CY7C65642-48AXCT [INFINEON]

4 port Multi-TT hub (configurable with GPIOs, , LED indicator and EEPROM) with 48-pin TQFP - Tape and reel, C-grade;
CY7C65642-48AXCT
型号: CY7C65642-48AXCT
厂家: Infineon    Infineon
描述:

4 port Multi-TT hub (configurable with GPIOs, , LED indicator and EEPROM) with 48-pin TQFP - Tape and reel, C-grade

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 时钟 外围集成电路
文件: 总40页 (文件大小:409K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C65642  
HX2VL - Very Low-Power USB 2.0 TetraHub  
Controller  
Features  
• High-performance, low-power USB 2.0 hub, optimized for low-cost designs with minimum bill-of-material  
(BOM).  
• USB 2.0 hub controller  
- Compliant with USB2.0 specification, TID# 30000059  
- Up to four downstream ports support  
- Downstream ports are backward compatible with FS, LS  
- Multiple translator (TT), one per downstream port for maximum performance.  
• Very low-power consumption  
- Supports bus-powered and self-powered modes  
- Auto switching between bus-powered and self-powered  
- Single MCU with 2 K ROM and 64 byte RAM  
- Lowest power consumption.  
• Highly integrated solution for reduced BOM cost  
- Internal regulator – single power supply 5 V required.  
- Provision of connecting 3.3 V with external regulator.  
- Integrated upstream pull-up resistor  
- Integrated pull-down resistors for all downstream ports  
- Integrated upstream/downstream termination resistors  
- Integrated port status indicator control  
- 12-MHz +/-500 ppm external crystal with drive level 600 W (integrated PLL) clock input with optional  
27/48-MHz oscillator clock input.  
- Internal power failure detection for ESD recovery  
• Downstream port management  
- Support individual and ganged mode power management  
- Overcurrent detection  
- Two status indicators per downstream port  
• Maximum configurability  
- VID and PID are configurable through external EEPROM  
- Number of ports, removable/non-removable ports are configurable through EEPROM and I/O pin  
configuration  
- I/O pins can configure gang/individual mode power switching, reference clock source and polarity of power  
switch enable pin  
- Configuration options also available through mask ROM  
• Available in space saving 48-pin TQFP (7 × 7 mm) and 28-pin QFN (5 × 5 mm) packages  
• Supports 0°C to +70°C temperature range  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 1  
001-65659 Rev. *M  
2023-02-13  
HX2VL - Very Low-Power USB 2.0 TetraHub Controller  
Block diagram  
Block diagram  
I2C /  
SPI  
MCU  
D+  
D-  
RAM ROM  
12/27/48  
MHz  
OSC-in  
OR 12  
MHz  
USB 2.0 PHY  
PLL  
Serial  
Interface  
Engine  
HS USB  
Control Logic  
USB Upstream Port  
Crystal  
5 V i/p (for internal  
regulator)  
NC (for external regulator)  
Transaction Translator x 4  
1.8 V  
3.3 V  
Regulator  
Hub Repeater  
3.3 V i/p (with ext. reg. & 28-QFN  
NC (with ext. reg. & 48-TQFP)  
3.3 V o/p (for int. reg.)  
Routing Logic  
USB Downstream Port 1  
USB Downstream Port 2  
USB Downstream Port 3  
USB Downstream Port 4  
USB 2.0  
PHY  
Port  
Control  
USB 2.0  
PHY  
Port  
Control  
USB 2.0  
PHY  
Port  
Control  
USB 2.0  
PHY  
Port  
Control  
LED  
LED  
LED  
LED  
D+ D-  
D+ D-  
D+ D-  
D+ D-  
Datasheet  
2
001-65659 Rev. *M  
2023-02-13  
HX2VL - Very Low-Power USB 2.0 TetraHub Controller  
Table of contents  
Table of contents  
Features ...........................................................................................................................................1  
Block diagram...................................................................................................................................2  
Table of contents...............................................................................................................................3  
1 More information............................................................................................................................5  
1.1 HX2VL Development Kit..........................................................................................................................................5  
2 Introduction...................................................................................................................................6  
3 HX2VL architecture .........................................................................................................................7  
3.1 USB serial interface engine ....................................................................................................................................7  
3.2 HS USB control logic...............................................................................................................................................7  
3.3 Hub repeater ...........................................................................................................................................................7  
3.4 MCU..........................................................................................................................................................................7  
3.5 Transaction translator............................................................................................................................................7  
3.6 Port control .............................................................................................................................................................7  
4 Applications ...................................................................................................................................8  
5 Functional overview .......................................................................................................................9  
5.1 System initialization ...............................................................................................................................................9  
5.2 Enumeration ...........................................................................................................................................................9  
5.3 Multiple transaction translator support ................................................................................................................9  
5.4 Upstream port.........................................................................................................................................................9  
5.5 Downstream ports ................................................................................................................................................10  
5.6 Power switching....................................................................................................................................................10  
5.7 Overcurrent detection ..........................................................................................................................................10  
5.8 Port indicators ......................................................................................................................................................11  
5.9 Power regulator ....................................................................................................................................................11  
5.10 External regulation scheme ...............................................................................................................................11  
5.11 Internal regulation scheme ................................................................................................................................12  
6 Pin configurations ........................................................................................................................13  
7 Pin definitions ..............................................................................................................................15  
8 Pin definitions ..............................................................................................................................18  
9 EEPROM configuration options ......................................................................................................20  
10 Pin configuration options ............................................................................................................23  
10.1 Power on reset ....................................................................................................................................................23  
10.2 Gang/individual power switching mode............................................................................................................23  
10.3 Power switch enable pin polarity.......................................................................................................................24  
10.4 Port number configuration.................................................................................................................................24  
10.5 Non removable ports configuration ..................................................................................................................24  
10.6 Reference clock configuration ...........................................................................................................................24  
