CY15B102QM-50SWXI [INFINEON]

2Mb 3.3V Industrial 50MHz SPI EXCELON™ F-RAM in 8-pin SOIC with WEL enabled;
CY15B102QM-50SWXI
型号: CY15B102QM-50SWXI
厂家: Infineon    Infineon
描述:

2Mb 3.3V Industrial 50MHz SPI EXCELON™ F-RAM in 8-pin SOIC with WEL enabled

文件: 总35页 (文件大小:371K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY15B102QM  
2Mb EXCELON™ LP Ferroelectric RAM  
(F-RAM)  
WEL enabled, Serial (SPI), 256K × 8, industrial  
Features  
• 2-Mbit ferroelectric random access memory (F-RAM) logically organized as 256K × 8  
- Virtually unlimited endurance of 1000 trillion (1015) read/write cycles  
- 151-year data retention (see “Data retention and endurance” on page 23)  
- Infineon instant non-volatile write technology  
- Advanced high-reliability ferroelectric process  
• Fast SPI (FSPI)  
- Up to 50 MHz frequency  
- Supports SPI mode 0 (0, 0) and mode 3 (1, 1)  
• Sophisticated write protection scheme  
- Hardware protection using the Write Protect (WP) pin  
- Software block protection for 1/4, 1/2, or entire array  
• Device ID and serial number  
- Device ID contains manufacturer ID and product ID  
- Unique ID  
- Serial number  
• Dedicated 256-byte special sector F-RAM  
- Dedicated special sector write and read  
- Stored content can survive up to three standard reflow soldering cycles  
• Low-power consumption  
- 2.4 mA (typ) active current at 40 MHz  
- 2.3 µA (typ) standby current  
- 0.70 µA (typ) deep power down mode current  
- 0.1 µA (typ) hibernate mode current  
• Low-voltage operation  
- CY15B102QM: VDD = 1.8 V to 3.6 V  
• Industrial operating temperature: –40°C to +85°C  
• Package  
- 8-pin small outline integrated circuit (SOIC) package  
• Restriction of hazardous substances (RoHS) compliant  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 1  
002-33164 Rev. *B  
2022-09-12  
2Mb EXCELON™ LP Ferroelectric RAM (F-RAM)  
WEL enabled, Serial (SPI), 256K × 8, industrial  
Functional description  
Functional description  
The EXCELON™ LP CY15B102QM is a low power, 2-Mbit nonvolatile memory employing an advanced ferroelectric  
process. A ferroelectric random access memory or F-RAM is nonvolatile and performs reads and writes similar to  
a RAM. It provides reliable data retention for 151 years while eliminating the complexities, overhead, and  
system-level reliability problems caused by serial flash, EEPROM, and other nonvolatile memories.  
Unlike serial flash and EEPROM, the CY15B102QM performs write operations at bus speed. No write delays are  
incurred. Data is written to the memory array immediately after each byte is successfully transferred to the  
device. The next bus cycle can commence without the need for data polling. In addition, the product offers  
substantial write endurance compared to other nonvolatile memories. The CY15B102QM is capable of supporting  
1015 read/write cycles, or 1000 million times more write cycles than EEPROM.  
These capabilities make the CY15B102QM ideal for nonvolatile memory applications, requiring frequent or rapid  
writes. Examples range from data collection, where the number of write cycles may be critical, to demanding  
industrial controls where the long write time of serial flash or EEPROM can cause data loss.  
The CY15B102QM provides substantial benefits to users of serial EEPROM or flash as a hardware drop-in  
replacement. The CY15B102QM uses the high-speed SPI bus, which enhances the high-speed write capability of  
F-RAM technology. The device incorporates a read-only Device ID and Unique ID features, which allow the host  
to determine the manufacturer, product density, product revision, and unique ID for each part. The device also  
provides a writable, 8-byte serial number registers, which can be used to identify a specific board or a system.  
Logic block diagram  
WP  
256-Byte  
Special Sector  
F-RAM  
CS  
Instruction Decoder  
F-RAM Control  
Control Logic  
Write Protect  
SCK  
SI  
256K 8  
F-RAM Array  
Data I/O Register  
SO  
Nonvolatile  
Status Register  
Device ID and Serial  
Number Registers  
Datasheet  
2
002-33164 Rev. *B  
2022-09-12  
2Mb EXCELON™ LP Ferroelectric RAM (F-RAM)  
WEL enabled, Serial (SPI), 256K × 8, industrial  
Table of contents  
Table of contents  
Features ...........................................................................................................................................1  
Functional description.......................................................................................................................2  
Logic block diagram ..........................................................................................................................2  
Table of contents...............................................................................................................................3  
1 Pinout............................................................................................................................................4  
2 Pin definitions ................................................................................................................................5  
3 Functional overview .......................................................................................................................6  
3.1 Memory architecture ..............................................................................................................................................6  
3.2 SPI bus.....................................................................................................................................................................6  
3.2.1 SPI overview.........................................................................................................................................................6  
3.3 Terms used in SPI protocol ....................................................................................................................................7  
3.3.1 SPI master ............................................................................................................................................................7  
3.3.2 SPI slave ...............................................................................................................................................................7  
3.3.3 Chip select (CS) ....................................................................................................................................................7  
3.3.4 Serial clock (SCK) .................................................................................................................................................7  
3.3.5 Data transmission (SI/SO) ...................................................................................................................................7  
3.3.6 Most significant bit (MSb) ....................................................................................................................................8  
3.3.7 Serial Opcode.......................................................................................................................................................8  
3.3.8 Invalid Opcode .....................................................................................................................................................8  
3.3.9 Status Register .....................................................................................................................................................8  
3.4 SPI modes................................................................................................................................................................9  
3.5 Power-up to first access .........................................................................................................................................9  
4 Functional description ..................................................................................................................10  
4.1 Command structure..............................................................................................................................................10  
4.1.1 Register access commands ...............................................................................................................................12  
4.1.2 Memory operation .............................................................................................................................................12  
4.1.3 Memory write operation commands ................................................................................................................13  
4.1.4 Memory read operation commands .................................................................................................................14  
