CY27410LTXI-008T [INFINEON]

Universal Programmable Clock Generator with VCXO and Spread Spectrum;
CY27410LTXI-008T
型号: CY27410LTXI-008T
厂家: Infineon    Infineon
描述:

Universal Programmable Clock Generator with VCXO and Spread Spectrum

石英晶振 压控振荡器
文件: 总31页 (文件大小:889K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Please note that Cypress is an Infineon Technologies Company.  
The document following this cover page is marked as “Cypress” document as this is the  
company that originally developed the product. Please note that Infineon will continue  
to offer the product to new and existing customers as part of the Infineon product  
portfolio.  
Continuity of document content  
The fact that Infineon offers the following product as part of the Infineon product  
portfolio does not lead to any changes to this document. Future revisions will occur  
when appropriate, and any changes will be set out on the document history page.  
Continuity of ordering part numbers  
Infineon continues to support existing part numbers. Please continue to use the  
ordering part numbers listed in the datasheet for ordering.  
www.infineon.com  
CY27410  
4-PLL Spread-Spectrum Clock Generator  
4-PLL Spread-Spectrum Clock Generator  
Up to 100-ps skew for differential outputs within a bank  
Features  
Four fractional N-type phase-locked loops (PLLs) with  
VCXO (±120 ppm with steps of 0.23 ppm)  
Spread-spectrum capability (Logic SS and Lexmark profile  
0.1% to 5% in 0.1% steps, down or center spread)  
Input frequencies  
Crystal input: 8 MHz to 48 MHz  
Reference clock: 8 MHz to 250 MHz LVCMOS  
Reference clock: 8 MHz to 700 MHz differential  
Supply voltage: 1.8 V, 2.5 V, and 3.3 V  
Output frequencies  
25 MHz to 700 MHz LVDS, LVPECL, HCSL, CML  
3 MHz to 250 MHz LVCMOS  
Zero-delay buffer (ZDB) and non-zero delay buffer (NZDB)  
configurations  
I2C configurable with onboard programming  
1 kHz to 8 MHz for one LVCMOS output  
RMS phase jitter: 1-ps max at 12-kHz to 20-MHz offset  
PCIe 1.0/2.0/3.0 compliant  
Industrial-grade device, offered in 48-pin QFN (7 × 7 × 1.0 mm)  
package  
SATA 2.0, USB 2.0/3.0, 1/10-GbE compliant  
Maximum 12 outputs split in two banks with six outputs each.  
Up to eight differential output pairs (HCSL, LVPECL, CML,  
or LVDS)  
Functional Description  
The CY27410 device configuration can be created using  
ClockWizard 2.1. For programming support, contact Cypress  
technical support or send an email to clocks@cypress.com.  
Up to 12 LVCMOS outputs  
For a complete list of related documentation, click here.  
Logic Block Diagram  
Output Drivers 1  
VIN  
ADC  
FS2  
FS1  
O1[1..4]  
PLL1  
O2[1..4]  
PLL2  
FS  
I2C  
FS0  
SCLK  
SDAT  
XIN  
XOUT  
IN1P  
IN1N  
IN2P  
IN2N  
RCAL  
RCCAL  
BG  
INI  
IN1S  
IN2S  
INC  
Reference  
System  
Register  
Memory  
OSC  
POR  
QP  
PLL3  
PLL4  
NV  
Memory  
O3[1..4]  
O4[1..4]  
PRG  
Block  
VDD  
LDOs  
Output Drivers 2  
Cypress Semiconductor Corporation  
Document Number: 001-89074 Rev. *M  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised February 15, 2019  
CY27410  
Contents  
Functional Overview ........................................................3  
Input System ...............................................................3  
VCXO Input Block .......................................................3  
Frequency Select Input ...............................................3  
I2C Block (SCLK, SDAT) .............................................4  
Synthesis Section ........................................................4  
Output Section .............................................................4  
Onboard Programming ................................................5  
Functional Features  
and Application Considerations ..........................................5  
Pinouts ............................................................................10  
Electrical Specifications ................................................13  
Absolute Maximum Ratings .......................................13  
Operating Temperature .............................................13  
Operating Power Supply ...........................................13  
DC Chip-Level Specifications ....................................14  
DC Output Specifications ..........................................15  
AC Input Clock Specifications ...................................16  
AC Output Specifications ..........................................16  
Test and Measurement Circuits ................................23  
Voltage and Timing Definitions ..................................24  
Packaging Information ...................................................26  
Solder Reflow Specifications .....................................26  
Ordering Information ......................................................27  
Ordering Code Definitions .........................................27  
Acronyms ........................................................................28  
Document Conventions .................................................28  
Units of Measure .......................................................28  
Document History Page .................................................29  
Sales, Solutions, and Legal Information ......................30  
Worldwide Sales and Design Support .......................30  
Products ....................................................................30  
PSoC® Solutions ......................................................30  
Cypress Developer Community .................................30  
Technical Support .....................................................30  
Document Number: 001-89074 Rev. *M  
Page 2 of 30  
CY27410  
If a crystal is used, XIN and XOUT are connected to a crystal  
oscillator to generate the required internal frequency, as shown  
in Figure 2. The supported differential tuning capacitor range is  
8 pF to 12 pF.  
Functional Overview  
The CY27410 is a standard-performance programmable clock  
generator with four independent fractional PLLs, which  
generates any frequency with a zero-ppm synthesis error. Each  
PLL is followed by a set of four independent dividers to generate  
four different frequencies from a single PLL. All four dividers are  
synchronized to generate phase-aligned clock outputs with  
minimal skew. The PLLs also support the spread-spectrum  
feature to reduce EMI. PLL 1 has VCXO functionality to achieve  
ppm granularity of output frequency.  
Figure 2. Connecting a Crystal  
XIN  
XO  
Crystal  
XOUT  
The  
CY27410  
accepts  
a
crystal  
clock  
or  
a
single-ended/differential reference clock. The device supports  
up to 12 outputs, divided into two banks with six outputs each.  
Four outputs of PLL 1 and PLL 2 are multiplexed to  
output Bank 1, and four clock outputs of PLL 3 and PLL 4 are  
multiplexed to output Bank 2. The 12 outputs of the two banks  
are configurable as eight differential outputs, 12 single-ended  
outputs, or a combination of differential and single-ended  
outputs.  
IN1 and IN2 are designed to accept either a single-ended or  
differential reference input. IN2 can be used to accept the  
feedback signal to implement the ZDB functionality of the device.  
The differential inputs are capable of interfacing with multiple  
standards, such as LVPECL, LVDS, CML, and HCSL. The  
differential signals must be of AC-coupling, as shown in Figure 3.  
The CY27410 has an on-chip volatile and nonvolatile memory,  
composed of eight registers, which store the device  
configuration settings. These registers can be accessed and  
programmed onboard through the I2C interface. You can also  
configure the device on-the-fly to completely reprogram the  
device on the application board. Besides the I2C interface,  
external signals can be applied to multifunction pins for different  
functions such as the following:  
Figure 3. Interfacing Differential and Single-Ended Signals  
100 pF  
Differential Signal  
INxP  
Termination  
INxN  
Dynamically change the output frequency  
Output enable/disable  
Power down  
100 pF  
INxP  
R
S
INxN  
LVCMOS Signal  
Spread ON/OFF  
One low-frequency clock output, in kilohertz, is provided to meet  
the need of widely used reference frequencies, such as  
32.768 kHz. The jitter specs of the CY27410 make it an ideal  
choice for the following communication protocols: PCIe  
1.0/2.0/3.0, USB 2.0/3.0, SATA 1.0/2.0, and 1/10GbE.  
VCXO Input Block  
The VIN input is used for the VCXO functionality of the device.  
In this functionality, the output can change with respect to an  
input voltage required for audio-visual applications. The output  
frequency can vary up to ±120 ppm. This input voltage directly  