11 Absolute maximum ratings ..........................................................................................................25  
12 Operating conditions...................................................................................................................26  
13 Electrical characteristics .............................................................................................................27  
13.1 DC electrical characteristics...............................................................................................................................27  
13.2 AC electrical characteristics ...............................................................................................................................29  
14 Thermal resistance......................................................................................................................30  
15 Ordering information ..................................................................................................................31  
15.1 Ordering code definitions...................................................................................................................................31  
16 Package diagrams.......................................................................................................................32  
17 Acronyms ...................................................................................................................................34  
18 Document conventions................................................................................................................35  
18.1 Units of measure .................................................................................................................................................35  
Datasheet  
3
001-65659 Rev. *M  
2023-02-13  
HX2VL - Very Low-Power USB 2.0 TetraHub Controller  
Table of contents  
19 Silicon Errata for the HX2VL, CY7C65642 product family.................................................................36  
19.1 Part numbers affected........................................................................................................................................36  
19.2 HX2VL Qualification status .................................................................................................................................36  
19.3 HX2VL Errata summary.......................................................................................................................................36  
Revision history ..............................................................................................................................37  
Datasheet  
4
001-65659 Rev. *M  
2023-02-13  
HX2VL - Very Low-Power USB 2.0 TetraHub Controller  
More information  
1
More information  
Infineon provides a wealth of data at www.infineon.com to help you to select the right HX2VL device for your  
design, and to help you to quickly and effectively integrate the device into your design. For a comprehensive list  
of resources, see the HX2VL product page.  
• Overview: USB portfolio  
• USB 2.0 Hub Controller selectors: HX2LP, HX2VL  
• Application notes: Infineon offers a large number of USB application notes covering a broad range of topics,  
from basic to advanced level. Recommended application notes for getting started with HX2VL are:  
- AN72332 - Guidelines on System Design using Infineon’s USB 2.0 Hub (HX2VL)  
- AN69235 - Migrating from HX2/HX2LP to HX2VL  
• Reference designs:  
- CY4608 HX2VL Very Low-Power USB 2.0 Compliant 4-Port Hub Development Kit  
- CY4607 HX2VL Very Low-Power USB 2.0 Compliant 4-Port Hub Development Kit  
• Models: HX2VL (CY7C65632/34/42) - IBIS  
1.1  
HX2VL Development Kit  
HX2VL Development Kit board is a tool to demonstrate the features of HX2VL devices (CY7C65632, CY7C65634).  
In the initial phase of the design, this board helps developers to understand the chip features and limitations  
before proceeding with a complete design. The Development kit includes support documents related to board  
hardware, PC application software, and EEPROM configuration data (.iic) files.  
Datasheet  
5
001-65659 Rev. *M  
2023-02-13  
HX2VL - Very Low-Power USB 2.0 TetraHub Controller  
Introduction  
2
Introduction  
HX2VL is Infineon’s next generation family of high-performance, very low-power USB 2.0 hub controllers. HX2VL  
has integrated upstream and downstream transceivers; a USB serial interface engine (SIE); USB hub control and  
repeater logic; and transaction translator (TT) logic. Infineon has also integrated external components such as  
voltage regulator and pull-up/pull-down resistors, reducing the overall BOM required to implement a USB hub  
system.  
The CY7C65642 is a part of the HX2VL portfolio with four downstream ports and an independent TT dedicated for  
each downstream port. This device option is for low-power but high-performance applications that require up to  
four downstream ports. The CY7C65642 is available in 48-pin TQFP and 28-pin QFN package options.  
All device options are supported by Infineon’s world class reference design kits, which include board schematics,  
BOM, Gerber files, Orcad files, and thorough design documentation.  
Datasheet  
6
001-65659 Rev. *M  
2023-02-13  
HX2VL - Very Low-Power USB 2.0 TetraHub Controller  
HX2VL architecture  
3
HX2VL architecture  
The “Block diagram” on page 2 shows the HX2VL TetraHub™ architecture.  
3.1  
USB serial interface engine  
The SIE allows HX2VL to communicate with the USB host. The SIE handles the following USB activities  
independently of the hub control block.  
• Bit stuffing and unstuffing  
• Checksum generation and checking  
• TOKEN type identification  
• Address checking  
3.2  
HS USB control logic  
‘Hub Control’ block co-ordinates enumeration, suspend and resume. It generates status and control signals for  
host access to the hub. It also includes the frame timer that synchronizes the hub to the host. It has status/control  
registers which function as the interface to the firmware in the MCU.  
3.3  
Hub repeater  
The hub repeater manages the connectivity between upstream and downstream facing ports that are operating  
at the same speed. It supports full and high-speed connectivity. According to the USB 2.0 specification, the hub  
repeater provides the following functions:  
• Sets up and tears down connectivity on packet boundaries  
• Ensures orderly entry into and out of ‘Suspend’ state, including proper handling of remote wakeups.  
3.4  
MCU  
The HX2VL has MCU with 2K ROM and 64 byte RAM. The MCU operates with a 12 MHz clock to decode USB  
commands from host and respond to the host. It can also handle GPIO settings to provide higher flexibility to the  
customers and control the read interface to the EEPROM which has extended configuration options.  
3.5  
Transaction translator  
The TT translates data from one speed to another. A TT takes high-speed split transactions and translates them  
to full or low-speed transactions when the hub is operating at high-speed (the upstream port is connected to a  
high speed host controller) and has full or low-speed devices attached. The operating speed of a device attached  
on a downstream port determines whether the routing logic connects a port to the TT or to hub repeater. When  
the upstream host and downstream device are functioning at different speeds, the data is routed through the TT.  
In all other cases, the data is routed through the repeater. For example, If a full or low-speed device is connected  
to the high-speed host upstream through the hub, then the data transfer route includes TT. If a high-speed device  
is connected to the high-speed host upstream through the hub, the transfer route includes the repeater. When  
the hub is connected to a full-speed host controller upstream, then high-speed peripheral does not operate at its  
full capability. These devices only work at full speed. Full and low-speed devices connected to this hub operate  
at their normal speed.  
3.6  
Port control  
The downstream ‘Port Control’ block handles the connect/disconnect and over current detection as well as the  
power enable and LED control. It also generates the control signals for the downstream transceivers.  
Datasheet  
7
001-65659 Rev. *M  
2023-02-13  
HX2VL - Very Low-Power USB 2.0 TetraHub Controller  
Applications  
4
Applications  
Typical applications for the HX2VL device family are:  
• Docking stations  
• Standalone hubs  
• Monitor hubs  
• Multi-function printers  
• Digital televisions  
• Advanced port replicators  
• Keyboard hubs  
• Gaming consoles  
Datasheet  
8
001-65659 Rev. *M  
2023-02-13  
HX2VL - Very Low-Power USB 2.0 TetraHub Controller  
Functional overview  
5
Functional overview  
The Infineon CY7C65642 USB 2.0 Hubs are low-power hub solutions for USB which provide maximum transfer  
efficiency with no TT multiplexing between downstream ports. The CY7C65642 USB 2.0 Hubs integrate 1.5 k  
upstream pull-up resistors for full speed operation and all downstream 15 kpull-down resistors and series  
termination resistors on all upstream and downstream D+ and D– pins. This results in optimization of system  
costs by providing built-in support for the USB 2.0 specification.  
5.1  
System initialization  
On power up, CY7C65642 has an option to enumerate from the default settings in the mask ROM or from reading  
