD before the end  
of a WE controlled write or before the end of an CE controlled  
write. The Byte Enable inputs (BHE, BLE) determine which bytes  
are written, in the case of 16-bit words. It is recommended that  
OE be kept HIGH during the entire write cycle to avoid data bus  
contention on common I/O lines. If OE is left LOW, internal  
circuitry turns off the output buffers tHZWE after WE goes LOW.  
Hardware STORE Operation  
The CY14V104LA/CY14V104NA provides the HSB pin to control  
and acknowledge the STORE operations. Use the HSB pin to  
request a hardware STORE cycle. When the HSB pin is driven  
LOW, the CY14V104LA/CY14V104NA conditionally initiates a  
STORE operation after tDELAY. An actual STORE cycle only  
begins if a write to the SRAM has taken place since the last  
STORE or RECALL cycle. The HSB pin also acts as an open  
drain driver (internal 100 kweak pull-up resistor) that is  
internally driven LOW to indicate a busy condition when the  
STORE (initiated by any means) is in progress.  
AutoStore Operation  
The CY14V104LA/CY14V104NA stores data to the nvSRAM  
using one of the following three storage operations: Hardware  
Store activated by HSB; Software Store activated by an address  
sequence; AutoStore on device power-down. The AutoStore  
operation is a unique feature of QuantumTrap technology and is  
enabled by default on the CY14V104LA/CY14V104NA.  
Note After each Hardware and Software STORE operation  
HSB is driven HIGH for a short time (tHHHD) with standard output  
high current and then remains HIGH by internal 100 kpull-up  
resistor.  
SRAM write operations that are in progress when HSB is driven  
LOW by any means are given time (tDELAY) to complete before  
the STORE operation is initiated. However, any SRAM write  
cycles requested after HSB goes LOW are inhibited until HSB  
returns HIGH. In case the write latch is not set, HSB is not driven  
LOW by the CY14V104LA/CY14V104NA. But any SRAM read  
and write cycles are inhibited until HSB is returned HIGH by MPU  
or other external source.  
During a normal operation, the device draws current from VCC to  
charge a capacitor connected to the VCAP pin. This stored  
charge is used by the chip to perform a single STORE operation.  
If the voltage on the VCC pin drops below VSWITCH, the part  
automatically disconnects the VCAP pin from VCC. A STORE  
operation is initiated with power provided by the VCAP capacitor.  
Note If a capacitor is not connected to VCAP pin, AutoStore  
must be disabled using the soft sequence specified in Preventing  
AutoStore on page 6. If AutoStore is enabled without a capacitor  
During any STORE operation, regardless of how it is initiated,  
the CY14V104LA/CY14V104NA continues to drive the HSB pin  
Document Number: 001-53954 Rev. *H  
Page 4 of 23  
CY14V104LA  
CY14V104NA  
LOW, releasing it only when the STORE is complete. Upon  
completion of the STORE operation, the  
CY14V104LA/CY14V104NA remains disabled until the HSB pin  
returns HIGH. Leave the HSB unconnected if it is not used.  
4. Read Address 0x7C1F Valid READ  
5. Read Address 0x703F Valid READ  
6. Read Address 0x8FC0 Initiate STORE Cycle  
The software sequence may be clocked with CE controlled reads  
or OE controlled reads, with WE kept HIGH for all the six READ  
sequences. After the sixth address in the sequence is entered,  
the STORE cycle commences and the chip is disabled. HSB is  
driven LOW. After the tSTORE cycle time is fulfilled, the SRAM is  
activated again for the read and write operation.  
Hardware RECALL (Power-Up)  
During power-up or after any low power condition  
(VCC< VSWITCH), an internal RECALL request is latched. When  
VCC again exceeds the sense voltage of VSWITCH, a RECALL  
cycle is automatically initiated and takes tHRECALL to complete.  
During this time, HSB is driven LOW by the HSB driver.  
Software RECALL  
Software STORE  
Data is transferred from non-volatile memory to the SRAM by a  
software address sequence. A software RECALL cycle is  
initiated with a sequence of read operations in a manner similar  
to the software STORE initiation. To initiate the RECALL cycle,  
the following sequence of CE controlled read operations must be  
performed.  
Data is transferred from SRAM to the non-volatile memory by a  
software address sequence. The CY14V104LA/CY14V104NA  
software STORE cycle is initiated by executing sequential CE  
controlled read cycles from six specific address locations in  
exact order. During the STORE cycle an erase of the previous  
non-volatile data is first performed, followed by a program of the  