controls the PLL 1 fractional divider to provide the VCXO  
functionality.  
Input System  
The input system supports the following (see Figure 1):  
XIN/XOUT supports crystal input.  
Frequency Select Input  
IN1 supports differential and single-ended clock inputs.  
IN2 supports differential and single-ended clock inputs.  
Figure 1. Oscillator/Clock Input Block Diagram  
The CY27410 supports frequency-select features with which the  
customer can change output frequencies on-the-fly. The device  
has eight configuration register sets, which can be  
preprogrammed or written through I2C. Changing the signal level  
of the FS pins (high and low) selects the appropriate  
configuration registers and changes the output frequency  
accordingly.  
INC  
XIN  
MUX  
INI  
XO  
XOUT  
IN1P  
IN1N  
IN1S  
DIV-R1  
DIV-R2  
IN2P  
IN2N  
IN2S  
Document Number: 001-89074 Rev. *M  
Page 3 of 30  
CY27410  
2
I C Block (SCLK, SDAT)  
Synthesis Section  
The CY27410 supports I2C programming of internal registers,  
which can be used to configure the device. The CY27410 also  
supports user-profile programming to flash memory and allows  
partial updates. Read, Write, or Read/Write protection is also  
available. The device is compliant with the I2C-bus Specification,  
version 2.1 or later. The critical I2C specifications are as follows:  
The CY27410 contains four PLLs, which are the core synthesis  
blocks of the chip. Each PLL has a fractional N capability, which  
supports output frequency generation based on an input  
reference frequency to an accuracy of 100 ppb. The output of the  
PLL is fed into four dividers and then moves to synchronizers to  
generate glitch-free clock transition features, variable delay  
generation circuits to support the programmable delay feature,  
and so on. The output dividers and multiplexers are also included  
as part of this subsystem. All the four PLLs have the same  
architecture, as shown in Figure 4.  
400 kb/s (Fast mode)  
7-bit addressing support  
Selectable device address (programmable), default = 69 hex  
(7 bits)  
Figure 4. PLL Architecture  
DLY=0‐4 cycles  
DELAY  
INC  
5
REF  
FBK  
P‐Path  
LF  
PDET  
+
CP  
IN1S  
DIV O1  
DIV O2  
DIV O3  
DIV O4  
DIV 2  
DIV 2  
DIV 2  
DIV 2  
SYNC  
SYNC  
SYNC  
SYNC  
Ox1  
Ox2  
Ox3  
Ox4  
VCO  
I‐Path  
LF  
IN2S  
FRAC  
DIV N  
SYNC  
SYNC  
DIV 2  
OUTC  
SYNC  
DIV 2  
DIV C  
Figure 6. Bank2 Outputs  
Output Section  
The CY27410 has two banks of outputs, which are located at the  
top and bottom of the device. Each bank consists of six outputs  
with OUT11–OUT14 and OUT21–OUT24 supporting both  
differential and single-ended outputs and OUT15–OUT16 and  
OUT25–OUT26 supporting only single-ended outputs.  
INI  
DIV I  
1/2/4/8  
DIV I  
1/2/4/8  
O44  
O43  
O42  
O41  
O34  
O33  
O32  
O31  
DIV L  
Each output is fed from a PLL through a divider and then to a  
MUX, which helps in selecting the source for the output, as  
shown in Figure 5 and Figure 6.  
MUX  
MUX  
MUX  
MUX  
MUX  
MUX  
Figure 5. Bank1 Outputs  
MUX  
MUX  
MUX  
MUX  
MUX  
MUX  
O11  
O12  
O13  
O14  
O21  
O22  
O23  
O24  
DIV L  
DIV I  
1/2/4/8  
DIV I  
1/2/4/8  
INI  
Document Number: 001-89074 Rev. *M  
Page 4 of 30  
CY27410  
Figure 8. PLL Block Diagram, Clock Generation  
Onboard Programming  
One can write the device memory on the customer board,  
enabling the use of a blank device that is not preprogrammed.  
This enables use of the same device across multiple projects and  
lets you program the device based on individual projects.  
Conceptual onboard programming is shown in Figure 7.  
Reference  
Outputs  
I1  
Synthesis Block  
O1 DLY  
R1  
R2  
PLL  
O2  
O3  
O4  
Figure 7. Onboard Programming  
FracN  
C1  
POR, Initialize  
I2  
L1  
Non Volatile  
Control Store Control Registers  
Volatile  
Device  
Configuration  
from Adjacent PLL  
PCIE (HCSL) Clock Generation  
On Board  
I2C  
For PCIe applications, the CY27410 provides eight differential  
outputs that have the same spread on it at any particular point of  
time.  
Programming  
VCXO and Related Frequencies  
Functional Features and Application Considerations  
The CY27410 provides VCXO functionality and a cascading PLL  
option to generate critical frequencies with a fixed reference.  
Digital televisions have a requirement for the audio and video  
clocks to follow a 27-MHz VCXO signal so that they are  
synchronized. The architecture of the chip must ensure that this  
is met by cascading, as shown in Figure 9.  
The CY27410 is a 4-PLL spread-spectrum clock generator  
targeted at consumer, industrial, and low-end networking  
applications. The key specifications of the part are differential  
inputs (2) and outputs (12), supporting frequencies up to  
700 MHz. The device has a low RMS phase jitter of 1-ps max  
and value-added features, such as VCXO, Frequency Select,  
and PLL Bypass modes. This part is designed to support key  
standards, such as PCIe 1.0/2.0/3.0, USB 2.0/3.0, and 10GbE.  
Figure 9. Cascading PLLs  
REF  
XBUF  
100MHz HCSL  
66.66MHz LVCMOS  
The product supports LVDS, LVPECL, CML, HCSL, and  
LVCMOS logic levels.  
SS_PLL  
VCFS  
(PLL1)  
27MHz VCXO  
VIN  
Clock Generator  
The main feature of the CY27410 is frequency generation from  
an external reference (IN1) or a crystal. There are four variables  
to determine the final output frequency. They are input REF, the  
DIV-R (R1), FracN (DIV-N) dividers, and the post dividers  
(DIV-O). The basic formula for determining the final output  
frequency is:  
PLL  
PLL  
VIDEO 74.25MHz  
AUDIO 36.864MHz  
FS  
FS  
Apart from having the audio and video clocks following the  
27-MHz VCXO input, they also need complex divider ratios to  
generate the output frequencies. Commonly used divider ratios  
for audio and video signals are listed in Table 1.  
Clock Generator mode  
fOUT = ((REF x DIV-N) / DIV-R) / DIV-O  
PLL Bypass mode  
fOUT = REF / DIV-I or REF / DIV-I / DIV-L  
Table 1. Audio and Video Frequencies  
The basic PLL block diagram is shown in Figure 8. Each of the  
outputs from the PLL is fed to the output MUX through a Delay  
circuit that provides a certain delay to the individual clock, if  
needed.  
Output Frequency  
74.17582418  
33.8688  
Ratios  
91:250  
625:784  
1875:1568  
1250:784  
1875:784  
1875:392  
375:512  
22.5792  
16.9344  
11.2896  
5.6448  
36.864  
Document Number: 001-89074 Rev. *M  
Page 5 of 30  
CY27410  
Zero-Delay Buffer Functionality  
Figure 12. Early/Late Phase in ZDB Configuration  
The CY27410 acts as a zero-delay buffer (ZDB) for one output  
from a single PLL block. To implement this feature, take one of  
the outputs and send it back as a feedback reference to the PLL.  
By providing a divider in the feedback loop, the device can also  
act as a frequency-multiplying ZDB (see Figure 10). This  
functionality is supported only when the PLL is in the integer N  
mode.  
Reference  
Outputs  
I1  
Synthesis Block  
O1 DLY  
R1  
R2  
PLL  
O2  
O3  
O4  
FracN  
C1  
Figure 10. ZDB Configuration  
I2  
L1  
Reference  
Outputs  
I1  
Synthesis Block  
O1 DLY  
from Adjacent PLL  
R1  
R2  
REF  
PLL  
O2  
O3  
O4  
Non-Zero Delay Buffer  
FracN  
C1  
I2  
L1  
The CY27410 supports the PLL-bypass mode, which bypasses  
the entire synthesis block to act as a configurable non-zero delay  
buffer (NZDB) with level translation and selectable inputs, as  
shown in Figure 13.  
from Adjacent PLL  
Figure 13. NZDB Configuration  
Reference  
Outputs  
The CY27410 provides the frequency-multiplying ZDB by  
modulating the R1 and R2 values in the integer ratio. If both the  
values are identical, the CY27410 acts as a simple ZDB.  
I1  
Synthesis Block  
O1 DLY  
R1  
R2  
Early/Late Output Phase  
PLL  
O2  
O3  
O4  
The CY27410 supports a delay circuit in the divider to provide 0  
to 4 × VCO/2 cycles. Therefore, an output has a certain lag  
phase or lead phase to other outputs when this feature is used.  
This functionality is also available in the ZDB mode and provides  
“early” phase or “delayed” phase to the Reference input. Refer  
to Figure 11 and Figure 12.  
FracN  
C1  
I2  
L1  
from Adjacent PLL  
Figure 11. Early/Delayed Phase Output  
Reference  
Outputs  
Combination Clock Generator and Buffer  
I1  
Synthesis Block  
O1 DLY  
The CY27410 provides a combination of a clock generator and  
a buffer in one device. This is achieved by configuring the input  
and output selectors for the desired split configuration. An  
example of such an application is shown in Figure 14.  
R1  
R2  
PLL  
O2  
O3  
O4  
FracN  
C1  
Figure 14. Clock Generator and NZDB  
I2  
L1  
Reference  
Outputs  
I1  
Synthesis Block  