4.1.5 Special sector memory access commands.......................................................................................................15  
4.1.6 Identification and serial number commands...................................................................................................16  
4.1.7 Low power mode commands............................................................................................................................18  
5 Maximum ratings..........................................................................................................................20  
6 Operating range ...........................................................................................................................21  
7 DC electrical characteristics...........................................................................................................22  
8 Data retention and endurance .......................................................................................................23  
9 Capacitance .................................................................................................................................24  
10 Thermal resistance......................................................................................................................25  
11 AC test conditions .......................................................................................................................26  
12 AC switching characteristics ........................................................................................................27  
13 Power cycle timing......................................................................................................................29  
14 Ordering information ..................................................................................................................30  
15 Package diagram ........................................................................................................................31  
16 Acronyms ...................................................................................................................................32  
17 Document conventions................................................................................................................33  
17.1 Units of measure .................................................................................................................................................33  
Revision history ..............................................................................................................................34  
Datasheet  
3
002-33164 Rev. *B  
2022-09-12  
2Mb EXCELON™ LP Ferroelectric RAM (F-RAM)  
WEL enabled, Serial (SPI), 256K × 8, industrial  
Pinout  
1
Pinout  
1
2
3
4
8
7
6
5
VDD  
CS  
SO  
DNU  
SCK  
SI  
WP  
VSS  
TOP View  
(Not to Scale)  
Figure 1  
8-pin SOIC pinout  
Datasheet  
4
002-33164 Rev. *B  
2022-09-12  
2Mb EXCELON™ LP Ferroelectric RAM (F-RAM)  
WEL enabled, Serial (SPI), 256K × 8, industrial  
Pin definitions  
2
Pin definitions  
Table 1  
Pin definitions  
I/O type  
Pin name  
Description  
ChipSelect.ThisactiveLOWinputactivatesthedevice.WhenHIGH,thedeviceenters  
low-power standby mode, ignores other inputs, and the output is tristated. When  
LOW, the device internally activates the SCK signal. A falling edge on CS must occur  
before every opcode.  
CS  
Input  
Input  
Serial Clock. All I/O activity is synchronized to the serial clock. Inputs are latched  
on the rising edge and outputs occur on the falling edge of the serial clock. The clock  
frequency may be any value between 0 MHz and 50 MHz and may be interrupted at  
any time due to its synchronous behavior.  
SCK  
Serial Input. All data is input to the device on this pin. The pin is sampled on the  
rising edge of SCK and is ignored at other times. It should always be driven to a valid  
logic level to meet the power (IDD) specifications.  
SI[1]  
Input  
Serial Output. This is the data output pin. It is driven during a read and remains  
tristated at all other times. Data transitions are driven on the falling edge of the  
serial clock SCK.  
SO[1]  
Output  
Write Protect. This Active LOW pin prevents write operation to the Status Register  
when WPEN bit in the Status Register is set to ‘1. This is critical because other write  
WP  
Input  
protection features are controlled through the Status Register. A complete  
explanation of write protection is provided in Table 3 and Table 6. This pin must  
be tied to VDD if not used.  
DNU  
VSS  
Do Not Use Do Not Use. Either leave this pin floating (not connected on the board) or tie to VDD  
.
Power  
Ground for the device. Must be connected to the ground of the system.  
supply  
Power  
VDD  
Power supply input to the device.  
supply  
Note  
1. SI may be connected to SO for a single pin data interface.  
Datasheet  
5
002-33164 Rev. *B  
2022-09-12  
2Mb EXCELON™ LP Ferroelectric RAM (F-RAM)  
WEL enabled, Serial (SPI), 256K × 8, industrial  
Functional overview  
3
Functional overview  
The CY15B102QM is a serial F-RAM memory. The memory array is logically organized as 262,144 × 8 bits and is  
accessed using an industry-standard SPI bus. The functional operation of the F-RAM is similar to serial flash and  
serial EEPROMs. The major difference between the CY15B102QM and a serial flash or EEPROM with the same  
pinout is the F-RAM’s superior write performance, high endurance, and low power consumption.  
3.1  
Memory architecture  
When accessing the CY15B102QM, the user addresses 256K locations of eight data bits each. These eight data bits  
are shifted in or out serially. The addresses are accessed using the SPI protocol, which includes a chip select (to  
permit multiple devices on the bus), an opcode, and a three-byte address. The upper five bits of the address range  
are ‘don’t care’ values. The complete address of 18 bits specifies each byte address uniquely.  
Most functions of the CY15B102QM are either controlled by the SPI interface or handled by on-board circuitry.  
The access time for the memory operation is essentially zero, beyond the time needed for the serial protocol.  
That is, the memory is read or written at the speed of the SPI bus. Unlike a serial flash or EEPROM, it is not  
necessary to poll the device for a ready condition because writes occur at bus speed. By the time a new bus  
transaction can be shifted into the device, a write operation is complete. This is explained in more detail in the  
interface section.  
3.2  
SPI bus  
The CY15B102QM is an SPI slave device and operates at speeds of up to 50 MHz. This high-speed serial bus  
provides high-performance serial communication to an SPI master. Many common microcontrollers have  
hardware SPI ports allowing a direct interface. It is simple to emulate the port using ordinary port pins for  
microcontrollers that do not have this feature. The CY15B102QM operates in SPI Modes 0 and 3.  
3.2.1  
SPI overview  
The SPI is a four-pin interface with Chip Select (CS), Serial Input (SI), Serial Output (SO), and Serial Clock (SCK)  
pins.  
The SPI is a synchronous serial interface, which uses clock and data pins for memory access and supports  
multiple devices on the data bus. A device on the SPI bus is activated using the CS pin.  
The relationship between chip select, clock, and data is dictated by the SPI mode. This device supports SPI modes  
0 and 3. In both of these modes, data is clocked into the F-RAM on the rising edge of SCK starting from the first  
rising edge after CS goes active.  
The SPI protocol is controlled by opcodes. These opcodes specify the commands from the bus master to the slave  
device. After CS is activated, the first byte transferred from the bus master is the opcode. Following the opcode,  
any addresses and data are then transferred. The CS must go inactive after an operation is complete and before  
a new opcode can be issued.  
Datasheet  
6
002-33164 Rev. *B  
2022-09-12  
2Mb EXCELON™ LP Ferroelectric RAM (F-RAM)  
WEL enabled, Serial (SPI), 256K × 8, industrial  
Functional overview  
3.3  
Terms used in SPI protocol  
The commonly used terms in the SPI protocol are as follows:  
3.3.1  
SPI master  
The SPI master device controls the operations on the SPI bus. An SPI bus may have only one master with one or  
more slave devices. All the slaves share the same SPI bus lines and the master may select any of the slave devices  
using the CS pin. All of the operations must be initiated by the master activating a slave device by pulling the CS  
pin of the slave LOW. The master also generates the SCK and all the data transmission on SI and SO lines are  
synchronized with this clock.  
3.3.2  
SPI slave  
