CY62177G30-55BAXI [INFINEON]

Asynchronous SRAM;
CY62177G30-55BAXI
型号: CY62177G30-55BAXI
厂家: Infineon    Infineon
描述:

Asynchronous SRAM

静态存储器
文件: 总23页 (文件大小:439K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Please note that Cypress is an Infineon Technologies Company.  
The document following this cover page is marked as “Cypress” document as this is the  
company that originally developed the product. Please note that Infineon will continue  
to offer the product to new and existing customers as part of the Infineon product  
portfolio.  
Continuity of document content  
The fact that Infineon offers the following product as part of the Infineon product  
portfolio does not lead to any changes to this document. Future revisions will occur  
when appropriate, and any changes will be set out on the document history page.  
Continuity of ordering part numbers  
Infineon continues to support existing part numbers. Please continue to use the  
ordering part numbers listed in the datasheet for ordering.  
www.infineon.com  
CY62177G30/CY62177GE30 MoBL  
32-Mbit (2M words × 16-bit/  
4M words × 8-bit) Static RAM  
with Error-Correcting Code (ECC)  
CY62177G30/CY62177GE30 MoBL, 16-Mbit (1M words  
× 16-bit/2M words × 8-bit) Static RAM with Error-Correcting Code (ECC)  
through I/O15) and address pins (A0 through A20) respectively.  
The Byte High Enable (BHE) and Byte Low Enable (BLE) inputs  
control byte writes and write data on the corresponding I/O lines  
to the memory location specified. BHE controls I/O8 through  
I/O15 and BLE controls I/O0 through I/O7.  
Features  
Ultra-low standby current  
Typical standby current: 3 µA  
Maximum standby current: 19 µA  
High speed: 55 ns  
To perform data reads, assert the Output Enable (OE) input and  
provide the required address on the address lines. You can  
access read data on the I/O lines (I/O0 through I/O15). To perform  
byte accesses, assert the required byte enable signal (BHE or  
BLE) to read either the upper byte or the lower byte of data from  
the specified address location.  
Embedded error-correcting code (ECC) for single-bit error  
correction[1]  
Operating voltage range: 2.2 V to 3.6 V  
1.5-V data retention  
All I/Os (I/O0 through I/O15) are placed in a high-impedance state  
when the device is deselected (CE HIGH for a single chip enable  
device and CE1 HIGH / CE2 LOW for a dual chip enable device),  
or the control signals are de-asserted (OE, BLE, BHE).  
Transistor-transistor logic (TTL) compatible inputs and outputs  
Error indication (ERR) pin to indicate 1-bit error detection and  
correction  
48-pin TSOP I package configurable as 2M × 16 or 4M × 8  
SRAM  
These devices have a unique Byte Power-down feature where,  
if both the Byte Enables (BHE and BLE) are disabled, the  
devices seamlessly switch to the standby mode irrespective of  
the state of the chip enables, thereby saving power.  
Available in Pb-free 48-ball VFBGA and 48-pin TSOP I  
packages  
On the CY62177GE30 devices, the detection and correction of  
a single-bit error in the accessed location is indicated by the  
assertion of the ERR output (ERR = High). See the Truth Table  
– CY62177G30/CY62177GE30 on page 15 for a complete  
description of read and write modes.  
Functional Description  
CY62177G30 and CY62177GE30 are high-performance CMOS,  
low-power (MoBL®) SRAM devices with embedded ECC[2]. Both  
devices are offered in single and dual chip enable options and in  
multiple pin configurations. The CY62177GE30 device includes  
an ERR pin that signals a single-bit error-detection and  
correction event during a read cycle.  
The CY62177G30 and CY62177GE30 devices are available in  
a Pb-free 48-pin TSOP I package and 48-ball VFBGA packages.  
The logic block diagrams are on page 2.  
To access devices with a single chip enable input, assert the chip  
enable (CE) input LOW. To access dual chip enable devices,  
assert both chip enable inputs – CE1 as LOW and CE2 as HIGH.  
The device in the 48-pin TSOP I package can also be configured  
to function as a 4M words × 8 bit device. Refer to the Pin  
Configurations section for details.  
To perform data writes, assert the Write Enable (WE) input LOW,  
and provide the data and address on the device data pins (I/O0  
For a complete list of related documentation, click here.  
Product Portfolio  
Current Consumption  