O1 DLY  
from Adjacent PLL  
R1  
R2  
PLL  
O2  
O3  
O4  
FracN  
C1  
I2  
L1  
from Adjacent PLL  
Document Number: 001-89074 Rev. *M  
Page 6 of 30  
CY27410  
Low-Frequency Output  
Figure 16. Spread-Spectrum Profile  
Nonlinear Profile  
The CY27410 integrates low-frequency generator counters for  
LVCMOS outputs that may be used for watchdog-time and/or  
kHz-order clocks for application, as shown in Figure 15.  
Linear Profile  
MAX  
MIN  
MAX  
IN  
Figure 15. Low-frequency Output Option  
Time  
Time  
Reference  
Outputs  
Typical Clock  
EMI  
Typical Clock  
I1  
SS Clock  
SS Clock  
Synthesis Block  
O1 DLY  
EMI  
Reduction  
Reduction  
R1  
PLL  
O2  
O3  
O4  
R2  
FracN  
C1  
Frequency  
Frequency  
I2  
L1  
VCXO (VCFS) Functionality  
from Adjacent PLL  
The CY27410 supports VCXO functionality without pulling the  
crystal frequency. This function is implemented by modulating  
the FracN counter according to the VIN level, as shown in  
Figure 17. Therefore, this is called voltage-controlled frequency  
shift (VCFS).  
Spread Spectrum  
To help reduce electromagnetic interference (EMI), the CY27410  
supports spread-spectrum modulation. The output clock  
frequencies can be modulated to spread energy across a  
broader range of frequencies and lower system EMI. The  
CY27410 implements two types of spread profiles for  
modulation: linear and nonlinear.  
The VCFS function is implemented by modulating the FracN  
divider, which means all the parameters are independent of the  
process, voltage, and temperature variations.  
It is not possible to combine the VCFS operation with spread  
spectrum (see Figure 18).  
The spread spectrum can be applied to any output clock, any  
frequency, and any spread amount ranging from 0.1% to 5% in  
0.1% steps. The center or down spread can be programmable.  
Figure 17. VCFS Profile  
Frequency  
ppm  
The spread modulation rate is limited from 30 kHz to 60 kHz.  
The spread spectrum is generated digitally in the FracN  
modulation, which means all the parameters are independent of  
process, voltage, and temperature variations. All the frequencies  
generated by the same PLL have the same amount of  
modulation.  
0
VIN  
1/2 * VDD  
As shown in Figure 16, a harmonic of a modulated clock has a  
much lower amplitude than that of an unmodulated signal. The  
reduction in amplitude is dependent on the harmonic number  
and the frequency deviation or spread. The equation for the  
reduction in the nonlinear profile is:  
Figure 18. VCFS and Spread Spectrum  
Reference  
Outputs  
dB = 6.5 + 9 log10(P) + 9 * log10(F)  
I1  
Synthesis Block  
where P is the percentage of deviation and F is the frequency in  
megahertz where the reduction is measured.  
O1 DLY  
R1  
R2  
PLL  
O2  
O3  
O4  
FracN  
C1  
I2  
L1  
from Adjacent PLL  
VCFS  
SSC  
VIN  
Document Number: 001-89074 Rev. *M  
Page 7 of 30  
CY27410  
Crystal Oscillator  
Start Bit; 7-bit Device Address; R/W Bit; Slave Clock  
Acknowledge (ACK); 8-bit Memory Address (MA); ACK; 8-bit  
Data; ACK; 8-bit Data in MA+1 if desired; ACK; 8-bit Data in  
MA+2; ACK; and more until STOP Bit.  
The CY27410 supports various low-cost crystals as a reference  
oscillator at IN1 (XIN/XOUT) to generate multiple frequencies in  
a single chip. The CY27410 supports a crystal with a nominal  
load capacitance specification from 8 pF to 12 pF. As shown in  
Figure 2 on page 3, the CY27410 integrates all the components,  
such as a feedback resistor and tuning capacitor, to oscillate the  
clock with a particular crystal for the following specifications.  
The basic serial format is shown in Figure 19.  
Figure 19. Data Transfer Sequence on the Serial Bus  
To enable proper operation, the crystal specification is divided  
into three ranges:  
SCLK  
SDAT  
Low range (FNOM) = 8 to 12 MHz  
Midrange = 12 to 20 MHz  
START  
Address or  
Data may  
STOP  
Condition  
Condition  
Acknowledge be changed  
Valid  
High range = 20 to 48 MHz  
A valid write operation must have a full 8-bit register address  
after the device address word from the master, which is followed  
by an acknowledge bit from the slave (SDAT = 0/LOW). The next  
eight bits must contain the data word intended for storage. After  
the data word is received, the slave responds with another  
acknowledge bit (SDAT = 0/LOW), and the master must end the  
write sequence with a STOP condition (see Figure 20).  
The corresponding crystal parameters are listed in Table 2.  
Table 2. Crystal Specifications  
Min  
Max  
Max R1  
(ohms)  
Max DL  
(µW)  
Range  
Frequency Frequency  
(MHz)  
8
(MHz)  
12  
Low  
Mid  
150  
70  
100  
100  
100  
Figure 20. Data Frame Architecture (Write)  
Random Write  
12  
20  
High  
20  
48  
50  
CL (pF) for all Ranges Associated Max C0 (pF)  
Memory Address  
Memory Data  
Device Address  
8
9
2
2
2
3
Sequential Write  
10  
12  
Memory Address  
Memory Data  
Memory Data  
Device Address  
Serial Programming Interface Protocol  
The CY27410 uses the SDAT and SCLK pins for a 2-wire serial  
interface that operates up to 400 Kb/s in Read and Write modes.  
It complies with the I2C bus standard. The basic Write protocol is:  
Document Number: 001-89074 Rev. *M  
Page 8 of 30  
CY27410  
Read operations are initiated the same way as write operations,  
except that the R/W bit of the slave address is set to ‘1’ (HIGH).  
There are two basic read operations: random read and  
sequential read. Figure 21 illustrates these operations.  
Figure 21. Data Frame Architecture (Read)  
Random Read  
Memory Address  
Memory Address  
Memory Data  
Memory Data  
Device Address  
Device Address  
Device Address  
Sequential Read  
Device Address  
Memory Data  
Through random read operations, the master may access any  
memory location. To perform this type of read operation, first set  
the word address. Send the address to the CY27410 as part of  
a write operation. After the word address is sent, the master  
generates a START condition following the acknowledge. This  
terminates the write operation before any data is stored in the  
address, but not before the internal address pointer is set. Next,  
the master reissues the control byte with the R/W byte set to ‘1’.  
Sequential read operations follow the same process as random  
reads, except that the master issues an acknowledge instead of  
a STOP condition after transmission of the first 8-bit data word.  
This action results in an incrementing of the internal address  
pointer, and subsequently output of the next 8-bit data word. By  
continuing to issue acknowledges instead of STOP conditions,  
the master may serially read the entire contents of the slave  
device memory.  
Then, the CY27410 issues an acknowledge and transmits the  
8-bit word. The master device does not acknowledge the  
transfer, but does generate a STOP condition, which causes the  
CY27410 to stop transmission.  
Document Number: 001-89074 Rev. *M  
Page 9 of 30  
CY27410  
Pinouts  
The CY27410 devices are available in the 48-pin QFN package.  
Table 3. CY27410 Pin Definitions  
Name  
XIN  
I/O  
Type  
# of Pins  
Pin #  
Function  
I
O
I
Crystal  
Crystal  
1
1
1
8
9
6
XIN for crystal  
XOUT  
IN1P  
XOUT for crystal  
LVCMOS/  
Differential  
True input for IN1 differential pair. IN1 for LVCMOS input. Need  
external series capacitor for differential input.  
IN1N  
IN2P  
I
I
Differential  
1
1
5
4
Complement input for IN1 differential pair. None for LVCMOS  
input. Need external series capacitor for differential input.  
LVCMOS /  
Differential  
Feedback input for ZDB mode.  
True input for IN2 differential pair. IN2 for LVCMOS input  
Need external series CAPS for differential input.  
IN2N  
I
Differential  
1
3
Feedback input for ZDB mode.  
Complement input for IN2 differential pair. None for LVCMOS  
input. Need external series CAPS for differential input.  
OUT15  
OUT16  
OUT11P  
O
O
O
LVCMOS  
LVCMOS  
1
1
1
39  
37  
48  
LVCMOS clock output 15  
LVCMOS clock output 16  
LVCMOS /  
Differential  
Output 11 true output (differential) or Output 11 LVCMOS  
OUT11N  
OUT12P  
OUT12N  
OUT13P  
OUT13N  
OUT14P  
OUT14N  
OUT21P  
OUT21N  
OUT22P  
OUT22N  
OUT23P  
OUT23N  
OUT24P  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Differential  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
47  
46  
45  
43  
42  
41  
40  
13  
14  
15  
16  
18  
19  
20  
Output 11 complement output (differential) connect to OUT11P  
for LVCMOS  
LVCMOS /  
Differential  
Output 12 true output (differential) or LVCMOS clock output 12  
Differential  
Output 12 complement output (differential) connect to OUT12P  
for LVCMOS  
LVCMOS /  
Differential  
