CY8C4747LQS-S453 [INFINEON]

Automotive PSoC™ 4700S Plus;
CY8C4747LQS-S453
型号: CY8C4747LQS-S453
厂家: Infineon    Infineon
描述:

Automotive PSoC™ 4700S Plus

文件: 总64页 (文件大小:1452K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Automotive PSoC™ MCU  
Automotive PSoC™ 4 MCU: PSoC™ 4700S  
Plus  
General description  
Automotive PSoC™ 4 MCU is a scalable and reconfigurable platform architecture for a family of programmable  
embedded system controllers with an Arm® Cortex®-M0+ CPU while being AEC-Q100 compliant. It combines  
programmable and reconfigurable analog and digital blocks with flexible automatic routing. The PSoC™ 4700S  
Plus product family, based on this platform, is the industry’s first microcontroller with oscillator based inductive  
sensing and capacitive sensing technology in a single chip. The inductive sensing technology enables sensing of  
metal objects and industry’s leading capacitive sensing (CAPSENSE™) technology enables sensing of  
non-metallic objects.  
Features  
• Automotive Electronics Council (AEC) AEC-Q100 qualified  
• 32-bit MCU subsystem  
- 48-MHz Arm® Cortex®-M0+ CPU  
- Up to 128 KB of flash with read accelerator  
- Up to 8 KB of SRAM  
- 8-channel DMA engine  
• Programmable analog  
- Two opamps with reconfigurable high-drive external and high-bandwidth internal drive and comparator  
modes and ADC input buffering capability. Opamps can operate in deep sleep low-power mode.  
- 12-bit 1-Msps SAR ADC with differential and single-ended modes, and channel sequencer with signal averaging  
- Single-slope 10-bit ADC function provided by a capacitance sensing block  
- Two current DACs (IDACs) for general-purpose or capacitive sensing applications on any pin  
- Two low-power comparators that operate in deep sleep low-power mode  
• Programmable digital  
- Three smart IO ports (19 smart IO pins) allowing boolean operations to be performed on port inputs and  
outputs  
• Low-power 1.71 V to 5.5 V operation  
- Deep sleep mode with operational analog and 2.5 A digital system current  
• Oscillator based inductive sensing  
- Infineon inductive sensing provides superior noise immunity  
- Can reliably detect metal deflection under 190 nm  
- Inductive sense software component automatically calibrates the solution to compensate for the  
manufacturing variations  
- Supports up to four sensors  
• Capacitive sensing  
- Infineon CAPSENSE™ sigma-delta (CSD) provides best-in-class signal-to-noise ratio (SNR) (> 5:1) and water  
tolerance  
- Infineon-supplied software component makes capacitive sensing design easy  
- Automatic hardware tuning (SmartSense)  
• LCD drive capability  
- LCD segment drive capability on GPIOs  
• Serial communication  
- Five independent run-time reconfigurable Serial Communication Blocks (SCBs) with re-configurable I2C, SPI,  
UART functionality, or LIN slave functionality  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 1  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Features  
• Timing and Pulse-Width Modulation  
- Eight 16-bit Timer/Counter/Pulse-Width Modulator (TCPWM) blocks  
- Center-aligned, edge, and pseudo-random modes  
- Comparator-based triggering of kill signals for motor drive and other high-reliability digital logic applications  
- Quadrature decoder  
• Clock sources  
- 4 to 33 MHz External Crystal Oscillator (ECO)  
- PLL to generate 48-MHz frequency  
- 32-kHz Watch Crystal Oscillator (WCO)  
- ±2% Internal Main Oscillator (IMO)  
- 32-kHz Internal Low-Power Oscillator (ILO)  
• True random number generator (TRNG)  
- TRNG generates truly random number for secure key generation for cryptography applications  
• Temperature range  
- Grade-S: –40°C to +105°C  
• Up to 34 programmable GPIO pins (19 of these can be configured as smart IO)  
- 40-pin QFN package  
- Any GPIO pin can be CAPSENSE™, analog, or digital  
- Drive modes, strengths, and slew rates are programmable  
• ModusToolbox™ software enables cross platform code development with a robust suite of tools and software  
libraries  
• Industry-standard tool compatibility  
- After schematic entry, development can be done with Arm®-based industry-standard development tools  
Datasheet  
2
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
More information  
More information  
Infineon provides a wealth of data at www.infineon.com to help you to select the right PSoC™ MCU device for  
your design, and to help you to quickly and effectively integrate the device into your design. For a comprehensive  
list of resources, see the knowledge base article How to design with PSoC™ 3, PSoC™ 4, and PSoC™ 5LP -  
KBA86521. Following is an abbreviated list for PSoC™ 4 MCU:  
• Application notes: Infineon offers a large number of PSoC™ device application notes covering a broad range of  
topics, from basic to advanced level. Recommended application notes for getting started with PSoC™ 4 MCU are:  
- AN79953: Getting started with PSoC™ 4  
- AN86439: Using PSoC™ 4 GPIO pins  
- AN57821: Mixed signal circuit board layout  
- AN81623: Digital design best practices  
- AN73854: Introduction to bootloaders  
- AN89610: Arm® Cortex® code optimization  
- AN85951: PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide  
• Online:  
- In addition to print documentation, the PSoC™ forums connect you with fellow PSoC™ MCU users and experts  
in PSoC™ MCU from around the world, 24 hours a day, 7 days a week.  
Datasheet  
3
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
ModusToolbox™ software  
ModusToolbox™ software  
ModusToolbox™ software is Infineon comprehensive collection of multi-platform tools and software libraries  
that enable an immersive development experience for creating converged MCU and wireless systems. It is:  
• Comprehensive - it has the resources you need  
• Flexible - you can use the resources in your own workflow  
• Atomic - you can get just the resources you want  
Infineon provides a large collection of code repositories on GitHub. This includes:  
• Board support packages (BSPs) aligned with Infineon kits  
• Low-level resources, including a hardware abstraction layer (HAL) and peripheral driver library (PDL)  
• Middleware enabling industry-leading features such as CAPSENE™, Bluetooth® Low Energy, and mesh networks  
• An extensive set of thoroughly tested code example applications  
Note: The HAL provides a high-level, simplified interface to configure and use the hardware blocks on Infineon  
MCUs. It is a generic interface that can be used across multiple product families. For example, it wraps the  
PSoC™ 4 MCU PDL with a simplified API, but the PDL exposes all low-level peripheral functionality. You can  
leverage the HAL's simpler and more generic interface for most of an application, even if one portion requires  
finer-grained control.  
ModusToolbox™ software is IDE-neutral and easily adaptable to your workflow and preferred development  
environment. It includes a project creator, peripheral and library configurators, a library manager, as well as the  
optional eclipse IDE for ModusToolbox™ software, as Figure 1 shows.  
Figure 1  
ModusToolbox™ software tools  
Datasheet  
4
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Table of contents  
Table of contents  
General description ...........................................................................................................................1  
Features ...........................................................................................................................................1  
More information ..............................................................................................................................3  
ModusToolbox™ software...................................................................................................................4  
Table of contents...............................................................................................................................5  
Block diagram...................................................................................................................................7  
1 Functional description ....................................................................................................................8  
2 Functional definition.......................................................................................................................9  
2.1 CPU and memory subsystem .................................................................................................................................9  
2.1.1 CPU .......................................................................................................................................................................9  
2.1.2 Flash .....................................................................................................................................................................9  
2.1.3 SRAM.....................................................................................................................................................................9  
2.1.4 SROM ....................................................................................................................................................................9  
2.2 System resources....................................................................................................................................................9  
2.2.1 Power system.......................................................................................................................................................9  
2.2.2 Clock system ......................................................................................................................................................10  
2.2.3 IMO clock source ................................................................................................................................................10  
2.2.4 ILO clock source.................................................................................................................................................10  
2.2.5 WCO ....................................................................................................................................................................10  
2.2.6 ECO .....................................................................................................................................................................11  
2.2.7 WDT.....................................................................................................................................................................11  
2.2.8 Reset ...................................................................................................................................................................11  
2.3 Analog blocks ........................................................................................................................................................11  
2.3.1 12-bit SAR ADC ...................................................................................................................................................11  
2.3.2 Two opamps (continuous-time block; CTB).....................................................................................................12  
2.3.3 Low-power comparators (LPC) .........................................................................................................................12  
2.3.4 Current DACs ......................................................................................................................................................12  
2.3.5 Analog multiplexed buses .................................................................................................................................12  
2.4 Programmable digital blocks...............................................................................................................................12  
2.4.1 Smart I/O block ..................................................................................................................................................12  
2.5 Fixed function digital blocks ................................................................................................................................12  
2.5.1 Timer/counter/PWM (TCPWM) block ................................................................................................................12  
2.5.2 Serial communication block (SCB) ...................................................................................................................13  
2.6 GPIO.......................................................................................................................................................................13  
2.7 Special function peripherals ................................................................................................................................14  
2.7.1 CAPSENSE........................................................................................................................................................14  
2.7.2 LCD segment drive.............................................................................................................................................14  
2.8 Inductive sensing ..................................................................................................................................................15  
2.8.1 SNR vs target distance.......................................................................................................................................16  
2.8.2 Distance delta (metal target displacement) when SNR = 5 .............................................................................16  
2.8.3 Raw counts vs target distance...........................................................................................................................17  
2.8.4 Noiseless precision ............................................................................................................................................17  
2.8.5 Sensitivity...........................................................................................................................................................18  
2.8.6 Noise floor (%)....................................................................................................................................................18  
2.8.7 Effective number of bits (ENOB)........................................................................................................................19  
2.8.8 Scan time............................................................................................................................................................19  
2.8.9 Detection range..................................................................................................................................................20  
3 Pinouts ........................................................................................................................................21  
3.1 Alternate pin functions .........................................................................................................................................23  
4 Power ..........................................................................................................................................26  
4.1 Mode 1: 1.8 V to 5.5 V external supply..................................................................................................................26  
Datasheet  