an external EEPROM for configuration information. At the most basic level, this EEPROM has the Vendor ID (VID)  
and the Product ID (PID), for the customer’s application. For more specialized applications, other configuration  
options can be specified. See “EEPROM configuration options” on page 20 for more details. CY7C65642 verifies  
the checksum before loading the EEPROM contents as the descriptors.  
5.2  
Enumeration  
CY7C65642 enables the pull-up resistor on D+ to indicate its presence to the upstream hub, after which a USB Bus  
Reset is expected. After a USB Bus Reset, CY7C65642 is in an unaddressed, unconfigured state (configuration  
value set to ‘0’). During the enumeration process, the host sets the hub's address and configuration. After the hub  
is configured, the full hub functionality is available.  
5.3  
Multiple transaction translator support  
After TetraHub is configured in a high speed system, it is in single TT mode. The host may then set the hub into  
multiple TT mode by sending a SetInterface command. In multiple TT mode, each full speed port is handled  
independently and thus has a full 12 Mbps bandwidth available. In Single TT mode, all traffic from the host  
destined for full or low-speed ports are forwarded to all of those ports. This means that the 12 Mbps bandwidth  
is shared by all full and low-speed ports.  
5.4  
Upstream port  
The upstream port includes the transmitter and the receiver state machine. The transmitter and receiver operate  
in high speed and full speed depending on the current hub configuration. The transmitter state machine  
monitors the upstream facing port while the Hub Repeater has connectivity in the upstream direction. This  
machine prevents babble and disconnect events on the downstream facing ports of this hub from propagating  
and causing the hub to be disabled or disconnected by the hub to which it is attached.  
Datasheet  
9
001-65659 Rev. *M  
2023-02-13  
HX2VL - Very Low-Power USB 2.0 TetraHub Controller  
Functional overview  
5.5  
Downstream ports  
The CY7C65642 supports a maximum of four downstream ports, each of which may be marked as usable or  
removable in the EEPROM configuration, see “EEPROM configuration options” on page 20. Additionally, it can  
also be configured by pin strapping, see “Pin configuration options” on page 23.  
Downstream D+ and D– pull-down resistors are incorporated in CY7C65642 for each port. Before the hubs are  
configured, the ports are driven Single Ended Zero, ((SE0) where both D+ and D– are driven low) and are set to  
the unpowered state. When the hub is configured, the ports are not driven and the host may power the ports by  
sending a SetPortPower command for each port. After a port is powered, any connect or disconnect event is  
detected by the hub. Any change in the port state is reported by the hubs back to the host through the Status  
Change Endpoint (endpoint 1). On receipt of SetPortReset request for a port with a device connected, the hub  
does as follows:  
• Performs a USB Reset on the corresponding port  
• Puts the port in an enabled state  
• Enables babble detection after the port is enabled.  
Babble consists of a non idle condition on the port after EOF2. If babble is detected on an enabled port, that port  
is disabled. A ClearPortEnable request from the host also disables the specified port.  
Downstream ports can be individually suspended by the host with the SetPortSuspend request. If the hub is not  
suspended, a remote wakeup event on that port is reflected to the host through a port change indication in the  
Hub Status Change Endpoint. If the hub is suspended, a remote wakeup event on this port is forwarded to the  
host. The host may resume the port by sending a ClearPortSuspend command.  
5.6  
Power switching  
The CY7C65642 includes interface signals for external port power switches. Both ganged and individual (per-port)  
configurations are supported by pin strapping, see “Pin configuration options” on page 23.  
After enumerating, the host may power each port by sending a SetPortPower request for that port. Power  
switching and overcurrent detection are managed using respective control signals (PWR#[n] and OVR#[n]) which  
are connected to an external power switch device. Both High/Low enabled power switches are supported and  
the polarity is configured through GPIO setting, see “Pin configuration options” on page 23.  
5.7  
Overcurrent detection  
The OVR#[n] pins of the CY7C65642 series are connected to the respective external power switch’s port  
overcurrent indication (output) signals. After detecting an overcurrent condition, hub reports overcurrent  
condition to the host and disables the PWR#[n] output to the external power device. OVR#[n] has a setup time of  
20 ns. It takes 3 to 4 ms from overcurrent detection to deassertion of PWR#[n].  
Datasheet  
10  
001-65659 Rev. *M  
2023-02-13  
HX2VL - Very Low-Power USB 2.0 TetraHub Controller  
Functional overview  
5.8  
Port indicators  
The USB 2.0 port indicators are also supported directly by CY7C65642. According to the specification, each  
downstream port of the hub optionally supports a status indicator. The presence of indicators for downstream  
facing ports is specified by bit 7 of the wHubCharacteristics field of the hub class descriptor. The default  
CY7C65642 descriptor specifies that the port indicators are supported. The CY7C65642 port indicators has two  
modes of operation: automatic and manual.  
On power up the CY7C65642 defaults to automatic mode, where the color of the Port Indicator (green, amber, off)  
indicates the functional status of the CY7C65642 port. The LEDs are turned off when the device is suspended.  
Port Status  
Indicator  
LED  
Figure 1  
Port status indicator LED  
5.9  
Power regulator  
CY7C65642 requires 3.3 V source power for normal operation of internal core logic and USB physical layer (PHY).  
The integrated low-drop power regulator converts 5 V power input from USB cable (Vbus) to 3.3 V source power.  
The 3.3 V power output is guaranteed by an internal voltage reference circuit when the input voltage is within the  
4 V–5.5 V range. The regulator’s maximum current loading is 150 mA, which provides tolerance margin over  
CY7C65642’s normal power consumption of below 100 mA. The on chip regulator has a quiescent current of 28 µA.  
5.10  
External regulation scheme  
CY7C65642 supports both external regulation and internal regulation schemes. When an external regulation is  
chosen, then for the 48-pin package, VCC and VREG are to be left open with no connection. The external regulator  
output 3.3 V has to be connected to VCC_A and VCC_D pins. This connection has to be done externally, on board.  
For the 28-pin package, the 3.3 V output from the external regulator has to be connected to VREG, VCC_A and  
VCC_D. The VCC pin has to be left open with no connection. From the external input 3.3 V, 1.8 V is internally  
generated for the chip’s internal usage.  
5 V to 3.3 V  
Regulator  
5 V to 3.3 V  
Regulator  
NC  
NC  
NC  
VCC  
VREG  
VREG  
VCC  
CY7C65642  
48 Pin  
CY7C65642  
28 Pin  
VCC_D  
VCC_A  
VCC_D  
VCC_A  
External Regulation Scheme  
Figure 2  
External regulation scheme  
Datasheet  
11  
001-65659 Rev. *M  
2023-02-13  
HX2VL - Very Low-Power USB 2.0 TetraHub Controller  
Functional overview  
5.11  
Internal regulation scheme  
When the built-in internal regulator is chosen, then the VCC pin has to be connected to a 5 V, in both 48-pin and  
28-pin packages. Internally, the built-in regulator generates a 3.3 V and 1.8 V for the chip’s internal usage. Also a  
3.3 V output is available at VREG pin, that has to be connected externally to VCC_A and VCC_D.  
5 V  
3.3 V  
5 V  
3.3 V  
VCC  
VREG  
VREG  
VCC  
CY7C65642  
48 Pin  
CY7C65642  
28 Pin  
VCC_D  
VCC_A  
VCC_D  
VCC_A  
Internal Regulation Scheme  
Figure 3  
Internal regulation scheme  
Datasheet  
12  
001-65659 Rev. *M  
2023-02-13  
HX2VL - Very Low-Power USB 2.0 TetraHub Controller  
Pin configurations  
6
Pin configurations  
AMBER[2] / SPI_MOSI /  
PWR_PIN_POL  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
1
2
3
4
5
VCC_A  
GND  
GREEN[2] /  
SPI_MISO /  
FIXED_PORT2  
VCC_D  
D-  
AMBER[3] /  
SET_PORT_NUM2  
D+  
CY7C65642  
48-pin TQFP  
GREEN[3] /  
FIXED_PORT3  
DD-[1]  
DD+[1]  
VCC_A  
GND  
5
PWR#[3]  
7
8
OVR#[3]  
PWR#[4]  
9
OVR#[4]  
DD-[2]  
DD+[2]  
RREF  
VCC_A  
10  
11  
12  
TEST / I2C_SCL  
26  
25  
RESET#  
SEL48  
Figure 4  
48-pin TQFP (7 × 7 × 1.4 mm) pinout  
Datasheet  
13  
001-65659 Rev. *M  
2023-02-13  
HX2VL - Very Low-Power USB 2.0 TetraHub Controller  
Pin configurations  
D -  
D +  
1
2
3
2 1  
2 0  
V C C _ D  
O VR # [3]  
O VR # [4]  
TEST/I2C_SCL  
D D - [1]  
1 9  
1 8  
1 7  
CY7C65642  
4
5
D D + [1]  
V C C _ A  
28-pin QFN  
R E S E T #  
D D - [2]  
D D + [2]  
6
7
D D + [4]  
D D - [4]  
1 6  
1 5  
Figure 5  
28-pin QFN (5 × 5 × 0.8 mm) pinout  
Datasheet  
14  
001-65659 Rev. *M  
2023-02-13  
HX2VL - Very Low-Power USB 2.0 TetraHub Controller  
Pin definitions  
7
Pin definitions  
Table 1  
Pin definitions  
48-pin TQFP package  
Pin name  
Power and Clock  
VCC_A  
Pin No. Type [1]  
Description  
1
P
P
P
P
P
P
P
P
P
V
V
V
V
V
V
V
V
V
CC_A. 3.3 V analog power to the chip.  
CC_A. 3.3 V analog power to the chip.  