The SPI slave device is activated by the master through the Chip Select line. A slave device gets the SCK as an  
input from the SPI master and all the communication is synchronized with this clock. An SPI slave never initiates  
a communication on the SPI bus and acts only on the instruction from the master.  
The CY15B102QM operates as an SPI slave and may share the SPI bus with other SPI slave devices.  
3.3.3  
Chip select (CS)  
To select any slave device, the master needs to pull down the corresponding CS pin. Any instruction can be issued  
to a slave device only while the CS pin is LOW. When the device is not selected, data through the SI pin is ignored  
and the serial output pin (SO) remains in a high-impedance state.  
Note: A new instruction must begin with the falling edge of CS. Therefore, only one opcode can be issued for each  
active Chip Select cycle.  
3.3.4  
Serial clock (SCK)  
The serial clock is generated by the SPI master and the communication is synchronized with this clock after CS  
goes LOW.  
The CY15B102QM supports SPI modes 0 and 3 for data communication. In both of these modes, the inputs are  
latched by the slave device on the rising edge of SCK and outputs are issued on the falling edge. Therefore, the  
first rising edge of SCK signifies the arrival of the first Most Significant Bit (MSb) of an SPI instruction on the SI pin.  
Further, all data inputs and outputs are synchronized with SCK.  
3.3.5  
Data transmission (SI/SO)  
The SPI data bus consists of two lines, SI and SO, for serial data communication. SI is also referred to as Master  
Out Slave In (MOSI) and SO is referred to as Master In Slave Out (MISO). The master issues instructions to the slave  
through the SI pin, while the slave responds through the SO pin. Multiple slave devices may share the SI and SO  
lines as described earlier.  
The CY15B102QM has two separate pins for SI and SO, which can be connected with the master as shown in  
Figure 2. For a microcontroller that has no dedicated SPI bus, a general-purpose port may be used. To reduce  
hardware resources on the controller, it is possible to connect the two data pins (SI, SO) together and tie off  
(HIGH) the WP pin. Figure 3 shows such a configuration, which uses only three pins.  
Datasheet  
7
002-33164 Rev. *B  
2022-09-12  
2Mb EXCELON™ LP Ferroelectric RAM (F-RAM)  
WEL enabled, Serial (SPI), 256K × 8, industrial  
Functional overview  
SCK  
MOSI  
MISO  
SCK  
SI  
SO  
SCK  
SI  
SO  
SPI Hostcontroller  
or  
SPI Master  
CY15B102QM  
CY15B102QM  
CS  
WP  
CS  
WP  
CS1  
WP1  
CS2  
WP2  
Figure 2  
System configuration with SPI port  
P1.0  
P1.1  
SCK  
SI  
SO  
SPI Hostcontroller  
or  
CY15B102QM  
SPI Master  
CS  
WP  
P1.2  
Figure 3  
System configuration without SPI port  
3.3.6  
Most significant bit (MSb)  
The SPI protocol requires that the first bit to be transmitted is the MSb. This is valid for both address and data  
transmission.  
The 2-Mbit serial F-RAM requires a 3-byte address for any read or write operation. Because the address is only  
18 bits, the first six bits, which are fed in are ignored by the device. Although these six bits are ‘don’t care, Infineon  
recommends that these bits be set to 0s to enable seamless transition to higher memory densities.  
3.3.7  
Serial Opcode  
After the slave device is selected with CS going LOW, the first byte received is treated as the opcode for the  
intended operation. CY15B102QM uses the standard opcodes for memory accesses.  
3.3.8  
Invalid Opcode  
If an invalid opcode is received, the opcode is ignored and the device ignores any additional serial data on the SI  
pin until the next falling edge of CS, and the SO pin remains tristated.  
3.3.9  
Status Register  
CY15B102QM has an 8-bit Status Register. The bits in the Status Register are used to configure the device. These  
bits are described in Table 4.  
Datasheet  
8
002-33164 Rev. *B  
2022-09-12  
2Mb EXCELON™ LP Ferroelectric RAM (F-RAM)  
WEL enabled, Serial (SPI), 256K × 8, industrial  
Functional overview  
3.4  
SPI modes  
CY15B102QM may be driven by a microcontroller with its SPI peripheral running in either of the following two  
modes:  
• SPI Mode 0 (CPOL = 0, CPHA = 0)  
• SPI Mode 3 (CPOL = 1, CPHA = 1)  
For both these modes, the input data is latched in on the rising edge of SCK starting from the first rising edge after  
CS goes active. If the clock starts from a HIGH state (in mode 3), the first rising edge after the clock toggles is  
considered. The output data is available on the falling edge of SCK. The two SPI modes are shown in Figure 4 and  
Figure 5. The status of the clock when the bus master is not transferring data is:  
• SCK remains at 0 for Mode 0  
• SCK remains at 1 for Mode 3  
The device detects the SPI mode from the status of the SCK pin when the device is selected by bringing the CS  
pin LOW. If the SCK pin is LOW when the device is selected, SPI Mode 0 is assumed and if the SCK pin is HIGH, it  
works in SPI Mode 3.  
CS  
0
1
2
3
4
5
6
7
SCK  
SI  
7
6
5
4
3
2
1
0
Figure 4  
SPI mode 0  
CS  
0
1
2
3
4
5
6
7
SCK  
7
6
5
4
3
2
1
0
SI  
Figure 5  
SPI mode 3  
3.5  
Power-up to first access  
The CY15B102QM is not accessible for a tPU time after power-up. Users must comply with the timing parameter,  
tPU, which is the minimum time from VDD (min) to the first CS LOW. Refer to “Power cycle timing” on page 29 for  
details.  
Datasheet  
9
002-33164 Rev. *B  
2022-09-12  
2Mb EXCELON™ LP Ferroelectric RAM (F-RAM)  
WEL enabled, Serial (SPI), 256K × 8, industrial  
Functional description  
4
Functional description  
4.1  
Command structure  
There are 13 commands, called opcodes, that can be issued by the bus master to the CY15B102QM (see Table 2).  
These opcodes control the functions performed by the memory.  
Table 2  
Name  
Opcode commands  
Opcode  
Max. Frequency  
(MHz)  
Description  
Hex  
Binary  
Register Access  
RDSR  
WRSR  
Read Status Register  
Write Status Register  
05h  
01h  
0000 0101b  
0000 0001b  
50  
50  
Memory Write  
WRITE  
Write memory data  
02h  
0000 0010b  
50  
Memory Read  
READ  
FSTRD  
Read memory data  
Fast read memory data  
03h  
0Bh  
0000 0011b  
0000 1011b  
40  
50  
Special Sector Memory Access  
SSWR  
SSRD  
Special Sector Write  
Special Sector Read  
42h  
4Bh  
0100 0010b  
0100 1011b  
50  
40  
Identification and Serial Number  
RDID  
RUID  
WRSN  
RDSN  
Read device ID  
Read Unique ID  
Write Serial Number  
Read Serial Number  
9Fh  
4Ch  
C2h  
C3h  
1001 1111b  
0100 1100b  
1100 0010b  
11000 011b  
50  
50  
50  
50  
Low Power Mode Commands  
DPD  
Enter Deep  
BAh  
B9h  
1011 1010b  
1011 1001b  
50  
50  
Power-Down  
HBN  
Enter Hibernate Mode  
Reserved  
Reserved  
Reserved  
Unused opcodes are reserved for future  
use.  
Datasheet  
10  
002-33164 Rev. *B  
2022-09-12  
2Mb EXCELON™ LP Ferroelectric RAM (F-RAM)  
WEL enabled, Serial (SPI), 256K × 8, industrial  
Functional description  
Status register and write protection  
The write protection features of the CY15B102QM are multi-tiered and are enabled through the status register.  
The Status Register is organized as follows. (The default value shipped from the factory for BP0, BP1, bits 4–5,  
and WPEN is ‘0’ and WEL, bit 6 is ‘1’).  
Table 3  
Bit 7  
WPEN (0)  
Status register  
Bit 6  
Bit 5  
X (0)  
Bit 4  
X (0)  
Bit 3  
BP1 (0)  
Bit 2  
BP0 (0)  
Bit 1  
WEL (1)  
Bit 0  
X (0)  
X (1)  
Table 4  
Status register bit definition  
Definition  
Bit  
Description  
Bit 0  
Don’t care  
This bit is non-writable and always returns ‘0’ upon read.  
WEL indicates if the device is write enabled. This bit defaults to ‘1’ (enabled)  
on power-up.  
Write Enable  
(Don’t Care)  
WEL = 1 = Write enabled  
Bit 1 (WEL)  
This bit is non-writable and always returns ‘1’ upon read.  
WEL is not reset after executing write (WRSR, WRITE, WRSN, SSWR)  
commands.  
Bit 2 (BP0) Block Protect bit ‘0’ Used for block protection. For details, see Table 5.  
Bit 3 (BP1) Block Protect bit ‘1’ Used for block protection. For details, see Table 5.  
Bit 4–5  
Bit 6  
Don’t care  
Don’t care  
These bits are non-writable and always return ‘0’ upon read.  
This bit is non-writable and always returns ‘1’ upon read.  
WriteProtect  
Enablebit  
Used to enable the function of Write Protect Pin (WP). For details, see  
Table 6.  
Bit 7 (WPEN)  
Bits 0 and 4–5 are fixed at ‘0’ and WEL, bit 6 is fixed at ‘1’; none of these bits can be modified. Note that bit 0  
(“Ready or Write in progress” bit in serial flash and EEPROM) is unnecessary, as the F-RAM writes in real-time and  
is never busy, so it reads out as a ‘0. An exception to this is when the device is waking up either from “Deep  
power-down mode (DPD, BAh)” on page 18 or “Hibernate mode (HBN, B9h)” on page 19. The BP1 and BP0  