non-volatile elements. After a STORE cycle is initiated, further  
input and output are disabled until the cycle is completed.  
1. Read Address 0x4E38 Valid READ  
2. Read Address 0xB1C7 Valid READ  
3. Read Address 0x83E0 Valid READ  
4. Read Address 0x7C1F Valid READ  
5. Read Address 0x703F Valid READ  
6. Read Address 0x4C63 Initiate RECALL Cycle  
Because a sequence of READs from specific addresses is used  
for STORE initiation, it is important that no other read or write  
accesses intervene in the sequence, or the sequence is aborted  
and no STORE or RECALL takes place.  
To initiate the software STORE cycle, the following read  
sequence must be performed.  
Internally, RECALL is a two step procedure. First, the SRAM data  
is cleared; then, the non-volatile information is transferred into  
the SRAM cells. After the tRECALL cycle time, the SRAM is again  
ready for read and write operations. The RECALL operation  
does not alter the data in the non-volatile elements.  
1. Read Address 0x4E38 Valid READ  
2. Read Address 0xB1C7 Valid READ  
3. Read Address 0x83E0 Valid READ  
Table 1. Mode Selection  
[6]  
A15–A0  
Mode  
I/O  
Power  
Standby  
Active  
CE  
WE  
OE  
BHE, BLE[5]  
H
X
X
X
X
X
X
Not Selected Output High Z  
L
L
L
H
L
L
X
L
L
L
X
Read SRAM  
Write SRAM  
Output Data  
Input Data  
Active  
Active[7]  
H
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x8B45  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
AutoStore  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Disable  
Notes  
5. BHE and BLE are applicable for × 16 configuration only.  
6. While there are 19 address lines on the CY14V104LA (18 address lines on the CY14V104NA), only the 13 address lines (A –A ) are used to control software  
14  
2
modes. Rest of the address lines are don’t care.  
7. The six consecutive address locations must be in the order listed. WE must be HIGH during all six cycles to enable a non-volatile cycle.  
Document Number: 001-53954 Rev. *H  
Page 5 of 23  
CY14V104LA  
CY14V104NA  
Table 1. Mode Selection (continued)  
[6]  
BHE, BLE[5]  
A15–A0  
Mode  
I/O  
Power  
CE  
WE  
OE  
L
H
L
X
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x4B46  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
AutoStore  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Active[8]  
Active ICC2  
Active[8]  
Enable  
[8]  
L
L
H
H
L
L
X
X
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x8FC0  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Non-volatile Output High Z  
Store  
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x4C63  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Non-volatile Output High Z  
Recall  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
If the AutoStore function is disabled or re-enabled, a manual  
STORE operation (hardware or software) must be issued to save  
the AutoStore state through subsequent power-down cycles.  
The part comes from the factory with AutoStore enabled and  
0x00 written in all cells.  
Preventing AutoStore  
The AutoStore function is disabled by initiating an AutoStore  
disable sequence. A sequence of read operations is performed  
in a manner similar to the software STORE initiation. To initiate  
the AutoStore disable sequence, the following sequence of CE  
controlled read operations must be performed:  
Data Protection  
1. Read address 0x4E38 Valid READ  
2. Read address 0xB1C7 Valid READ  
3. Read address 0x83E0 Valid READ  
4. Read address 0x7C1F Valid READ  
5. Read address 0x703F Valid READ  
6. Read address 0x8B45 AutoStore Disable  
The CY14V104LA/CY14V104NA protects data from corruption  
during low voltage conditions by inhibiting all externally initiated  
STORE and write operations. The low voltage condition is  
detected  
when  
VCC  
<
VSWITCH  
.
If  
the  
CY14V104LA/CY14V104NA is in a write mode (both CE and WE  
are LOW) at power-up, after a RECALL or STORE, the write is  
inhibited until the SRAM is enabled after tLZHSB (HSB to output  
active). When VCCQ < VIODIS, I/Os are disabled (no STORE  
takes place). This protects against inadvertent writes during  
brown out conditions on VCCQ supply.  
The AutoStore is re-enabled by initiating an AutoStore enable  
sequence. A sequence of read operations is performed in a  
manner similar to the software RECALL initiation. To initiate the  
AutoStore enable sequence, the following sequence of CE  
controlled read operations must be performed:  
1. Read address 0x4E38 Valid READ  
2. Read address 0xB1C7 Valid READ  
3. Read address 0x83E0 Valid READ  
4. Read address 0x7C1F Valid READ  
5. Read address 0x703F Valid READ  