5
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Table of contents  
4.2 Mode 2: 1.8 V ± 5% external supply ......................................................................................................................26  
5 Electrical specifications.................................................................................................................28  
5.1 Absolute maximum ratings ..................................................................................................................................28  
5.2 Device level specifications....................................................................................................................................29  
5.2.1 GPIO....................................................................................................................................................................30  
5.2.2 XRES....................................................................................................................................................................32  
5.3 Analog peripherals................................................................................................................................................33  
5.3.1 CTBm opamp .....................................................................................................................................................33  
5.3.2 Comparator........................................................................................................................................................37  
5.3.3 Temperature sensor ..........................................................................................................................................37  
5.3.4 SAR ADC..............................................................................................................................................................38  
5.3.5 CSD and IDAC .....................................................................................................................................................40  
5.3.6 10-bit CAPSENSE™ ADC......................................................................................................................................42  
5.3.7 Inductive sensing ...............................................................................................................................................43  
5.4 Digital peripherals.................................................................................................................................................44  
5.4.1 Timer counter pulse-width modulator (TCPWM) .............................................................................................44  
5.4.2 I2C .......................................................................................................................................................................45  
5.4.3 SPI.......................................................................................................................................................................46  
5.4.4 UART ...................................................................................................................................................................47  
5.4.5 LCD direct drive..................................................................................................................................................47  
5.5 Memory..................................................................................................................................................................48  
5.5.1 Flash ...................................................................................................................................................................48  
5.6 System resources..................................................................................................................................................49  
5.6.1 Power-on reset (POR) ........................................................................................................................................49  
5.6.2 Brown-out detect (BOD) ....................................................................................................................................49  
5.6.3 SWD interface.....................................................................................................................................................49  
5.6.4 Internal Main Oscillator .....................................................................................................................................50  
5.6.5 Internal low-speed oscillator ............................................................................................................................50  
5.6.6 Watch crystal oscillator (WCO)..........................................................................................................................51  
5.6.7 External clock.....................................................................................................................................................51  
5.6.8 External Crystal Oscillator (ECO) and PLL ........................................................................................................52  
5.6.9 System clock ......................................................................................................................................................52  
5.6.10 Smart I/O ..........................................................................................................................................................52  
6 Ordering information ....................................................................................................................53  
7 Packaging ....................................................................................................................................55  
7.1 Package diagram ..................................................................................................................................................56  
8 Acronyms.....................................................................................................................................57  
9 Document conventions..................................................................................................................61  
9.1 Units of measure ...................................................................................................................................................61  
Revision history ..............................................................................................................................62  
Datasheet  
6
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Block diagram  
Block diagram  
CPU Subsystem  
PSoC™ 4700S  
SWD/TC, MTB  
SPCIF  
Plus  
Cortex  
FLASH  
DataWire/  
DMA  
SRAM  
8 KB  
ROM  
8 KB  
M0+  
32-bit  
128 KB  
48 MHz  
FAST MUL  
NVIC, IRQMUX, MPU  
Initiator/MMIO  
AHB-Lite  
Read Accelerator  
SRAM Controller  
ROM Controller  
System Resources  
Lite  
System Interconnect (Single Layer AHB)  
Peripheral Interconnect (MMIO)  
Power  
Sleep Control  
WIC  
Peripherals  
PCLK  
POR  
REF  
PWRSYS  
Clock  
Clock Control  
WDT  
Programmable  
Analog  
ILO  
IMO  
SAR ADC  
(12-bit)  
Reset  
Reset Control  
XRES  
Test  
TestMode Entry  
Digital DFT  
x1  
Analog DFT  
CTBm  
2x OpAmp  
SARMUX  
High Speed I/O Matrix & Smart I/O  
Power Modes  
Active/Sleep  
DeepSleep  
Up to 34x GPIOs  
I/O Subsystem  
Figure 2  
Block diagram  
Datasheet  
7
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Functional description  
1
Functional description  
PSoC™ 4700S Plus devices include extensive support for programming, testing, debugging, and tracing both  
hardware and firmware.  
The Arm® serial-wire debug (SWD) interface supports all programming and debug features of the device.  
Complete debug-on-chip functionality enables full-device debugging in the final system using the standard  
production device. It does not require special interfaces, debugging pods, simulators, or emulators. Only the  
standard programming connections are required to fully support debug.  
The SWD interface is fully compatible with industry-standard third-party tools. PSoC™ 4700S Plus provides a level  
of security not possible with multi-chip application solutions or with microcontrollers. It has the following  
advantages:  
• Allows disabling of debug features  
• Robust flash protection  
• Allows customer-proprietary functionality to be implemented in on-chip programmable blocks  
The debug circuits are enabled by default and can be disabled in firmware. If they are not enabled, the only way  
to re-enable them is to erase the entire device, clear flash protection, and reprogram the device with new  
firmware that enables debugging. Thus firmware control of debugging cannot be over-ridden without erasing the  
firmware thus providing security.  
Additionally, all device interfaces can be permanently disabled (device security) for applications concerned  
about phishing attacks due to a maliciously reprogrammed device or attempts to defeat security by starting and  
interrupting flash programming sequences. All programming, debug, and test interfaces are disabled when  
maximum device security is enabled. Therefore, PSoC™ 4700S Plus, with device security enabled, may not be  
returned for failure analysis. This is a trade-off the PSoC™ 4700S Plus allows the customer to make.  
Datasheet  
8
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Functional definition  
2
Functional definition  
CPU and memory subsystem  
CPU  
2.1  
2.1.1  
The Cortex®-M0+ CPU in the PSoC™ 4700S Plus is part of the 32-bit MCU subsystem, which is optimized for  
low-power operation with extensive clock gating. Most instructions are 16 bits in length and the CPU executes a  
subset of the thumb-2 instruction set. It includes a nested vectored interrupt controller (NVIC) block with eight  
interrupt inputs and also includes a wakeup interrupt controller (WIC). The WIC can wake the processor from  
deep sleep mode, allowing power to be switched off to the main processor when the chip is in deep sleep mode.  
The CPU subsystem includes an 8-channel DMA engine and also includes a debug interface, the SWD interface,  
which is a 2-wire form of JTAG. The debug configuration used for PSoC™ 4700S Plus has four breakpoint (address)  
comparators and two watchpoint (data) comparators.  
2.1.2  
Flash  
The PSoC™ 4700S Plus device has a flash module with a flash accelerator, tightly coupled to the CPU to improve  
average access times from the flash block. The low-power flash block is designed to deliver two wait-state (WS)  
access time at 48 MHz. The flash accelerator delivers 85% of single-cycle SRAM access performance on average.  
2.1.3  
SRAM  
8 KB of SRAM are provided with zero wait-state access at 48 MHz.  
2.1.4  
SROM  
An 8-KB supervisory ROM that contains boot and configuration routines is provided.  
2.2  
System resources  
Power system  
2.2.1  
The power system is described in detail in the section “Power” on page 26. It provides assurance that voltage  
levels are as required for each respective mode and either delays mode entry (for example, on power-on reset  
(POR)) until voltage levels are as required for proper functionality, or generates resets (for example, on brownout  
detection). PSoC™ 4700S Plus operates with a single external supply over the range of either 1.8 V ± 5% (externally  
regulated) or 1.8 V to 5.5 V (internally regulated) and has three different power modes, transitions between which  
are managed by the power system. PSoC™ 4700S Plus provides active, sleep, and deep sleep low-power modes.  
All subsystems are operational in active mode. The CPU subsystem (CPU, flash, and SRAM) is clock-gated off in  
sleep mode, while all peripherals and interrupts are active with instantaneous wake-up on a wake-up event. In  
deep Sleep mode, the high-speed clock and associated circuitry is switched off; wake-up from this mode takes  
35 µs. The opamps can remain operational in deep sleep mode.  
Datasheet  
9
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Functional definition  
2.2.2  
Clock system  
The PSoC™ 4700S Plus clock system is responsible for providing clocks to all subsystems that require clocks and  
for switching between different clock sources without glitching. In addition, the clock system ensures that there  
are no metastable conditions.  
The clock system for the PSoC™ 4700S Plus consists of the IMO, ILO, a 32-kHz watch crystal oscillator (WCO), 4 to  
33 MHz ECO and PLL, and provision for an external clock. The WCO block allows locking the IMO to the 32-kHz  
oscillator.  
External Clock  
HLFK  
Divide By  
IMO  
2,4,8  
PLL  
ECO  
WDC 0  
16-bits  
WDC 1  
16-bits  
LFCLK  
IMO  
ECO  
WDC 2  
32-bits  
WDT  
Watchdog Counters (WDC)  
Watchdog Timer (WDT)  
Prescaler  
SYSCLK  
HFCLK  
Integer  
12× 16-bits  
Dividers  
Fractional  
Dividers  
5× 16.5-bit, 1× 24.5-bit  
Figure 3  
PSoC™ 4700S Plus MCU clocking architecture  
The HFCLK signal can be divided down as shown to generate synchronous clocks for the analog and digital  
peripherals. There are 18 clock dividers for the PSoC™ 4700S Plus (six with fractional divide capability, twelve with  
integer divide only). The twelve 16-bit integer divide capability allows a lot of flexibility in generating fine-grained  
frequency. In addition, there are five 16-bit fractional dividers and one 24-bit fractional divider.  
2.2.3  
IMO clock source  
The IMO is the primary source of internal clocking in the PSoC™ 4700S Plus. It is trimmed during testing to achieve  
the specified accuracy.The IMO default frequency is 24 MHz and it can be adjusted from 24 to 48 MHz in steps of  
4 MHz. The IMO tolerance with Infineon-provided calibration settings is ±2% over the entire voltage and  
temperature range.  
2.2.4  
ILO clock source  
The ILO is a very low power, nominally 40-kHz oscillator, which is primarily used to generate clocks for the  
watchdog timer (WDT) and peripheral operation in deep sleep mode. ILO-driven counters can be calibrated to  
the IMO to improve accuracy. Infineon provides a software component, which does the calibration.  
2.2.5  
WCO  
The PSoC™ 4700S Plus clock subsystem also implements a low-frequency (32-kHz watch crystal) oscillator that  
can be used for precision timing applications.  
Datasheet  
10  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Functional definition  
2.2.6  
ECO  
The PSoC™ 4700S Plus also implements a 4 to 33 MHz crystal oscillator.  
2.2.7  
WDT  
A watchdog timer is implemented in the clock block running from the ILO; this allows watchdog operation during  
deep sleep and generates a watchdog reset if not serviced before the set timeout occurs. The watchdog reset is  
recorded in a reset cause register, which is firmware readable.  
2.2.8  
Reset  
PSoC™ 4700S Plus can be reset from a variety of sources including a software reset. Reset events are  
asynchronous and guarantee reversion to a known state. The reset cause is recorded in a register, which is sticky  
through reset and allows software to determine the cause of the reset. An XRES pin is reserved for external reset  
by asserting it active low. The XRES pin has an internal pull-up resistor that is always enabled.  
2.3  
Analog blocks  
12-bit SAR ADC  
2.3.1  
The 12-bit, 1-Msps SAR ADC can operate at a maximum clock rate of 18 MHz and requires a minimum of 18 clocks  
at that frequency to do a 12-bit conversion.  