CC_A. 3.3 V analog power to the chip.  
CC_A. 3.3 V analog power to the chip.  
CC_A. 3.3 V analog power to the chip.  
CC_D. 3.3 V digital power to the chip.  
CC_D. 3.3 V digital power to the chip.  
CC. 5 V input to the internal regulator; NC if using external regulator  
REG. 5 V–3.3 V regulator o/p during internal regulation; NC if using  
VCC_A  
VCC_A  
VCC_A  
VCC_A  
VCC_D  
VCC_D  
VCC  
VREG  
7
12  
16  
19  
34  
38  
47  
48  
external regulator.  
GND  
GND  
GND  
GND  
XIN  
2
8
13  
20  
14  
P
P
P
P
I
GND. Connect to ground with as short a path as possible.  
GND. Connect to ground with as short a path as possible.  
GND. Connect to ground with as short a path as possible.  
GND. Connect to ground with as short a path as possible.  
12-MHz crystal clock input, or 12/27/48 MHz clock input  
12-MHz Crystal OUT. (NC if external clock is used).  
XOUT  
SEL48 / SEL27  
15  
25 / 44  
O
I
Clock source selection inputs.  
00: Reserved  
01: 48-MHz OSC-in  
10: 27-MHz OSC-in  
11: 12-MHz Crystal or OSC-in  
RESET#  
SELFPWR  
GANG  
26  
37  
39  
I
I
Active LOW Reset. External reset input, default pull high 10 k;  
When RESET = low, whole chip is reset to the initial state  
Self Power. Input for selecting self/bus power. 0 is bus powered, 1  
is self powered.  
GANG. Default is input mode after power-on-reset.  
Gang Mode: Input:1 -> Output is 0 for normal operation and 1 for  
suspend  
Individual Mode: Input:0 -> Output is 1 for normal operation and 0  
for suspend  
Refer to gang / individual power switching modes in “Pin  
configuration options” on page 23 for details.  
I/O  
RREF  
11  
I/O  
649 resistor must be connected between RREF and Ground.  
System Interface  
Notes  
1. Pin Types: I = Input, O = Output, P = Power/Ground, Z = High Impedance, RDN = Pad internal Pull Down  
Resistor, RUP = Pad internal Pull Up Resistor.  
2. Pin-strapping GREEN[1] and GREEN[2] enables proprietary function that may affect the normal functionality  
of HX2VL. Configuring Port #1 and #2 as non-removable by pin-strapping should be avoided.  
Datasheet  
15  
001-65659 Rev. *M  
2023-02-13  
HX2VL - Very Low-Power USB 2.0 TetraHub Controller  
Pin definitions  
Table 1  
Pin definitions (continued)  
48-pin TQFP package  
Pin name  
Pin No. Type [1]  
Description  
Test  
27  
I(RDN  
)
Test. 0: Normal Operation and 1: Chip will be put in test mode.  
I2C_SCL  
I/O(RDN)  
I2C_SCL. Can be used as I2C clock pin to access I2C EEPROM.  
Upstream Port  
D–  
D+  
3
4
I/O/Z  
I/O/Z  
Upstream D– Signal.  
Upstream D+ Signal.  
Downstream Port 1  
DD–[1]  
5
6
I/O/Z  
I/O/Z  
Downstream D– Signal.  
Downstream D+ Signal.  
DD+[1]  
AMBER[1]  
SPI_CS  
46  
O(RDN  
O(RDN  
O(RDN  
O(RDN  
I(RDN)  
)
)
)
)
LED. Driver output for amber LED. port indicator support.  
SPI_CS. Can be used as chip select to access external SPI EEPROM.  
GREEN[1] [2]  
SPI_SK  
45  
LED. Driver output for green LED. Port indicator support.  
SPI_SK. Can be used as SPI Clock to access external SPI EEPROM.  
FIXED_PORT1. At POR used to set Port1 as non removable port.  
Refer “Pin configuration options” on page 23.  
FIXED_PORT1  
OVR#[1]  
42  
43  
I(RUP  
)
Overcurrent Condition Detection Input. Active LOW Overcurrent  
Condition Detection Input.  
PWR#[1]  
I2C_SDA  
O/Z  
I/O  
Power Switch Driver Output. Default is Active LOW.  
I2C_SDA. Can be used as I2C Data pin, connected with I2C EEPROM.  
Downstream Port 2  
DD–[2]  
9
10  
36  
I/O/Z  
I/O/Z  
O(RDN  
O(RDN  
I(RDN)  
Downstream D– Signal.  
Downstream D+ Signal.  
LED. Driver output for Amber LED. Port Indicator Support.  
SPI_MOSI. Can be used as Data Out to access external SPI EEPROM.  
PWR_PIN_POL. Used for power switch enable pin polarity setting.  
Refer “Pin configuration options” on page 23.  
LED. Driver output for Green LED. Port Indicator Support.  
SPI_MISO. Can be used as Data In to access external SPI EEPROM.  
FIXED_PORT2. At POR used to set Port2 as non removable port.  
Refer “Pin configuration options” on page 23.  
DD+[2]  
AMBER[2]  
SPI_MOSI  
PWR_PIN_POL  
)
)
GREEN[2] [2]  
SPI_MISO  
FIXED_PORT2  
35  
O(RDN  
)
I(RDN  
I(RDN  
)
)
OVR#[2]  
40  
41  
I(RUP  
O/Z  
)
Overcurrent Condition Detection Input. Active LOW Overcurrent  
Condition Detection Input.  
PWR#[2]  
Downstream Port 3  
DD–[3]  
DD+[3]  
AMBER[3]  
SET_PORT_NUM2  
Power Switch Driver Output. Default is Active LOW  
17  
18  
33  
I/O/Z  
I/O/Z  
O(RDN  
I(RDN)  
Downstream D– Signal.  
Downstream D+ Signal.  
LED. Driver output for Amber LED. Port indicator support.  
SET_PORT_NUM2. Used to set port numbering along with  
SET_PORT_NUM1. Refer “Pin configuration options” on page 23.  
)
Notes  
1. Pin Types: I = Input, O = Output, P = Power/Ground, Z = High Impedance, RDN = Pad internal Pull Down  
Resistor, RUP = Pad internal Pull Up Resistor.  
2. Pin-strapping GREEN[1] and GREEN[2] enables proprietary function that may affect the normal functionality  
of HX2VL. Configuring Port #1 and #2 as non-removable by pin-strapping should be avoided.  
Datasheet  
16  
001-65659 Rev. *M  
2023-02-13  
HX2VL - Very Low-Power USB 2.0 TetraHub Controller  
Pin definitions  
Table 1  
Pin definitions (continued)  
48-pin TQFP package  
Pin name  
Pin No. Type [1]  
Description  
GREEN[3]  
FIXED_PORT3  
32  
O(RDN  
I(RDN  
)
LED. Driver output for Green LED. Port indicator support.  
FIXED_PORT3. At POR used to set Port3 as non removable port.  
Refer “Pin configuration options” on page 23.  
)
OVR#[3]  
30  
31  
I(RUP  
O/Z  
)
Overcurrent Condition Detection Input. Active LOW Overcurrent  
Condition Detection Input.  
PWR#[3]  
Downstream Port 4  
DD–[4]  
DD+[4]  
AMBER[4]  
SET_PORT_NUM1  
Power Switch Driver Output. Default is Active LOW.  
21  
22  
24  
I/O/Z  
I/O/Z  
O(RDN  
I(RDN  
Downstream D– Signal.  
Downstream D+ Signal.  
LED. Driver output for Amber LED. Port Indicator Support.  
SET_PORT_NUM1. Used to set port numbering along with  
SET_PORT_NUM2. Refer “Pin configuration options” on page 23  
LED. Driver output for Green LED. Port Indicator Support.  
FIXED_PORT4. At POR used to set Port4 as non removable port.  
Refer Pin configuration options on page 23.  
)
)
)
GREEN[4]  
FIXED_PORT4  
23  
O(RDN  
I(RDN)  
OVR#[4]  
PWR#[4]  
28  
29  
I(RUP  
O/Z  
)
Overcurrent Condition Detection Input. Active LOW Overcurrent  
Condition Detection Input.  
Power Switch Driver Output. Default is Active LOW.  
Note: The alternate function of these pins as LED indicator is not available if the pins are strapped to logic high,  
unless a separate circuit is designed to support logic high. Disconnect after 60 ms of power-on reset (POR), when  
these pins are reconfigured as outputs.  
Notes  
1. Pin Types: I = Input, O = Output, P = Power/Ground, Z = High Impedance, RDN = Pad internal Pull Down  
Resistor, RUP = Pad internal Pull Up Resistor.  
2. Pin-strapping GREEN[1] and GREEN[2] enables proprietary function that may affect the normal functionality  
of HX2VL. Configuring Port #1 and #2 as non-removable by pin-strapping should be avoided.  
Datasheet  
17  
001-65659 Rev. *M  
2023-02-13  
HX2VL - Very Low-Power USB 2.0 TetraHub Controller  
Pin definitions  
8
Pin definitions  
Table 2  
Pin definitions  
28-pin QFN package  
Pin name  
Power and Clock  
VCC_A  
Pin No. Type[3]  
Description  
5
P
P
P
P
P
V
V
V
V
V
CC_A. 3.3 V analog power to the chip.  
CC_A. 3.3 V analog power to the chip.  
CC_A. 3.3 V analog power to the chip.  
CC_D. 3.3 V digital power to the chip.  
VCC_A  
VCC_A  
VCC_D  
VCC  
9
14  
21  
27  
CC. 5 V input to the internal regulator; NC if using external regulator  
VCC. 5 V–3.3 V regulator o/p during internal regulation; 3.3 V i/p if  
using external regulator.  
VREG  
28  
P
XIN  
XOUT  
10  
11  
I
O
12-MHz crystal clock input, or 12-MHz clock input  
12-MHz Crystal OUT. (NC if external clock is used).  
Active LOW Reset. External reset input, default pull high 10k Ohm;  
RESET#  
17  
22  
I
I
When RESET = low, whole chip is reset to the initial state  
Self Power. Input for selecting self/bus power. 0 is bus powered, 1  
is self powered.  
SELFPWR  
GANG Default is input mode after power-on-reset.  
Gang Mode: Input:1 -> Output is 0 for normal operation and 1 for  
suspend  
GANG  
23  
8
I/O  
Individual Mode: Input:0 -> Output is 1 for normal operation and 0  
for suspend  
Refer to gang / individual power switching modes in “Pin  
configuration options” on page 23 for details.  
649-resistor must be connected between RREF and Ground  
RREF  
I/O  
System Interface  
Test  
O(RDN  
)
Test. 0: Normal Operation & 1: Chip will be put in test mode  
I2C_SCL. I2C Clock pin.  
18  
26  
I2C_SCL  
I/O(RDN  
)
PWR# [4]  
I2C_SDA  
Power switch driver output. Default is active low  
I/O  
I2C_SDA. I2C Data pin.  
Upstream Port  
D–  
D+  
1
2
I/O/Z  
I/O/Z  
Upstream D– Signal.  
Upstream D+ Signal.  
Notes  
3. Pin Types: I = Input, O = Output, P = Power/Ground, Z = High Impedance, RDN = Pad internal Pull Down  
Resistor, RUP = Pad internal Pull Up Resistor.  
4. PWR#/I2C_SDA can be used as either PWR# or I2C_SDA but not as both. If EEPROM is connected then the pin  
will act as I2C_SDA, it will not switch to PWR# mode (as it does in 48-pin TQFP package).  
Datasheet  
18  
001-65659 Rev. *M  
2023-02-13  
HX2VL - Very Low-Power USB 2.0 TetraHub Controller  
Pin definitions  
Table 2  
Pin definitions (continued)  