6. Read address 0x4B46 AutoStore Enable  
Note  
8. The six consecutive address locations must be in the order listed. WE must be HIGH during all six cycles to enable a non-volatile cycle.  
Document Number: 001-53954 Rev. *H  
Page 6 of 23  
CY14V104LA  
CY14V104NA  
Transient voltage (< 20 ns) on  
any pin to ground potential ...............2.0 V to VCCQ + 2.0 V  
Maximum Ratings  
Exceeding maximum ratings may impair the useful life of the  
device. These user guidelines are not tested.  
Package power dissipation  
capability (TA = 25 °C) ................................................. 1.0 W  
Storage temperature ................................ –65 C to +150 C  
Maximum accumulated storage time  
Surface mount Pb soldering  
temperature (3 seconds) ......................................... +260 C  
DC output current (1 output at a time, 1s duration) .... 15 mA  
At 150 C ambient temperature ...................... 1000 h  
At 85 C ambient temperature ..................... 20 Years  
Maximum junction temperature ................................. 150 C  
Supply voltage on VCC relative to VSS ...........–0.5 V to 4.1 V  
Supply voltage on VCCQ relative to VSS ......–0.5 V to 2.45 V  
Static discharge voltage  
(per MIL-STD-883, Method 3015) ......................... > 2001 V  
Latch up current..................................................... > 140 mA  
Operating Range  
Voltage applied to outputs  
Range Ambient Temperature  
VCC  
VCCQ  
in High Z state ..................................–0.5 V to VCCQ + 0.5 V  
Industrial  
–40 C to +85 C  
3.0 V – 3.6 V 1.65 V – 1.95 V  
Input voltage .....................................–0.5 V to VCCQ + 0.5 V  
DC Electrical Characteristics  
Over the Operating Range  
Parameter  
VCC  
Description  
Test Conditions  
Min  
3.0  
1.65  
Typ [9]  
Max  
3.6  
1.95  
70  
Unit  
V
Power supply voltage  
3.3  
1.8  
VCCQ  
V
ICC1  
Average VCC current  
Average VCCQ current  
tRC = 25 ns  
tRC = 45 ns  
Values obtained without output loads  
(IOUT = 0 mA)  
mA  
mA  
mA  
mA  
mA  
52  
ICCQ1  
15  
10  
ICC2  
ICC3  
ICCQ3  
ICC4  
ISB  
Average VCC current during  
STORE  
All inputs don’t care, VCC = Max  
Average current for duration tSTORE  
10  
Average VCC current at  
tRC= 200 ns, VCC(Typ), 25 °C  
All inputs cycling at CMOS levels.  
Values obtained without output loads  
(IOUT = 0 mA).  
35  
5
8
8
mA  
mA  
mA  
mA  
Average VCCQ current at  
RC= 200 ns, VCCQ(Typ), 25 °C  
t
Average VCAP current during  
AutoStore cycle  
All inputs don’t care. Average current for  
duration tSTORE  
VCC standby current  
CE > (VCC – 0.2 V).  
VIN < 0.2 V or > (VCC – 0.2 V). Standby  
current level after non-volatile cycle is  
complete. Inputs are static. f = 0 MHz.  
[10]  
IIX  
Input leakage current  
(except HSB)  
VCCQ = Max, VSS < VIN < VCCQ  
–1  
+1  
A  
Input leakage current (for HSB) VCCQ = Max, VSS < VIN < VCCQ  
VCCQ = Max, VSS < VOUT < VCCQ  
Off-state output leakage current CE or OE > VIH or BHE/BLE > VIH or WE  
–100  
–1  
+1  
+1  
A  
A  
IOZ  
,
< VIL  
[11]  
VCAP  
Storage capacitor  
Between VCAP pin and VSS  
61  
68  
180  
VCC  
F  
V
[9, 12]  
VVCAP  
Maximum voltage driven on VCAP VCC = Max  
pin by the device  
Notes  
9. Typical values are at 25 °C, V = V  
and V  
= V  
. Not 100% tested.  
CC  
CC(Typ)  
CCQ  
CCQ(Typ)  
10. The HSB pin has I  
= -4 µA for V of 1.07 V when both active HIGH and LOW drivers are disabled. When they are enabled standard V and V are valid. This  
OUT  
O
H
O
H
O
L
parameter is characterized but not tested.  
11. Min V value guarantees that there is a sufficient charge available to complete a successful AutoStore operation. Max V  
value guarantees that the capacitor  
CAP  
CAP  
on V  
is charged to a minimum voltage during a Power-Up RECALL cycle so that an immediate power-down cycle can complete a successful AutoStore. Therefore  
CAP  
it is always recommended to use a capacitor within the specified min and max limits. Refer application note AN43593 for more details on V  
options.  
CAP  
12. Maximum voltage on V  
pin (V  
) is provided for guidance when choosing the V  
capacitor. The voltage rating of the V capacitor across the operating  
CAP  
VCAP  
CAP  
CAP  
temperature range should be higher than the V  
voltage.  
VCAP  
Document Number: 001-53954 Rev. *H  
Page 7 of 23  
CY14V104LA  
CY14V104NA  
DC Electrical Characteristics (continued)  
Over the Operating Range  
Parameter  
VIH  
Description  
Input HIGH voltage  
Test Conditions  
Min  
0.7 × VCCQ  
– 0.3  
Typ [9]  
Max  
VCCQ + 0.3  
0.3 × VCCQ  
Unit  
V
VIL  
Input LOW voltage  
V
VOH  
Output HIGH voltage  