The sample-and-hold (S/H) aperture is programmable allowing the gain bandwidth requirements of the amplifier  
driving the SAR inputs, which determine its settling time, to be relaxed if required. It is possible to provide an  
external bypass (through a fixed pin location) for the internal reference amplifier.  
The SAR is connected to a fixed set of pins through an 8-input sequencer. The sequencer cycles through selected  
channels autonomously (sequencer scan) with zero switching overhead (that is, aggregate sampling bandwidth  
is equal to 1 Msps whether it is for a single channel or distributed over several channels). The sequencer switching  
is effected through a state machine or through firmware driven switching. A feature provided by the sequencer  
is buffering of each channel to reduce CPU interrupt service requirements. To accommodate signals with varying  
source impedance and frequency, it is possible to have different sample times programmable for each channel.  
Also, signal range specification through a pair of range registers (low and high range values) is implemented with  
a corresponding out-of-range interrupt if the digitized value exceeds the programmed range; this allows fast  
detection of out-of-range values without the necessity of having to wait for a sequencer scan to be completed  
and the CPU to read the values and check for out-of-range values in software.  
The SAR is not available in deep sleep mode as it requires a high-speed clock (up to 18 MHz). The SAR operating  
range is 1.71 V to 5.5 V.  
AHB System Bus and Programmable Logic  
Interconnect  
SAR Sequencer  
Sequencing  
and Control  
Data and  
Status Flags  
POS  
SARADC  
NEG  
External  
Reference and  
Bypass  
(optional )  
Reference  
Selection  
VDDA  
VREF  
VDDA /2  
Inputs from other Ports  
Figure 4  
SAR ADC  
Datasheet  
11  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Functional definition  
2.3.2  
Two opamps (continuous-time block; CTB)  
PSoC™ 4700S Plus has two opamps with comparator modes which allow most common analog functions to be  
performed on-chip eliminating external components; PGAs, voltage buffers, filters, trans-impedance amplifiers,  
and other functions can be realized, in some cases with external passives. saving power, cost, and space. The  
on-chip opamps are designed with enough bandwidth to drive the sample-and-hold circuit of the ADC without  
requiring external buffering.  
2.3.3  
Low-power comparators (LPC)  
PSoC™ 4700S Plus has a pair of low-power comparators, which can also operate in deep sleep modes. This allows  
the analog system blocks to be disabled while retaining the ability to monitor external voltage levels during  
low-power modes. The comparator outputs are normally synchronized to avoid metastability unless operating  
in an asynchronous power mode where the system wake-up circuit is activated by a comparator switch event.  
The LPC outputs can be routed to pins.  
2.3.4  
Current DACs  
PSoC™ 4700S Plus has two IDACs, which can drive any of the pins on the chip. These IDACs have programmable  
current ranges.  
2.3.5  
Analog multiplexed buses  
PSoC™ 4700S Plus has two concentric independent buses that go around the periphery of the chip. These buses  
(called amux buses) are connected to firmware-programmable analog switches that allow the chip’s internal  
resources (IDACs, comparator) to connect to any pin on the I/O ports.  
2.4  
Programmable digital blocks  
Smart I/O block  
2.4.1  
The smart I/O block is a fabric of switches and LUTs that allows boolean functions to be performed in signals  
being routed to the pins of a GPIO port. The smart I/O can perform logical operations on input pins to the chip  
and on signals going out as outputs.  
2.5  
Fixed function digital blocks  
2.5.1  
Timer/counter/PWM (TCPWM) block  
The TCPWM block consists of a 16-bit counter with user-programmable period length. There is a capture register  
to record the count value at the time of an event (which may be an I/O event), a period register that is used to  
either stop or auto-reload the counter when its count is equal to the period register, and compare registers to  
generate compare value signals that are used as PWM duty cycle outputs. The block also provides true and  
complementary outputs with programmable offset between them to allow use as dead-band programmable  
complementary PWM outputs. It also has a kill input to force outputs to a predetermined state; for example, this  
is used in motor drive systems when an over-current state is indicated and the PWM driving the FETs needs to be  
shut off immediately with no time for software intervention. Each block also incorporates a quadrature decoder.  
There are eight TCPWM blocks in PSoC™ 4700S Plus.  
Datasheet  
12  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Functional definition  
2.5.2  
Serial communication block (SCB)  
PSoC™ 4700S Plus has five serial communication blocks (SCBs), which can be programmed to have SPI, I2C, UART,  
or LIN slave functionality.  
I2C mode: The hardware I2C block implements a full multi-master and slave interface (it is capable of  
multi-master arbitration). This block is capable of operating at speeds of up to 1 Mbps (fast mode plus) and has  
flexible buffering options to reduce interrupt overhead and latency for the CPU. It also supports EZI2C that creates  
a mailbox address range in the memory of PSoC™ 4700S Plus and effectively reduces I2C communication to  
reading from and writing to an array in memory. In addition, the block supports an 8-deep FIFO for receive and  
transmit which, by increasing the time given for the CPU to read data, greatly reduces the need for clock  
stretching caused by the CPU not having read data on time.  
The I2C peripheral is compatible with the I2C standard-mode and fast-mode plus devices as defined in the NXP  
I2C-bus specification and user manual (UM10204). The I2C bus I/O is implemented with GPIO in open-drain  
modes.  
PSoC™ 4700S Plus is not completely compliant with the I2C spec in the following respect:  
• GPIO cells are not over-voltage tolerant and, therefore, cannot be hot-swapped or powered up independently  
of the rest of the I2C system.  
UART mode: This is a full-feature UART operating at up to 1 Mbps. It supports automotive single-wire interface  
(LIN), infrared interface (IrDA), and SmartCard (ISO7816) protocols, all of which are minor variants of the basic  
UART protocol. In addition, it supports the 9-bit multiprocessor mode that allows addressing of peripherals  
connected over common RX and TX lines. Common UART functions such as parity error, break detect, and frame  
error are supported. An 8-deep FIFO allows much greater CPU service latencies to be tolerated.  
SPI mode: The SPI mode supports full Motorola SPI, TI SSP (adds a start pulse used to synchronize SPI codecs),  
and National Microwire (half-duplex form of SPI). The SPI block can use the FIFO.  
LIN slave mode: The LIN slave mode uses the SCB hardware block and implements a full LIN slave interface. This  
LIN slave is compliant with LIN v1.3, v2.1/2.2, ISO 17987-6, and SAE J2602-2 specification standards. It is certified  
by C&S GmbH based on the standard protocol and data link layer conformance tests. LIN slave can be operated  
at baud rates of up to ~20 Kbps with a maximum of 40-meter cable length.  
2.6  
GPIO  
PSoC™ 4700S Plus has up to 33 GPIOs. The GPIO block implements the following:  
• Eight drive modes:  
- Analog input mode (input and output buffers disabled)  
- Input only  
- Weak pull-up with strong pull-down  
- Strong pull-up with weak pull-down  
- Open drain with strong pull-down  
- Open drain with strong pull-up  
- Strong pull-up with strong pull-down  
- Weak pull-up with weak pull-down  
• Input threshold select (CMOS or LVTTL).  
• Individual control of input and output buffer enabling/disabling in addition to the drive strength modes  
• Selectable slew rates for dV/dt related noise control to improve EMI  
The pins are organized in logical entities called ports, which are 8-bit in width. During power-on and reset, the  
blocks are forced to the disabled state so as not to crowbar any inputs and/or cause excess turn-on current. A  
multiplexing network known as a high-speed I/O matrix is used to multiplex between various signals that may  
connect to an I/O pin.  
Data output and pin state registers store, respectively, the values to be driven on the pins and the states of the  
pins themselves.  
Every I/O pin can generate an interrupt if so enabled and each I/O port has an interrupt request (IRQ) and interrupt  
service routine (ISR) vector associated with it.  
Datasheet  
13  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Functional definition  
2.7  
Special function peripherals  
CAPSENSE™  
2.7.1  
CAPSENSE™ is supported in the PSoC™ 4700S Plus through a CAPSENSE™ sigma-delta (CSD) block that can be  
connected to any pins through an analog multiplex bus via analog switches. CAPSENSE™ function can thus be  
provided on any available pin or group of pins in a system under software control. A PSoC™ Creator IDE  
component is provided for the CAPSENSE™ block to make it easy for the user.  
Shield voltage can be driven on another analog multiplex bus to provide water-tolerance capability. Water  
tolerance is provided by driving the shield electrode in phase with the sense electrode to keep the shield  
capacitance from attenuating the sensed input. Proximity sensing can also be implemented.  
The CAPSENSE™ block has two IDACs, which can be used for general purposes if CAPSENSE™ is not being used  
(both IDACs are available in that case) or if CAPSENSE™ is used without water tolerance (one IDAC is available).  
The CAPSENSE™ block also provides a 10-bit Slope ADC function which can be used in conjunction with the  
CAPSENSE™ function.  
The CAPSENSE™ block is an advanced, low-noise, programmable block with programmable voltage references  
and current source ranges for improved sensitivity and flexibility. It can also use an external reference voltage. It  
has a full-wave CSD mode that alternates sensing to VDDA and ground to null out power-supply related noise.  
2.7.2  
LCD segment drive  
PSoC™ 4700S Plus has an LCD controller, which can drive up to 4 commons and up to 50 segments. It uses full  
digital methods to drive the LCD segments requiring no generation of internal LCD voltages. The two methods  
used are referred to as digital correlation and PWM. Digital correlation pertains to modulating the frequency and  
drive levels of the common and segment signals to generate the highest RMS voltage across a segment to light it  
up or to keep the RMS signal to zero. This method is good for STN displays but may result in reduced contrast  
with TN (cheaper) displays. PWM pertains to driving the panel with PWM signals to effectively use the capacitance  
of the panel to provide the integration of the modulated pulse-width to generate the desired LCD voltage. This  
method results in higher power consumption but can result in better results when driving TN displays. LCD  
operation is supported during deep sleep refreshing a small display buffer (4 bits; one 32-bit register per port).  
Datasheet  
14  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Functional definition  
2.8  
Inductive sensing  
The PSoC™ 4700S Plus devices support a low-cost and robust Oscillator based inductive sensing, which  
integrates seamlessly with existing user interfaces and is used to detect the presence of metallic or conductive  
objects. The Oscillator based inductive sensing provides best-in-class signal-to-noise ratio (SNR), Higher  
operating frequency, better sensitivity and Parallel scanning.  