Features and Options  
(see Pin Configurations  
section)  
Operating ICC, (mA) Standby, ISB2 (µA)  
Speed  
(ns)  
Product  
Range  
VCC Range (V)  
f = fmax  
Max  
Typ[3]  
Max  
Typ[3]  
CY62177G30/C Single or dual Chip Enables  
Y62177GE30 Optional ERR pin  
Industrial  
2.2 V–3.6 V  
55  
35  
45  
3
19  
Notes  
1. SER FIT rate <0.1 FIT/Mb. Refer to AN88889 for details.  
2. This device does not support automatic write-back on error detection.  
3. Typical values are included only for reference and are not guaranteed or tested. Typical values are measured at V = 3 V (for V range of 2.2 V–3.6 V), T = 25 °C.  
CC  
CC  
A
Cypress Semiconductor Corporation  
Document Number: 002-24704 Rev. *C  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised February 9, 2021  
CY62177G30/CY62177GE30 MoBL  
Logic Block Diagram – CY62177G30  
DATAIN  
DRIVERS  
ECC ENCODER  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
I/O0‐I/O7  
I/O8‐I/O15  
RAM ARRAY  
COLUM N DECODER  
BYTE  
BHE  
CE2  
POW ER  
DOW N  
CIRCUIT  
CE1  
CE2  
CE1  
W E  
OE  
BHE  
BLE  
BLE  
Logic Block Diagram – CY62177GE30  
D ATAIN  
ECC EN CO D ER  
D RIV ERS  
A0  
A1  
A2  
A3  
ERR  
I/O 0‐I/O 7  
I/O 8‐I/O 15  
A4  
A 5  
A6  
A7  
A8  
A 9  
RAM A RRAY  
CO LU M N D ECO D ER  
B Y TE  
B H E  
CE2  
CE1  
PO W ER  
D O W N  
CIRCU IT  
CE2  
CE1  
W E  
O E  
B H E  
B LE  
B LE  
Document Number: 002-24704 Rev. *C  
Page 2 of 22  
CY62177G30/CY62177GE30 MoBL  
Contents  
Pin Configuration – CY62177G30 ....................................4  
Pin Configuration – CY62177GE30 .................................5  
Maximum Ratings .............................................................7  
Operating Range ...............................................................7  
DC Electrical Characteristics ..........................................7  
Capacitance ......................................................................8  
Thermal Resistance ..........................................................8  
AC Test Loads and Waveforms .......................................8  
Data Retention Characteristics .......................................9  
Data Retention Waveform ................................................9  
Switching Characteristics ..............................................10  
Switching Waveforms ....................................................11  
Truth Table – CY62177G30/CY62177GE30 ...................15  
ERR Output – CY62177GE30 .........................................15  
Ordering Information ......................................................16  
Ordering Code Definitions .........................................16  
Package Diagrams ..........................................................17  
Acronyms ........................................................................20  
Document Conventions .................................................20  
Units of Measure .......................................................20  
Document History Page .................................................21  
Sales, Solutions, and Legal Information ......................22  
Worldwide Sales and Design Support .......................22  
Products ....................................................................22  
PSoC® Solutions ......................................................22  
Cypress Developer Community .................................22  
Technical Support .....................................................22  
Document Number: 002-24704 Rev. *C  
Page 3 of 22  
CY62177G30/CY62177GE30 MoBL  
Pin Configuration – CY62177G30  
Figure 1. 48-ball VFBGA/BGA Pinout (Dual Chip Enable without ERR) – CY62177G30[4]  
1
2
4
3
A0  
A3  
5
6
A1  
A2  
CE2  
A
OE  
BLE  
A
I/O BHE  
CE1 I/O  
B
C
4
0
8
A
A
I/O I/O  
I/O  
I/O  
5
6
9
10  
1
2
VCC  
A
V
I/O  
I/O  
3
A17  
NC  
D
E
F
SS  
7
11  
Vss  
A
V
CC  
I/O  
I/O  
16  
12  
4
A
A
15  
I/O  
I/O  
I/O  
I/O  
14  
13  
5
14  
6
A
A
G
H
I/O  
I/O  
A19  
WE  
13  
12  
15  
7
A
A
A
A
A20  
A18  
10  
9
11  
8
Figure 2. 48-pin TSOP I Pinout (Dual Chip Enable without ERR) – CY62177G30[4, 5]  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
1
2
3
4
5
6
7
8
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
A16  
BYTE  
Vss  
I/O15/A21  
I/O7  
I/O14  
I/O6  
I/O13  
I/O5  
I/O12  
I/O4  
Vcc  
I/O11  
I/O3  
I/O10  
I/O2  
I/O9  
I/O1  
I/O8  