IOUT = –1 mA  
VCCQ  
0.45  
V
VOL  
Output LOW voltage  
IOUT = 2 mA  
0.45  
V
Data Retention and Endurance  
Over the Operating Range  
Parameter  
Description  
Min  
20  
Unit  
Years  
K
DATAR  
NVC  
Data retention  
Non-volatile STORE operation  
1,000  
Capacitance  
Parameter[13]  
Description  
Test Conditions  
Max  
Unit  
CIN  
Input capacitance (except BLE, TA = 25 C, f = 1 MHz, VCC = VCC (Typ), VCCQ = VCCQ (Typ)  
BHE and HSB)  
7
pF  
Input capacitance (for BLE, BHE  
and HSB)  
8
pF  
COUT  
Output capacitance (except HSB)  
Output capacitance (for HSB)  
7
8
pF  
pF  
Thermal Resistance  
In the following table, the thermal resistance parameters are listed.  
Parameter[13]  
Description  
Thermal resistance  
(junction to ambient)  
Test Conditions  
48-ball FBGA Unit  
JA  
Test conditions follow standard test methods and proce-  
dures for measuring thermal impedance, in accordance  
with EIA/JESD51.  
46.09  
C/W  
JC  
Thermal resistance  
(junction to case)  
7.84  
C/W  
Note  
13. These parameters are guaranteed by design but not tested.  
Document Number: 001-53954 Rev. *H  
Page 8 of 23  
CY14V104LA  
CY14V104NA  
AC Test Loads  
Figure 3. AC Test Loads  
450  
for tri-state specs  
450   
1.8 V  
1.8 V  
R1  
R1  
Output  
Output  
R2  
450   
R2  
450   
5 pF  
30 pF  
AC Test Conditions  
Input pulse levels ................................................0 V to 1.8 V  
Input rise and fall times (10%–90%) ......................... <1.8 ns  
Input and output timing reference levels ....................... 0.9 V  
Document Number: 001-53954 Rev. *H  
Page 9 of 23  
CY14V104LA  
CY14V104NA  
AC Switching Characteristics  
Over the Operating Range  
Parameters [14]  
25 ns  
45 ns  
Description  
Unit  
Max  
Cypress  
Alt Parameter  
Parameter  
Min  
Max  
Min  
SRAM Read Cycle  
tACE  
tACS  
tRC  
tAA  
tOE  
tOH  
tLZ  
tHZ  
tOLZ  
tOHZ  
tPA  
tPS  
Chip enable access time  
25  
25  
45  
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
[15]  
tRC  
Read cycle time  
[16]  
tAA  
Address access time  
25  
12  
45  
20  
tDOE  
Output enable to data valid  
Output hold after address change  
Chip enable to output active  
Chip disable to output inactive  
Output enable to output active  
Output disable to output inactive  
Chip enable to power active  
Chip disable to power standby  
Byte enable to data valid  
[16]  
tOHA  
3
3
[17, 18]  
tLZCE  
tHZCE  
tLZOE  
3
3
[17, 18]  
[17, 18]  
[17, 18]  
10  
15  
0
0
tHZOE  
10  
15  
[17]  
tPU  
0
0
[17]  
tPD  
25  
12  
45  
20  
tDBE  
[17]  
tLZBE  
Byte enable to output active  
Byte disable to output inactive  
0
0
[17]  
tHZBE  
10  
15  
SRAM Write Cycle  
tWC  
tWC  
tWP  
tCW  
tDW  
tDH  
tAW  
tAS  
tWR  
tWZ  
tOW  
Write cycle time  
25  
20  
20  
10  
0
45  
30  
30  
15  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tPWE  
tSCE  
tSD  
Write pulse width  
Chip enable to end of write  
Data setup to end of write  
Data hold after end of write  
Address setup to end of write  
Address setup to start of write  
Address hold after end of write  
Write enable to output disable  
Output active after end of write  
Byte enable to end of write  
tHD  
tAW  
20  
0
30  
0
tSA  
tHA  
0
0
[17, 18, 19]  
tHZWE  
10  
15  
[17, 18]  
tLZWE  
tBW  
3
3
20  
30  
Notes  
14. Test conditions assume signal transition time of 1.8 ns or less, timing reference levels of V  
/2, input pulse levels of 0 to V  
, and output loading of the specified  
CC Q(typ)  
CCQ  
I
/I and load capacitance shown in Figure 3 on page 9.  
OL OH  
15. WE must be HIGH during SRAM read cycles.  
16. Device is continuously selected with CE, OE and BHE / BLE LOW.  
17. These parameters are guaranteed by design but not tested.  
18. Measured ±200 mV from steady state output voltage.  
19. If WE is LOW when CE goes LOW, the outputs remain in the high impedance state.  
20. HSB must remain HIGH during read and write cycles.  
Document Number: 001-53954 Rev. *H  
Page 10 of 23  
CY14V104LA  
CY14V104NA  
Switching Waveforms  
Address  
Figure 4. SRAM Read Cycle #1 (Address Controlled) [21, 22, 23]  
tRC  
Address Valid  
tAA  
Output Data Valid  
Previous Data Valid  
tOHA  
Data Output  
Figure 5. SRAM Read Cycle #2 (CE and OE Controlled) [21, 23, 24]  
Address  
CE  
Address Valid  
tRC  
tHZCE  
tACE  
tAA  
tLZCE  
tHZOE  
tDOE  
OE  
tHZBE  
tLZOE  
tDBE  
BHE, BLE  
tLZBE  
High Impedance  
Data Output  
Output Data Valid  
tPU  
tPD  
Active  
ICC  
Standby  
Notes  
21. WE must be HIGH during SRAM read cycles.  
22. Device is continuously selected with CE, OE and BHE / BLE LOW.  