The inductive sensing can be used for applications such as buttons (touch-over-metal), metal proximity  
detection and measurement, rotary and linear encoders, spring-based position detection, and other applications  
for detecting position or distance of the metal objects.  
Oscillator based inductive sense block:  
Figure 5  
Oscillator based Inductive Sensing Architecture  
As shown in the above Figure 5, off-chip components such as L1 (PCB coil), C1, C2, RS and RL needs to be  
connected to GPIO pins and configure SmartIO block with inverter logic. This combination forms an oscillator  
whose output frequency (FOUT) is modulated by the inductance changes of the PCB coil, caused by a metal target.  
Internal timer and counter blocks convert the variations of FOUT into the digital domain.  
Oscillator based inductive sense has the following features:  
• Supports Inductive sensing for frequencies from 1 MHz to 12 MHz.  
• Oscillator runs at high frequency reducing coil dimensions, current and scan.  
• Lower temperature drift than other sensing methods  
• High sensitivity, low noise, resulting in greater SNR  
• Sensing distance up to 1.5 times the diameter of the coil (SNR = 5, 2 layers coil)  
• Parallel scanning  
Datasheet  
15  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Functional definition  
2.8.1  
SNR vs target distance  
SNR for 1μm delta vs Target Distance  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
v2 16bit  
v2 15bit  
v2 14bit  
v2 12bit  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Target Distance - % of Dout  
This graph shows the signal-to-noise ratio versus metal target position. In this case, the signal corresponds to the  
raw counts delta provoked by a metal target displacement of 1 µm. The y-axis of the graph is scalable for  
displacements different than 1 µm. For example, to obtain the SNR for a 10-µm displacement, the corresponding  
y-axis SNR value must be multiplied by 10.  
2.8.2  
Distance delta (metal target displacement) when SNR = 5  
Distance Delta vs Target Distance for SNR=5  
2000  
1900  
Above Curve: SNR>5  
1800  
1700  
1600  
1500  
1400  
1300  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
v2 16bit  
v2 15bit  
v2 14bit  
v2 12bit  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100  
Target Distance - % of Dout  
Each curve in this graph determines the metal target displacement needed to achieve a SNR value of 5. Therefore,  
above the curve, SNR > 5, and below the curve SNR < 5. For example, if we have a metal target positioned at a  
distance equivalent to 50% of the coil’s diameter (Dout), we need a minimum target displacement of  
approximately 75 µm @ 16 bits, 150 µm @ 15 bits, and 300 µm @ 14 bits to obtain an SNR 5.  
Datasheet  
16  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Functional definition  
2.8.3  
Raw counts vs target distance  
Raw Counts vs Target Distance (Dout=20mm)  
70000  
60000  
50000  
40000  
30000  
20000  
10000  
0
v2 16bit  
v2 15bit  
v2 14bit  
v2 12bit  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100  
Target Distance - % of Dout  
This graph plots the unfiltered converted data (raw counts) versus the metal target distance for different scan  
resolutions (bits).  
2.8.4  
Noiseless precision  
Distance Delta vs Target Distance for 1 Raw Count Delta  
(Noiseless Precision)  
1200  
1150  
1100  
1050  
1000  
950  
900  
850  
800  
750  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
v2 16bit  
v2 15bit  
v2 14bit  
v2 12bit  
0
0
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100  
Target Distance - % of Dout  
This graph shows the metal target displacement that can be detected in the absence of noise. In this ideal  
scenario, the plotted target displacement results in one raw count delta.  
Datasheet  
17  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Functional definition  
2.8.5  
Sensitivity  
Sensitivity (RawC/um) vs Target Distance  
5
4
3
2
1
v2 16bit  
v2 15bit  
v2 14bit  
v2 12bit  
0
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25  
Target Distance - % of Dout  
This graph shows the sensitivity of the system in raw counts per µm versus the target distance.  
2.8.6  
Noise floor (%)  
Max Noise Floor (%) vs Scan Resolution  
0.04  
0.035  
0.03  
0.025  
0.02  
0.015  
0.01  
0.005  
0
12  
13  
14  
15  
16  
Scan Resolution - bits  
Noise floor is the ratio between the peak-to-peak raw counts noise and the averaged (or DC) raw counts (1000  
samples).  
Datasheet  
18  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Functional definition  
2.8.7  
Effective number of bits (ENOB)  
ENOB is the actual resolution of the system when intrinsic noise is considered. For example, a 16-bit scan has an  
ENOB = 15 bits, and therefore has the same resolution of a noiseless 15-bit scan.  
Resolution (% of Dout)  
Target distance (mm)  
ENOB (bits)  
12.997  
5
10  
20  
40  
60  
100  
1
2
4
8
12  
20  
12.858  
12.786  
12.738  
12.525  
11.057  
2.8.8  
Scan time  
Scan Time vs Resolution for Fout MAX (12MHz)  
3000  
2800  
2600  
2400  
2200  
2000  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
10  
11  
12  
13  
14  
15  
16  
Scan Resolution - bits  
The plot in this graph shows an example of Fmax = 12 MHz; hence it shows the minimum scan time per sensor at  
different scan resolutions.  
Datasheet  
19  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Functional definition  
2.8.9  
Detection range  
Detection Range (d/Dout for SNR=5)  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
12  
13  
14  
15  
16  
Scan Resolution - bits  
This graph shows the maximum distance until which a metal target can be detected with a SNR value of 5. When  
a metal target that was initially far away (i.e. > 2x Dout) is moved in closer, the raw counts begin to increase. The  
point at which these raw counts increase is 5 times the peak-to-peak noise (SNR = 5) and that marks the detection  
range. The measured peak-to-peak noise is the noise at the initial distance, d > 2x Dout.  
Datasheet  
20  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Pinouts  
3
Pinouts  
Table 1  
Pin list for PSoC™ 4700S Plus for the 40-pin QFN package  
Pin  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
Name  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
XRES  
VCCD  
VSSD  
VDD  
VSSA  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.7/VREF  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
P6.0  
P6.1  
P6.2  
VSSD  
P3.0  
P3.1  
P3.2  
P3.3  
P3.4  
P3.5  
P3.6  
P3.7  
P4.0  
Datasheet  
21  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Pinouts  
Table 1  
Pin list for PSoC™ 4700S Plus for the 40-pin QFN package (continued)  
Pin  
19  
Name  
P4.1  
20  
P4.2  
21  
P4.3  
Descriptions of the power pins are as follows:  
VDDD: Power supply for the digital section.  
VDDA: Power supply for the analog section.  
VSSD, VSSA: Ground pins for the digital and analog sections respectively.  
VCCD: Regulated digital supply (1.8 V ± 5%)  
VDD: On some packages, VDDA and VDDD are shorted inside and brought out as a single power supply  
GPIOs: 34  
Datasheet  
22  
002-34139 Rev. *C  
2023-03-17  
3.1  
Alternate pin functions  
Each port pin has can be assigned to one of multiple functions; it can, for example, be an analog I/O, a digital peripheral function, an LCD pin, or a Smart  
IO pin. The pin assignments are shown in the following table.  
Table 2  
Pin assignments  
Analog  
Alternate Alternate Alternate Alternate  
function 1 function 2 function 3 function 4  
Pin Name  
Smart I/O  
Deep Sleep 1 Deep Sleep 2 Deep Sleep 3 Deep Sleep 4  
22  
P0.0  
lpcomp.in_p[0]  
tcpwm.tr_ pass.dsi_ scb[2].uart  
lcd.com[0]  
lcd.seg[0]  
scb[2].i2c_scl: scb[0].spi_  
in[0]  
sar_data_  
valid  
_cts:0  
0
select1:0  
23  
24  
P0.1  
P0.2  
lpcomp.in_n[0]  
lpcomp.in_p[1]  
tcpwm.tr_ pass.tr_sar scb[2].uart  
lcd.com[1]  
lcd.com[2]  
lcd.seg[1]  
lcd.seg[2]  
scb[2].i2c_  
sda:0  
scb[0].spi_  
select2:0  
in[1]  
_out  
_rts:0  
pass.dsi_  
sar_  
scb[0].spi_  
select3:0  
sample_  
done  