28-pin QFN package  
Pin name  
Pin No. Type[3]  
Description  
Downstream Port 1  
DD–[1]  
3
4
I/O/Z  
I/O/Z  
Downstream D– Signal.  
Downstream D+ Signal.  
DD+[1]  
Overcurrent Condition Detection Input. Active LOW Overcurrent  
Condition Detection Input. Only OVR#[1](pin 25) is enabled in Gang  
mode. OVR#[2](pin 24), OVR#[3](pin 20) and OVR#[4](pin 19) are  
disabled in Gang mode.  
OVR#[1]  
25  
I(RUP)  
Downstream Port 2  
DD–[2]  
6
7
I/O/Z  
I/O/Z  
Downstream D– Signal.  
Downstream D+ Signal.  
DD+[2]  
Overcurrent Condition Detection Input. Active LOW Overcurrent  
Condition Detection Input. Only OVR#[1](pin 25) is enabled in Gang  
mode. This (OVR#[2]) pin is disabled in Gang mode.  
OVR#[2]  
24  
I(RUP)  
Downstream Port 3  
DD–[3]  
12  
13  
I/O/Z  
I/O/Z  
Downstream D– Signal.  
Downstream D+ Signal.  
DD+[3]  
Overcurrent Condition Detection Input. Active LOW Overcurrent  
Condition Detection Input. Only OVR#[1](pin 25) is enabled in Gang  
mode. This (OVR#[3]) pin is disabled in Gang mode.  
OVR#[3]  
20  
I(RUP)  
Downstream Port 4  
DD–[4]  
15  
16  
I/O/Z  
I/O/Z  
Downstream D– Signal.  
Downstream D+ Signal.  
DD+[4]  
Overcurrent Condition Detection Input. Active LOW Overcurrent  
Condition Detection Input. Only OVR#[1](pin 25) is enabled in Gang  
mode. This (OVR#[4]) pin is disabled in Gang mode.  
Ground pin for the chip. It is the solderable exposed pad beneath  
the chip. Refer to the Figure 9.  
OVR#[4]  
GND  
19  
I(RUP  
P
)
PAD  
Notes  
3. Pin Types: I = Input, O = Output, P = Power/Ground, Z = High Impedance, RDN = Pad internal Pull Down  
Resistor, RUP = Pad internal Pull Up Resistor.  
4. PWR#/I2C_SDA can be used as either PWR# or I2C_SDA but not as both. If EEPROM is connected then the pin  
will act as I2C_SDA, it will not switch to PWR# mode (as it does in 48-pin TQFP package).  
Datasheet  
19  
001-65659 Rev. *M  
2023-02-13  
HX2VL - Very Low-Power USB 2.0 TetraHub Controller  
EEPROM configuration options  
9
EEPROM configuration options  
Systems using CY7C65642 have the option of using the default descriptors to configure the hub. Otherwise, it  
must have an external EEPROM for the device to have a unique VID, and PID. The CY7C65642 can communicate  
with an SPI (microwire) EEPROM like 93C46 or I2C EEPROM like 24C02. Example EEPROM connections are shown  
as follows:  
SPI EEPROM Connection  
VDD  
AM BER[1]  
GREEN[1]  
AM BER[2]  
GREEN[2]  
CS  
SK  
DI  
VCC  
NC1  
NC2  
GND  
DO  
AT93C46  
I2C EEPROM Connection  
VDD  
A0  
VCC  
W P  
A1  
TEST  
PW R#[1]  
A2  
SCL  
SDA  
GND  
AT24C02  
Figure 6  
Example EEPROM connections  
Note The 28-pin QFN package includes only support for I2C EEPROM like ATMEL/24C02N_SU27 D,  
MICROCHIP/4LC028 SN0509, SEIKO/S24CS02AVH9. The 48-pin TQFP package includes both I2C and SPI EEPROM  
connectivity options. In this case, user can use either SPI or I2C connectivity at a time for communicating to  
EEPROM. The 48-pin package supports ATMEL/AT93C46DN-SH-T, in addition to the above mentioned families.  
Datasheet  
20  
001-65659 Rev. *M  
2023-02-13  
HX2VL - Very Low-Power USB 2.0 TetraHub Controller  
EEPROM configuration options  
HX2VL can only read from SPI EEPROM. So field programming of EEPROM will be supported only for I2C EEPROM.  
The default VID and PID are 0x04B4 and 0x6572.  
CY7C65642 verifies the check sum after power on reset and if validated loads the configuration from the EEPROM.  
To prevent this configuration from being overwritten, AMBER[1] is disabled when the SPI EEPROM is present.  
Table 3  
Byte  
00h  
Details  
VID_LSB  
Value  
01h  
VID_MSB  
02h  
PID_LSB  
03h  
PID_MSB  
04h  
ChkSum  
05h  
06h  
07h  
08h  
Reserved–FEh  
Removable ports  
Port number  
Maximum power  
09h–0Fh Reserved–FFh  
10h Vendor string length  
11h–3Fh Vendor string (ASCII code)  
40h Product string length  
41h–6Fh Product string (ASCII code)  
70 h Serial number length  
71h–80h Serial number string  
Byte 0: VID (LSB)  
Least Significant Byte of Vendor ID  
Byte 1: VID (MSB)  
Most Significant Byte of Vendor ID  
Byte 2: PID (LSB)  
Least Significant Byte of Product ID  
Byte 3: PID (MSB)]  
Most Significant Byte of Product ID  
Byte 4: ChkSum  
CY7C65642 will ignore the EEPROM settings if ChkSum is not equal to  
VID_LSB + VID_MSB + PID_LSB + PID_MSB +1  
Byte 5: Reserved  
Set to FEh  
Byte 6: RemovablePorts  
RemovablePorts[4:1] are the bits that indicate whether the device attached to the corresponding downstream  
port is removable (set to 0) or non-removable (set to 1). Bit 1 corresponds to Port 1, Bit 2 to Port 2 and so on.  
Default value is 0 (removable). These bit values are reported appropriately in the  
HubDescriptor:DeviceRemovable field.  
Bits 0, 5, 6, 7 are set to 0.  
Datasheet  
21  
001-65659 Rev. *M  
2023-02-13  
HX2VL - Very Low-Power USB 2.0 TetraHub Controller  
EEPROM configuration options  
Byte 7: Port Number  
Port Number indicates the number of downstream ports. The values must be 1 to 4. Default value is 4.  
Byte 8: Maximum Power  
This value is reported in the Configuration Descriptor: bMax-Power field and is the current in 2 mA increments  
that is required from the upstream hubs. The allowed range is 00h (0mA) to FAh(500mA). Default value is 32h  
(100mA)  
Byte 9–15: Reserved  
Set to FFh (except 11 which is FEh)  
Byte 16: Vendor String Length  
Length of the Vendor String  
Byte 17–63: Vendor String  
Value of Vendor String in ASCII code.  
Byte 64: Product String Length  
Length of the Product String  
Byte 65–111: Product String  
Value of Product String in ASCII code  
Byte 112: Serial Number Length  
Length of the Serial Number  
Byte 113 onwards: Serial Number String  
Serial Number String in ASCII code.  
Datasheet  
22  
001-65659 Rev. *M  
2023-02-13  
HX2VL - Very Low-Power USB 2.0 TetraHub Controller  
Pin configuration options  
10  
Pin configuration options  
10.1  
Power on reset  
The power on reset can be triggered by external reset or internal circuitry. The internal reset is initiated, when  
there is an unstable power event for silicon’s internal core power (3.3 V ± 10%). The internal reset is released  
2.7 µs ± 1.2% after supply reaches power good voltage (2.5 V to 2.8 V). The external reset pin, continuously senses  
the voltage level (5 V) on the upstream VBUS as shown in the figure. In the event of USB plug/unplug or drop in  
voltage, the external reset is triggered. This reset trigger can be configured using the resistors R1 and R2. Infineon  
recommends that the reset time applied in external reset circuit should be longer than that of the internal reset  
time.  
PCB  
Silicon  
VBUS  
(External 5V)  
Ext. VBUS power-good  
detection circuit input  
(Pin"RESET#")  
R1  
R2  
EXT  
Global  
Reset#  
INT  
Int. 3.3V power-good  
detection circuit input  
(USB PHY reset)  
Figure 7  
Power on reset  
10.2  
Gang/individual power switching mode  
A single pin is used to set individual / gang mode as well as output the suspend flag. This is done to reduce the  
pin count. The individual or gang mode is decided within 20 µs after power on reset. It has a setup time of 1 ns.  
50 ms to 60 ms after reset, this pin is changed to output mode. CY7C65642 outputs the suspend flag, once it is  
globally suspended. Pull-down resistor of greater than 100K is needed for Individual mode and a pull-up resistor  
greater than 100K is needed for Gang mode. Figure below shows the suspend LED indicator schematics. The  
polarity of LED must be followed, otherwise the suspend current will be over the spec limitation (2.5 mA).  
VDD (3.3V)  
VDD (3.3V)  
100K  
PCB  
Silicon  
GANG MODE  
GANG/SUSPEND  
SUSPEND OUT  
SUSPEND  
INDICATOR  
100K  
0 : INDIVIDUAL MODE  
1: GANG MODE  
INDIVIDUAL MODE  
Datasheet  
23  
001-65659 Rev. *M  
2023-02-13  
HX2VL - Very Low-Power USB 2.0 TetraHub Controller  
Pin configuration options  
Table 4  
Features supported in 48-pin and 28-pin packages  
Supported features  
48-pin  
Yes  
Yes  
Yes  
Yes  
28-pin  
No  
No  
No  
No  
Port number configuration  
Non-removable port configuration  
Reference clock configuration  
Power switch enable polarity  
LED Indicator  
Yes  
No  
10.3  
Power switch enable pin polarity  
The pin polarity is set active-high by pin-strapping the PWR_PIN_POL pin to 1 and Active-Low by pin-strapping  
the PWR_PIN_POL pin to 0. Thus, both kinds of power switches are supported. This feature is not supported in  
28-pin QFN package.  
10.4  
Port number configuration  
In addition to the EEPROM configuration, as described above, configuring the hub for 2/3/4 ports is also  
supported using pin-strapping SET_PORT_NUM1 and SET_PORT_NUM2, as shown in following table.Pin  
strapping option is not supported in the 28-pin QFN package.  
Table 5  
Port number configuration  
SET_PORT_NUM2  
SET_PORT_NUM1  
# Ports  
1 (Port 1)  
2 (Port 1/2)  
3 (Port 1/2/3)  
4 (All ports)  
1
1
0
0
1
0
1
0
10.5  
Non removable ports configuration  
In embedded systems, downstream ports that are always connected inside the system, can be set as  
non-removable (always connected) ports, by pin-strapping the corresponding FIXED_PORT# pins 1~4 to High,  
before power on reset. At POR, if the pin is pull high, the corresponding port is set to non-removable. This is not  
supported in the 28-pin QFN package.  
10.6  
Reference clock configuration  