control the software write-protection features and are nonvolatile bits. The WEL flag indicates the state of the  
Write Enable Latch. Attempting to directly write the WEL bit in the Status Register has no effect on its state. This  
bit is internally set permanently on power-up and does not clear to ‘0’ on the rising edge of CS following any write  
(WRSR, WRITE, WRSN, SSWR) commands.  
BP1 and BP0 are memory block write protection bits. They specify portions of memory that are write-protected  
as shown in Table 5.  
Table 5  
Block memory write protection  
BP0  
BP1  
Protected address range  
0
0
1
1
0
1
0
1
None  
30000h to 3FFFFh (upper 1/4)  
20000h to 3FFFFh (upper 1/2)  
00000h to 3FFFFh (all)  
The BP1 and BP0 bits are the only mechanismsthatprotectthememoryfromwrites.Theremaining write  
protectionfeaturesprotectinadvertentchangestotheblock protect bits.  
The write protect enable bit (WPEN) in the Status Register controls the effect of the hardware write protect (WP)  
pin. Refer to Figure 21 for the WP pin timing diagram. When the WPEN bit is set to ‘0, the status of the WP pin is  
ignored. When the WPEN bit is set to ‘1, a LOW on the WP pin inhibits a write to the Status Register. Thus the Status  
Register is write-protected only when WPEN = ‘1’ and WP = ‘0. Table 6 summarizes the write protection  
conditions.  
Datasheet  
11  
002-33164 Rev. *B  
2022-09-12  
2Mb EXCELON™ LP Ferroelectric RAM (F-RAM)  
WEL enabled, Serial (SPI), 256K × 8, industrial  
Functional description  
Table 6  
WEL  
Write protection  
WPEN  
WP  
X
0
Protected blocks  
Protected  
Unprotected blocks  
Unprotected  
Status register  
Unprotected  
Protected  
1
1
1
0
1
1
Protected  
Protected  
Unprotected  
Unprotected  
1
Unprotected  
4.1.1  
Register access commands  
Read Status Register (RDSR, 05h)  
The RDSR command allows the bus master to verify the contents of the Status Register. Reading the Status  
Register provides information about the current state of the write-protection features. Following the RDSR  
opcode, the CY15B102QM will return one byte with the contents of the Status Register.  
CS  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
SCK  
SI  
Hi-Z  
0
0
0
0
0
1
0
1
Hi-Z  
SO  
D7 D6 D5 D4 D3 D2 D1 D0  
MSb LSb  
Opcode (05h)  
Read Data  
Figure 6  
RDSR bus configuration  
Write Status Register (WRSR, 01h)  
The WRSR command allows the SPI bus master to write into the Status Register and change the write protect  
configuration by setting the WPEN, BP0, and BP1 bits as required. Before issuing a WRSR command, the WP pin  
must be HIGH or inactive. Note that on the CY15B102QM, WP only prevents writing to the Status Register, not the  
memory array.  
CS  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
SCK  
SI  
0
0
0
0
0
0
0
1
D7 D6 D5 D4 D3 D2 D1 D0  
MSb LSb  
Hi-Z  
SO  
Opcode (01h)  
Write Data  
Figure 7  
WRSR bus configuration  
4.1.2  
Memory operation  
The SPI interface, which is capable of a high clock frequency, highlights the fast write capability of the F-RAM  
technology. Unlike serial flash and EEPROMs, the CY15B102QM can perform sequential writes at bus speed. No  
page register is needed and any number of sequential writes may be performed.  
Datasheet  
12  
002-33164 Rev. *B  
2022-09-12  
2Mb EXCELON™ LP Ferroelectric RAM (F-RAM)  
WEL enabled, Serial (SPI), 256K × 8, industrial  
Functional description  
4.1.3  
Memory write operation commands  
Write operation (WRITE, 02h)  
All writes to the memory begin with a WRITE opcode with CS being asserted. The WRITE opcode is followed by a  
three-byte address containing the 18-bit address (A17–A0) of the first data byte to be written into the memory.  
The upper six bits of the three-byte address are ignored. Subsequent bytes are data bytes, which are written  
sequentially. Addresses are incremented internally as long as the bus master continues to issue clocks and keeps  
CS LOW. If the last address of 3FFFFh is reached, the internal address counter will roll over to 00000h. Every data  
byte to be written is transmitted on SI in 8-clock cycles with MSb first and the LSb last. The rising edge of CS  
terminates a write operation. The CY15B102QM write operation is shown in Figure 8.  
Notes  
• When a burst write reaches a protected block address, the automatic address increment stops and all the  
subsequent data bytes received for write will be ignored by the device. EEPROMs use page buffers to increase  
their write throughput. This compensates for the technology’s inherently slow write operations. F-RAM  
memories do not have page buffers because each byte is written to the F-RAM array immediately after it is  
clocked in (after the eighth clock). This allows any number of bytes to be written without page buffer delays.  
• If power is lost in the middle of the write operation, only the last completed byte will be written.  
CS  
0
1
2
3
4
5
6
7
0
1
2
3
20 21 22 23  
0
1
2
3
4
5
6
7
SCK  
SI  
A23 A22 A21 A20  
A3  
A2  
A1 A0  
0
0
0
0
0
0
1
D7 D6 D5 D4 D3 D2 D1 D0  
MSb  
0
LSb  
Hi-Z  
Hi-Z  
SO  
Opcode (02h)  
Address  
Write Data  
Figure 8  
Memory write operation  
Datasheet  
13  
002-33164 Rev. *B  
2022-09-12  
2Mb EXCELON™ LP Ferroelectric RAM (F-RAM)  
WEL enabled, Serial (SPI), 256K × 8, industrial  
Functional description  
4.1.4  
Memory read operation commands  
Read operation (READ, 03h)  
After the falling edge of CS, the bus master can issue a READ opcode. Following the READ command is a three-byte  
address containing the 18-bit address (A17–A0) of the first byte of the read operation. The upper six bits of the  
address are ignored. After the opcode and address are issued, the device drives out the read data on the next  
eight clocks. The SI input is ignored during read data bytes. Subsequent bytes are data bytes, which are read out  
sequentially. Addresses are incremented internally as long as the bus master continues to issue clocks and CS is  
LOW. If the last address of 3FFFFh is reached, the internal address counter will roll over to 00000h. The device also  
provides a writable, 8-byte serial number registers, which can be used to identify a specific board or a system.  
The rising edge of CS terminates a read operation and tristates the SO pin. The CY15B102QM read operation is  
shown in Figure 9.  
CS  
0
1
2
3
4
5
6
7
0
1
2
3
20 21 22 23  
0
1
2
3
4
5
6
7
SCK  
SI  
Hi-Z  
A23 A22 A21 A20  
A3  
A2  
A1 A0  
0
0
0
0
0
0
1
1
Hi-Z  
SO  
D7 D6 D5 D4 D3 D2 D1 D0  
MSb LSb  
Opcode (03h)  
Address  
Read Data  
Figure 9  
Memory read operation  
Fast read operation (FAST_READ, 0Bh)  
The CY15B102QM supports a FAST READ opcode (0Bh) that is provided for opcode compatibility with serial flash  
devices. The FAST READ opcode is followed by a three-byte address containing the 18-bit address (A17–A0) of the  
first byte of the read operation and then a dummy byte. The dummy byte inserts a read latency of 8-clock cycle.  
The fast read operation is otherwise the same as an ordinary read operation except that it requires an additional  
dummy byte. After receiving the opcode, address, and a dummy byte, the CY15B102QM starts driving its SO line  
with data bytes, with MSb first, and continues transmitting as long as the device is selected and the clock is  
available. In case of bulk read, the internal address counter is incremented automatically, and after the last  
address 3FFFFh is reached, the internal address counter rolls over to 00000h. When the device is driving data on  
its SO line, any transition on its SI line is ignored. The rising edge of CS terminates a fast read operation and  
tristates the SO pin. The CY15B102QM Fast Read operation is shown in Figure 10.  
CS  
0
1
2
3
4
5
6
7
0
1
2
3
20 21 22 23  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
SCK  
SI  
Hi-Z  
A23 A22 A21 A20  
MSb  
A3  
A2  
A1 A0  
0
0
0
0
1
0
1
x
x
x
x
x
x
x
x
1
LSb  
Hi-Z  
SO  
D7 D6 D5 D4 D3 D2 D1 D0  
MSb  
LSb  
Opcode (0Bh)  
Address  
Dummy Byte  
Read Data  
Figure 10  
Fast read operation  
Datasheet  
14  
002-33164 Rev. *B  
2022-09-12  
2Mb EXCELON™ LP Ferroelectric RAM (F-RAM)  
WEL enabled, Serial (SPI), 256K × 8, industrial  
Functional description  
4.1.5  
Special sector memory access commands  
Special sector write (SSWR, 42h)  
All writes to the 256-byte special begin with a SSWR opcode with CS being asserted. The SSWR opcode is followed  
by a three-byte address containing the 8-bit sector address (A7–A0) of the first data byte to be written into the  
special sector memory. The upper 16 bits of the three-byte address are ignored. Subsequent bytes are data bytes,  
which are written sequentially. Addresses are incremented internally as long as the bus master continues to issue  
clocks and keeps CS LOW. Once the internal address counter auto increments to XXX7Fh, CS should toggle HIGH  