I/O0  
OE  
A8  
A19  
A20  
WE  
CE2  
NC  
BHE  
BLE  
A18  
A17  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Vss  
CE1  
A0  
Notes  
4. NC pins are not connected internally to the die and are typically used for address expansion to a higher-density device. Refer to the respective datasheets for pin  
configuration.  
5. Tie the BYTE pin in the 48-pin TSOP I package to V to use the device as a 2M × 16 SRAM. The 48-pin TSOP I package can also be used as a 4M × 8 SRAM by  
CC  
tying the BYTE signal to V . In the 4M × 8 configuration, pin 45 is the extra address lineA21, while BHE, BLE, and I/O to I/O pins are not used and can be left floating.  
SS  
8
14  
Document Number: 002-24704 Rev. *C  
Page 4 of 22  
CY62177G30/CY62177GE30 MoBL  
Pin Configuration – CY62177GE30  
Figure 3. 48-ball VFBGA/BGA Pinout (Single Chip Enable with ERR) – CY62177GE30 [6, 7]  
1
4
2
5
3
6
A
A
A
ERR  
A
OE  
BLE  
0
1
2
A
A
I/O BHE  
8
CE  
I/O  
I/O  
B
C
3
4
0
A
A
6
I/O I/O  
I/O  
2
5
9
10  
1
V
A
V
I/O  
I/O  
3
A
CC  
D
E
F
SS  
7
11  
17  
Vss  
NC  
A
16  
V
CC  
I/O  
I/O  
12  
4
A
A
15  
I/O  
I/O  
5
I/O  
I/O  
6
14  
13  
14  
A
A
G
H
I/O  
A
WE  
I/O  
7
13  
12  
15  
19  
A
A
9
A
A
A
20  
A
10  
11  
8
18  
Figure 4. 48-ball VFBGA/BGA Pinout (Dual Chip Enable with ERR) – CY62177GE30 [6, 7]  
1
4
2
5
3
6
A
A
A
CE  
OE  
BLE  
0
1
2
2
A
B
C
A
A
I/O BHE  
CE  
I/O  
I/O  
0
3
4
8
1
A
A
6
I/O I/O  
I/O  
2
5
9
10  
1
V
A
V
I/O  
I/O  
3
A
CC  
D
E
F
SS  
7
11  
17  
Vss  
ERR  
A
16  
V
CC  
I/O  
I/O  
12  
4
A
A
15  
I/O  
I/O  
5
I/O  
I/O  
14  
13  
14  
6
A
A
G
H
I/O  
A
WE  
I/O  
13  
12  
15  
19  
7
A
A
A
A
A20  
A
10  
9
11  
8
18  
Notes  
6. NC pins are not connected internally to the die and are typically used for address expansion to a higher-density device. Refer to the respective datasheets for pin  
configuration.  
7. ERR is an Output pin. If not used, this pin should be left floating.  
Document Number: 002-24704 Rev. *C  
Page 5 of 22  
CY62177G30/CY62177GE30 MoBL  
Pin Configuration – CY62177GE30 (continued)  
Figure 5. 48-pin TSOP I Pinout (Dual Chip Enable with ERR) – CY62177GE30 [8, 9]  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
1
2
3
4
5
6
7
8
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
A16  
BYTE  
Vss  
I/O15/A21  
I/O7  
I/O14  
I/O6  
I/O13  
I/O5  
I/O12  
I/O4  
Vcc  
I/O11  
I/O3  
I/O10  
I/O2  
I/O9  
I/O1  
I/O8  
I/O0  
OE  
A8  
A19  
A20  
WE  
CE2  
ERR  
BHE  
BLE  
A18  
A17  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Vss  
CE1  
A0  
Notes  
8. NC pins are not connected internally to the die and are typically used for address expansion to a higher-density device. Refer to the respective datasheets for pin  
configuration.  
9. Tie the BYTE pin in the 48-pin TSOP I package to V to use the device as a 2M × 16 SRAM. The 48-pin TSOP I package can also be used as a 4M × 8 SRAM by  
CC  
tying the BYTE signal to V . In the 4M × 8 configuration, pin 45 is the extra address line A21, while the BHE, BLE, and I/O to I/O pins are not used and can be  
SS  
8
14  
left floating.  
Document Number: 002-24704 Rev. *C  
Page 6 of 22  
CY62177G30/CY62177GE30 MoBL  
DC input voltage[10] ............................ –0.5 V to VCC + 0.5 V  
Output current into outputs (LOW) ............................. 20 mA  
Maximum Ratings  
Exceeding maximum ratings may shorten the useful life of the  
device. User guidelines are not tested.  
Static discharge voltage  
(MIL-STD-883, Method 3015) ................................. >2001 V  
Storage temperature ............................... –65 °C to + 150 °C  
Latch-up current .....................................................>140 mA  
Ambient temperature  
with power applied .................................. –55 °C to + 125 °C  
Operating Range  
Supply voltage  
[11]  
Grade  
Ambient Temperature  
VCC  
to ground potential .............................. –0.5 V to VCC + 0.5 V  
Industrial  
–40 C to +85 C  
2.2 V to 3.6 V  
DC voltage applied to outputs  
in High Z state[10]................................. –0.5 V to VCC + 0.5 V  
DC Electrical Characteristics  
Over the operating range of –40 C to 85 C  
55 ns  
Typ[12]  
Parameter  
Description  
Test Conditions  
Unit  
Min  
2.0  
2.4  
Max  
VOH  
Output HIGH  
voltage  
2.2 V to 2.7 V VCC = Min, IOH = –0.1 mA  
2.7 V to 3.6 V VCC = Min, IOH = –1.0 mA  