This hub can support, optional 27/48-MHz clock source. When on-board 27/48-MHz clock is present, then using  
this feature, system integrator can further reduce the BOM cost by eliminating the external crystal. This is  
available through GPIO pin configuration shown below. This is not supported in the 28-pin QFN package.  
Table 6  
Reference clock configuration  
SEL27 Clock source  
48-MHz OSC-in  
SEL48  
0
1
1
1
0
1
27-MHz OSC-in  
12-MHz X’tal/OSC-in  
Datasheet  
24  
001-65659 Rev. *M  
2023-02-13  
HX2VL - Very Low-Power USB 2.0 TetraHub Controller  
Absolute maximum ratings  
11  
Absolute maximum ratings  
Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested.  
Table 7  
Absolute maximum ratings  
Parameter  
Ratings  
Storage temperature  
Ambient temperature  
–60°C to +100°C  
0°C to +70°C  
5 V supply voltage to ground potential  
3.3 V supply voltage to ground potential  
Voltage at open drain input pins  
(OVR#1–4, SELFPWR, RESET#)  
–0.5 V to +6.0 V  
–0.5 V to +3.6 V  
–0.5 V to +5.5 V  
3.3 V Input Voltage for Digital I/O  
FOSC (oscillator or crystal frequency)  
–0.5 V to +3.6 V  
12 MHz ± 0.05%  
Datasheet  
25  
001-65659 Rev. *M  
2023-02-13  
HX2VL - Very Low-Power USB 2.0 TetraHub Controller  
Operating conditions  
12  
Operating conditions  
Table 8  
Operating conditions  
Parameter  
Conditions  
Ambient temperature  
0°C to +70°C  
0°C to +125°C  
4.75 V to +5.25 V  
3.15 V to +3.6 V  
0.5 V to +3.6 V  
–0.5 V to +5.0 V  
78.7 °C/W  
Ambient max junction temperature  
5 V supply voltage to ground potential  
3.3 V supply voltage to ground potential  
Input voltage for USB signal pins  
Voltage at open drain input pins  
Thermal characteristics 48-pin TQFP  
Thermal characteristics 28-pin QFN  
33.3 °C/W  
Datasheet  
26  
001-65659 Rev. *M  
2023-02-13  
HX2VL - Very Low-Power USB 2.0 TetraHub Controller  
Electrical characteristics  
13  
Electrical characteristics  
13.1  
DC electrical characteristics  
Table 9  
DC electrical characteristics  
Max  
Parameter  
Description  
Conditions  
Min  
Typ  
Units  
External Internal  
regulator regulator  
PD  
Power dissipation  
Excluding USB  
signals  
432  
mW  
VIH  
VIL  
Il  
Input high voltage  
Input low voltage  
Input leakage current Full speed / low  
speed  
2
–10  
0.8  
+10  
V
V
A  
(0 < VIN < VCC  
)
High speed mode  
–5  
0
+5  
A  
(0 < VIN < VCC  
IOH = 8 mA  
IOL = 8 mA  
)
VOH  
VOL  
RDN  
Output voltage high  
Output low voltage  
Padinternalpull-down –  
resistor  
2.4  
29  
59  
0.4  
135  
V
V
K  
RUP  
CIN  
Pad internal pull-up  
resistor  
Input pin capacitance Full speed / low  
speed mode  
80  
108  
140  
20  
5
K  
pF  
high speed mode  
4
4.5  
0.786  
pF  
mA  
ISUSP  
Suspend current  
1.043  
1.3  
Notes  
5. Current measurement is with device attached and enumerated.  
6. No devices attached.  
Datasheet  
27  
001-65659 Rev. *M  
2023-02-13  
HX2VL - Very Low-Power USB 2.0 TetraHub Controller  
Electrical characteristics  
Table 9  
Parameter  
ICC  
DC electrical characteristics (continued)  
Max  
Description  
Conditions  
Min  
Typ  
Units  
External Internal  
regulator regulator  
Supply current  
4 Active ports  
Full speed host,  
full speed devices  
88.7  
81.9  
88.2  
79.1  
72.9  
75.9  
68.1  
61.9  
64.9  
57.1  
51.9  
54.7  
103.9  
88.2  
101.2  
91.6  
78.5  
88.7  
78.4  
67.6  
75.4  
66.3  
57.6  
61.1  
105.4  
89.3  
102.3  
93  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
High speed host,  
high speed devices  
High speed host,  
full speed devices  
Full speed host,  
full speed devices  
High speed host,  
high speed devices  
High speed host,  
full speed devices  
3 Active ports[5]  
2 Active ports  
78.6  
88.8  
78.6  
69.6  
76.1  
66.7  
59.3  
62.5  
Full speed host,  
full speed devices  
High speed host,  
high speed devices  
High speed host,  
full speed devices  
1 Active ports  
Full speed host,  
full speed devices  
High speed host,  
high speed devices  
High speed host,  
full speed devices  
Full speed host  
High speed host  
No Active ports[6]  
42.8  
44.2  
48.9  
49.1  
50.3  
50.6  
mA  
mA  
Notes  
5. Current measurement is with device attached and enumerated.  
6. No devices attached.  
Datasheet  
28  
001-65659 Rev. *M  
2023-02-13  
HX2VL - Very Low-Power USB 2.0 TetraHub Controller  
Electrical characteristics  
13.2  
AC electrical characteristics  
USB Transceiver is USB 2.0 certified in low, full and high speed modes.  
Both the upstream USB transceiver and all four downstream transceivers have passed the USB-IF USB 2.0  
Electrical Certification Testing.  
The 48-pin TQFP package can support communication to EEPROM using either I2C or SPI. The 28-pin QFN package  
can support only I2C communication to EEPROM.  
AC characteristics of these two interfaces to EEPROM are summarized in tables below:  
Table 10  
Parameter  
tCSS  
tCSH  
tSKH  
tSKL  
tDIS  
tDIH  
tPD1  
AC characteristics of SPI EEPROM interface  
Parameter  
CS setup time  
CS hold time  
SK high time  
SK low time  
DI setup time  
DI hold time  
Output delay to ‘1’  
Output delay to ‘0’  
Min  
3.0  
3.0  
1.0  
2.2  
1.8  
2.4  
Typ  
Max  
1.8  
1.8  
Units  
µs  
tPD0  
Table 11  
AC characteristics of I2C EEPROM interface  
Parameter  
1.8 V–5.5 V  
2.5 V–5.5 V  
Parameter  
Units  
Min  
Max  
100  
Min  
Max  
400  
fSCL  
tLOW  
SCL clock frequency  
Clock LOW Period  
0.0  
4.7  
4.0  
4.7  
4.7  
4.0  
4.0  
200.0  
0
0.0  
1.2  
0.6  
0.6  
0.6  
0.6  
0.6  
100.0  
0
kHz  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
ns  
tHIGH  
tSU:STA  
tSU:STO  
tHD:STA  
tHD:STO  
tSU:DAT  
tHD:DAT  
tDH  
Clock HIGH Period  
Start condition setup time  
Stop condition setup time  
Start condition hold time  
Stop condition hold time  
Data in setup time  
Data in hold time  
Data out hold time  
Clock to output  
100  
0.1  
4.5  
10  
50  
tAA  
0.1  
5
tWR  
Write cycle time  
Datasheet  
29  
001-65659 Rev. *M  
2023-02-13  
HX2VL - Very Low-Power USB 2.0 TetraHub Controller  
Thermal resistance  
14  
Thermal resistance  
Table 12  
Thermal resistance  
48-pinTQFP 28-pin QFN  
Parameter  
Description  
Unit  
package  
78.7  
package  
33.3  
JA  
JC  
Thermal resistance (junction to ambient)  
Thermal resistance (junction to case)  
°C/W  
°C/W  
35.3  
18.4  
Datasheet  
30  
001-65659 Rev. *M  
2023-02-13  
HX2VL - Very Low-Power USB 2.0 TetraHub Controller  
Ordering information  
15  
Ordering information  
Table 13  
Ordering information  
Ordering code  
Package type  
CY7C65642-48AXC  
CY7C65642-48AXCT  
CY7C65642-28LTXC  
48-pin TQFP - Tray  
48-pin TQFP - Tape and reel  
28-pin QFN - Tray  
15.1  
Ordering code definitions  
CY 7 C 65642 - XX  
A
X
C
X
X = blank or T  
blank = Tray; T = Tape and reel  
Temperature range:  
C = Commercial  
Pb-free  
Package type: XX = A or LT  
A = TQFP; LT = QFN  
Pin count: XX = 48 or 28  
Part identifier  
Technology code: C = CMOS  
Marketing code  
Company ID: CY = Cypress, An Infineon Technologies  
company  
Datasheet  
31  
001-65659 Rev. *M  
2023-02-13  
HX2VL - Very Low-Power USB 2.0 TetraHub Controller  
Package diagrams  
16  
Package diagrams  
The CY7C65642 is available in following packages:  
51-85135 *C  
Figure 8  
48-pin TQFP (7 × 7 × 1.4 mm) package outline, 51-85135  
Datasheet  
32  
001-65659 Rev. *M  
2023-02-13  
HX2VL - Very Low-Power USB 2.0 TetraHub Controller  
Package diagrams  
001-64621 *A  
28-pin QFN ((5 × 5 × 0.8 mm) 3.5 × 3.5 E-Pad (Sawn)) package outline, 001-64621  
Figure 9  
Datasheet  
33  
001-65659 Rev. *M  
2023-02-13  
HX2VL - Very Low-Power USB 2.0 TetraHub Controller  
Acronyms  
17  
Acronyms  
Table 14  
Acronyms  
Acronym  
Description  
AC  
Alternating Current  
ASCII  
EEPROM  
EMI  
ESD  
GPIO  
I/O  
American Standard Code for Information Interchange  
Electrically Erasable Programmable Read Only Memory  
Electromagnetic Interference  
Electrostatic Discharge  
General Purpose Input/Output  
Input/Output  
LED  
Light Emitting Diode  
LSB  
Least Significant Bit  
MSB  
PCB  
PLL  
Most Significant Bit  
Printed Circuit Board  
Phase-Locked Loop  
POR  
PSoC™  
QFN  
RAM  
ROM  
SIE  
Power On Reset  
Programmable System-on-Chip™  
Quad Flat No-leads  
Random Access Memory  
Read Only Memory  
Serial Interface Engine  
TQFP  
TT  
Thin Quad Flat Pack  
Transaction Translator  
USB  
Universal Serial Bus  
Datasheet  
34  
001-65659 Rev. *M  
2023-02-13  
HX2VL - Very Low-Power USB 2.0 TetraHub Controller  
Document conventions  
18  
Document conventions  
18.1  
Units of measure  
Table 15  
Units of measure  
Symbol  
Unit of measure  
°C  
degree Celsius  
kilohertz  
kilohm  
kHz  
k  
MHz  
A  
s  
W  
mA  
mm  
ms  
mW  
ns  
megahertz  
microampere  
microsecond  
microwatt  
milliampere  
millimeter  
millisecond  
milliwatt  
nanosecond  
ohm  
%
percent  
pF  
ppm  
V
picofarad  
parts per million  
volt  
W
watt  
Datasheet  
35  
001-65659 Rev. *M  
2023-02-13  
HX2VL - Very Low-Power USB 2.0 TetraHub Controller  
Silicon Errata for the HX2VL, CY7C65642  
product family  
19  
Silicon Errata for the HX2VL, CY7C65642 product family  
This section describes the errata for the HX2VL, CY7C65642. The details include errata trigger conditions, scope  
of impact, available workarounds, and silicon revision applicability.  
Contact your local Infineon Sales Representative, if you have any questions.  