to terminate the ongoing SSWR operation. Every data byte to be written is transmitted on SI in 8-clock cycles with  
MSb first and the LSb last. The rising edge of CS terminates a write operation. The CY15B102QM special sector  
write operation is shown in Figure 11.  
Notes  
• If power is lost in the middle of the write operation, only the last completed byte will be written.  
• The special sector F-RAM memory guarantees to retain data integrity up to three cycles of standard reflow  
soldering.  
CS  
0
1
2
3
4
5
6
7
0
1
2
3
20 21 22 23  
0
1
2
3
4
5
6
7
SCK  
SI  
A23 A22 A21 A20  
A3  
A2  
A1 A0  
0
1
0
0
0
0
1
D7 D6  
MSb  
D5  
D4 D3  
D2  
D1  
D0  
0
LSb  
Hi-Z  
Hi-Z  
SO  
Opcode (42h)  
Address  
Write Data  
Figure 11  
Special sector write operation  
Special sector read (SSRD, 4Bh)  
After the falling edge of CS, the bus master can issue an SSRD opcode. Following the SSRD command is a  
three-byte address containing the 8-bit address (A7–A0) of the first byte of the special sector read operation. The  
upper 16 bits of the address are ignored. After the opcode and address are issued, the device drives out the read  
data on the next eight clocks. The SI input is ignored during read data bytes. Subsequent bytes are data bytes,  
which are read out sequentially. Addresses are incremented internally as long as the bus master continues to  
issue clocks and CS is LOW. Once the internal address counter auto increments to XXX7Fh, CS should toggle HIGH  
to terminate the ongoing SSRD operation. Every read data byte on SO is driven in 8-clock cycles with MSb first  
and the LSb last. The rising edge of CS terminates a special sector read operation and tristates the SO pin. The  
CY15B102QM special sector read operation is shown in Figure 12.  
Note The special sector F-RAM memory guarantees to retain data integrity up to three cycles of standard reflow  
soldering.  
CS  
0
1
2
3
4
5
6
7
0
1
2
3
20 21 22 23  
0
1
2
3
4
5
6
7
SCK  
SI  
Hi-Z  
A23 A22 A21 A20  
A3  
A2  
A1 A0  
0
1
0
0
1
0
1
1
Hi-Z  
SO  
D7 D6 D5 D4 D3 D2 D1 D0  
MSb LSb  
Opcode (4Bh)  
Address  
Read Data  
Figure 12  
Special sector write read operation  
Datasheet  
15  
002-33164 Rev. *B  
2022-09-12  
2Mb EXCELON™ LP Ferroelectric RAM (F-RAM)  
WEL enabled, Serial (SPI), 256K × 8, industrial  
Functional description  
4.1.6  
Identification and serial number commands  
Read device ID (RDID, 9Fh)  
The CY15B102QM device can be interrogated for its manufacturer, product identification, and die revision. The  
RDID opcode 9Fh allows the user to read the 9-byte manufacturer ID and product ID, both of which are read-only  
bytes. The JEDEC-assigned manufacturer ID places the Cypress (Ramtron) identifier in bank 7; therefore, there  
are six bytes of the continuation code 7Fh followed by the single byte C2h. There are two bytes of product ID,  
which includes a family code, a density code, a sub code, and the product revision code. Table 6 shows 9-Byte  
Device ID field description. Refer to “Ordering information” on page 30 for 9-Byte device ID of an individual part.  
The CY15B102QM read device ID operation is shown in Figure 13.  
Note The least significant data byte (Byte 0) shifts out first and the most significant data byte (Byte 8) shifts out  
last.  
Table 7  
9-byte device ID  
Device ID field description  
Manufacturer ID  
[71:16]  
Family  
[15:13]  
Density  
Inrush  
[8]  
Sub type Revision Voltage Frequency  
[12:9]  
[7:5]  
[4:3]  
[2]  
[1:0]  
56-bit  
3-bit  
4-bit  
1-bit  
3-bit  
2-bit  
1-bit  
2-bit  
CS  
0
1
2
3
4
5
6
7
0
1
2
3
60 61 62 63 64 65 66 67 68 69 70 71  
SCK  
SI  
Hi-Z  
1
0
0
1
1
1
1
1
MSb  
D7  
LSb  
Hi-Z  
D6  
D5  
D4  
D3  
D2  
D1 D0  
SO  
D7 D6  
D5  
D4  
D3  
D2  
D1  
D0  
Byte 0  
Byte 8  
Opcode (9Fh)  
9-Byte Device ID  
Figure 13  
Read device ID  
Read unique ID (RUID, 4Ch)  
The CY15B102QM device can be interrogated for unique ID which is a factory programmed, 64-bit number unique  
to each device. The RUID opcode, 4Ch allows to read the 8-byte, read only unique ID. The CY15B102QM read  
unique ID operation is shown in Figure 14.  
Notes  
• The least significant data byte (Byte 0) shifts out first and the most significant data byte (Byte 7) shifts out last.  
• The unique ID registers are guaranteed to retain data integrity of up to three cycles of the standard reflow  
soldering.  
CS  
0
1
2
3
4
5
6
7
0
1
2
3
52 53 54 55 56 57 58 59 60 61 62 63  
SCK  
SI  
Hi-Z  
0
1
0
0
1
1
0
0
MSb  
D7  
LSb  
Hi-Z  
D6  
D5  
D4  
D3  
D2  
D1 D0  
SO  
D7 D6  
D5  
D4  
D3  
D2  
D1  
D0  
Byte 0  
Byte 7  
Opcode (4Ch)  
8-Byte Unique ID  
Figure 14  
Read unique ID  
Datasheet  
16  
002-33164 Rev. *B  
2022-09-12  
2Mb EXCELON™ LP Ferroelectric RAM (F-RAM)  
WEL enabled, Serial (SPI), 256K × 8, industrial  
Functional description  
Write serial number (WRSN, C2h)  
The serial number is an 8-byte one-time programmable memory space provided to the user to uniquely identify  
a PC board or a system. A serial number typically consists of a two-byte Customer ID, followed by five bytes of a  
unique serial number and one byte of CRC check. However, the end application can define its own format for the  
8-byte serial number. All writes to the Serial Number Register begin with a WRSN opcode with CS being asserted.  
The WRSN instruction can be used in burst mode to write all the 8 bytes of serial number. After the last byte of  
the serial number is shifted in, CS must be driven high to complete the WRSN operation. The CY15B102QM write  
serial number operation is shown in Figure 15.  
Note The CRC checksum is not calculated by the device. The system firmware must calculate the CRC checksum  
on the 7-byte content and append the checksum to the 7-byte user-defined serial number before programming  
the 8-byte serial number into the serial number register. The factory default value for the 8-byte Serial Number  
is ‘0000000000000000h.  
Table 8  
16-bit customer identifier  
SN[63:56] SN[55:48]  
8-byte serial number  
40-bit unique number  
SN[39:32] SN[31:24] SN[23:16]  
8-bit CRC  
SN[7:0]  
SN[47:40]  
SN[15:8]  
CS  
0
1
2
3
4
5
6
7
0
1
2
3
52 53 54 55 56 57 58 59 60 61 62 63  
SCK  
SI  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1
1
0
0
0
0
1
0
D7 D6 D5 D4 D3 D2 D1 D0  
LSb  
MSb  
Hi-Z  
Hi-Z  
SO  
Opcode (C2h)  
Write 8-Byte Serial Number  
Figure 15  
Write serial number operation  
Read serial number (RDSN, C3h)  
The CY15B102QM device incorporates an 8-byte serial space provided to the user to uniquely identify the device.  
The serial number is read using the RDSN instruction. A serial number read may be performed in burst mode to  
read all the eight bytes at once. After the last byte of the serial number is read, the device loops back to the first  
byte of the serial number. An RDSN instruction can be issued by shifting the opcode for RDSN after CS goes LOW.  
The CY15B102QM read serial number operation is shown in Figure 16.  
Note The least significant data byte (Byte 0) shifts out first and the most significant data byte (Byte 7) shifts out  
last.  
CS  
0
1
2
3
4
5
6
7
0
1
2
3
52 53 54 55 56 57 58 59 60 61 62 63  
SCK  
SI  
Hi-Z  
1
1
0
0
0
0
1
1
MSb  
D7  
LSb  
Hi-Z  
D6  
D5  
D4  
D3  
D2  
D1 D0  
SO  
D7 D6  
D5  
D4  
D3  
D2  
D1  
D0  
Byte 0  
Byte 7  
Opcode (C3h)  
8-Byte Serial Number  
Figure 16  
Read serial number operation  
Datasheet  
17  
002-33164 Rev. *B  
2022-09-12  
2Mb EXCELON™ LP Ferroelectric RAM (F-RAM)  
WEL enabled, Serial (SPI), 256K × 8, industrial  
Functional description  
4.1.7  
Low power mode commands  
Deep power-down mode (DPD, BAh)  
A power-saving Deep Power-Down mode is implemented on the CY15B102QM device. The device enters the Deep  
Power-Down mode after tENTDPD time after the DPD opcode BAh is clocked in and a rising edge of CS is applied.  
When in Deep Power-Down mode, the SCK and SI pins are ignored and SO will be Hi-Z, but the device continues  
to monitor the CS pin.  
A CS pulse-width of tCSDPD exits the DPD mode after tEXTDPD time. The CS pulse-width can be generated either by  
sending a dummy command cycle or toggling CS alone while SCK and I/Os are don’t care. The I/Os remain in hi-Z  
state during the wakeup from deep power-down. Refer to Figure 17 for DPD entry and Figure 18 for DPD exit  
timing.  
Enters DPD  
tENTDPD  
CS  
0
1
2
3
4
5
6
7
SCK  
SI  
1
0
1
1
1
0
1
0
hi-Z  
SO  
Opcode (BAh)  
Figure 17  
DPD entry timing  
tEXTDPD  
tCSDPD  
CS  
0
1
2
SCK  
tSU  
X
I/Os  
Figure 18  
DPD exit timing  
Datasheet  
18  
002-33164 Rev. *B  
2022-09-12  
2Mb EXCELON™ LP Ferroelectric RAM (F-RAM)  
WEL enabled, Serial (SPI), 256K × 8, industrial  
Functional description  
Hibernate mode (HBN, B9h)  
A lowest power Hibernate mode is implemented on the CY15B102QM device. The device enters Hibernate mode  