25  
26  
27  
28  
P0.3  
P0.4  
P0.5  
P0.6  
lpcomp.in_n[1]  
wco.wco_in  
pass.dsi_  
lcd.com[3]:0  
lcd.com[4]  
lcd.com[5]  
lcd.com[6]  
lcd.seg[3]  
lcd.seg[4]  
lcd.seg[5]  
lcd.seg[6]  
scb[2].spi_  
select0:1  
sar_data[2]  
scb[1].uart pass.dsi_ scb[2].uart  
_rx:0 sar_data[0] _rx:0  
scb[1].i2c_scl: scb[1].spi_  
0
mosi:1  
wco.wco_out  
scb[1].uart pass.dsi_ scb[2].uart  
scb[1].i2c_  
sda:0  
scb[1].spi_  
miso:1  
_tx:0  
sar_data[1]  
_tx:0  
srss.adft_por_pad_  
hv  
srss.ext_clk scb[1].uart  
_cts:0  
scb[2].uart  
_tx:1  
scb[1].spi_clk  
:1  
exco.eco_in  
29  
35  
36  
P0.7  
P1.0  
P1.1  
exco.eco_out  
tcpwm.line scb[1].uart  
lcd.com[7]  
lcd.com[8]  
lcd.com[9]  
lcd.seg[7]  
lcd.seg[8]  
lcd.seg[9]  
scb[1].spi_  
select0:1  
[0]:3  
_rts:0  
pass.ctb0_pads[0] SmartIo[2]. tcpwm.line scb[0].uart  
io[0] [2]:1 _rx:1  
scb[0].i2c_scl: scb[0].spi_  
0
mosi:1  
pass.ctb0_pads[1] SmartIo[2]. tcpwm.line scb[0].uart  
scb[0].i2c_  
sda:0  
scb[0].spi_  
miso:1  
io[1]  
_compl[2]:  
1
_tx:1  
37  
38  
39  
P1.2  
P1.3  
P1.4  
pass.ctb0_pads[2] SmartIo[2]. tcpwm.line scb[0].uart pass.dsi_ tcpwm.tr_ lcd.com[10]  
lcd.seg[10] scb[2].i2c_scl: scb[0].spi_clk  
pass.ctb0_oa0_out_  
10x  
io[2]  
[3]:1  
_cts:1  
sar_  
in[2]  
2
:1  
data[3]:0  
pass.ctb0_pads[3] SmartIo[2]. tcpwm.line scb[0].uart pass.dsi_ tcpwm.tr_ lcd.com[11]  
lcd.seg[11]  
scb[2].i2c_  
sda:2  
scb[0].spi_  
select0:1  
pass.ctb0_oa1_out_  
10x  
io[3]  
_compl[3]:  
1
_rts:1  
sar_  
in[3]  
data[4]:0  
pass.ctb0_pads[4] SmartIo[2]. tcpwm.line  
io[4] [6]:1  
lcd.com[12]  
lcd.seg[12] scb[3].i2c_scl: scb[0].spi_  
select1:1  
0
Table 2  
Pin assignments (continued)  
Analog Smart I/O  
Alternate Alternate Alternate Alternate  
function 1 function 2 function 3 function 4  
Pin Name  
Deep Sleep 1 Deep Sleep 2 Deep Sleep 3 Deep Sleep 4  
40  
P1.7  
pass.ctb0_pads[7] SmartIo[2]. tcpwm.line  
lcd.com[15]  
lcd.seg[15]  
-
scb[2].spi_clk  
:1  
pass.sar_ext_vref0  
pass.sar_ext_vref1  
io[7]  
_compl[7]:  
1
pass.sarmux_pads[0]  
tcpwm.line csd.comp  
[4]:0  
tcpwm.tr_ lcd.com[16]  
in[4]  
lcd.seg[16] scb[1].i2c_scl: scb[1].spi_  
1
mosi:2  
pass.sarmux_pads[1]  
tcpwm.line  
_compl[4]:  
0
tcpwm.tr_ lcd.com[17]  
in[5]  
lcd.seg[17]  
scb[1].i2c_  
sda:1  
scb[1].spi_  
miso:2  
pass.sarmux_pads[2]  
tcpwm.line  
[5]:1  
lcd.com[18]  
lcd.com[19]  
lcd.seg[18]  
lcd.seg[19]  
scb[1].spi_clk  
:2  
1
P2.3 pass.sarmux_pads[3] SmartIo[0]. tcpwm.line  
scb[1].spi_  
select0:2  
io[3]  
_compl[5]:  
1
2
3
P2.4 pass.sarmux_pads[4] SmartIo[0]. tcpwm.line scb[3].uart  
io[4] [0]:1 _rx:1  
lcd.com[20]  
lcd.com[21]  
lcd.seg[20]  
lcd.seg[21]  
scb[1].spi_  
select1:1  
P2.5 pass.sarmux_pads[5] SmartIo[0]. tcpwm.line scb[3].uart  
scb[1].spi_  
select2:1  
io[5]  
_compl[0]:  
1
_tx:1  
4
5
P2.6 pass.sarmux_pads[6] SmartIo[0]. tcpwm.line scb[3].uart pass.dsi_  
lcd.com[22]  
lcd.com[23]  
lcd.com[48]  
lcd.seg[22]  
scb[1].spi_  
select3:1  
io[6]  
[1]:1  
_cts:1  
sar_  
data[5]:0  
P2.7 pass.sarmux_pads[7] SmartIo[0]. tcpwm.line scb[3].uart pass.dsi_  
lcd.seg[23] lpcomp.comp scb[2].spi_  
[0]:0 mosi:1  
io[7]  
_compl[1]:  
1
_rts:1  
sar_  
data[6]:0  
6
7
P6.0  
P6.1  
tcpwm.line scb[3].uart  
[4]:1 _rx:0  
can.can_  
lcd.seg[48] scb[3].i2c_scl: scb[3].spi_  
tx_enb_n:0  
1
mosi:0  
tcpwm.line scb[3].uart  
can.can_rx: lcd.com[49]  
0
lcd.seg[49]  
lcd.seg[50]  
scb[3].i2c_  
sda:1  
scb[3].spi_  
miso:0  
_compl[4]:  
1
_tx:0  
8
P6.2  
P3.0  
tcpwm.line scb[3].uart  
[5]:0 _cts:0  
can.can_tx: lcd.com[50]  
0
scb[3].spi_clk  
:0  
10  
SmartIo[1]. tcpwm.line scb[1].uart pass.dsi_  
lcd.com[24]  
lcd.seg[24] scb[1].i2c_scl: scb[1].spi_  
io[0]  
[0]:0  
_rx:1  
sar_  
2
mosi:0  
data[7]:0  
11  
P3.1  
SmartIo[1]. tcpwm.line scb[1].uart pass.dsi_  
lcd.com[25]  
lcd.seg[25]  
scb[1].i2c_  
sda:2  
scb[1].spi_  
miso:0  
io[1]  
_compl[0]:  
0
_tx:1  
sar_  
data[8]:0  
Table 2  
Pin assignments (continued)  
Alternate Alternate Alternate Alternate  
function 1 function 2 function 3 function 4  
Pin Name  
Analog  
Smart I/O  
Deep Sleep 1 Deep Sleep 2 Deep Sleep 3 Deep Sleep 4  
12  
13  
P3.2  
P3.3  
SmartIo[1]. tcpwm.line scb[1].uart  
io[2] [1]:0 _cts:1  
lcd.com[26]  
lcd.com[27]  
lcd.seg[26]  
lcd.seg[27]  
cpuss.swd_ scb[1].spi_clk  
data  
:0  
SmartIo[1]. tcpwm.line scb[1].uart  
cpuss.swd_  
clk  
scb[1].spi_  
select0:0  
io[3]  
_compl[1]:  
0
_rts:1  
14  
15  
P3.4  
P3.5  
SmartIo[1]. tcpwm.line  
io[4] [2]:0  
tcpwm.tr_ lcd.com[28]  
in[6]  
lcd.seg[28]  
lcd.seg[29]  
scb[1].spi_  
select1:0  
SmartIo[1]. tcpwm.line  
lcd.com[29]  
scb[1].spi_  
select2:0  
io[5]  
_compl[2]:  
0
16  
17  
P3.6  
P3.7  
SmartIo[1]. tcpwm.line  
io[6] [3]:0  
pass.dsi_  
ctb_cmp0  
lcd.com[30]  
lcd.com[31]  
lcd.seg[30]  
scb[4].spi_  
select3  
scb[1].spi_  
select3:0  
SmartIo[1]. tcpwm.line  
pass.dsi_  
ctb_cmp1  
lcd.seg[31] lpcomp.comp scb[2].spi_  
[1]:1 miso:1  
io[7]  
_compl[3]:  
0
18  
P4.0  
csd.vref_ext  
csd.vref_ext_h-  
scomp  
scb[0].uart pass.dsi_ can.can_rx: lcd.com[32]  
lcd.seg[32] scb[0].i2c_scl: scb[0].spi_  
_rx:0  
sar_  
1
1
mosi:0  
data[9]:0  
19  
20  
P4.1  
P4.2  
csd.cshieldpads  
scb[0].uart  
_tx:0  
can.can_tx: lcd.com[33]  
1
lcd.seg[33]  
scb[0].i2c_  
sda:1  
scb[0].spi_  
miso:0  
csd.cmodpads  
csd.cmodpadd  
scb[0].uart pass.dsi_  
can.can_  
lcd.com[34]  
lcd.seg[34] lpcomp.comp scb[0].spi_clk  
[0]:1 :0  
_cts:0  
sar_  
tx_enb_n:1  
data[10]:0  
21  
P4.3  
csd.csh_tankpads  
csd.csh_tankpadd  
scb[0].uart pass.dsi_  
lcd.com[35]  
lcd.seg[35] lpcomp.comp scb[0].spi_  
_rts:0  
sar_  
[1]:2  
select0:0  
data[11]:0  
tcpwm.line scb[3].uart  
lcd.com[55]:0 lcd.seg[55]  
scb[3].i2c_  
sda:2  
scb[3].spi_  
miso:1  
_compl[0]:  
2
_tx:2  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Power  
4
Power  
The following power system diagram shows the set of power supply pins as implemented for the PSoC™ 4700S  
Plus. The system has one regulator in Active mode for the digital circuitry. There is no analog regulator; the analog  
circuits run directly from the VDDA input.  
VDDA  
VDDD  
VDDA  
VSSA  
VDDD  
VSSD  
Analog  
Domain  
Digital  
Domain  
VCCD  
1.8 Volt  
Regulator  
Figure 6  
Power supply connections  
There are two distinct modes of operation. In mode 1, the supply voltage range is 1.8 V to 5.5 V (unregulated  
externally; internal regulator operational). In mode 2, the supply range is1.8 V ± 5% (externally regulated; 1.71 to  
1.89, internal regulator bypassed).  
4.1  
Mode 1: 1.8 V to 5.5 V external supply  
In this mode, PSoC™ 4700S Plus is powered by an external power supply that can be anywhere in the range of 1.8  
to 5.5 V. This range is also designed for battery-powered operation. For example, the chip can be powered from  
a battery system that starts at 3.5 V and works down to 1.8 V. In this mode, the internal regulator of PSoC™ 4700S  
Plus supplies the internal logic and its output is connected to the VCCD pin. The VCCD pin must be bypassed to  
ground via an external capacitor (0.1 µF; X5R ceramic or better) and must not be connected to anything else.  
4.2  
Mode 2: 1.8 V ± 5% external supply  
In this mode, PSoC™ 4700S Plus is powered by an external power supply that must be within the range of 1.71 to  
1.89 V; note that this range needs to include the power supply ripple too. In this mode, the VDD and VCCD pins  
are shorted together and bypassed.  
Bypass capacitors must be used from VDDD to ground. The typical practice for systems in this frequency range is  
to use a capacitor in the 1-µF range, in parallel with a smaller capacitor (0.1 µF, for example). Note that these are  
simply rules of thumb and that, for critical applications, the PCB layout, lead inductance, and the bypass  
capacitor parasitic should be simulated to design and obtain optimal bypassing. On some packages, VDDD and  
VDDA pins are shorted inside the package and brought out as a generic VDD pin. In that case, only 0.1-µF and 1-µF  
decoupling capacitors are required on the VDD pin.  
An example of a bypass scheme is shown in the following diagram.  