23. HSB must remain HIGH during read and write cycles.  
24. Typical values are at 25 °C, V = V  
and V  
= V  
. Not 100% tested.  
CC  
CC(Typ)  
CCQ  
CCQ(Typ)  
Document Number: 001-53954 Rev. *H  
Page 11 of 23  
CY14V104LA  
CY14V104NA  
Switching Waveforms (continued)  
Figure 6. SRAM Write Cycle #1 (WE Controlled) [25, 26, 27, 28]  
tWC  
Address  
Address Valid  
tSCE  
tHA  
CE  
tBW  
BHE, BLE  
tAW  
tPWE  
WE  
Data Input  
Data Output  
tSA  
tHD  
tSD  
Input Data Valid  
tLZWE  
tHZWE  
High Impedance  
Previous Data  
Figure 7. SRAM Write Cycle #2 (CE Controlled) [25, 26, 27, 28]  
tWC  
Address Valid  
Address  
tSA  
tSCE  
tHA  
CE  
tBW  
BHE, BLE  
tPWE  
WE  
tHD  
tSD  
Input Data Valid  
Data Input  
High Impedance  
Data Output  
Notes  
25. HSB must remain HIGH during read and write cycles.  
26. BHE and BLE are applicable for x16 configuration only.  
27. If WE is LOW when CE goes LOW, the outputs remain in the high impedance state.  
28. CE or WE must be >V during address transitions.  
IH  
Document Number: 001-53954 Rev. *H  
Page 12 of 23  
CY14V104LA  
CY14V104NA  
Switching Waveforms (continued)  
Figure 8. SRAM Write Cycle #3 (BHE and BLE Controlled) [29, 30, 31, 32]  
tWC  
Address  
CE  
Address Valid  
tSCE  
tSA  
tHA  
tBW  
BHE, BLE  
WE  
tAW  
tPWE  
tSD  
tHD  
Data Input  
Input Data Valid  
High Impedance  
Data Output  
Notes  
29. HSB must remain HIGH during read and write cycles.  
30. BHE and BLE are applicable for × 16 configuration only.  
31. If WE is LOW when CE goes LOW, the outputs remain in the high impedance state.  
32. CE or WE must be >V during address transitions.  
IH  
Document Number: 001-53954 Rev. *H  
Page 13 of 23  
CY14V104LA  
CY14V104NA  
AutoStore/Power-Up RECALL  
Over the Operating Range  
CY14V104LA/CY14V104NA  
Parameter  
Description  
Unit  
Min  
Max  
20  
[33]  
tHRECALL  
Power-Up RECALL duration  
STORE cycle duration  
ms  
ms  
ns  
V
[34]  
tSTORE  
8
[35]  
tDELAY  
VSWITCH  
Time allowed to complete SRAM write cycle  
Low voltage trigger level for VCC  
I/O disable voltage on VCCQ  
VCC rise time  
25  
2.90  
1.50  
[36]  
VIODIS  
V
[39]  
tVCCRISE  
150  
s  
V
[39]  
VHDIS  
HSB output disable voltage on VCC  
HSB to output active time  
1.9  
5
[39]  
tLZHSB  
s  
ns  
[39]  
tHHHD  
HSB high active time  
500  
Switching Waveforms  
Figure 9. AutoStore or Power-Up RECALL [37]  
VCC  
VSWITCH  
VHDIS  
VCCQ  
V
IODIS  
35  
35  
tVCCRISE  
tSTORE  
Note  
tSTORE  
38  
Note  
tHHHD  
tHHHD  
Note  
38  
HSB OUT  
VCCQ  
Note  
tDELAY  
tLZHSB  
tLZHSB  
AutoStore  
tDELAY  
POWER-  
UP  
RECALL  
tHRECALL  
tHRECALL  
Read & Write  
Inhibited  
(
RWI)  
Read & Write  
Read  
&
Write  
POWER-UP  
RECALL  
POWER  
DOWN  
POWER-UP  
RECALL  
Read  
&
VCC  
Write AutoStore  
VCCQ  
BROWN  
OUT  
AutoStore  
BROWN  
OUT  
I/O Disable  
Notes  
33. t  
starts from the time V rises above V .  
SWITCH  
HRECALL  
CC  
34. If an SRAM write has not taken place since the last non-volatile cycle, no AutoStore or Hardware Store takes place.  
35. On a Hardware Store and AutoStore initiation, SRAM write operation continues to be enabled for time t  
.
DELAY  
36. HSB will not be defined below V  
voltage.  
IODIS  
37. Read and write cycles are ignored during STORE, RECALL, and while V is below V  
.
SWITCH  
CC  
38. During power-up and power-down, HSB glitches when HSB pin is pulled up through an external resistor.  
39. These parameters are guaranteed by design but not tested.  
Document Number: 001-53954 Rev. *H  
Page 14 of 23  
CY14V104LA  
CY14V104NA  
Software Controlled STORE/RECALL Cycle  
Over the Operating Range  
25 ns  
45 ns  
Unit  
Parameters [40, 41]  
Description  
Min  
25  
0
Max  
Min  
45  
0
Max  
tRC  
STORE/RECALL initiation cycle time  
Address setup time  
ns  
ns  
ns  
ns  
s  
tSA  
tCW  
Clock pulse width  
20  
0
30  
0
tHA  
Address hold time  
tRECALL  
RECALL duration  
200  
200  
Switching Waveforms  
Figure 10. CE and OE Controlled Software STORE/RECALL Cycle [41]  
tRC  
tRC  
Address  
CE  
Address #1  
tCW  
Address #6  
tCW  
tSA  
tHA  
tHA  
tHA  
tSA  
tHA  
OE  
tHHHD  
tHZCE  
HSB (STORE only)  
DQ (DATA)  
42  
Note  
tDELAY  
tLZCE  
tLZHSB  
High Impedance  
tSTORE/tRECALL  
RWI  
Figure 11. AutoStore Enable/Disable Cycle  
tRC  
Address #1  
tCW  
tRC  
Address  
Address #6  
tCW  
tSA  
CE  
tSA  
tHA  
tHA  
tHA  
tHA  
OE  
tSS  
tHZCE  
42  
Note  
tLZCE  
tDELAY  
DQ (DATA)  
Notes  
40. The software sequence is clocked with CE controlled or OE controlled reads.  
41. The six consecutive addresses must be read in the order listed in Table 1 on page 5. WE must be HIGH during all six consecutive cycles.  