Output 13 complement output (differential) or Output 13  
LVCMOS  
Differential  
Output 13 complement output (differential) connect to OUT13P  
for LVCMOS  
LVCMOS /  
Differential  
Output 14 true output (differential) or Output 14 LVCMOS output  
Differential  
Output 14 complement output (differential) connect to OUT14P  
for LVCMOS  
LVCMOS /  
Differential  
Output 21 true output (differential) or Output 21 LVCMOS output  
Differential  
Output 21 complement output (differential) connect to OUT21P  
for LVCMOS  
LVCMOS /  
Differential  
Output 22 true output (differential) or Output 22 LVCMOS output  
Differential  
Output 22 complement output (differential) connect to OUT22P  
for LVCMOS  
LVCMOS /  
Differential  
Output 23 true output (differential) or Output 23 LVCMOS output  
Differential  
Output 23 complement output (differential) connect to OUT23P  
for LVCMOS  
LVCMOS /  
Differential  
Output 24 true output (differential) or Output 24 LVCMOS output  
Document Number: 001-89074 Rev. *M  
Page 10 of 30  
CY27410  
Table 3. CY27410 Pin Definitions (continued)  
Name  
I/O  
Type  
# of Pins  
Pin #  
Function  
OUT24N  
O
Differential  
1
21  
Output 24 complement output (differential) connect to OUT24P  
for LVCMOS  
OUT25  
OUT26  
DNU  
O
O
LVCMOS  
LVCMOS  
1
1
1
1
22  
24  
10  
33  
LVCMOS clock output 25  
LVCMOS clock output 26  
Pin for test purpose  
SDAT  
I/O  
LVCMOS /  
Open Drain  
I2C serial data pin  
SCLK  
FS0  
I
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Analog  
PWR  
1
1
1
1
1
1
1
1
1
9
34  
30  
31  
32  
26  
44  
38  
17  
23  
I2C clock pin  
I
Frequency Select pin  
FS1  
I
Frequency Select pin  
FS2  
I
Frequency Select pin  
VIN  
I
Voltage input for ADC  
VDDIO_D1  
VDDIO_S1  
VDDIO_D2  
VDDIO_S2  
VDD  
PWR  
PWR  
PWR  
PWR  
PWR  
Output power supply for Bank 1 differential outputs  
Output power supply for Bank 1 LVCMOS outputs  
Output power supply for Bank 2 Differential outputs  
Output power supply for Bank 2 LVCMOS outputs  
PWR  
PWR  
PWR  
PWR  
1, 2, 7, 11, Core power supply  
12, 25, 29,  
35, 36  
XRES  
GND  
I
LVCMOS  
GND  
1
E-PAD  
1
27  
28  
Active low RESET SIGNAL  
GND  
Analog  
Supply ground  
VCCD  
Analog  
For 1.8-V operation, connect to VDD.  
For 2.5-V or 3.3-V operation, do not connect to VDD; connect a  
100-nF capacitor between this pin and GND.  
Document Number: 001-89074 Rev. *M  
Page 11 of 30  
CY27410  
Figure 22. 48-Pin QFN Pinout  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
VDD  
VDD  
VDD  
VDD  
SCLK  
SDAT  
FS2  
2
3
IN2N  
4
IN2P  
IN1N  
IN1P  
VDD  
5
6
FS1  
7
FS0  
8
XIN  
XOUT  
DNU  
VDD  
VCCD  
XRES  
VIN  
9
10  
11  
12  
VDD  
VDD  
VDD  
Document Number: 001-89074 Rev. *M  
Page 12 of 30  
CY27410  
Electrical Specifications  
Exceeding maximum ratings may shorten the useful life of the device.  
Absolute Maximum Ratings  
Table 4. Absolute Maximum Ratings  
Symbol  
VDD  
VDDIOX  
VIN  
VINI2C  
TS  
Description  
Core supply voltage  
Output bank supply voltage  
Input voltage  
Conditions  
Min  
–0.5  
–0.5  
–0.5  
–0.5  
–55  
2000  
500  
200  
Typ  
Max  
Units  
V
4.6  
4.6  
V
Relative to VSS  
VDD + 0.4  
V
I2C Bus input voltage  
Storage temperature  
ESD (human body model)  
ESD (charged device model)  
ESD (machine model)  
Latchup  
SCLK, SDAT pins  
Non functional  
6
+150  
V
°C  
V
ESDHBM  
ESDCDM  
ESDMM  
LU  
JEDEC JS-001-2012  
JEDEC JESD22-C101E  
JEDEC JESD22-A115B  
JEDEC JESD78D  
V-0 at 1/8 in  
V
V
140  
10  
mA  
ppm  
UL-94  
MSL  
Flammability rating  
Moisture sensitivity level  
3
Operating Temperature  
Table 5. Operating Temperature  
Symbol  
Description  
Ambient temperature  
Junction temperature  
Conditions  
Min  
–40  
–40  
Typ  
Max  
+85  
Units  
°C  
TA  
TJ  
+100  
°C  
Operating Power Supply  
Table 6. Operating Power Supply  
Symbol  
VDD  
Description  
Conditions  
1.8-V range: ±5%  
2.5-V range: ±10%  
3.3-V range: 5%  
Min  
1.71  
2.25  
3.13  
1.71  
2.25  
3.13  
Typ  
1.80  
2.50  
3.3  
Max  
1.89  
2.75  
3.46  
1.89  
2.75  
3.46  
38.0  
Units  
V
Core supply voltage  
V
V
VDDIO  
Output supply voltage  
1.8-V range: ±5%  
2.5-V range: ±10%  
3.3-V range: 5%  
1.80  
2.50  
3.30  
V
V
V
IDDO  
Power supply current per pair  
LVPECL, output pair terminated 50   
to VTT (VDD – 2 V)  
mA  
LVPECL, output pair terminated 50   
to VTT (VDD – 1.7 V)  
27.0  
mA  
IDDO  
IDDO  
Power supply current per pair  
Power supply current per pair  
LVDS, output pair terminated 100   
13.25  
26.5  
mA  
mA  
HCSL, output pair terminated 33 to  
49.9 to GND  
IDDO  
Power supply current per pair  
CML, output pair terminated 50 to  
VDD  
18.0  
mA  
IDDO  
Power supply current per pair  
Current consumption per PLL  
CMOS, 10-pF load, 33 MHz  
Includes DIVC  
6.0  
26.5  
3.5  
mA  
mA  
mA  
IDDPLL1  
IDDXO  
XO/Input block current  
consumption  
XO or IN1 input buffer on, IN2 input  
buffer off  
Document Number: 001-89074 Rev. *M  
Page 13 of 30  
CY27410  
Table 6. Operating Power Supply (continued)  
Symbol  
IDDPM  
Description  
Conditions  
Min  
Typ  
Max  
Units  
Power management block  
current consumption  
2.5  
mA  
tPLLLOCK  
tLOCK  
PLL lock time  
Time from PLL enabled to PLL stable  
(PLL reaches at ±1-ppm accuracy)  
250  
s  
Device power-up time  
Time from minimum specified VDD to  
Output Stable in XO-based clock gen  
mode. In the case of external clock  
input, tLOCK will reduce by the crystal  
oscillator startup time (tOSCSTART).  
This specification is valid when the  
reference is available and stable at  
startup.  
10.0  
ms  
For supply ramps slower than the  
tPU_SR spec where customers use  
XRES during power up. Power-up time  
will be calculated from the release of  
XRES to output stable.  
tOSCSTART  
Crystal oscillator startup time  
Time from crystal oscillator power-up  
to crystal oscillator stable. Crystal  
FNOM = 25 MHz, C1>1 fF  
1
4
ms  
tPU_SR  
Power supply slew rate during  
power up  
Power-supply ramp rate for VDD to  
reach minimum specified voltage  
(power ramp must be monotonic). For  
supply ramps slower than 1 V/ms, use  
XRES to externally keep the part in  
RESET during power-up and release  
XRES after VDD reaches the minimum  
specification.  
67  
V/ms  
DC Chip-Level Specifications  
Table 7. DC Electrical Specifications Input  
Symbol  
VIH33  
Description  
Input high voltage  
Conditions  
Min  
2.0  
1.7  
1.1  
Typ  
Max  
Units  
LVCMOS and logic inputs, VDD = 3.3 V  
LVCMOS and logic inputs, VDD = 2.5 V  
LVCMOS and logic inputs, VDD = 1.8 V  
LVCMOS and logic inputs, VDD = 3.3 V  
LVCMOS and logic inputs, VDD = 2.5 V  
LVCMOS and logic inputs, VDD = 1.8 V  
V
V
V
V
V
V
V
VIH25  
VIH18  
VIL33  
VIL25  
VIL18  
VDIFF  
Input high voltage  
Input high voltage  
Input low voltage  
Input low voltage  
Input low voltage  
Differential input  
0.8  
0.7  
0.5  
1.45  
LVDS, CML, PECL, HCSL. Differential  
amplitude, pk.  
0.30  
DCDIFF  
Duty cycle, differential clock input Measured at crossing point  
40  
40  
50  
50  
60  
60  
%
%
DCLVCMOS Duty cycle, LVCMOS clock input Measured at 1/2 VDD  
IIH  
Input high current  
Input = VDD  
150  
A  
A  
pF  
V
IIL  
Input low current  
Input = GND  
–150  
CIN  
Input capacitance, IN1, IN2  
AC input swing pk  
Measured at 10 MHz, differential  
3.0  
1.2  
VPPSINE  
Clipped sine wave, AC coupled  
through a 1000-pF capacitor.  
0.8  
1.0  
RP  
Input pull-down resistance  
LVCMOS clock input  
75  
115  
170  
k  
Document Number: 001-89074 Rev. *M  
Page 14 of 30  
CY27410  
DC Output Specifications  
Table 8. DC Specifications for LVCMOS Output  
Symbol  
VOH  
VOL  
Description  
Output high voltage  
Output low voltage  
Conditions  
Min  
VDDIO – 0.3  
Typ  
Max  
Units  
4-mA load  
4-mA load  
V
V
0.3  
Table 9. DC Specifications for LVDS Output (VDDIO = 2.5-V or 3.3-V range)  
Symbol  
VPP  
Description  
Conditions  
8 MHz to 325 MHz  
Min  
Typ  
Max  
Units  
LVDS output AC single-ended  
pk-pk,  
250  
510  
mV  
VPP  
LVDS output AC single-ended  
pk-pk  
325 MHz to 700 MHz  
200  
510  
50  
mV  
mV  
V
VPP  
VOCM  
VOCM  
IOZ  
Change in VPP between comple-  
mentary output states  
1.200  
Output common-mode voltage  
Met only at 2.5 V and 3.3 V. Need AC  
coupling for 1.8-V operation  
1.125  
1.375  
50  
Change in VOCM between  
complementary output states  
mV  
A  
Output leakage current  
Output off, VOUT = 0.75 V to 1.75 V  
–20  
20  
Table 10. DC Specifications for LVPECL Output (VDDIO = 2.5-V or 3.3-V range)  
Symbol Description Conditions  
VOH Output high voltage  
Output low voltage  
Min  
Typ  
Max  
Units  
V
R-term = 50 to VTT (VDDIO – 2.0 V) VDDIO – 1.165  
R-term = 50 to VTT (VDDIO – 2.0 V) VDDIO – 2.0  