2.2 V to 2.7 V VCC = Min, IOL = 0.1 mA  
2.7 V to 3.6 V VCC = Min, IOL = 2.1 mA  
V
VOL  
VIH  
VIL  
Output LOW  
voltage  
0.4  
0.4  
Input HIGH  
voltage[10]  
2.2 V to 2.7 V  
2.7 V to 3.6 V  
2.2 V to 2.7 V  
2.7 V to 3.6 V  
1.8  
2.0  
–0.3  
–0.3  
–1.0  
–1.0  
VCC + 0.3  
VCC + 0.3  
0.6  
Input LOW  
voltage[10]  
0.8  
IIX  
Input leakage current  
GND < VIN < VCC  
+1.0  
+1.0  
45.0  
µA  
IOZ  
ICC  
Output leakage current  
VCC operating supply current  
GND < VOUT < VCC, Output disabled  
VCC = Max,  
OUT = 0 mA,  
CMOS levels  
f = 22.22 MHz  
(45 ns)  
35.0  
mA  
I
f = 1 MHz  
10.0  
3.0  
18.0  
19.0  
[13]  
ISB1  
Automatic Power-down  
Current – CMOS Inputs;  
µA  
µA  
CE1 > VCC – 0.2 V or CE2 < 0.2 V  
or (BHE and BLE) > VCC – 0.2 V,  
V
CC = 2.2 V to 3.6 V  
V
IN > VCC – 0.2 V, VIN < 0.2 V,  
f = fmax (address and data only),  
f = 0 (OE, and WE), VCC = VCC(max)  
[13]  
ISB2  
Automatic Power-down  
Current – CMOS Inputs  
3.0  
19.0  
CE1 > VCC – 0.2V or CE2 < 0.2 V or  
(BHE and BLE) > VCC – 0.2 V,  
V
CC = 2.2 V to 3.6 V  
V
IN > VCC – 0.2 V or VIN < 0.2 V,  
f = 0, VCC = VCC(max)  
Notes  
10. V  
= –2.0 V and V  
= V + 2 V for pulse durations of less than 20 ns.  
IL(min)  
IH(max) CC  
11. Full device AC operation assumes a 100-µs ramp time from 0 to V (min) and 400-µs wait time after V stabilizes to its operational value.  
CC  
CC  
12. Indicates the value for the center of distribution at 3.0 V, 25 °C and not 100% tested.  
13. The I  
maximum limits at 25 °C are guaranteed by design and not 100% tested.  
SB2  
Document Number: 002-24704 Rev. *C  
Page 7 of 22  
CY62177G30/CY62177GE30 MoBL  
Capacitance  
Parameter [14]  
Description  
Input capacitance  
Output capacitance  
Test Conditions  
Max  
15.0  
15.0  
Unit  
CIN  
TA = 25 °C, f = 1 MHz, VCC = VCC(typ)  
pF  
COUT  
Thermal Resistance  
Parameter [14]  
Description  
Test Conditions  
48-ball VFBGA 48-ball FBGA 48-pin TSOP I Unit  
JA  
Thermal resistance  
(junction to ambient)  
Still air, soldered on a  
3 × 4.5 inch, four-layer  
printed circuit board  
54.8  
51.5  
50.98  
°C/W  
JC  
Thermal resistance  
(junction to case)  
11.9  
7.8  
9.4  
AC Test Loads and Waveforms  
Figure 6. AC Test Loads and Waveforms  
ALL INPUT PULSES  
R1  
VCC  
OUTPUT  
VHIGH  
90%  
10%  
90%  
10%  
GND  
Fall Time = 1 V/ns  
R2  
30 pF  
Rise Time = 1 V/ns  
INCLUDING  
JIG AND  
Equivalent to: THÉVENIN EQUIVALENT  
RTH  
SCOPE  
OUTPUT  
VTH  
Parameters  
R1  
2.5 V  
16667  
15385  
8000  
1.20  
3.0 V  
1103  
1554  
645  
Unit  
R2  
RTH  
VTH  
1.75  
3.0  
V
VHIGH  
2.5  
Note  
14. Tested initially and after any design or process changes that may affect these parameters.  
Document Number: 002-24704 Rev. *C  
Page 8 of 22  
CY62177G30/CY62177GE30 MoBL  
Data Retention Characteristics  
Over the Operating Range  
Parameter  
VDR  
Description  
VCC for data retention  
Data retention current  
Conditions  
Min  
1.5  
Typ [15]  
Max  
Unit  
V
[16, 17]  
ICCDR  
2.2 V < VCC < 3.6 V  
3.0  
19.0  
µA  
CE1 > VCC 0.2 V or CE2 < 0.2 V  
or (BHE and BLE) > VCC – 0.2 V,  
VIN > VCC 0.2 V or VIN < 0.2 V  
1.5 V < VCC < 2.2 V,  
20.0  
CE1 > VCC 0.2 V or CE2 < 0.2 V  
or (BHE and BLE) > VCC – 0.2 V,  
VIN > VCC 0.2 V or VIN < 0.2 V  
[18]  
tCDR  
Chip deselect to data retention  
time  
0.0  
55  
[18, 19]  
tR  
Operation recovery time  
ns  
Data Retention Waveform  
Figure 7. Data Retention Waveform [20]  
DATA RETENTION MODE  
VCC  
VDR = 1.0 V  
VCC (min)  
tCDR  
VCC (min)  
tR  
CE1 or  
BHE. BLE  
CE2  
Notes  
15. Indicates the value for the center of distribution at 3.0 V, 25 °C and not 100% tested.  
16. Chip enables (CE and CE ) and BYTE must be tied to CMOS levels to meet the I  
/ I  
/ I  
spec. Other inputs can be left floating.  
1
2
SB1 SB2 CCDR  
17. I  
is guaranteed only after the device is first powered up to V  
and then brought down to V  
.
DR  
CCDR  
CC(min)  
18. These parameters are guaranteed by design and are not tested.  
19. Full-device operation requires linear V ramp from V to V  
20. BHE.BLE is the AND of both BHE and BLE. Deselect the chip by either disabling the chip enable signals or by disabling both BHE and BLE.  
> 400 s or stable at V > 400 s.  
CC(min)  
CC  
DR  
CC(min)  
Document Number: 002-24704 Rev. *C  
Page 9 of 22  
CY62177G30/CY62177GE30 MoBL  
Switching Characteristics  
55 ns  