42. DQ output data at the sixth read may be invalid since the output is disabled at t  
time.  
DELAY  
Document Number: 001-53954 Rev. *H  
Page 15 of 23  
CY14V104LA  
CY14V104NA  
Hardware STORE Cycle  
Over the Operating Range  
CY14V104LA/CY14V104NA  
Parameters  
Description  
Unit  
Min  
Max  
25  
tDHSB  
tPHSB  
HSB to output active time when write latch not set  
Hardware STORE pulse width  
ns  
ns  
s  
15  
[43, 44]  
tSS  
Soft sequence processing time  
100  
Switching Waveforms  
Figure 12. Hardware STORE Cycle [45]  
Write latch set  
tPHSB  
HSB (IN)  
tSTORE  
tHHHD  
tDELAY  
HSB (OUT)  
DQ (Data Out)  
RWI  
tLZHSB  
Write latch not set  
tPHSB  
CC only by Internal  
HSB pin is driven HIGH to V  
100 kOhm resistor,  
HSB (IN)  
HSB driver is disabled  
SRAM is disabled as long as HSB (IN) is driven low.  
tDELAY  
tDHSB  
tDHSB  
HSB (OUT)  
RWI  
Figure 13. Soft Sequence Processing [43, 44]  
tSS  
tSS  
Soft Sequence  
Command  
Soft Sequence  
Command  
Address  
Address #1  
tSA  
Address #6  
tCW  
Address #1  
Address #6  
tCW  
CE  
VCC  
Notes  
43. This is the amount of time it takes to take action on a soft sequence command. Vcc power must remain HIGH to effectively register command.  
44. Commands such as STORE and RECALL lock out I/O until operation is complete which further increases this time. See the specific command.  
45. If an SRAM write has not taken place since the last non-volatile cycle, no AutoStore or Hardware Store takes place.  
Document Number: 001-53954 Rev. *H  
Page 16 of 23  
CY14V104LA  
CY14V104NA  
Truth Table For SRAM Operations  
HSB should remain HIGH for SRAM Operations.  
Table 2. Truth Table for × 8 Configuration  
CE  
H
L
WE  
X
OE  
X
Inputs/Outputs[46]  
Mode  
Deselect/Power-down  
Read  
Power  
High Z  
Standby  
H
L
Data out (DQ0–DQ7)  
High Z  
Active  
Active  
Active  
L
H
H
Output disabled  
Write  
L
L
X
Data in (DQ0–DQ7)  
Table 3. Truth Table for × 16 Configuration  
CE  
H
L
WE  
X
OE  
X
BHE[47] BLE[47]  
Inputs/Outputs[46]  
High Z  
Mode  
Power  
X
H
L
X
H
L
Deselect/Power-down  
Output disabled  
Read  
Standby  
Active  
Active  
Active  
X
X
High Z  
L
H
L
Data out (DQ0–DQ15)  
L
H
L
H
L
Data out (DQ0–DQ7);  
DQ8–DQ15 in High Z  
Read  
L
H
L
L
H
Data out (DQ8–DQ15);  
DQ0–DQ7 in High Z  
Read  
Active  
L
L
L
L
L
H
H
H
L
H
H
H
X
X
L
H
L
L
L
H
L
L
High Z  
High Z  
High Z  
Output disabled  
Output disabled  
Output disabled  
Write  
Active  
Active  
Active  
Active  
Active  
L
Data in (DQ0–DQ15)  
L
H
Data in (DQ0–DQ7);  
DQ8–DQ15 in High Z  
Write  
L
L
X
L
H
Data in (DQ8–DQ15);  
DQ0–DQ7 in High Z  
Write  
Active  
Notes  
46. Data DQ –DQ for × 8 configuration and Data DQ –DQ for × 16 configuration.  
0
7
0
15  
47. BHE and BLE are applicable for × 16 configuration only.  
Document Number: 001-53954 Rev. *H  
Page 17 of 23  
CY14V104LA  
CY14V104NA  
Ordering Information  
Speed  
(ns)  
Package  
Diagram  
Ordering Code  
Package Type  
Operating Range  
25  
CY14V104LA-BA25XIT  
CY14V104LA-BA25XI  
CY14V104NA-BA25XIT  
CY14V104NA-BA25XI  
CY14V104LA-BA45XIT  
CY14V104LA-BA45XI  
CY14V104NA-BA45XIT  
CY14V104NA-BA45XI  
51-85128 48-ball FBGA  
Industrial  
45  
Contact your local Cypress sales representative for availability of these parts.  
Ordering Code Definitions  
CY 14 V 104 L A - BA 25 X I T  
Option:  
T - Tape and Reel  
Blank - Std.  
Temperature:  
I - Industrial (–40 to 85 °C)  
Speed:  
25 - 25 ns  
X - Pb-free  
45 - 45 ns  
Package:  
BA - 48-ball FBGA  
Die Revision:  
Blank - No Rev  
A - 1st Rev  
Data Bus:  
L - × 8  
N - × 16  
Density:  
104 - 4 Mb  
Voltage:  
V - 3.3 V VCC, 1.8 V VCCQ  
14 - NVSRAM  
Cypress  
Document Number: 001-53954 Rev. *H  
Page 18 of 23  
CY14V104LA  
CY14V104NA  
Package Diagrams  
Figure 14. 48-ball FBGA (6 × 10 × 1.2 mm) BA48B, 51-85128  
51-85128 *F  
Document Number: 001-53954 Rev. *H  
Page 19 of 23  
CY14V104LA  
CY14V104NA  
Acronyms  
Document Conventions  
Units of Measure  
Acronym  
Description  
Byte High Enable  
BHE  
BLE  
Symbol  
°C  
Unit of Measure  
Byte Low Enable  
Chip Enable  
degree Celsius  
kilo ohms  
CE  
k  
MHz  
A  
mA  
F  
s  
ms  
ns  
CMOS  
Complementary Metal Oxide Semiconductor  
Electronic Industries Alliance  
Fine-Pitch Ball Grid Array  
Hardware Store Busy  
Mega Hertz  
micro Amperes  
milli Amperes  
micro Farads  
micro seconds  
milli seconds  
nano seconds  
ohms  
EIA  
FBGA  
HSB  
I/O  
Input/Output  
nvSRAM  
non-volatile Static Random Access Memory  
Output Enable  
OE  
RoHS  
Restriction of Hazardous Substances  