VDDIO – 0.800  
VOL  
VPP  
VDDIO – 1.620  
V
LVPECL output AC single ended fOUT = 8 MHz to 150 MHz  
450  
320  
mV  
mV  
pk-pk,  
fOUT = 150 MHz to 700 MHz  
Table 11. DC Specifications for CML Output (VDDIO = 2.5-V or 3.3-V range)  
Symbol  
VOH  
Description  
Output high voltage  
Output low voltage  
Conditions  
R-term= 50 to VDDIO  
R-term= 50 to VDDIO  
fOUT = 8 MHz to150 MHz  
Min  
Typ  
Max  
Units  
V
VDDIO – 0.1  
VDDIO – 0.7  
250  
VOL  
VPP  
VDDIO – 0.3  
700  
V
CML output AC single-ended  
pk-pk  
mV  
VPP  
CML output AC single-ended  
pk-pk  
150 < fOUT < 700 MHz  
200  
600  
mV  
Document Number: 001-89074 Rev. *M  
Page 15 of 30  
CY27410  
Table 12. DC Specifications for HCSL Output (VDDIO = 2.5-V or 3.3-V range)  
Symbol  
VOCM  
Description  
Conditions  
Common mode  
Min  
350  
150  
Typ  
Max  
400  
Units  
mV  
Output common mode voltage  
Differential output high voltage  
VOHDIFF  
VOLDIFF  
VCROSS  
Measurementtakenfromdifferential  
waveform  
mV  
Differential output low voltage  
Measurementtakenfromdifferential  
waveform  
250  
–150  
550  
mV  
mV  
mV  
Absolute crossing point voltage Measurement taken from  
single-ended waveform  
VCROSSDELTA Variation of VCROSS over all rising Measurement taken from  
140  
clock edges  
single-ended waveform  
Table 13. Input Frequency Range  
Symbol  
Description  
Crystal frequency  
Conditions  
Fundamental AT CUT crystal  
Internal reference to PLL  
Buffer mode, all PLLs OFF  
Buffer mode, one or more PLL active  
CLKGEN mode  
Min  
8
Typ  
Max  
48  
Units  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
FCRYSTAL  
FREFERENCE Reference frequency  
8
40  
FINCMOS  
FINCMOS  
FINCMOS  
FINCMOS  
LVCMOS input frequency  
LVCMOS input frequency  
LVCMOS input frequency  
LVCMOS input frequency  
8
250  
125  
250  
250  
8
8
ZDB mode, PLL in integer N configu-  
ration  
8
FINDIFF  
FINDIFF  
FINDIFF  
FINDIFF  
Differential clock input frequency Buffer mode, all PLLs OFF  
Differential clock input frequency Buffer mode, one or more PLL active  
Differential clock input frequency CLKGEN mode  
8
8
8
8
700  
125  
300  
300  
MHz  
MHz  
MHz  
MHz  
Differential clock input frequency ZDB mode, PLL in integer N configu-  
ration  
FINCAS  
Cascading clock frequency  
Internal cascading frequency in the  
Buffer mode  
8
125  
MHz  
AC Input Clock Specifications  
Table 14. AC Input Clock Electrical Specification  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
tCMOSDC  
LVCMOS clock input duty cycle Measured at 1/2 VDD 20%–80%,  
Functional  
40  
50  
60  
%
tDIFFDC  
Differential clock input duty cycle Measured at VOCM 20%–80%,  
Functional  
40  
50  
60  
4
tRFCMOS  
LVCMOS clock input rise/fall time Measured between 20%–80% of VDD  
ns  
AC Output Specifications  
Table 15. AC Electrical Specifications LVCMOS Output. Load: 15 pF < 100MHz, 7.5 pF < 200 MHz, 5 pF > 200 MHz  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
Common AC Electrical Specifications  
tRFCMOS  
tRFCMOS  
tRFCMOS  
Rise/fall time  
fOUT < 100MHz, 20%–80%  
fOUT < 200MHz, 20%–80%  
fOUT < 250MHz, 20%–80%  
Equally loaded, measured at 1/2 VIOX  
2.0  
1.5  
1.3  
150  
ns  
ns  
ns  
ps  
Rise/fall time  
Rise/fall time  
Output to output skew  
,
tSKEW  
in a bank, derived from the same PLL,  
Document Number: 001-89074 Rev. *M  
Page 16 of 30  
CY27410  
Table 15. AC Electrical Specifications LVCMOS Output. Load: 15 pF < 100MHz, 7.5 pF < 200 MHz, 5 pF > 200 MHz (continued)  
Symbol  
Buffer Mode  
fOUT  
Description  
Conditions  
Min  
Typ  
Max  
Units  
Output frequency  
All PLLs off  
With one or more PLL running  
8
8
250  
125  
60  
MHz  
MHz  
%
fOUT  
Output frequency  
Output duty cycle  
tDC  
Measured at 1/2 VIOX  
.
40  
50  
Input DC = 50%  
tJIT_ADD  
Additive RMS phase jitter  
fOUT = 156.25 MHz,  
0.7  
1.0  
ps  
12 kHz-20 MHz offset, DIVI=1.  
Input slew rate 1.8 V/ns,  
20%–80% VDD  
tDELAY  
Propagation delay  
Input to output delay  
7.0  
ns  
ZDB Mode (IN1 = REF, Differential or LVCMOS feedback to IN2)  
fOUT  
tDC  
Output frequency  
Output duty cycle  
8
250  
60  
MHz  
%
Measured at 1/2 VIOX,  
fOUT > 200 MHz,  
VDDIO = 2.5 V or 3.3 V.  
fOUT > 100MHz, VDDIO = 1.8 V  
40  
50  
tDC  
Output duty cycle  
Cycle-to-cycle jitter  
Measured at 1/2 VIOX,  
45  
50  
55  
50  
%
fOUT 200 MHz VDDIO = 2.5 V or 3.3 V.  
fOUT 100 MHz, VDDIO = 1.8 V  
tOCCJ  
pk, measured at 1/2 VIOX over  
10-k cycle, fOUT = 100 MHz.  
Input slew rate 1.8 V/ns,  
ps  
20%–80% VDD  
.
Configuration dependent  
tPJ  
Period jitter  
pk-pk, measured at 1/2 VIOX over  
10-k cycle, fOUT = 100 MHz.  
Input slew rate 1.8 V/ns,  
100  
350  
ps  
ps  
20%–80% VDD  
.
Configuration dependent  
tPDELAY  
Propagation delay  
Measured at 1/2 VIOX  
–350  
±250 ps excludes any delay added  
onboard (from output to inputs).  
Delay onboard (tDELAY_BOARD) must  
not exceed 2-ns max.  
Total delay in the ZDB mode is  
t
DELAY_BOARD + tPDELAY  
CLKGEN Mode  
fOUT  
Output frequency  
3
250  
50  
MHz  
MHz  
fOUTL  
Low frequency output  
1 kHz is supported when the max input  
frequency to DIVL is 48 MHz  
0.001  
tDC  
Output duty cycle  
Measured at 1/2 VIOX,  
fOUT > 200 MHz,  
VDDIO = 2.5 V or 3.3 V.  
fOUT > 100 MHz, VDDIO = 1.8 V  
40  
50  
60  
%
tDC  
tCCJ  
tPJ  
Output duty cycle  
Cycle-to-cycle jitter  
Period jitter  
Measured at 1/2 VIOX,  
45  
55  
50  
%
ps  
ps  
fOUT 200 MHz VDDIO = 2.5 V or 3.3 V.  
fOUT 100 MHz, VDDIO = 1.8 V  
pk, measured at 1/2 VIOX over 10-k  
cycle, fOUT=100 MHz. Configuration  
dependent  
pk-pk, measured at 1/2 VIOX over 10-k  
cycle, fOUT = 100 MHz. Input reference  
25-MHz crystal. Configuration  
dependent  
100  
Document Number: 001-89074 Rev. *M  
Page 17 of 30  
CY27410  
Table 15. AC Electrical Specifications LVCMOS Output. Load: 15 pF < 100MHz, 7.5 pF < 200 MHz, 5 pF > 200 MHz (continued)  
Symbol  
SSC Mode  
fOUT  
Description  
Conditions  
Min  
Typ  
Max  
Units  
Output frequency  
3
250  
60  
MHz  
%
tDC  
Output duty cycle  
Measured at 1/2 VIOX,  
fOUT > 200 MHz,  
VDDIO = 2.5 V or 3.3 V.  
fOUT > 100 MHz, VDDIO = 1.8 V  
40  
50  
tDC  
Output duty cycle  
Cycle-to-cycle jitter  
Measured at 1/2 VIOX  
,
45  
50  
55  
%
fOUT 200 MHz VDDIO = 2.5 V or 3.3 V.  
fOUT 100 MHz, VDDIO = 1.8 V  
tCCJ  
pk, measured at 1/2 VIOX over  
10-k cycle, fOUT = 100 MHz, with a  
spread of 0.5%.  
Input reference 25-MHz crystal.  
Configuration dependent  
100  
ps  
Table 16. AC Electrical Specifications, Differential Output (LVPECL, CML, LVDS) [1]  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
COMMON AC Electrical Specifications  
tRF  
tRF  
tRF  
tSK1  
PECL output rise/fall time  
CML output rise/fall time  
LVDS output rise/fall time  
Output skew  
20%–80% of AC levels, measured at  
622.08 MHz  
450  
450  
450  
100  
ps  
ps  
ps  
ps  
20%–80% of AC levels, measured at  
622.08 MHz  
20%–80% of AC levels, measured at  
622.08 MHz  
Four differential output pairs in a bank,  
derived from the same PLL, with same  
standard and load conditions  
BUFFER Mode  
tODC  
tODC  
tPD  
Output duty cycle  
Differential input signal at 50% duty  
cycle, differential signal, 622.08 MHz  
45  
40  
50  
50  
55  
60  
4
%
%
ns  
fs  
Output duty cycle  
LVCMOS input signal at 50% duty  
cycle, differential signal, 250 MHz  
Propagation delay  
Measured at differential signal,  
156.25 MHz  
tJIT_ADD  
Additive RMS phase jitter  
fOUT = 156.25 MHz, 12-k to 20-MHz  
offset, DIV1 = 1. Input slew rate 4 V/ns  
differential 400-mV amplitude.  
400  
ZDB Mode (REF=IN1, 1 pair of output is feedback to IN2)  
tODC  
Output duty cycle  
Measured at differential signal,  
100 MHz  
45  
50  
55  
50  
%
tCCJ  
Cycle-to-cycle jitter  
pk, measured differential signal over  
10-k cycle, fOUT =156.25 MHz. Input  
slew rate 4 V/ns differential 400-mV  
amplitude. (all differential outputs on)  
ps  
tPJ  
Period jitter  
pk-pk, measured differential signal  
over 10-k cycle, fOUT = 156.25 MHz.  
Input slew rate 4 V/ns differential  
400-mV amplitude. (all differential  
outputs on)  
50  
ps  
Note  
1. AC parameters for differential outputs are guaranteed for only differential outputs. LVCMOS is Off.  
Document Number: 001-89074 Rev. *M  
Page 18 of 30  
CY27410  
Table 16. AC Electrical Specifications, Differential Output (LVPECL, CML, LVDS) [1] (continued)  
Symbol  
tPD  
Description  
Propagation delay  
Conditions  
Min  
Typ  
Max  
Units  
Measured differential signal,  
fOUT = 156.25 MHz,  
–300  
300  
ps  
±250 ps is excluding any delay added  
onboard (from output to inputs).  
Delay onboard (tDELAY_BOARD) must  
not exceed 2-ns max.  
Total delay in the ZDB mode is  