19.1  
Part numbers affected  
Part number  
Device characteristics  
CY7C65642  
USB 2.0 Multi TT Hub  
19.2  
HX2VL Qualification status  
Product Status: In production  
19.3  
HX2VL Errata summary  
This table defines the errata applicability to available HX2VL family devices.  
Silicon  
Items  
Part numbers  
Workaround  
Fix status  
Revision  
1. USB device is not  
CY7C65642  
Rev. **  
Issue a Port-Reset from host No fix  
USB application or driver if planned.  
the USB device commands  
STALLed  
recognized properly if a  
disconnect followed by a  
connect event happen  
during hub suspend  
1. USB device is not recognized properly if a disconnect followed by a connect event happen during hub suspend  
Problem definition  
HX2VL sometimes does not recognize Downstream (DS) USB device after coming out of suspend if the  
connected DS device is disconnected and connected back to the same DS port during hub suspend state.  
Parameters affected  
N/A.  
Trigger condition(s)  
Disconnect followed by a Connect event of DS device from the hub during suspend state.  
Scope of impact  
The issue is not observed with standard Microsoft driver/class devices such as mouse, keyboard, mass  
storage, etc. as the standard class drivers recover the device using Port-Reset command when there is a STALL  
from the DS devices.  
Workaround  
Issue a Port-Reset from host USB application or driver to recover the DS device when it STALLS.  
Fix status  
No fix planned.  
Datasheet  
36  
001-65659 Rev. *M  
2023-02-13  
HX2VL - Very Low-Power USB 2.0 TetraHub Controller  
Revision history  
Revision history  
Document  
Date  
Description of changes  
revision  
**  
2011-02-18  
New data sheet.  
Updated Functional overview:  
Updated Port indicators:  
Added a Note “Pin-strapping GREEN#[1] and GREEN#[2] enables proprietary  
function that may affect the normal functionality of HX2VL. Configuring Port  
#1 and #2 as non-removable by pin-strapping should be avoided..  
Updated Pin configurations:  
Updated Figure 4 (Pin of the 48-pin TQFP package was named SELF_PWR.  
It is changed to SELFPWR.).  
Updated Pin definitions (for 48-pin TQFP package):  
Updated description of XIN pin to “12-MHz crystal clock input, or 12-MHz  
clock input” (since 28-pin package does not support 27 and 48 MHz).  
Updated description of XOUT pin to “12-MHz Crystal OUT. (NC if external  
clock is used).  
Changed value from 680 to 650 in description ofRREF pin.  
Changed description ofOVR# pins from “Default is Active LOW” to “Active  
LOW Overcurrent Condition Detection Input” (since the polarity is not  
configurable).  
Changed all seven occurrences of “Refer “48-pin TQFP Pin Configuration”  
on page 5” to “Refer Pin configuration options on page 23.  
Added Note 2 and referred the same Note in GREEN#[1] and GREEN#[2]  
pins).  
*A  
2011-06-29  
Updated Pin definitions (for 28-pin QFN package):  
Updated description of XIN pin to “12-MHz crystal clock input, or 12-MHz  
clock input” (since 28-pin package does not support 27 and 48 MHz).  
Updated description of XOUT pin to “12-MHz Crystal OUT. (NC if external  
clock is used).  
Changed description of OVR# pins from “Default is Active LOW” to “Active  
LOW Overcurrent Condition Detection Input” (since the polarity is not  
configurable).  
Updated Functional overview:  
Updated Power regulator:  
Changed regulator’s maximum current loading from 200 mA to 150 mA.  
Updated Pin configuration options:  
Updated Power switch enable pin polarity:  
Replaced first two occurrences of the word “setting” with “pin-strapping.  
Updated Electrical characteristics:  
Updated DC electrical characteristics:  
Updated maximum value of ISUSP parameter to 903 µA.  
Updated maximum values of ICC parameter.  
Changed status from Preliminary to Final.  
Updated Pin definitions (for 48-pin TQFP package):  
Minor edits.  
*B  
2011-07-27  
Updated Ordering information:  
Updated part numbers.  
Updated Ordering code definitions.  
Datasheet  
37  
001-65659 Rev. *M  
2023-02-13  
HX2VL - Very Low-Power USB 2.0 TetraHub Controller  
Revision history  
Document  
Date  
Description of changes  
revision  
Updated Pin configurations:  
Updated Figure 4 (Renamed SPI_DI to SPI_MOSI, renamed SPI_DO to  
SPI_MISO respectively for clarity).  
Updated Pin definitions (for 48-pin TQFP package):  
Renamed SPI_DI to SPI_MOSI, renamed SPI_DO to SPI_MISO respectively  
for clarity.  
*C  
2012-02-16  
Updated Pin definitions (for 28-pin QFN package):  
Updated description of PWR# of 28-pin package (To describe the alternate  
function I2C_SDA).  
Completing Sunset Review.  
Updated EEPROM configuration options:  
Changed the value of Byte 5 to FEh to match with the tabular column.  
Updated Electrical characteristics:  
Updated DC electrical characteristics:  
Splitted the Max column into two columns namely External regulator and  
Internal regulator for ISUSP and ICC parameters and updated the  
corresponding values.  
*D  
*E  
2012-07-02  
2013-05-09  
Added Thermal resistance.  
Updated Ordering information:  
Updated part numbers.  
Updated to new template.  
Added Silicon Errata for the HX2VL, CY7C65642 product family.  
Added More information.  
Updated Functional overview:  
Updated Port indicators:  
Updated description.  
Updated Pin definitions (for 48-pin TQFP package):  
Added Note at the end of table.  
Updated EEPROM configuration options:  
Updated details in “Value” column corresponding to “09h–0Fh” in the table.  
Updated Electrical characteristics:  
Updated DC electrical characteristics:  
Updated all values of RDN and RUP parameters.  
Added Note 5 and referred the same note in “3 Active ports” in “Description”  
column of ICC parameter.  
*F  
2015-03-20  
Added Note 6 and referred the same note in “No Active ports” in  
“Description” column of ICC parameter.  
Updated Package diagrams:  
spec 51-85135 – Changed revision from *B to *C.  
spec 001-64621 – Changed revision from ** to *A.  
Updated Silicon Errata for the HX2VL, CY7C65642 product family:  
Updated HX2VL Qualification status:  
Replaced “Sampling” with “In production.  
Updated to new template.  
Completing Sunset Review.  
Updated Features:  
Updated description.  
Updated Pin definitions (for 28-pin QFN package):  
Updated details in “Description” column corresponding to OVR#[1],  
OVR#[2], OVR#[3], and OVR#[4] pins.  
Updated to new template.  
*G  
2016-07-21  
Datasheet  
38  
001-65659 Rev. *M  
2023-02-13  
HX2VL - Very Low-Power USB 2.0 TetraHub Controller  
Revision history  
Document  
Date  
Description of changes  
revision  
Updated More information:  
Updated description.  
*H  
2016-12-07  
2017-04-10  
2017-06-22  
Updated to new template.  
Updated Cypress Logo and Copyright.  
Completing Sunset Review.  
*I  
Updated Ordering information:  
No change in part numbers.  
Replaced “Tube” with “Tray.  
*J  
Updated Pin configurations:  
Updated Figure 4 (Removed old Cypress Logo).  
Updated Figure 5 (Removed old Cypress Logo).  
Updated Silicon Errata for the HX2VL, CY7C65642 product family:  
Updated HX2VL Errata summary:  
*K  
2018-04-13  
Updated description.  
Updated to new template.  
Added watermark “Not Recommended for New Designs” across the  
*L  
2021-05-20  
2023-02-13  
document.  
Updated to new template.  
Removed watermark “Not Recommended for New Designs” across the  
document.  
Updated hyperlinks across the document.  
Migrated to Infineon template.  
Completing Sunset Review.  
*M  
Datasheet  
39  
001-65659 Rev. *M  
2023-02-13  
Please read the Important Notice and Warnings at the end of this document  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
WARNINGS  
The information given in this document shall in no Due to technical requirements products may contain  
Edition 2023-02-13  
Published by  
event be regarded as a guarantee of conditions or dangerous substances. For information on the types  
characteristics (“Beschaffenheitsgarantie”).  
in question please contact your nearest Infineon  
Technologies office.  
With respect to any examples, hints or any typical  
Infineon Technologies AG  
81726 Munich, Germany  
values stated herein and/or any information Except as otherwise explicitly approved by Infineon  
regarding the application of the product, Infineon Technologies in a written document signed by  
Technologies hereby disclaims any and all authorized  
representatives  
of  
Infineon  
warranties and liabilities of any kind, including Technologies, Infineon Technologies’ products may  
without limitation warranties of non-infringement of not be used in any applications where a failure of the  
intellectual property rights of any third party.  
product or any consequences of the use thereof can  
reasonably be expected to result in personal injury.  
© 2023 Infineon Technologies AG.  
All Rights Reserved.  
In addition, any information given in this document  
is subject to customer’s compliance with its  
obligations stated in this document and any  
applicable legal requirements, norms and standards  
concerning customer’s products and any use of the  
product of Infineon Technologies in customer’s  
applications.  
Do you have a question about this  
document?  
Email:  
erratum@infineon.com  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  
Document reference  
001-65659 Rev. *M  