Datasheet  
26  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Power  
Power supply bypass connections example  
1.8 V to 5.5 V  
0.1 µF  
1.8 V to 5.5 V  
0.1 µF  
VDDA  
VDDD  
0.1 µF  
1 µF  
VCCD  
PSoC™ 4700S Plus  
0.1 µF  
VSS  
Figure 7  
External supply range from 1.8 V to 5.5 V with internal regulator active  
Datasheet  
27  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Electrical specifications  
5
Electrical specifications  
5.1  
Absolute maximum ratings  
Absolute maximum ratings[1]  
Table 3  
Spec ID# Parameter  
Description  
Min  
Typ  
Max  
Unit Details/conditions  
SID1  
VDDD_ABS  
Digital supply relative  
to VSS  
–0.5  
6
V
SID2  
VCCD_ABS  
Direct digital core  
voltage input relative  
to VSS  
–0.5  
1.95  
SID3  
SID4  
VGPIO_ABS  
IGPIO_ABS  
GPIO voltage  
Maximum current per  
GPIO  
–0.5  
–25  
VDD + 0.5  
25  
mA  
SID5  
IGPIO_injection GPIO injection current,  
Max for VIH > VDDD, and  
–0.5  
0.5  
Current injected per  
pin  
Min for VIL < VSS  
BID44  
BID45  
BID46  
ESD_HBM  
ESD_CDM  
LU  
Electrostatic discharge  
human body model  
Electrostatic discharge  
charged device model  
2200  
500  
V
Pin current for latch-up  
–140  
140  
mA  
Note  
1. Usage above the absolute maximum conditions listed in Table 3 may cause permanent damage to the device.  
Exposure to absolute maximum conditions for extended periods of time may affect device reliability. The  
maximum storage temperature is 150°C in compliance with JEDEC Standard JESD22-A103, high temperature  
storage life. When used below absolute maximum conditions but above normal operating conditions, the  
device may not operate to specification.  
Datasheet  
28  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Electrical specifications  
5.2  
Device level specifications  
All specifications are valid for –40°C TA 85°C for grade-A devices, –40°C TA 105°C for grade-S devices, and  
–40°C TA 125°C for grade-E devices. Specifications are valid for 1.71 V to 5.5 V, except where noted.  
Table 4  
Typical values measured at VDD = 3.3 V and 25°C.  
Spec ID# Parameter Description  
DC specifications  
Min Typ Max Unit  
Details/conditions  
SID53  
SID255  
VDD  
VDD  
Power supply input voltage 1.8  
Power supply input voltage 1.71  
5.5  
1.89  
V
Internally regulated supply  
Internally unregulated  
supply  
(VCCD = VDDD = VDDA  
)
SID54  
SID55  
SID56  
VCCD  
CEFC  
CEXC  
Output voltage (for core  
logic)  
External regulator voltage  
bypass  
Power supply bypass  
capacitor  
1.8  
0.1  
1
µF X5R ceramic or better  
X5R ceramic or better  
Active mode, VDD = 1.8 V to 5.5 V. Typical values measured at VDD = 3.3 V and 25°C.  
SID10  
SID16  
SID19  
IDD5  
IDD8  
IDD11  
Execute from flash; CPU at  
6 MHz  
Execute from flash; CPU at  
24 MHz  
Execute from flash; CPU at  
48 MHz  
1.8  
3.0  
5.4  
2.7  
mA Max is at 125°C and 5.5 V  
Max is at 125°C and 5.5 V  
Max is at 125°C and 5.5 V  
5
7.6  
Sleep mode, VDDD = 1.8 V to 5.5 V (Regulator on)  
SID22  
IDD17  
I2C wakeup WDT, and  
Comparators on  
I2C wakeup, WDT, and  
Comparators on  
1.1  
1.5  
2.2  
2.5  
mA 6 MHZ. Max is at 125°C and  
5.5 V  
SID25  
IDD20  
12 MHZ. Max is at 125°C and  
5.5 V  
Sleep mode, VDDD = 1.71 V to 1.89 V (Regulator bypassed)  
SID28  
IDD23  
I2C wakeup, WDT, and  
Comparators on  
I2C wakeup, WDT, and  
Comparators on  
1.1  
1.5  
1.8  
2.1  
mA 6 MHz. Max is at 125°C and  
1.89 V.  
SID28A  
IDD23A  
12 MHz. Max is at 125°C and  
1.89 V.  
Deep sleep mode, VDD = 1.8 V to 3.6 V (Regulator on)  
SID30  
SID31  
IDD25  
IDD26  
I2C wakeup and WDT on  
I2C wakeup and WDT on  
2.5  
2.5  
40  
350  
µA T = –40°C to 60°C  
Max is at 3.6 V and 125°C  
Deep sleep mode, VDD = 3.6 V to 5.5 V (Regulator on)  
SID33  
SID34  
IDD28  
IDD29  
I2C wakeup and WDT on  
I2C wakeup and WDT on  
2.5  
2.5  
40  
350  
µA T = –40°C to 60°C  
Max is at 5.5 V and 125°C  
Deep sleep mode, VDD = VCCD = 1.71 V to 1.89 V (Regulator bypassed)  
SID36  
SID37  
IDD31  
IDD32  
I2C wakeup and WDT on  
I2C wakeup and WDT on  
2.5  
2.5  
60  
400  
µA T = –40°C to 60°C  
Max is at 125°C and 1.89 V.  
XRES current  
SID307  
IDD_XR  
Supply current while XRES  
asserted  
2
5
mA –  
Datasheet  
29  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Electrical specifications  
Table 5  
AC specifications  
Spec ID# Parameter  
Description  
CPU frequency  
Wakeup from sleep mode  
Min  
DC  
Typ  
0
Max Unit Details/conditions  
SID48  
SID49  
SID50  
FCPU  
TSLEEP  
48  
MHz 1.71 VDD 5.5  
µs  
TDEEPSLEEP Wakeup from deep sleep mode  
35  
5.2.1  
GPIO  
Table 6  
GPIO DC specifications  
Spec ID# Parameter  
Description  
Input voltage high  
threshold  
Min  
0.7 VDDD  
Typ  
Max  
Unit Details/conditions  
[2]  
SID57  
VIH  
V
CMOS Input  
SID58  
VIL  
Input voltage low  
threshold  
0.3 VDDD  
CMOS Input  
[2]  
[2]  
SID241  
SID242  
SID243  
SID244  
SID59  
VIH  
VIL  
VIH  
VIL  
LVTTL input, VDDD < 2.7 V  
LVTTL input, VDDD < 2.7 V  
LVTTL input, VDDD 2.7 V  
LVTTL input, VDDD 2.7 V  
Output voltage high level VDDD – 0.6  
Output voltage high level VDDD – 0.5  
0.7 VDDD  
2.0  
0.3 VDDD  
0.8  
VOH  
VOH  
IOH = 4 mA at 3 V VDDD  
IOH = 1 mA at 1.8 V  
VDDD  
SID60  
SID61  
SID62  
VOL  
VOL  
Output voltage low level  
Output voltage low level  
0.6  
0.6  
IOL = 4 mA at 1.8 V  
VDDD  
IOL = 10 mA at 3 V  
VDDD  
SID62A VOL  
Output voltage low level  
Pull-up resistor  
0.4  
8.5  
8.5  
2
IOL = 3 mA at 3 V VDDD  
SID63  
SID64  
SID65  
RPULLUP  
RPULLDOWN Pull-down resistor  
IIL  
3.5  
3.5  
5.6  
5.6  
kΩ  
Input leakage current  
(absolute value)  
nA 25°C, VDDD = 3.0 V  
SID66  
CIN  
Input capacitance  
25  
40  
7
pF  
mV  
V
SID67[3] VHYSTTL  
Input hysteresis LVTTL  
Input hysteresis CMOS  
Input hysteresis CMOS  
DDD 2.7 V  
SID68[3] VHYSCMOS  
0.05 × VDDD  
200  
VDD < 4.5 V  
VDD > 4.5 V  
SID68A[3] VHYSC-  
MOS5V5  
SID69[3] IDIODE  
Current through  
protection diode to  
VDD/VSS  
Maximum total source or  
sink chip current  
100  
200  
µA  
SID69A[3] ITOT_GPIO  
mA  
Notes  
2. VIH must not exceed VDDD + 0.2 V.  
3. Guaranteed by characterization.  
Datasheet  
30  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Electrical specifications  
Table 7  
GPIO AC specifications  
(Guaranteed by characterization)  
Spec ID# Parameter  
Description  
Min  
Typ  
Max Unit Details/conditions  
SID70  
SID71  
SID72  
SID73  
SID74  
TRISEF  
Rise time in fast strong  
mode  
Fall time in fast strong mode  
2
12  
12  
60  
60  
33  
ns 3.3 V VDDD  
,
Cload = 25 pF  
TFALLF  
TRISES  
TFALLS  
FGPIOUT1  
2
10  
10  
3.3 V VDDD  
Cload = 25 pF  
,
Rise time in slow strong  
mode  
Fall time in slow strong  
mode  
3.3 V VDDD  
,
Cload = 25 pF  
3.3 V VDDD  
Cload = 25 pF  
,
GPIO FOUT  
;
MHz 90/10%, 25 pF load,  
60/40 duty cycle  
3.3 V VDDD 5.5 V  
fast strong mode  
SID75  
FGPIOUT2  
FGPIOUT3  
FGPIOUT4  
FGPIOIN  
GPIO FOUT  
;
16.7  
7
90/10%, 25 pF load,  
60/40 duty cycle  
1.71 V VDDD 3.3 V  
fast strong mode  
SID76  
GPIO FOUT  
;
90/10%, 25 pF load,  
60/40 duty cycle  
3.3 V VDDD 5.5 V  
slow strong mode  
SID245  
SID246  
GPIO FOUT  
;
3.5  
48  
90/10%, 25 pF load,  
60/40 duty cycle  
1.71 V VDDD 3.3 V  
slow strong mode.  