Static Random Access Memory  
Write Enable  
SRAM  
WE  
%
percent  
pF  
V
pico Farads  
Volts  
W
Watts  
Document Number: 001-53954 Rev. *H  
Page 20 of 23  
CY14V104LA  
CY14V104NA  
Document History Page  
Document Title: CY14V104LA/CY14V104NA, 4-Mbit (512 K × 8 / 256 K × 16) nvSRAM  
Document Number: 001-53954  
Orig. of  
Change  
Submission  
Date  
Rev.  
ECN No.  
Description of Change  
**  
2729117  
GVCH /  
AESA  
07/02/2009 New data sheet.  
*A  
2826127  
GVCH /  
AESA  
12/11/2009 Removed commercial temperature related specs  
Changed part number from CY14A104L/CY14A104N to  
CY14V104LA/CY14V104NA  
Removed 20 ns Access speed specs  
Removed 44/54 TSOP II package related information  
Updated STORE cycles to QuantumTrap from 200K to 1 million  
Figure 3: Updated Autostore Mode  
Page 4: Updated Hardware STORE (HSB) Operation description  
Page 5: Updated Software STORE Operation description  
Maximum Ratings: Supply Voltage on VCCQ Relative to GND from –0.5V to  
2.5V to –0.5V to 2.45V  
Added ICCQ1 and ICCQ3 for VCCQ operation  
Updated ICC4 test condition  
Updated footnote 8  
Updated VIH/VIL as 70%/30% of VCCQ  
Updated VOH test condition.  
Updated Input Rise and Fall Times (10% - 90%) from 3ns to 1.8 ns  
Updated footnote 19, 22 and added footnote 20, 25  
Updated VIODIS parameter value from 1.6V to 1.5V  
Updated Figure 10, 11 and 12  
*B  
*C  
2858300  
2951754  
GVCH  
01/19/2010 Changed latch up current from 200 mA to 140 mA.  
Changed status from Advance to Preliminary.  
Added Contents.  
GVCH /  
AESA  
06/14/2010 Pin Definitions: Added more clarity on HSB pin operation  
Hardware STORE Operation: Added more clarity on HSB pin operation  
Table 1: Added more clarity on status of BHE/BLE pin operation  
Updated HSB pin operation in Figure 9  
Updated footnote 22  
*D  
3115647  
GVCH  
12/20/2010 Change datasheet status from “Preliminary” to “Final”  
48 FBGA package: 16 Mb address expansion is not supported  
Changed ISB and ICC4 value from 5 mA to 8 mA  
Changed ICCQ1 value from 25 mA to 15 mA for 25 ns access speed and  
15 mA to 10 mA for 45 ns access speed.  
Added Acronyms and Units of Measure table  
*E  
*F  
3150253  
3303659  
GVCH  
GVCH  
01/21/11  
Updated input capacitance for BHE and BLE pin  
07/06/2011 Updated DC Electrical Characteristics (Added Note 11 and referred the same  
note in VCAP parameter).  
Updated AC Switching Characteristics (Added Note 14 and referred the same  
note in Parameters).  
Updated Thermal Resistance (Values of JA for 48-ball FBGA package).  
Updated Package Diagrams.  
Document Number: 001-53954 Rev. *H  
Page 21 of 23  
CY14V104LA  
CY14V104NA  
Document History Page (continued)  
Document Title: CY14V104LA/CY14V104NA, 4-Mbit (512 K × 8 / 256 K × 16) nvSRAM  
Document Number: 001-53954  
Orig. of  
Change  
Submission  
Date  
Rev.  
ECN No.  
Description of Change  
*G  
4075544  
GVCH  
07/24/2013 Updated Pin Definitions:  
Updated description of HSB pin (Added more clarity).  
Updated Device Operation:  
Updated AutoStore Operation (Removed sentence “The HSB signal is  
monitored by the system to detect if an AutoStore cycle is in progress.”).  
Removed Best Practices.  
Updated Maximum Ratings:  
Removed “Ambient temperature with power applied” and included “Maximum  
junction temperature”.  
Updated DC Electrical Characteristics:  
Added VVCAP parameter and its details.  
Referred Note 9 in VVCAP parameter, added Note 12 and referred the same  
note in VVCAP parameter.  
Updated in new template.  
Completing Sunset Review.  
*H  
4557366  
GVCH  
11/05/2014 Added related documentation hyperlink in page 1  
Document Number: 001-53954 Rev. *H  
Page 22 of 23  
CY14V104LA  
CY14V104NA  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
Automotive  
cypress.com/go/automotive  
cypress.com/go/clocks  
cypress.com/go/interface  
cypress.com/go/powerpsoc  
cypress.com/go/plc  
psoc.cypress.com/solutions  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP  
Clocks & Buffers  
Interface  
Cypress Developer Community  
Lighting & Power Control  
Community | Forums | Blogs | Video | Training  
Technical Support  
Memory  
cypress.com/go/memory  
cypress.com/go/psoc  
cypress.com/go/support  
PSoC  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/go/touch  
cypress.com/go/USB  
cypress.com/go/wireless  
© Cypress Semiconductor Corporation, 2009-2014. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number: 001-53954 Rev. *H  
Revised November 5, 2014  
Page 23 of 23  
All products and company names mentioned in this document may be the trademarks of their respective holders.  