Unit  
Parameter[21]  
Description  
Min  
Max  
Read Cycle  
tRC  
Read cycle time  
55.0  
ns  
tAA  
Address to data valid / Address to ERR valid  
Data hold from address change / ERR hold from address change  
CE1 LOW and CE2 HIGH to data valid / CE LOW to ERR valid  
OE LOW to data valid / OE LOW to ERR valid  
OE LOW to Low Z [22, 23]  
55.0  
tOHA  
tACE  
tDOE  
tLZOE  
tHZOE  
tLZCE  
tHZCE  
tPU  
10.0  
55.0  
25.0  
5.0  
OE HIGH to High Z [22, 23, 24]  
18.0  
CE1 LOW and CE2 HIGH to Low Z [22, 23]  
CE1 HIGH and CE2 LOW to High Z [22, 23, 24]  
CE1 LOW and CE2 HIGH to power-up [25]  
CE1 HIGH and CE2 LOW to power-down [25]  
BLE / BHE LOW to data valid  
10.0  
18.0  
0.0  
tPD  
55.0  
55.0  
tDBE  
tLZBE  
tHZBE  
BLE / BHE LOW to Low Z [22]  
BLE / BHE HIGH to High Z [22, 24]  
5.0  
18.0  
Write Cycle [26, 27]  
tWC  
tSCE  
tAW  
Write cycle time  
55.0  
40.0  
40.0  
0
ns  
CE1 LOW and CE2 HIGH to write end  
Address setup to write end  
Address hold from write end  
Address setup to write start  
WE pulse width  
tHA  
tSA  
0
tPWE  
tBW  
tSD  
40.0  
40.0  
25.0  
0.0  
BLE / BHE LOW to write end  
Data setup to write end  
tHD  
Data hold from write end  
WE LOW to High Z [22, 23, 24]  
WE HIGH to Low Z [22, 23]  
tHZWE  
tLZWE  
18.0  
10.0  
Notes  
21. Test conditions assume signal transition time (rise/fall) of 3 ns or less, timing reference levels of 1.5 V (for V > 3 V) and V /2 (for V < 3 V), and input pulse levels  
CC  
CC  
CC  
of 0 to 3 V (for V > 3 V) and 0 to V (for V < 3V). Test conditions for the read cycle use the output loading shown in Figure 6 on page 8, unless specified otherwise.  
CC  
CC  
CC  
22. At any temperature and voltage condition, t  
is less than t  
, t  
is less than t  
, t  
is less than t  
, and t  
is less than t  
for any device.  
HZCE  
LZCE HZBE  
LZBE HZOE  
LZOE  
HZWE  
LZWE  
23. Tested initially and after any design or process changes that may affect these parameters.  
24. t , t , t , and t transitions are measured when the outputs enter a high-impedance state.  
HZOE HZCE HZBE  
HZWE  
25. These parameters are guaranteed by design and are not tested.  
26. The internal write time of the memory is defined by the overlap of WE = V , CE = V , BHE or BLE or both = V , and CE = V . All signals must be ACTIVE to initiate  
IL  
1
IL  
IL  
2
IH  
a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates  
the write.  
27. The minimum write cycle pulse width for Write Cycle No. 1 (WE Controlled, OE LOW) should be equal to the sum of t  
and t  
.
SD  
HZWE  
Document Number: 002-24704 Rev. *C  
Page 10 of 22  
CY62177G30/CY62177GE30 MoBL  
Switching Waveforms  
Figure 8. Read Cycle No. 1 of CY62177G30 (Address Transition Controlled) [28, 29]  
tRC  
ADDRESS  
DATA I/O  
tAA  
tOHA  
PREVIOUS DATAOUT  
VALID  
DATAOUT VALID  
Figure 9. Read Cycle No. 1 of CY62177GE30 (Address Transition Controlled) [28, 29]  
tRC  
ADDRESS  
tAA  
tOHA  
DATA I/O  
ERR  
PREVIOUS DATAOUT VALID  
DATAOUT VALID  
ERR VALID  
tAA  
tOHA  
PREVIOUS ERR VALID  
Notes  
28. The device is continuously selected. OE = V , CE = V , BHE or BLE, or both = V .  
IL  
IL  
IL  
29. WE is HIGH for read cycle.  
Document Number: 002-24704 Rev. *C  
Page 11 of 22  
CY62177G30/CY62177GE30 MoBL  
Switching Waveforms (continued)  
Figure 10. Read Cycle No. 2 (OE Controlled) [30, 31, 32, 34]  
ADD RESS  
tRC  
CE  
tPD  
tHZCE  
tAC E  
O E  
tH ZO E  
tDO E  
tLZO E  
BHE/  
BLE  
tDBE  
tLZBE  
tHZBE  
HIG H  
IM PED ANC E  
H IG H IM PEDAN CE  
tLZCE  
DATA I/O  
D ATAO UT VALID  
tPU  
VC C  
SUPPLY  
CU RR ENT  
ISB  
Figure 11. Write Cycle No. 1 (WE Controlled, OE LOW) [31, 33, 34, 35]  
tW C  
ADDRESS  
tSCE  
CE  
tBW  
BHE/  
BLE  
tAW  
tHA  
tSA  
tPW E  
W E  
tLZW E  
tSD  
t
HZW E  
tHD  
Note 35  
DATA I/O  
DATAIN VALID  
Notes  
30. WE is HIGH for read cycle.  
31. For all dual chip enable devices, CE is the logical combination of CE and CE . When CE is LOW and CE is HIGH, CE is LOW; when CE is HIGH or CE is LOW,  
1
2
1
2
1
2
CE is HIGH.  
32. Address valid prior to or coincident with CE LOW transition.  
33. The internal write time of the memory is defined by the overlap of WE = V , CE = V , BHE or BLE, or both = V , and CE = V . All signals must be ACTIVE to initiate  
IL  
1
IL  
IL  
2
IH  
a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the  
write.  