after tENTHIB time after the HBN opcode B9h is clocked in and a rising edge of CS is applied. When in Hibernate  
mode, the SCK and SI pins are ignored and SO will be Hi-Z, but the device continues to monitor the CS pin. On the  
next falling edge of CS, the device will return to normal operation within tEXTHIB time. The SO pin remains in a Hi-Z  
state during the wakeup from hibernate period. The device does not necessarily respond to an opcode within the  
wakeup period. To exit the Hibernate mode, the controller may send a “dummy” read, for example, and wait for  
the remaining tEXTHIB time.  
Enters  
Hibernate Mode  
Recovers from  
Hibernate Mode  
tENTHIB  
tEXTHIB  
CS  
0
1
2
3
4
5
6
7
0
1
2
SCK  
tSU  
SI  
1
0
1
1
1
0
0
1
hi-Z  
SO  
Opcode (B9h)  
Figure 19  
Hibernate mode operation  
Endurance  
The CY15B102QM devices are capable of being accessed at least 1015 times, reads or writes.  
An F-RAM memory operates with a read and restore mechanism. Therefore, an endurance cycle is applied on a  
row basis for each access (read or write) to the memory array. The F-RAM architecture is based on an array of rows  
and columns of 32K rows of 64-bit each. The entire row is internally accessed once, whether a single byte or all  
eight bytes are read or written. Each byte in the row is counted only once in an endurance calculation. Table 9  
shows endurance calculations for a 64-byte repeating loop, which includes an opcode, a starting address, and a  
sequential 64-byte data stream. This causes each byte to experience one endurance cycle through the loop.  
F-RAM read and write endurance is virtually unlimited at a 50-MHz clock rate.  
Table 9  
Time to reach endurance limit for repeating 64-byte loop  
SCK freq (MHz)  
Endurance cycles/sec  
Endurance cycles/year  
2.90 × 1012  
Years to reach 1015 limit  
50  
40  
20  
10  
5
91,900  
73,040  
36,520  
18,380  
9,190  
345  
43.  
2.30 × 1012  
1.16 × 1012  
864  
5.79 × 1011  
1727  
3454  
2.90 × 1011  
Datasheet  
19  
002-33164 Rev. *B  
2022-09-12  
2Mb EXCELON™ LP Ferroelectric RAM (F-RAM)  
WEL enabled, Serial (SPI), 256K × 8, industrial  
Maximum ratings  
5
Maximum ratings  
Exceeding the maximum ratings may impair the useful life of the device. User guidelines are not tested.  
Storage temperature ........................................................................................................................... –65°C to +125°C  
Maximum accumulated storage time  
At 125°C ambient temperature .......................................................................................................................... 1000 h  
At 85°C ambient temperature ......................................................................................................................... 10 Years  
Maximum junction temperature ......................................................................................................................... 125°C  
Supply voltage on VDD relative to VSS  
:
CY15B102QM: ....................................................................................................................................... –0.5 V to +4.1 V  
Input voltage ....................................................................................................................................... VIN VDD + 0.5 V  
DC voltage applied to outputs in High-Z state ............................................................................ –0.5 V to VDD + 0.5 V  
Transient voltage (< 20 ns) on any pin to ground potential ....................................................... –2.0 V to VDD + 2.0 V  
Package power dissipation capability (TA = 25°C) .............................................................................................. 1.0 W  
Surface mount lead soldering temperature (3 seconds) ................................................................................. +260°C  
DC output current (1 output at a time, 1s duration) .......................................................................................... 15 mA  
Electrostatic discharge voltage  
Human Body Model (JEDEC Std JESD22-A114-B) ................................................................................................ 2 kV  
Charged Device Model (JEDEC Std JESD22-C101-A) ...........................................................................................500 V  
Latch-up current ............................................................................................................................................. >140 mA  
Datasheet  
20  
002-33164 Rev. *B  
2022-09-12  
2Mb EXCELON™ LP Ferroelectric RAM (F-RAM)  
WEL enabled, Serial (SPI), 256K × 8, industrial  
Operating range  
6
Operating range  
Table 10  
Operating range  
Device  
CY15B102QM  
Range  
Industrial  
Ambient temperature  
VDD  
1.8 V to 3.6 V  
–40°C to +85°C  
Datasheet  
21  
002-33164 Rev. *B  
2022-09-12  
2Mb EXCELON™ LP Ferroelectric RAM (F-RAM)  
WEL enabled, Serial (SPI), 256K × 8, industrial  
DC electrical characteristics  
7
DC electrical characteristics  
Table 11  
DC electrical characteristics  
Over the Operating range  
Parameter Description  
VDD  
Typ[2, 3]  
3.30  
Test conditions  
Min  
1.80  
Max  
3.60  
3
Unit  
V
Power supply  
V
DD = 1.8 V to 3.6 V;  
f
SCK = 40 MHz  
2.4  
mA  
SCK toggling  
between  
IDD  
VDD supply current VDD – 0.2 V and VSS  
other inputs  
,
fSCK = 50 MHz  
3
3.7  
mA  
VSS or VDD – 0.2 V.  
SO = Open  
VDD = 1.8 V to 3.6 V; TA = 25°C  
70  
µA  
µA  
µA  
µA  
µA  
µA  
CS = VDD  
.
ISB  
V
DD standby current  
2.6  
0.8  
All other inputs  
VSS or VDD  
TA = 85°C  
VDD = 1.8 V to 3.6 V; TA = 25°C  
CS = VDD  
.
Deep power down  
current  
IDPD  
All other inputs  
VSS or VDD  
TA = 85°C  
16  
VDD = 1.8 V to 3.6 V; TA = 25°C  
CS = VDD  
All other inputs  
VSS or VDD  
.
Hibernate mode  
current  
IHBN  
0.1  
TA = 85°C  
1.6  
.
Input leakage  
current on I/O pins  
except WP pin  
–1  
1
µA  
ILI  
VSS < VIN < VDD  
Input leakage  
–100  
–1  
1
1
µA  
µA  
current on WP pin  
Output leakage  
current  
ILO  
VSS < VOUT < VDD  
VIH  
VIL  
Input HIGH voltage –  
0.7 × VDD  
–0.3  
VDD + 0.3  
0.3 × VDD  
V
V
Input LOW voltage  
Output HIGH  
voltage  
VOH1  
VOH2  
IOH = –1 mA, VDD = 2.7 V  
IOH = –100 µA  
2.40  
V
V
Output HIGH  
voltage  
VDD – 0.2  
VOL1  
Output LOW voltage IOL = 2 mA, VDD = 2.7 V  
Output LOW voltage IOL = 150 µA  
0.40  
0.20  
V
V
VOL2  
Notes  
2. Typical values are at 25°C, VDD = VDD (typ)  
.
3. This parameter is guaranteed by characterization; not tested in production.  
Datasheet  
22  
002-33164 Rev. *B  
2022-09-12  
2Mb EXCELON™ LP Ferroelectric RAM (F-RAM)  
WEL enabled, Serial (SPI), 256K × 8, industrial  
Data retention and endurance  
8
Data retention and endurance  
Table 12  
Parameter  
TDR  
Data retention and endurance  
Description  
Data retention  
Test conditions  
Min  
10  
141  
151  
160  
1015  
Max  
Unit  
Years  
Years  
Years  
Years  
Cycles  
TA = 85°C  
TA = 70°C  
TA = 60°C  
TA = 50°C  
NVC  
Endurance  
Over operating temperature  
Datasheet  
23  
002-33164 Rev. *B  
2022-09-12  
2Mb EXCELON™ LP Ferroelectric RAM (F-RAM)  
WEL enabled, Serial (SPI), 256K × 8, industrial  
Capacitance  
9
Capacitance  
Table 13  
Capacitance  
For all packages.  
Parameter[4]  
Description  
Test conditions  
Max  
8
6
Unit  
pF  
pF  
CO  
CI  
Output pin capacitance (SO) TA = 25°C, f = 1 MHz, VDD = VDD(typ)  
Input pin capacitance  
Note  
4. This parameter is guaranteed by characterization; not tested in production.  
Datasheet  
24  
002-33164 Rev. *B  
2022-09-12  
2Mb EXCELON™ LP Ferroelectric RAM (F-RAM)  
WEL enabled, Serial (SPI), 256K × 8, industrial  
Thermal resistance  
10  
Thermal resistance  
Table 14  
Thermal resistance  
8-pin SOIC  
package  
Parameter[5]  
Description  
Test conditions  
Unit  
°C/W  
°C/W  
Thermal resistance  
(junction to ambient)  
Thermal resistance  
(junction to case)  
Test conditions follow standard  
test methods and procedures for  
measuringthermalimpedance,per  
EIA/JESD51.  
JA  
JC  
96.0  
86.8  
Note  
5. This parameter is guaranteed by characterization; not tested in production.  
Datasheet  
25  
002-33164 Rev. *B  
2022-09-12  
2Mb EXCELON™ LP Ferroelectric RAM (F-RAM)  
WEL enabled, Serial (SPI), 256K × 8, industrial  
AC test conditions  
11  
AC test conditions  
Input pulse levels ........................................................................................................................ 10% and 90% of VDD  
Input rise and fall times ......................................................................................................................................... 3 ns  
Input and output timing reference levels ..................................................................................................... 0.5 × VDD  