相关型号:

CY14V104LA-BA25XIT

4-Mbit (512 K x 8 / 256 K x 16) nvSRAM 25 ns and 45 ns access times
CYPRESS

CY14V104LA-BA25XIT

nvSRAM (non-volatile SRAM)
INFINEON

CY14V104LA-BA45XI

4-Mbit (512 K x 8 / 256 K x 16) nvSRAM 25 ns and 45 ns access times
CYPRESS

CY14V104LA-BA45XI

nvSRAM (non-volatile SRAM)
INFINEON

CY14V104LA-BA45XIT

4-Mbit (512 K x 8 / 256 K x 16) nvSRAM 25 ns and 45 ns access times
CYPRESS

CY14V104LA-BA45XIT

nvSRAM (non-volatile SRAM)
INFINEON

CY14V104NA

4-Mbit (512 K x 8 / 256 K x 16) nvSRAM 25 ns and 45 ns access times
CYPRESS

CY14V104NA-BA25XI

4-Mbit (512 K x 8 / 256 K x 16) nvSRAM 25 ns and 45 ns access times
CYPRESS

CY14V104NA-BA25XI

nvSRAM (non-volatile SRAM)
INFINEON

CY14V104NA-BA25XIT

4-Mbit (512 K x 8 / 256 K x 16) nvSRAM 25 ns and 45 ns access times
CYPRESS

CY14V104NA-BA45XI

4-Mbit (512 K x 8 / 256 K x 16) nvSRAM 25 ns and 45 ns access times
CYPRESS

CY14V104NA-BA45XI

nvSRAM (non-volatile SRAM)
INFINEON