相关型号:

CY7C65642_1107

HX2VL – Very Low Power USB 2.0 TetraHub Controller
CYPRESS

CY7C65642_12

HX2VL – Very Low Power USB 2.0 TetraHub™ Controller
CYPRESS

CY7C656XX

EZ-USB HX2LP⑩ Low-Power USB 2.0 Hub Controller Family
CYPRESS

CY7C656XX_08

EZ-USB HX2LP⑩ Low-Power USB 2.0 Hub Controller Family
CYPRESS

CY7C656XX_09

EZ-USB HX2LP Low Power USB 2.0 Hub Controller Family
CYPRESS

CY7C656XX_11

EZ-USB HX2LP? Low Power USB 2.0 Hub Controller Family
CYPRESS

CY7C66012-PC

Microcontroller, 8-Bit, OTPROM, 12MHz, CMOS, PDIP48, 0.600 INCH, PLASTIC, DIP-48
CYPRESS

CY7C66012-PVC

Microcontroller, 8-Bit, OTPROM, 12MHz, CMOS, PDSO48, 0.300 INCH, SSOP-48
CYPRESS

CY7C66013

Full-Speed USB (12 Mbps) Peripheral Controller with Integrated Hub
CYPRESS

CY7C66013-PC

Full-Speed USB (12 Mbps) Peripheral Controller with Integrated Hub
CYPRESS

CY7C66013-PVC

Full-Speed USB (12 Mbps) Peripheral Controller with Integrated Hub
CYPRESS

CY7C66013C

Full-Speed USB (12 Mbps) Peripheral Controller with Integrated Hub
CYPRESS