t
DELAY_BOARD + tPDELAY  
tJRMS  
RMS phase jitter  
fIN = fOUT = 156.25 MHz,  
0.7  
1.0  
ps  
12-k to 20-MHz offset. Input slew rate  
4 V/ns differential 400-mV amplitude  
PNg10k  
PNg100k  
PNg1M  
PNg10M  
PN-SPUR  
Phase noise, offset = 10 kHz  
Phase noise, offset = 100 kHz  
Phase noise, offset = 1 MHz  
Phase noise, offset = 10 MHz  
Spur  
fIN = fOUT = 156.25 MHz.  
Input slew rate 4 V/ns differential  
400-mV amplitude.  
–110  
–119  
–131  
–147  
–65  
dBc/  
Hz  
fIN = fOUT = 156.25 MHz.  
Input slew rate 4 V/ns differential  
400-mV amplitude.  
dBc/  
Hz  
fIN = fOUT = 156.25 MHz.  
Input slew rate 4 V/ns differential  
400-mV amplitude.  
dBc/  
Hz  
fIN = fOUT = 156.25 MHz.  
Input slew rate 4 V/ns differential  
400-mV amplitude.  
dBc/  
Hz  
At frequency offsets equal to and  
greater than the update rate of the  
PLL. Input slew rate 4 V/ns differential  
400-mV amplitude.  
dBc/  
Hz  
CLKGEN Mode  
tODC Output duty cycle  
Measured at differential signal,  
622.08 MHz  
45  
50  
55  
50  
%
tCCJ  
Cycle-to-cycle jitter  
pk, measured at differential signal,  
156.25 MHz, over 10-k cycles. Input  
frequency (24 MHz to 40 MHz) crystal.  
(all differential outputs on)  
ps  
tPJ  
Period jitter  
pk-pk, measured at differential signal  
156.25 MHz, over 10-k cycles. Input  
frequency (24 MHz to 40 MHz) crystal.  
(all differential outputs on)  
50  
ps  
ps  
tJRMS  
RMS phase jitter  
fOUT = 156.25 MHz,  
12-k to 20-MHz offset  
0.7  
1.0  
PNg10k  
PNg100k  
PNg1M  
PNg10M  
PN-SPUR  
Phase noise, offset = 10 kHz  
Phase noise, offset = 100 kHz  
Phase noise, offset = 1 MHz  
Phase noise, offset = 10 MHz  
Spur  
fOUT=156.25 MHz. Input reference  
25-MHz crystal  
–110  
–119  
–131  
–147  
–65  
dBc/  
Hz  
fOUT=156.25 MHz. Input reference  
25-MHz crystal  
dBc/  
Hz  
fOUT = 156.25 MHz. Input reference  
25-MHz crystal  
dBc/  
Hz  
fOUT = 156.25 MHz. Input reference  
25-MHz crystal  
dBc/  
Hz  
At frequency offsets equal to and  
greater than the update rate of the PLL  
dBc/  
Hz  
Document Number: 001-89074 Rev. *M  
Page 19 of 30  
CY27410  
Table 16. AC Electrical Specifications, Differential Output (LVPECL, CML, LVDS) [1] (continued)  
Symbol  
SSC Mode  
tCCJ  
Description  
Conditions  
Min  
Typ  
Max  
Units  
Cycle-to-cycle jitter  
pk, measured at differential signal,  
156.25 MHz, over 10-k cycles. Input  
frequency (24 MHz to 40 MHz) crystal,  
with a spread of 0.5% (all differential  
outputs on).  
70  
ps  
Table 17. AC Electrical Specification HSCL Output [2, 3]  
Symbol Description  
Common AC Electrical Specifications  
Conditions  
Min  
Typ  
Max  
Units  
fOC  
ER  
Output frequency  
Rising edge rate  
HCSL  
Measurement  
96  
400  
4
MHz  
V/ns  
taken  
from  
from  
0.6  
differential waveform,  
–150 mV to +150 mV  
EF  
Falling edge rate  
Measurement  
differential waveform, –150 mV to  
+150 mV  
taken  
0.6  
500  
4
V/ns  
ps  
TSTABLE  
Time before VRB is allowed  
Measurement taken from  
differential waveform,  
–150 mV to +150 mV  
TPERIOD_AVG Average clock period accuracy, Measurement taken from  
–300  
9.874  
–20  
2800  
10.203  
+20  
ppm  
ns  
100 MHz  
differential waveform, Spread  
Spectrum On, 0.5% down spread  
TPERIOD_ABS  
Absolute period, 100 MHz  
Measurement taken from  
differential waveform, Spread  
Spectrum On, 0.5% down spread  
R-FMATCHING Rise-fall matching  
Measurement  
taken  
from  
%
single-ended waveform. Rising  
edge rate to falling edge rate  
matching 100 MHz  
BUFFER Mode  
TDC  
Duty cycle  
Measurement taken from  
differential waveform  
45  
50  
55  
%
tRMS_ADD  
Additive phase noise  
Input slew rate 4 V/ns differential  
400-mV amplitude.  
0.4  
ps  
(RMS)  
ZDB Mode (REF = IN1, 1 output pair fed back to IN2)  
TDC  
Duty cycle  
Measurement taken from  
differential waveform  
45  
50  
55  
50  
%
TCCJITTER  
Cycle-to-cycle jitter  
pk, measured at differential signal  
100 MHz, over 10-k cycles. Input  
slew rate 4 V/ns differential  
400-mV amplitude (all differential  
outputs on).  
ps  
JRMS  
Random jitter PCIe 3.0 Common PCIe Gen3 filters. Input slew rate  
0.7  
1.0  
ps  
clocked  
4 V/ns differential 400-mV  
amplitude.  
(RMS)  
tPD  
Propagation delay  
Early/Late option is OFF  
–300  
300  
ps  
Notes  
2. AC parameters for differential outputs are guaranteed for only differential outputs. LVCMOS is Off.  
3. All output clocks 100MHz HCSL format. Jitter is from PCIE jitter filter combination that produces the highest jitter.  
Document Number: 001-89074 Rev. *M  
Page 20 of 30  
CY27410  
Table 17. AC Electrical Specification HSCL Output [2, 3] (continued)  
Symbol  
CLKGEN Mode  
TDC  
Description  
Duty cycle  
Cycle-to-cycle jitter  
Conditions  
Min  
Typ  
Max  
Units  
Measurement taken from  
differential waveform  
45  
50  
55  
50  
%
TCCJITTER  
pk, measured at differential signal,  
100 MHz, over 10-k cycles. Input  
frequency (24 MHz–40 MHz)  
ps  
crystal (all differential outputs on).  
JRMS  
Random jitter PCIe 3.0 Common REF = 25-MHz crystal,  
clocked fOUT = 100 MHz, PCIe Gen3 filters  
0.7  
1.0  
ps  
Table 18. AC I2C Specifications  
Symbol Description  
fSCK  
Conditions  
Min  
Typ  
Max  
400  
Units  
kHz  
s  
SCK clock frequency  
0
0.6  
t
t
Hold time START condition  
HD:STA  
1.3  
s  
Low period of the SCK clock  
High period of the SCK clock  
LOW  
tHIGH  
0.6  
0.6  
s  
s  
tSU:STA  
Setup time for a repeated START  
condition  
tHD:DAT  
tSU:DAT  
tR  
Data hold time  
Data setup time  
Rise time  
0
100  
s  
ns  
ns  
ns  
s  
s  
300  
300  
tF  
Fall time  
tSU:STO  
tBUF  
Setup time for STOP condition  
0.6  
1.3  
Bus-freetimebetweenSTOPand  
START conditions  
Table 19. Spread-Spectrum Specifications  
Symbol Description  
FMOD Modulation rate  
Conditions  
Min  
30  
0.1  
Typ  
Max  
60  
Units  
kHz  
%
SSper  
Spread spectrum amount  
Spread spectrum% step  
Total %  
5.0  
SSStep  
0.1  
%
Document Number: 001-89074 Rev. *M  
Page 21 of 30  
CY27410  
Table 20. Output Selection Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
tFS  
Frequency switching time  
Frequency switching time for  
OUT13,14, 23, 24. Both PLLs are  
active (change MUX selection Bit).  
500  
µs  
tFS  
tFS  
Frequency switching time  
Frequency switching time  
Output turn-on time  
Frequency switching time for all  
outputs, DIVO value change  
500  
1000  
500  
µs  
µs  
µs  
µs  
µs  
Frequency switching time for all  
outputs. PLL value change.  
Output turn-on time from FS. PLL is  
active, change OE or MUX.  
t
t
t
FS  
Output turn-on time  
Output turn-on time from FS.  
Resume PLL from Power Down.  
1000  
500  
FS  
Output turn-off time  
Output turn-off time from FS. PLL is  
active, change OE or MUX.  
OFF  
Table 21. NV Memory Specification  
Symbol  
DRET  
PROGCYCLE  
Description  
NV memory data retention  
Programming cycle  
Conditions  
Min  
Typ  
Max  
Units  
Years  
Cycle  
10  
Programming cycle for NV  
memory  
100K  
Table 22. Miscellaneous Specifications  
Symbol Description  
tXRES XRES Low time  
TPROG  
CINADC  
Conditions  
Min  
10  
5
Typ  
Max  
Units  
µs  
Flash programming temperature  
Input capacitance VIN pin  
55  
10  
°C  
pF  
Table 23. Thermal Resistance  
Parameter [4]  
Description  
Test Conditions  
48-pin QFN  
Unit  
θJA  
Thermal resistance  
(junction to ambient)  
Test conditions follow standard test methods and  
procedures for measuring thermal impedance, in  
accordance with EIA/JESD51.  
15.64  
°C/W  
θJC  
Thermal resistance  
(junction to case)  
2.21  
°C/W  
Note  
4. These parameters are guaranteed by design and are not tested.  
Document Number: 001-89074 Rev. *M  
Page 22 of 30  
CY27410  
Test and Measurement Circuits  
Figure 23. LVPECL Output Load and Test Circuit  
Figure 24. LVDS Output Load and Test Circuit  
V
– 2 V  
V
DDIO  
DDIO  
V
DDIO  
50  
50   
50   
50   
50   
50   
TP  
TP  
TP  
TP  
100   
Figure 25. CML Output Load and Test Circuit  
Figure 26. HCSL Output Load and Test Circuit  
V
DDIO  
V
V
DDIO  
DDIO  
5”  
50   
50   
50   
50   
33   
TP  
TP  
50   
TP  
TP  
2 pF  
2 pF  
33   
50   
49.9   
49.9   
Figure 27. LVCMOS Output Load and Test Circuit  
V
DDIO  
TP  
C
LOAD  
Document Number: 001-89074 Rev. *M  
Page 23 of 30  
CY27410  
Voltage and Timing Definitions  
Figure 28. LVCMOS Input Definitions  
Figure 29. LVCMOS Output Definitions  
t
= t1 / (t1 + t2)  
t
= t1 / (t1 + t2)  
DC  
ODC  
t1  
t2  
t1  
80% of V  
t2  
V
V
IH  
OH  
80% of V  
DD  
DD  
IOX  
50% of V  
Clock  
50% of V  
OUT  
DD  
IOX  
20% of V  
20% of V  
V
IOX  
IL  
V
OL  
t
t
t
t
R
F
R
F
Figure 30. Differential Input Definitions  
Figure 31. Differential Output Definitions  