GPIO input operating  
frequency;  
1.71 V VDDD 5.5 V  
90/10% VIO  
Datasheet  
31  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Electrical specifications  
5.2.2  
XRES  
Table 8  
XRES DC specifications  
Spec ID# Parameter  
Description  
Min  
Typ  
Max  
Unit  
Details/conditions  
SID77  
VIH  
Input voltage high 0.7 × VDDD  
threshold  
V
CMOS Input  
SID78  
VIL  
Input voltage low  
threshold  
0.3 VDDD  
SID79  
SID80  
SID81[4]  
RPULLUP  
CIN  
VHYSXRES  
Pull-up resistor  
Input capacitance  
Input voltage  
hysteresis  
60  
100  
7
kΩ  
pF  
mV Typical hysteresis is  
200 mV for VDD > 4.5 V  
SID82  
IDIODE  
Current through  
protection diode to  
VDD/VSS  
100  
µA –  
Table 9  
XRES AC specifications  
Description  
Spec ID# Parameter  
Min Typ Max Unit Details/conditions  
SID83[4] TRESETWIDTH Reset pulse width  
1
µs  
BID194[4] TRESETWAKE Wake-up time from reset release  
2.7 ms  
Note  
4. Guaranteed by characterization.  
Datasheet  
32  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Electrical specifications  
5.3  
Analog peripherals  
5.3.1  
CTBm opamp  
Table 10  
CTBm opamp specifications  
Spec ID# Parameter  
Description  
Min Typ  
Max  
Unit Details/conditions  
IDD  
Opamp block current,  
External load  
SID269  
SID270  
SID271  
IDD_HI  
IDD_MED  
IDD_LOW  
GBW  
power = hi  
power = med  
power = lo  
Load = 20 pF, 0.1 mA  
VDDA = 2.7 V  
1100  
550  
150  
1850  
950  
350  
µA  
SID272  
SID273  
SID274  
GBW_HI  
power = hi  
6
3
1
MHz Input and output are  
0.2 V to VDDA – 0.2 V  
GBW_MED  
GBW_LO  
IOUT_MAX  
power = med  
Input and output are  
0.2 V to VDDA – 0.2 V  
Input and output are  
0.2 V to VDDA – 0.2 V  
power = lo  
VDDA = 2.7 V, 500 mV from rail  
SID275  
SID276  
SID277  
IOUT_MAX_HI power = hi  
IOUT_MAX_MID power = mid  
IOUT_MAX_LO power = lo  
10  
10  
5
mA Output is 0.5 V to  
VDDA – 0.5 V  
Output is 0.5 V to  
VDDA – 0.5 V  
Output is 0.5 V to  
VDDA – 0.5 V  
IOUT  
VDDA = 1.71 V, 500 mV from  
rail  
SID278  
SID279  
SID280  
IOUT_MAX_HI power = hi  
IOUT_MAX_MID power = mid  
IOUT_MAX_LO power = lo  
4
mA Output is 0.5 V to  
VDDA – 0.5 V  
Output is 0.5 V to  
VDDA – 0.5 V  
Output is 0.5 V to  
VDDA – 0.5 V  
4
2
IDD_Int  
Opamp block current  
Internal Load  
power = hi  
SID269_I  
SID270_I  
SID271_I  
IDD_HI_Int  
1500  
700  
1700  
900  
µA  
IDD_MED_Int power = med  
IDD_LOW_Int power = lo  
GBW  
VDDA = 2.7 V  
SID272_I  
GBW_HI_Int  
power = hi  
8
Output is 0.25 V to  
MHz  
VDDA – 0.25 V  
Datasheet  
33  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Electrical specifications  
Table 10  
CTBm opamp specifications (continued)  
Spec ID# Parameter  
Description  
Min Typ  
Max  
Unit Details/conditions  
General opamp specs for  
both internal and external  
modes  
SID281  
SID282  
VIN  
Charge-pump on,  
VDDA = 2.7 V  
Charge-pump on,  
VDDA = 2.7 V  
V
DDA – 0.2  
DDA – 0.2  
V
V
0.05  
VCM  
0.05  
V
VOUT  
VDDA = 2.7 V  
SID283  
SID284  
SID285  
SID286  
SID288  
VOUT_1  
VOUT_2  
VOUT_3  
VOUT_4  
VOS_TR  
power = hi, Iload = 10 mA  
power = hi, Iload = 1 mA  
power = med, Iload = 1 mA  
power = lo, Iload = 0.1 mA  
Offset voltage, trimmed  
0.5  
0.2  
0.2  
0.2  
VDDA – 0.5  
VDDA – 0.2  
VDDA – 0.2  
VDDA – 0.2  
1.0  
–1.0 0.5  
mV Highmode,input0 Vto  
DDA – 0.2 V  
V
SID288A  
SID288B  
SID290  
VOS_TR  
Offset voltage, trimmed  
Offset voltage, trimmed  
1.4  
2  
Medium mode, input  
0 V to VDDA – 0.2 V  
Low mode, input 0 V to  
VDDA – 0.2 V  
VOS_TR  
VOS_DR_TR  
Offset voltage drift, trimmed –10 3  
10  
µV/ High mode  
°C  
SID290A  
SID290B  
SID291  
VOS_DR_TR  
VOS_DR_TR  
CMRR  
Offset voltage drift, trimmed  
Offset voltage drift, trimmed  
DC  
70  
10  
10  
80  
µV/ Medium mode  
Low mode  
dB Input is 0 V to  
°C  
V
DDA – 0.2 V, Output is  
0.2 V to VDDA – 0.2 V  
SID292  
PSRR  
At 1 kHz, 10-mV ripple  
70  
85  
VDDD = 3.6 V,  
high-power mode,  
input is 0.2 V to  
VDDA – 0.2 V  
Noise  
VN2  
72  
nV/  
SID294  
SID295  
SID296  
SID297  
SID298  
SID299  
SID299A  
Input-referred, 1 kHz,  
power = Hi  
Input-referred, 10 kHz,  
power = Hi  
Input-referred, 100 kHz,  
power = Hi  
rtHz  
VN3  
6
28  
15  
Inputandoutputareat  
0.2 V to VDDA – 0.2 V  
Inputandoutputareat  
0.2 V to VDDA – 0.2 V  
VN4  
CLOAD  
Stable up to max. load.  
Performance specs at 50 pF.  
125  
pF  
SLEW_RATE Cload = 50 pF, Power = High,  
DDA = 2.7 V  
T_OP_WAKE From disable to enable, no  
external RC dominating  
V/µs –  
V
25  
µs  
OL_GAIN  
Open Loop Gain  
90  
dB  
Datasheet  
34  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Electrical specifications  
Table 10  
CTBm opamp specifications (continued)  
Spec ID# Parameter  
Description  
Min Typ  
Max  
Unit Details/conditions  
COMP_  
MODE  
Comparator mode; 50 mV  
drive, Trise = Tfall (approx.)  
SID300  
SID301  
SID302  
TPD1  
TPD2  
TPD3  
Response time; power = hi  
150  
500  
ns Input is 0.2 V to  
V
DDA – 0.2 V  
Response time; power =  
med  
Response time; power = lo  
Input is 0.2 V to  
DDA – 0.2 V  
V
2500  
Input is 0.2 V to  
V
DDA – 0.2 V  
SID303  
SID304  
VHYST_OP  
WUP_CTB  
Hysteresis  
Wake-up time from Enabled  
to Usable  
10  
25  
mV  
µs  
Deep sleep Mode 2 is lowest current  
mode  
range. Mode 1 has higher  
GBW.  
SID_DS_1 IDD_HI_M1  
SID_DS_2 IDD_MED_M1 Mode 1, medium current  
SID_DS_3 IDD_LOW_M1 Mode 1, low current  
SID_DS_4 IDD_HI_M2  
SID_DS_5 IDD_MED_M2 Mode 2, medium current  
SID_DS_6 IDD_LOW_M2 Mode 2, low current  
Mode 1, high current  
1400  
700  
200  
120  
60  
µA 25°C  
25°C  
25°C  
25°C  
25°C  
25°C  
Mode 2, high current  
15  
4
SID_DS_7 GBW_HI_M1  
Mode 1, high current  
MHz 20-pF load, no DC load  
0.2 V to VDDA – 0.2 V  
SID_DS_8 GBW_MED_M1 Mode 1, medium current  
SID_DS_9 GBW_LOW_M1 Mode 1, low current  
2
0.5  
0.5  
0.2  
0.1  
5
20-pF load, no DC load  
0.2 V to VDDA – 0.2 V  
20-pF load, no DC load  
0.2 V to VDDA – 0.2 V  
20-pF load, no DC load  
0.2 V to VDDA – 0.2 V  
20-pF load, no DC load  
0.2 V to VDDA – 0.2 V  
SID_DS_10 GBW_HI_M2  
Mode 2, high current  
SID_DS_11 GBW_MED_M2 Mode 2, medium current  
SID_DS_12 GBW_Low_M2 Mode 2, low current  
20-pF load, no DC load  
0.2 V to VDDA – 0.2 V  
SID_DS_13 VOS_HI_M1  
Mode 1, high current  
mV With trim 25 °C, 0.2 V to  
VDDA – 0.2 V  
SID_DS_14 VOS_MED_M1 Mode 1, medium current  
SID_DS_15 VOS_LOW_M2 Mode 1, low current  
5
With trim 25°C, 0.2 V to  
VDDA – 0.2 V  
With trim 25°C, 0.2 V to  
VDDA – 0.2 V  
With trim 25°C, 0.2V to  
VDDA – 0.2 V  
With trim 25°C, 0.2 V to  
VDDA – 0.2 V  
5
SID_DS_16 VOS_HI_M2  
Mode 2, high current  
5
SID_DS_17 VOS_MED_M2 Mode 2, medium current  
SID_DS_18 VOS_LOW_M2 Mode 2, low current  
5
5
With trim 25°C, 0.2 V to  
VDDA – 0.2 V  
Datasheet  
35  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Electrical specifications  
Table 10  
CTBm opamp specifications (continued)  
Spec ID# Parameter  
Description  
Min Typ  
Max  
Unit Details/conditions  
SID_DS_19 IOUT_HI_M1  
Mode 1, high current  
10  
10  
4
mA Output is 0.5 V to  
VDDA – 0.5 V  
SID_DS_20 IOUT_MED_M1 Mode 1, medium current  
SID_DS_21 IOUT_LOW_M1 Mode 1, low current  
Output is 0.5 V to  
VDDA – 0.5 V  
Output is 0.5 V to  
VDDA – 0.5 V  
SID_DS_22 IOUT_HI_M2  
SID_DS_23 IOU_MED_M2 Mode 2, medium current  
SID_DS_24 IOU_LOW_M2 Mode 2, low current  
Mode 2, high current  
1
1
0.5  
Datasheet  
36  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Electrical specifications  
5.3.2  
Comparator  
Table 11  
Comparator DC specifications  
Spec ID# Parameter  
Description  
Min Typ  
Max Unit Details/conditions  
SID84  
VOFFSET1  
Input offset voltage, factory  
trim  
±10  
mV  
SID85  
VOFFSET2  
Input offset voltage, custom  
trim  
±4  
SID86  
SID87  
VHYST  
VICM1  
Hysteresis when enabled  
Input common mode voltage  
in normal mode  
0
10  
35  
VDDD-0.  
1
V
Modes 1 and 2  
SID247  
SID247A  
SID88  
VICM2  
VICM3  
CMRR  
CMRR  
Input common mode voltage  
in low power mode  
Input common mode voltage  
in ultra low power mode  
Common mode rejection  
ratio  
Common mode rejection  
ratio  
0
0
VDDD  
VDDD-1.  