34. Data I/O is in the high-impedance state if CE = V , or OE = V , or BHE, and/or BLE = V .  
IH  
IH  
IH  
35. During this period, the I/Os are in the output state. Do not apply input signals.  
36. The minimum write cycle pulse width should be equal to the sum of t  
and t  
.
HZWE  
SD  
Document Number: 002-24704 Rev. *C  
Page 12 of 22  
CY62177G30/CY62177GE30 MoBL  
Switching Waveforms (continued)  
Figure 12. Write Cycle No. 2 (CE Controlled) [37, 38, 39]  
tWC  
ADDRESS  
tSA  
tSCE  
CE  
tAW  
tHA  
tPWE  
WE  
tBW  
BHE/  
BLE  
OE  
tHZOE  
tHD  
tSD  
Note 40  
DATA I/O  
DATA VALID  
IN  
Notes  
37. For all dual chip enable devices, CE is the logical combination of CE and CE . When CE is LOW and CE is HIGH, CE is LOW; when CE is HIGH or CE is LOW,  
1
2
1
2
1
2
CE is HIGH.  
38. The internal write time of the memory is defined by the overlap of WE = V , CE = V , BHE or BLE or both = V , and CE = V . All signals must be ACTIVE to initiate  
IL  
1
IL  
IL  
2
IH  
a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the  
write.  
39. Data I/O is in the high-impedance state if CE = V , or OE = V , or BHE, and/or BLE = V .  
IH  
IH  
IH  
40. During this period, the I/Os are in output state. Do not apply input signals.  
Document Number: 002-24704 Rev. *C  
Page 13 of 22  
CY62177G30/CY62177GE30 MoBL  
Switching Waveforms (continued)  
Figure 13. Write Cycle No. 4 (BHE/BLE Controlled, OE LOW) [41, 42, 43]  
tWC  
ADDRESS  
tSCE  
CE  
tAW  
tSA  
tHA  
tBW  
BHE/  
BLE  
tPWE  
WE  
tHZWE  
tHD  
tSD  
tLZWE  
DATA I/O  
Note 44  
DATAIN VALID  
Figure 14. Write Cycle No. 5 (WE Controlled) [41, 42, 43]  
tW  
C
A D D R E S S  
tS C E  
C E  
tA W  
tS A  
tH A  
tP W  
E
W E  
tB W  
B H E /B L E  
O E  
tH Z O E  
tH D  
tS D  
Note 44  
D A T A I/O  
D A T A IN V A L ID  
Notes  
41. For all dual chip enable devices, CE is the logical combination of CE and CE . When CE is LOW and CE is HIGH, CE is LOW; when CE is HIGH or CE is LOW,  
1
2
1
2
1
2
CE is HIGH.  
42. The internal write time of the memory is defined by the overlap of WE = V , CE = V , BHE or BLE or both = V , and CE = V . All signals must be ACTIVE to  
IL  
1
IL  
IL  
2
IH  
initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that  
terminates the write.  
43. Data I/O is in the high-impedance state if CE = V , or OE = V , or BHE, and/or BLE = V .  
IH  
IH  
IH  
44. During this period, the I/Os are in output state. Do not apply input signals.  
Document Number: 002-24704 Rev. *C  
Page 14 of 22  
CY62177G30/CY62177GE30 MoBL  
Truth Table – CY62177G30/CY62177GE30  
BYTE[45] CE1 CE2 WE  
OE BHE BLE  
Inputs/Outputs  
High-Z  
Mode  
Power  
Configuration  
X[46]  
H
X[46]  
X
X
X
H
H
X
X
X
L
X
X
H
L
X
X
H
L
Deselect/Power-down Standby (ISB) 4M × 8/2M × 16  
Deselect/Power-down Standby (ISB) 4M × 8/2M × 16  
X
X[46]  
L
High-Z  
X
X[46] X[46]  
High-Z  
Deselect/Power-down Standby (ISB  
)
2M × 16  
2M × 16  
2M × 16  
H
L
L
H
H
Data Out (I/O0–I/O15  
)
Read  
Read  
Active (ICC  
)
H
L
H
L
Data Out (I/O0–I/O7);  
High-Z (I/O8–I/O15  
Active (ICC)  
)
H
L
H
H
L
L
H
High Z (I/O0–I/O7);  
Data Out (I/O8–I/O15  
Read  
Active (ICC  
)
2M × 16  
)
H
H
H
H
H
L
L
L
L
L
H
H
H
H
H
H
H
H
L
H
H
H
X
X
L
H
L
H
L
L
L
L
High-Z  
High-Z  
High-Z  
Output disabled  
Output disabled  
Output disabled  
Write  
Active (ICC  
Active (ICC  
Active (ICC  
Active (ICC  
Active (ICC  
)
2M × 16  
2M × 16  
2M × 16  
2M × 16  
2M × 16  
)
)
L
Data In (I/O0–I/O15  
)
)
L
H
Data In (I/O0–I/O7);  
High-Z (I/O8–I/O15  
Write  
)
)
H
L
H
L
X
L
H
High-Z (I/O0–I/O7);  
Data In (I/O8–I/O15  
Write  
Active (ICC  
)
2M × 16  
)
L
L
L
L
L
L
H
H
H
H
H
L
L
H
X
X
X
X
X
X
X
Data Out (I/O0–I/O7)  
High-Z  
Read  
Output disabled  
Write  
Active (ICC  
Active (ICC  
Active (ICC  
)
2M × 16  
2M × 16  
4M × 8  
)
Data In (I/O0–I/O7)  
)
ERR Output – CY62177GE30  
Output[47]  
Mode  
Read operation, no single-bit error in the stored data.  
0
1
Read operation, single-bit error detected and corrected.  
Device deselected / outputs disabled / Write operation  
High-Z  
Notes  
45. This pin is available only in the 48-pin TSOP I package. Tie the BYTE to V to configure the device in the 2M × 16 option. The 48-pin TSOP I package can also be  
CC  
used as a 4M × 8 SRAM by tying the BYTE signal to V  
.
SS  