t
= t  
/ t  
PW PERIOD  
t
= t  
/ t  
V
= (V + V ) / 2  
OCM A B  
DC  
V
= (V + V ) / 2  
A B  
DC  
PW PERIOD  
OCM  
t
t
PERIOD  
PERIOD  
t
t
PW  
PW  
V
V
A
OUT-P  
OUT-N  
A
Clock-P  
Clock-N  
80% 80%  
V
V
PP  
PP  
ID  
20%  
20%  
V
V
B
B
t
t
R
F
Figure 32. Skew Definition  
Figure 33. Propagation Delay Definition  
50% of V  
50% of V  
IOX  
OUTx  
OUTy  
IOX  
INx  
50% of V  
50% of V  
IOX  
IOX  
OUTy  
t
t
PD  
SK1  
OUTx  
OUTy  
INx  
V
V
OCM  
OCM  
OUTy  
V
V
OCM  
OCM  
Figure 34. Output Enable/Disable/Frequency Select Timing  
Figure 35. HCSL Single-ended Measurement Point-2  
Rise and Fall Time Matching  
Original Clock  
New Clock  
TFALL  
TRISE  
OUT‐N  
VCROSS MEDIAN +75 mV  
VCROSS MEDIAN  
CLOCK  
FS  
OUT‐N  
VCROSS MEDIAN  
VCROSS MEDIAN ‐75 mV  
tOFF  
tFS  
OUT‐P  
OUT‐P  
Figure 36. HCSL Differential Measurement Point  
Figure 37. HCSL Differential Measurement for Ringback  
Duty Cycle and Period  
TSTABLE  
VRB  
Clock Period (Differential)  
Negative Duty  
V
= +150 mV  
VRIHB = +100 mV  
Cycle (Differential)  
Positive Duty  
Cycle (Differential)  
V
RB = ‐100 mV  
0.0 V  
V
IL = ‐150 mV  
OUT‐P +  
OUT‐N  
OUT‐P +  
OUT‐N  
VRB  
TSTABLE  
Document Number: 001-89074 Rev. *M  
Page 24 of 30  
CY27410  
Figure 38. HCSL Rise and Fall Time  
Figure 39. Power Ramp and PLL Lock Time  
Rise and Fall Time  
V
(min)  
t
DD  
PU  
Rising Edge Rate  
Falling Edge Rate  
Supply  
Voltage  
0.5 V  
LOCK  
t
VIH = +150 mV  
0.0 V  
Stable Output  
VIL = ‐150 mV  
Output  
OUT‐P +  
OUT‐N  
Figure 40. Definition for Timing for Fast/Standard Mode on the I2C Bus  
SDAT  
SCLK  
tf  
tLOW  
tr  
tSU;DAT  
tf  
tHD;STA  
tr  
tBUF  
tHD;STA  
tSU;STA  
tSU;STO  
tHD;DAT  
tHIGH  
P
S
S
Sr  
Document Number: 001-89074 Rev. *M  
Page 25 of 30  
CY27410  
Packaging Information  
This section illustrates the packaging specifications for the CY27410 device.  
Important Note The EPAD must be connected to ground to reduce the thermal resistance and for signaling ground.  
Figure 41. 48-Pin QFN (7 × 7 × 1.00 mm) LT48D 5.6 × 5.6 E-Pad (Sawn) Package Outline  
001-45616 *F  
For information on the preferred dimensions for mounting QFN packages, refer to the Cypress application note  
AN72845 - Design Guidelines for Cypress Quad Flat No Extended Lead (QFN) Packaged Devices.  
Solder Reflow Specifications  
Table 24 shows the solder reflow temperature limits that must not be exceeded.  
Table 24. Solder Reflow Specifications  
Package  
Maximum Peak Temperature (TC)  
Maximum Time above TC – 5 °C  
30 seconds  
48-pin QFN  
260 C  
Document Number: 001-89074 Rev. *M  
Page 26 of 30  
CY27410  
Ordering Information  
The following table lists the CY27410 device’s key package features and ordering codes.  
Table 25. Ordering Information  
Part Number  
CY27410FLTXI  
Configuration  
Field programmable  
Field programmable  
Factory configured  
Factory configured  
Package  
48-pin QFN  
48-pin QFN – Tape and Reel Industrial, –40 °C to +85 °C  
48-pin QFN Industrial, –40 °C to +85 °C  
48-pin QFN – Tape and Reel Industrial, –40 °C to +85 °C  
Production Flow  
Industrial, –40 °C to +85 °C  
CY27410FLTXIT  
CY27410LTXI-xxx  
CY27410LTXI-xxxT  
Ordering Code Definitions  
CY  
27410  
F
LT  
X I - xxx  
T
Tape and Reel  
Customer part configuration code  
Temperature Range: I = Industrial  
Pb-free: X= Pb free  
Package Type: LT: 48-pin QFN  
Configuration: F = Field programmable, Blank= Factory Configured  
Marketing code: 274XX = Device number  
Company ID: CY = Cypress  
Document Number: 001-89074 Rev. *M  
Page 27 of 30  
CY27410  
Acronyms  
Document Conventions  
Table 26. Acronyms Used in this Document  
Units of Measure  
Acronym  
AC  
Description  
Table 27. Units of Measure  
alternating current  
Symbol  
°C  
Unit of Measure  
ADC  
API  
analog-to-digital converter  
application programming interface  
current-mode logic  
degree Celsius  
decibels relative to the carrier  
femtofarad  
dBc  
fF  
CML  
CMOS  
DC  
fs  
femtosecond  
gram  
complementary metal oxide semiconductor  
direct current  
g
GHz  
Hz  
KHz  
Ksps  
k  
MHz  
M  
A  
F  
H  
s  
gigahertz  
ESD  
FS  
electrostatic discharge  
hertz  
frequency select  
kilohertz  
GUI  
graphical user interface  
high-speed current steering logic  
inter-integrated circuit  
kilo samples per second  
kilohm  
HCSL  
2
I C  
megahertz  
I/O  
input/output  
megaohm  
ISSP  
JEDEC  
LDO  
LSB  
in-system serial programming  
Joint Electron Devices Engineering Council  
low dropout (regulator)  
microampere  
microfarad  
microhenry  
microsecond  
microwatt  
least-significant bit  
W  
mA  
ms  
mV  
nA  
nF  
LVCMOS low voltage complementary metal oxide semicon-  
ductor  
milliampere  
millisecond  
millivolt  
LVDS  
LVPECL  
MSB  
NV  
low-voltage differential signals  
low-voltage positive emitter-coupled logic  
most-significant byte  
non-volatile  
nanoampere  
nanofarad  
ns  
nanosecond  
nanovolt  
NZDB  
OE  
non-zero delay buffer  
output enable  
nV  
ohm  
PCIe  
POR  
PCI express  
pA  
pF  
picoampere  
picofarad  
power-on reset  
®
PSoC  
Programmable System-on-Chip  
quad flat no-lead  
pp  
peak-to-peak  
parts per million  
parts per billion  
picosecond  
samples per second  
sigma: one standard deviation  
volt  
QFN  
ppm  
ppb  
ps  
RMS  
SCLK  
SDAT  
TSSOP  
USB  
root mean square  
2
serial I C clock  
2
serial I C data  
sps  
thin shrunk small outline package  
universal serial bus  
crystal  
V
XTAL  
ZDB  
W
watt  
zero delay buffer  
Document Number: 001-89074 Rev. *M  
Page 28 of 30  
CY27410  
Document History Page  
Document Title: CY27410, 4-PLL Spread-Spectrum Clock Generator  
Document Number: 001-89074  
Orig. of  
Change  
Submission  
Date  
Rev.  
ECN  
Description of Change  
*G  
4866820  
BPIN  
XHT  
XHT  
07/31/2015 Changed status from Preliminary to Final.  
Post to external web.  
*H  
*I  
4889775  
4930976  
08/19/2015 Updated Features:  
Replaced “75-ps skew” with “100-ps skew”.  
09/23/2015 Updated Functional Overview:  
Updated Input System:  
Updated description.  
*J  
5090700  
XHT  
01/18/2016 Updated Ordering Information:  
Updated part numbers.  
Updated Ordering Code Definitions.  
Completing Sunset Review.  
*K  
*L  
5351208  
5682054  
XHT  
PSR  
07/14/2016 Updated Cy Logo and Copyright.  
04/03/2017 Added Functional Description.  
Updated Packaging Information:  
spec 001-45616 – Changed revision from *E to *F.  
Updated to new template.  
*M  
6486386  
XHT  
02/15/2019 Updated to new template.  
Completing Sunset Review.  
Document Number: 001-89074 Rev. *M  
Page 29 of 30  
CY27410  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
®
®
Arm Cortex Microcontrollers  
Automotive  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU  
Cypress Developer Community  
Clocks & Buffers  
Interface  
Community | Projects | Video | Blogs | Training | Components  
Technical Support  
Internet of Things  
Memory  
cypress.com/support  
cypress.com/memory  
cypress.com/mcu  
Microcontrollers  
PSoC  
cypress.com/psoc  
Power Management ICs  
Touch Sensing  
USB Controllers  
Wireless Connectivity  
cypress.com/pmic  
cypress.com/touch  
cypress.com/usb  
cypress.com/wireless  
© Cypress Semiconductor Corporation, 2013–2019. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document,  
including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries  
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other  
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress  
hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to  
modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users  
(either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are infringed by the Software (as  
provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation  
of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing  
device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach,  
such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product  
to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any  
liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming  
code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this  
information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons  
systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances  
management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any component of a device  
or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you  
shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from  
and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in  
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 001-89074 Rev. *M  
Revised February 15, 2019  
Page 30 of 30  