Output load capacitance ..................................................................................................................................... 30 pF  
Datasheet  
26  
002-33164 Rev. *B  
2022-09-12  
2Mb EXCELON™ LP Ferroelectric RAM (F-RAM)  
WEL enabled, Serial (SPI), 256K × 8, industrial  
AC switching characteristics  
12  
AC switching characteristics  
Table 15  
AC switching characteristics  
Over the Operating range  
[ ]  
6
Parameters  
40 MHz  
50 MHz  
Description  
Unit  
Alt.  
Parameter  
Min  
Max  
Min  
Max  
Parameter  
fSCK  
tCH  
tCL  
tCLZ  
tCSS  
tCSH  
tCSH1  
tHZCS  
tCO  
SCK clock frequency  
Clock HIGH time  
Clock LOW time  
Clock LOW to Output low-Z  
Chip select setup  
Chip select hold - mode 0  
Chip select hold - mode 3  
Output disable time  
Output data valid time  
Output hold time  
Deselect time  
Data setup time  
Data hold time  
WP setup time (w.r.t CS)  
WP hold time (w.r.t CS)  
0
11  
11  
0
5
5
10  
1
40  
5
40  
12  
9
0
9
9
0
5
5
10  
1
40  
5
5
20  
20  
50  
10  
8
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
]
[7  
tCSU  
tCSH  
tCSH1  
]
[8, 9  
tOD  
tODV  
tD  
tSU  
tH  
tOH  
tCS  
tSD  
tHD  
tWPS  
tWPH  
5
20  
20  
tWHSL  
tSHWL  
Notes  
6. Test conditions assume a signal transition time of 3 ns or less, timing reference levels of 0.5 × VDD, input pulse  
levels of 10% to 90% of VDD, and output loading of the specified IOL/IOH and 30-pF load capacitance shown in  
“AC test conditions” on page 26.  
7. Guaranteed by design.  
8. tHZCS is specified with a load capacitance of 5 pF. Transition is measured when the output enters a  
high-impedance state.  
9. This parameter is guaranteed by characterization; not tested in production.  
Datasheet  
27  
002-33164 Rev. *B  
2022-09-12  
2Mb EXCELON™ LP Ferroelectric RAM (F-RAM)  
WEL enabled, Serial (SPI), 256K × 8, industrial  
AC switching characteristics  
tCS  
CS  
tCSS  
tCH  
tCL  
tCSH1  
tCSH  
Mode 3  
Mode 0  
SCK  
SI  
tSD  
tHD  
X
X
VALID DATA IN  
tCO  
tOH  
tHZCS  
tCLZ  
Hi-Z  
Hi-Z  
SO  
DATA OUT  
X
X
Figure 20  
Synchronous data timing (Mode 0 and Mode 3)  
tWPS  
tWPH  
CS  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
SCK  
SI  
0
0
0
0
0
0
0
1
D7 D6 D5 D4 D3 D2 D1 D0  
MSb LSb  
Hi-Z  
SO  
Opcode (01h)  
Write Data  
Figure 21  
Write protect timing during write status register (WRSR) operation  
Datasheet  
28  
002-33164 Rev. *B  
2022-09-12  
2Mb EXCELON™ LP Ferroelectric RAM (F-RAM)  
WEL enabled, Serial (SPI), 256K × 8, industrial  
Power cycle timing  
13  
Power cycle timing  
Table 16  
Power cycle timing  
Over the Operating range  
Parameters[10]  
Description  
Min  
Max  
Unit  
Alt.  
Parameter  
Parameter  
tPU  
Power-up VDD(min) to first access (CS LOW)  
450  
50  
µs  
[11]  
VDD power-up ramp rate  
µs/V  
µs/V  
tVR  
tVF  
[11, 12]  
13  
VDD power-down ramp rate  
100  
CS HIGH to enter deep power-down  
(CS HIGH to deep power-down mode current)  
[
]
3
µs  
tENTDPD  
tCSDPD  
tPD  
CS pulse width to wake up from deep power-down  
mode  
0.015 4 × 1/fSCK µs  
CS LOW to exit deep-power-down  
(CS LOW to ready for access)  
10  
3
µs  
µs  
µs  
tEXTDPD  
tRPD  
CS HIGH to enter hibernate  
(CS HIGH to enter hibernate mode current)  
[14]  
tENTHIB  
tEXTHIB  
CS LOW to exit hibernate  
(CS LOW to ready for access)  
450  
tREC  
VDD (min)  
VDD (min)  
tVR  
VDD  
tVF  
tPU  
Device is accessible  
Device is not accessible  
CS  
Figure 22  
Power cycle timing  
Notes  
10.Test conditions assume a signal transition time of 3 ns or less, timing reference levels of 0.5 × VDD, input pulse  
levels of 10% to 90% of VDD, and output loading of the specified IOL/IOH and 30-pF load capacitance shown  
in “AC test conditions” on page 26.  
11.Slope measured at any point on the VDD waveform.  
12.This parameter is guaranteed by characterization; not tested in production.  
13.Guaranteed by design. Refer to Figure 17 for Deep Power Down mode timing.  
14.Guaranteed by design. Refer to Figure 19 for Hibernate mode timing.  
Datasheet  
29  
002-33164 Rev. *B  
2022-09-12  
2Mb EXCELON™ LP Ferroelectric RAM (F-RAM)  
WEL enabled, Serial (SPI), 256K × 8, industrial  
Ordering information  
14  
Ordering information  
Table 17  
Ordering part numbers  
Ordering code  
CY15B102QM-50SWXI  
CY15B102QM-50SWXIT  
Device ID  
Package diagram  
Package type  
8-pin SOIC  
Operating range  
7F7F7F7F7F7FC26A00  
51-85066  
Industrial  
All these parts are Pb-free. Contact your local sales representative for availability of these parts.  
14.1  
Ordering code definitions  
CY 15  
B
102  
Q
M
- 50 SW  
X
I
T
Options:  
ES = Engineering sample ;  
Blank = Standard; T = Tape and reel  
Temperature range:  
I = Industrial (40°C to +85°C)  
X = Pb-free  
Package type:  
SW = 8-pin SOIC  
Frequency:  
50 = 50 MHz  
M = WEL Enabled  
Interface:  
Q = SPI F-RAM  
Density:  
102 = 2-Mbit  
Voltage:  
B = 1.8 V to 3.6 V  
15 = F-RAM  
CY = CYPRESS™ (An Infineon company)  
Datasheet  
30  
002-33164 Rev. *B  
2022-09-12  
2Mb EXCELON™ LP Ferroelectric RAM (F-RAM)  
WEL enabled, Serial (SPI), 256K × 8, industrial  
Package diagram  
15  
Package diagram  
51-85066 *I  
Figure 23  
8-pin SOIC (150 Mils) package outline, 51-85066  
Datasheet  
31  
002-33164 Rev. *B  
2022-09-12  
2Mb EXCELON™ LP Ferroelectric RAM (F-RAM)  
WEL enabled, Serial (SPI), 256K × 8, industrial  
Acronyms  
16  
Acronyms  
Table 18  
Acronyms used in this document  
Acronym  
Description  
CPHA  
CPOL  
EEPROM  
EIA  
F-RAM  
I/O  
Clock Phase  
Clock Polarity  
Electrically Erasable Programmable Read-Only Memory  
Electronic Industries Alliance  
Ferroelectric Random Access Memory  
Input/Output  
JEDEC  
JESD  
LSb  
Joint Electron Devices Engineering Council  
JEDEC standards  
Least Significant Bit  
MSb  
Most Significant Bit  
RoHS  
SPI  
Restriction of Hazardous Substances  
Serial Peripheral Interface  
SOIC  
Small Outline Integrated Circuit  
Datasheet  
32  
002-33164 Rev. *B  
2022-09-12  
2Mb EXCELON™ LP Ferroelectric RAM (F-RAM)  
WEL enabled, Serial (SPI), 256K × 8, industrial  
Document conventions  
17  
Document conventions  
17.1  
Units of measure  
Table 19  
Units of measure  
Symbol  
Unit of measure  
°C  
degree Celsius  
hertz  
kilohertz  
kilohm  
Hz  
kHz  
k  
Mbit  
MHz  
µA  
µF  
µs  
megabit  
megahertz  
microampere  
microfarad  
microsecond  
milliampere  
millisecond  
nanosecond  
ohm  
mA  
ms  
ns  
W
%
percent  
pF  
V
picofarad  
volt  
W
watt  
Datasheet  
33  
002-33164 Rev. *B  
2022-09-12  
2Mb EXCELON™ LP Ferroelectric RAM (F-RAM)  
WEL enabled, Serial (SPI), 256K × 8, industrial  
Revision history  
Revision history  
Document  
Date  
Description of changes  
revision  
*A  
2022-01-20  
Post to external web.  
Updated Features:  
Updated description.  
Updated Pin definitions:  
Updated Table 1.  
*B  
2022-09-12  
Updated to new template.  
Datasheet  
34  
002-33164 Rev. *B  
2022-09-12  
Please read the Important Notice and Warnings at the end of this document  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
For further information on the product, technology,  
The information given in this document shall in no  
event be regarded as a guarantee of conditions or  
characteristics (“Beschaffenheitsgarantie”).  
Edition 2022-09-12  
Published by  
delivery terms and conditions and prices please  
contact your nearest Infineon Technologies office  
(www.infineon.com).  
Infineon Technologies AG  
81726 Munich, Germany  
With respect to any examples, hints or any typical  
values stated herein and/or any information  
regarding the application of the product, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation warranties of non-infringement of  
intellectual property rights of any third party.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2022 Infineon Technologies AG.  
All Rights Reserved.  
Except as otherwise explicitly approved by Infineon  
In addition, any information given in this document  
is subject to customer’s compliance with its  
obligations stated in this document and any  
applicable legal requirements, norms and standards  
concerning customer’s products and any use of the  
product of Infineon Technologies in customer’s  
applications.  
Technologies in  
authorized  
a written document signed by  
Do you have a question about this  
document?  
Go to www.infineon.com/support  
representatives  
of  
Infineon  
Technologies, Infineon Technologies’ products may  
not be used in any applications where a failure of the  
product or any consequences of the use thereof can  
reasonably be expected to result in personal injury.  
Document reference  
002-33164 Rev. *B  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  