46. The ‘X’ (Don’t care) state for the chip enables refer to the logic state (either HIGH or LOW). Intermediate voltage levels on these pins is not permitted.  
47. ERR is an Output pin. If not used, this pin should be left floating.  
Document Number: 002-24704 Rev. *C  
Page 15 of 22  
CY62177G30/CY62177GE30 MoBL  
Ordering Information  
Speed  
(ns)  
Voltage  
Range  
Package  
Diagram  
Package Type Key Features / ERR Pin / Operating  
Ordering Code  
(all Pb-free)  
Differentiators  
Ball  
Range  
CY62177G30-55BAXI  
CY62177G30-55BAXIT  
CY62177G30-55BKXI  
51-85191  
51-85193  
48-ball FBGA  
48-ball VFBGA  
48-pin TSOP I  
No  
55  
2.2 V–3.6 V CY62177G30-55BKXIT  
CY62177G30-55ZXI  
Dual Chip Enable  
Industrial  
CY62177G30-55ZXIT  
51-85183  
CY62177GE30-55ZXI  
Yes  
Ordering Code Definitions  
X
G
55 XX  
30 -  
X
I
X
7
621  
E
CY  
7
X = blank or T  
blank = Bulk; T = Tape and Reel  
Temperature Grade: I = Industrial  
Pb-free  
X = blank or 1  
blank = Dual Chip Enable; 1 = Single Chip Enable  
Package Type: XX = BA or BK or Z  
BA = 48-ball FBGA; BK = 48-ball VFBGA; Z = 48-pin TSOP I  
Speed Grade: XX: 55 = 55 ns  
Voltage Range: 30 = 3 V typ  
ERR Output: Single-bit error correction indicator  
Process Technology: Ultra Low-power  
Bus Width: 7 = ×16  
Density: 7 = 32-Mbit  
Family Code: 621 = MoBL® SRAM family  
Company ID: CY = Cypress  
Document Number: 002-24704 Rev. *C  
Page 16 of 22  
CY62177G30/CY62177GE30 MoBL  
Package Diagrams  
Figure 15. 48-ball FBGA (8 × 9.5 × 1.2 mm) Package Outline, 51-85191  
51-85191 *C  
Document Number: 002-24704 Rev. *C  
Page 17 of 22  
CY62177G30/CY62177GE30 MoBL  
Package Diagrams (continued)  
Figure 16. 48-pin TSOP I (12 × 18.4 × 1.0 mm) Z48A Package Outline, 51-85183  
STANDARD PIN OUT (TOP VIEW)  
0.10  
2X (N/2 TIPS)  
0.10 C  
8
2X  
A2  
2
0.10  
2X  
1
N
SEE DETAIL B  
R
A
B
(c)  
E
5
GAUGE PLANE  
0.25 BASIC  
e
9
N/2 +1  
N/2  
0°  
5
A1  
C
D1  
D
4
PARALLEL TO  
SEATING PLANE  
L
C
0.20  
2X (N/2 TIPS)  
SEATING PLANE  
DETAIL A  
B
A
B
SEE DETAIL A  
0.08MM M C A-B  
b
6
7
WITH PLATING  
e/2  
REVERSE PIN OUT (TOP VIEW)  
3
1
N
c
7
c1  
X
X = A OR B  
b1  
BASE METAL  
DETAIL B  
N/2  
N/2 +1  
SECTION B-B  
NOTES:  
DIMENSIONS  
SYMBOL  
1. DIMENSIONS ARE IN MILLIMETERS (mm).  
MIN. NOM. MAX.  
A
1.20  
2. PIN 1 IDENTIFIER FOR STANDARD PIN OUT (DIE UP).  
0.15  
0.05  
A1  
A2  
b1  
b
3. PIN 1 IDENTIFIER FOR REVERSE PIN OUT (DIE DOWN): INK OR LASER MARK.  
0.95  
0.17  
0.17  
1.00  
0.20  
1.05  
0.23  
0.27  
4. TO BE DETERMINED AT THE SEATING PLANE -C- . THE SEATING PLANE IS  
DEFINED AS THE PLANE OF CONTACT THAT IS MADE WHEN THE PACKAGE  
LEADS ARE ALLOWED TO REST FREELY ON A FLAT HORIZONTAL SURFACE.  
0.22  
5. DIMENSIONS D1 AND E DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE  
MOLD PROTRUSION ON E IS 0.15mm PER SIDE AND ON D1 IS 0.25mm PER SIDE.  
c1  
0.10  
0.10  
0.16  
0.21  
c
D
6. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.08mm TOTAL IN EXCESS OF b DIMENSION AT MAX.  
MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON LOWER RADIUS OR  
THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND AN ADJACENT LEAD  
TO BE 0.07mm .  
20.00 BASIC  
18.40 BASIC  
12.00 BASIC  
0.50 BASIC  
D1  
E
e
L
0
0.50  
0.60 0.70  
7. THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN  
0.10mm AND 0.25mm FROM THE LEAD TIP.  
0°  
8
0.20  
R
N
0.08  
8. LEAD COPLANARITY SHALL BE WITHIN 0.10mm AS MEASURED FROM THE  
SEATING PLANE.  
48  
9. DIMENSION "e" IS MEASURED AT THE CENTERLINE OF THE LEADS.  
10. JEDEC SPECIFICATION NO. REF: MO-142(D)DD.  
51-85183 *F  
Document Number: 002-24704 Rev. *C  
Page 18 of 22  
CY62177G30/CY62177GE30 MoBL  
Package Diagrams (continued)  
Figure 17. 48-pin FBGA (6 × 8 × 1.2 mm) Package Outline, 51-85193  
51-85193 *E  
Document Number: 002-24704 Rev. *C  
Page 19 of 22  
CY62177G30/CY62177GE30 MoBL  
Acronyms  
Document Conventions  
Table 1. Acronyms Used in this Document  
Units of Measure  
Table 2. Units of Measure  
Symbol  
Acronym  
BHE  
Description  
Byte High Enable  
Byte Low Enable  
Chip Enable  
Unit of Measure  
BLE  
°C  
MHz  
µA  
µs  
mA  
mm  
ns  
degree Celsius  
megahertz  
microampere  
microsecond  
milliampere  
millimeter  
nanosecond  
ohm  
CE  
CMOS  
I/O  
Complementary metal oxide semiconductor  
Input/output  
OE  
Output Enable  
SRAM  
TSOP  
VFBGA  
WE  
Static random access memory  
Thin small outline package  
Very fine-pitch ball grid array  