相关型号:

CY27410LTXI-013

Universal Programmable Clock Generator with VCXO and Spread Spectrum
INFINEON

CY27410LTXI-013T

Universal Programmable Clock Generator with VCXO and Spread Spectrum
INFINEON

CY27410LTXI-025T

Universal Programmable Clock Generator with VCXO and Spread Spectrum
INFINEON

CY27A

Quartz Crystal Leaded HC49 Crystal
CRYSTEKMICROW

CY27C010-120DMB

OTP ROM, 128KX8, 120ns, CMOS, CDIP32, 0.600 INCH, HERMETIC SEALED, CERDIP-32
ROCHESTER

CY27C010-120JC

OTP ROM, 128KX8, 120ns, CMOS, PQCC32, PLASTIC, LCC-32
ROCHESTER

CY27C010-120JCT

OTP ROM, 128KX8, 120ns, CMOS, PQCC32, PLASTIC, LCC-32
CYPRESS
ETC

CY27C010-120WC

UVPROM, 128KX8, 120ns, CMOS, CDIP32, 0.600 INCH, WINDOWED, HERMETIC SEALED, CERDIP-32
CYPRESS

CY27C010-120WI

128KX8 UVPROM, 120ns, CDIP32, 0.600 INCH, WINDOWED, HERMETIC SEALED, CERDIP-32
ROCHESTER

CY27C010-120ZI

128KX8 OTPROM, 120ns, PDSO32, TSOP1-32
ROCHESTER

CY27C010-120ZI

OTP ROM, 128KX8, 120ns, CMOS, PDSO32, TSOP1-32
CYPRESS