相关型号:

CY15B102QM-50SWXIT

2Mb 3.3V Industrial 50MHz SPI EXCELON™ F-RAM in 8-pin SOIC with WEL enabled
INFINEON

CY15B104Q-LHXI

Memory Circuit, 512KX8, CMOS, PDSO8, TDFN-8
CYPRESS

CY15B104Q-LHXIT

Memory Circuit, 512KX8, CMOS, PDSO8, TDFN-8
CYPRESS

CY15B104Q-SXI

Memory Circuit, 512KX8, CMOS, PDSO8, SOIC-8
CYPRESS

CY15B108QN-20LPXC

8Mb 3.3V Commercial 20MHz SPI EXCELON™ F-RAM in 8-pin GQFN
INFINEON

CY15B108QN-20LPXCT

8Mb 3.3V Commercial 20MHz SPI EXCELON™ F-RAM in 8-pin GQFN
INFINEON

CY15B108QN-20LPXI

8Mb 3.3V Industrial 20MHz SPI EXCELON™ F-RAM in 8-pin GQFN
INFINEON

CY15B108QN-20LPXIT

8Mb 3.3V Industrial 20MHz SPI EXCELON™ F-RAM in 8-pin GQFN
INFINEON

CY15B108QN-40LPXI

Memory Circuit,
CYPRESS

CY15B108QN-40LPXI

8Mb 3.3V Industrial 40MHz SPI EXCELON™ F-RAM in 8-pin GQFN
INFINEON

CY15B108QN-40LPXIT

8Mb 3.3V Industrial 40MHz SPI EXCELON™ F-RAM in 8-pin GQFN
INFINEON

CY15B108QN-40SXI

8Mb 3.3V Industrial 40MHz SPI EXCELON™ F-RAM in 8-pin SOIC
INFINEON