Write Enable  
%
percent  
pF  
V
picofarad  
volt  
W
watt  
Document Number: 002-24704 Rev. *C  
Page 20 of 22  
CY62177G30/CY62177GE30 MoBL  
Document History Page  
Document Title: CY62177G30/CY62177GE30 MoBL, 32-Mbit (2M words × 16-bit/4M words × 8-bit) Static RAM with  
Error-Correcting Code (ECC)  
Document Number: 002-24704  
Submission  
Rev.  
ECN No.  
Description of Change  
Date  
*C  
7085237  
02/09/2021 Release to web.  
Document Number: 002-24704 Rev. *C  
Page 21 of 22  
CY62177G30/CY62177GE30 MoBL  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
Arm® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU  
Automotive  
Cypress Developer Community  
Clocks & Buffers  
Interface  
Community | Code Examples | Projects | Video | Blogs |  
Training | Components  
Internet of Things  
Memory  
Technical Support  
cypress.com/memory  
cypress.com/mcu  
cypress.com/support  
Microcontrollers  
PSoC  
cypress.com/psoc  
cypress.com/pmic  
cypress.com/touch  
cypress.com/usb  
Power Management ICs  
Touch Sensing  
USB Controllers  
Wireless Connectivity  
cypress.com/wireless  
© Cypress Semiconductor Corporation, 2018-2021. This document is the property of Cypress Semiconductor Corporation and its subsidiaries ("Cypress"). This document, including any software or  
firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves  
all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If  
the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal,  
non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software  
solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through  
resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified)  
to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing  
device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such  
as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING  
CYPRESS PRODUCTS, WILLBE FREE FROM CORRUPTION,ATTACK, VIRUSES, INTERFERENCE, HACKING, DATALOSS OR THEFT, OR OTHER SECURITYINTRUSION (collectively, "Security  
Breach"). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In  
addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted  
by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or  
circuit described in this document.Any information provided inthis document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility  
of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device" means any  
device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices.  
"Critical Component" means any component of a High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk Device, or to affect  
its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any use of a Cypress product  
as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, its directors, officers, employees, agents, affiliates, distributors, and assigns harmless from and against all claims,  
costs, damages, and expenses, arising out of any claim, including claims for product liability, personal injury or death, or property damage arising from any use of a Cypress product as a Critical  
Component in a High-Risk Device. Cypress products are not intended or authorized for use as a Critical Component in any High-Risk Device except to the limited extent that (i) Cypress's published  
data sheet for the product explicitly states Cypress has qualified the product for use in a specific High-Risk Device, or (ii) Cypress has given you advance written authorization to use the product as a  
Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in  
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 002-24704 Rev. *C  
Revised February 9, 2021  
Page 22 of 22  

相关型号:

CY62177G30-55BAXIT

Asynchronous SRAM
INFINEON

CY62177G30-55BKXI

Asynchronous SRAM
INFINEON

CY62177G30-55ZXIT

Asynchronous SRAM
INFINEON

CY62177GE30-55ZXI

Asynchronous SRAM
INFINEON

CY62177GE30-55ZXIT

Asynchronous SRAM
INFINEON

CY62187EV30

64 Mbit (4M x 16) Static RAM
CYPRESS

CY62187EV30LL

64-Mbit (4 M × 16) Static RAM
CYPRESS

CY62187EV30LL-55BAXI

64 Mbit (4M x 16) Static RAM
CYPRESS

CY62187EV30LL-55BAXIT

Standard SRAM, 4MX16, 55ns, CMOS, PBGA48, 8 X 9.50 MM, 1.40 MM HEIGHT, LEAD FREE, MO-205, FBGA-48
CYPRESS

CY62187EV30LL-55BAXI_12

64-Mbit (4 M × 16) Static RAM
CYPRESS

CY62187EV30LL-70BAXI

64 Mbit (4M x 16) Static RAM
CYPRESS

CY62187EV30_11

64-Mbit (4 M × 16) Static RAM
CYPRESS