15  
VDDD 2.2 V at –40°C  
50  
42  
dB VDDD 2.7 V  
VDDD 2.7 V  
SID88A  
SID89  
SID248  
ICMP1  
ICMP2  
Block current, normal mode  
Block current, low power  
mode  
400  
100  
µA  
SID259  
SID90  
ICMP3  
ZCMP  
Block current in ultra  
low-power mode  
DC Input impedance of  
comparator  
6
VDDD 2.2 V at –40°C  
35  
MΩ  
Table 12  
Comparator AC specifications  
Spec ID# Parameter  
Description  
Min  
Typ  
Max Unit Details/conditions  
SID91  
SID258  
SID92  
TRESP1  
TRESP2  
TRESP3  
Response time, normal  
mode, 50 mV overdrive  
Response time, low power  
mode, 50 mV overdrive  
Response time, ultra-low  
power mode, 200 mV  
overdrive  
38  
110  
200  
15  
ns  
70  
2.3  
µs VDDD 2.2 V at –40°C  
5.3.3  
Temperature sensor  
Table 13  
Temperature sensor specifications  
Spec ID# Parameter  
Description  
Min  
Typ  
Max Unit Details/conditions  
SID93  
TSENSACC  
Temperature sensor  
accuracy  
–5  
±1  
5
°C –40 to +85°C  
SID93A  
TSENSACC  
Temperature sensor  
accuracy  
–15  
±1  
+15  
°C +85 to +150°C  
Datasheet  
37  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Electrical specifications  
5.3.4  
SAR ADC  
Table 14  
SAR ADC specifications  
Spec ID# Parameter  
Description  
Min  
Typ  
Max Unit Details/conditions  
SAR ADC DC specifications  
SID94  
SID95  
A_RES  
Resolution  
12  
16  
bits  
A_CHNLS_S Number of channels - single  
ended  
SID96  
A-CHNKS_D Number of channels -  
differential  
4
Diff inputs use  
neighboring I/O  
SID97  
SID98  
A-MONO  
A_GAINERR Gain error  
Monotonicity  
±0.1  
Yes  
%
With external  
reference  
SID99  
A_OFFSET  
Input offset voltage  
2
mV Measured with 1 V  
reference  
SID100  
SID101  
A_ISAR  
A_VINS  
Current consumption  
Input voltage range - single  
ended  
VSS  
1
VDDA  
mA  
V
SID102  
A_VIND  
Input voltage range -  
differential  
VSS  
VDDA  
V
SID103  
SID104  
SID260  
A_INRES  
A_INCAP  
VREFSAR  
Input resistance  
Input capacitance  
Trimmed internal reference  
to SAR  
1.2  
2.2  
10  
1.212  
KΩ  
pF  
V
1.188  
Datasheet  
38  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Electrical specifications  
Table 14  
SAR ADC specifications (continued)  
Spec ID# Parameter  
Description  
Min  
Typ  
Max Unit Details/conditions  
SAR ADC AC specifications  
SID106  
SID107  
A_PSRR  
A_CMRR  
Power supply rejection ratio  
Common mode rejection  
ratio  
70  
66  
dB  
dB Measured at 1 V  
SID108  
SID109  
A_SAMP  
A_SNR  
Sample rate  
Signal-to-noise and  
distortion ratio (SINAD)  
65  
1
Msps –  
dB  
F
IN = 10 kHz  
SID110  
SID111  
A_BW  
A_INL  
Input bandwidth without  
aliasing  
Integral non linearity. VDD  
1.71 to 5.5, 1 Msps  
Integral non linearity. VDDD  
1.71 to 3.6, 1 Msps  
Integral non linearity. VDD  
1.71 to 5.5, 500 ksps  
Differential non linearity.  
VDD = 1.71 to 5.5, 1 Msps  
Differential non linearity.  
VDD = 1.71 to 3.6, 1 Msps  
Differential non linearity.  
VDD = 1.71 to 5.5, 500 ksps  
A_sam kHz  
p/2  
=
–1.7  
–1.5  
–1.5  
–1  
2
LSB VREF = 1 to VDD  
LSB VREF = 1.71 to VDD  
LSB VREF = 1 to VDD  
SID111A A_INL  
SID111B A_INL  
=
1.7  
1.7  
2.2  
2
=
SID112  
A_DNL  
LSB  
LSB  
LSB  
V
V
V
REF = 1 to VDD  
REF = 1.71 to VDD  
REF = 1 to VDD  
SID112A A_DNL  
SID112B A_DNL  
–1  
–1  
2.2  
SID113  
SID261  
A_THD  
Total harmonic distortion  
–65  
100  
dB Fin = 10 kHz  
ksps 12-bit resolution  
FSARINTREF SAR operating speed without  
external reference bypass  
Datasheet  
39  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Electrical specifications  
5.3.5  
CSD and IDAC  
Table 15  
CSD and IDAC specifications  
Spec ID#  
SYS.PER#3  
Parameter  
VDD_RIPPLE Max allowed ripple on  
power supply,  
Description  
Min Typ  
Max  
±50  
Unit  
mV  
Details/conditions  
V
DD > 2 V (with ripple),  
25°C TA,  
DC to 10 MHz  
sensitivity = 0.1 pF  
SYS.PER#16 VDD_RIPPLE Max allowed ripple on  
±25  
mV  
VDD > 1.75 V (with  
_1.8  
power supply,  
DC to 10 MHz  
ripple), 25°C TA,  
parasitic capacitance  
(CP) < 20 pF,  
sensitivity 0.4 pF  
SID.CSD.BLK ICSD  
Maximum block current  
4000  
µA Maximum block current  
for both IDACs in  
dynamic (switching)  
mode including  
comparators, buffer,  
and reference  
generator  
SID.CSD#15 VREF  
Voltage reference for  
CSD and comparator  
External voltage  
reference for CSD and  
comparator  
0.6 1.2 VDDA 0.6  
V
V
VDDA – 0.06 or 4.4,  
whichever is lower  
VDDA – 0.06 or 4.4,  
whichever is lower  
SID.CSD#15A VREF_EXT  
0.6  
V
DDA – 0.6  
SID.CSD#16 IDAC1IDD  
SID.CSD#17 IDAC2IDD  
IDAC1 (7-bits) block  
current  
IDAC2 (7-bits) block  
current  
Voltage range of  
operation  
1750  
1750  
µA  
µA  
V
SID308  
VCSD  
1.71  
0.6  
5.5  
1.8 V ± 5% or 1.8 V to  
5.5 V  
VDDA – 0.06 or 4.4,  
whichever is lower  
SID308A  
VCOMPIDAC Voltage compliance  
range of IDAC  
V
DDA – 0.6  
V
SID309  
SID310  
IDAC1DNL  
IDAC1INL  
DNL  
INL  
–1  
–2  
1
2
LSB  
LSB INL is ±5.5 LSB for  
V
DDA < 2 V  
SID311  
SID312  
IDAC2DNL  
IDAC2INL  
DNL  
INL  
–1  
–2  
1
2
LSB  
LSB INL is ±5.5 LSB for  
DDA < 2 V  
V
SID313  
SNR  
Ratio of counts of finger  
to noise. Guaranteed by  
characterization  
5
Ratio Capacitance range of 5  
to 35 pF, 0.1-pF  
sensitivity. Allusecases.  
VDDA > 2 V.  
SID314  
IDAC1CRT1 Output current of IDAC1 4.2  
(7 bits) in low range  
IDAC1CRT2 Output current of IDAC1 34  
(7 bits) in medium range  
IDAC1CRT3 Output current of IDAC1 275  
(7 bits) in high range  
5.4  
41  
µA LSB = 37.5 nA typ  
µA LSB = 300 nA typ  
µA LSB = 2.4 µA typ  
µA LSB = 75 nA typ  
SID314A  
SID314B  
SID314C  
330  
10.5  
IDAC1CRT12 Output current of IDAC1  
(7 bits) in low range, 2X  
mode  
8
Datasheet  
40  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Electrical specifications  
Table 15  
Spec ID#  
CSD and IDAC specifications (continued)  
Parameter Description  
Min Typ  
Max  
Unit  
Details/conditions  
SID314D  
IDAC1CRT22 Output current of IDAC1 69  
(7 bits) in medium  
82  
µA LSB = 600 nA typ.  
range, 2X mode  
SID314E  
IDAC1CRT32 Output current of IDAC1 540  
(7 bits) in high range, 2X  
mode  
660  
µA LSB = 4.8 µA typ  
SID315  
IDAC2CRT1 Output current of IDAC2 4.2  
(7 bits) in low range  
IDAC2CRT2 Output current of IDAC2 34  
(7 bits) in medium range  
IDAC2CRT3 Output current of IDAC2 275  
(7 bits) in high range  
5.4  
41  
µA LSB = 37.5 nA typ  
µA LSB = 300 nA typ  
µA LSB = 2.4 µA typ  
µA LSB = 75 nA typ  
SID315A  
SID315B  
SID315C  
330  
10.5  
IDAC2CRT12 Output current of IDAC2  
(7 bits) in low range, 2X  
mode  
8
SID315D  
SID315E  
SID315F  
SID315G  
SID315H  
SID320  
IDAC2CRT22 Output current of IDAC2 69  
(7 bits) in medium  
82  
660  
10.5  
82  
µA LSB = 600 nA typ  
µA LSB = 4.8 µA typ  
µA LSB = 37.5 nA typ  
µA LSB = 300 nA typ  
µA LSB = 2.4 µA typ  
range, 2X mode  
IDAC2CRT32 Output current of IDAC2 540  
(7 bits) in high range, 2X  
mode  
IDAC3CRT13 Output current of IDAC  
in 8-bit mode in low  
range  
8
IDAC3CRT23 Output current of IDAC  
in 8-bit mode in  
69  
medium range  
IDAC3CRT33 Output current of IDAC 540  
660  
1
in 8-bit mode in high  
range  
IDACOFFSET All zeroes input  
LSB Polarity set by Source or  
Sink. Offset is 2 LSBs for  
37.5 nA/LSB mode  
SID321  
SID322  
IDACGAIN  
Full-scale error less  
offset  
Mismatch between  
IDAC1 and IDAC2 in Low  
mode  
Mismatch between  
IDAC1 and IDAC2 in  
Medium mode  
Mismatch between  
IDAC1 and IDAC2 in High  
mode  
±10  
9.2  
%
IDACMIS-  
MATCH1  
LSB LSB = 37.5 nA typ  
LSB LSB = 300 nA typ  
LSB LSB = 2.4 µA typ  
SID322A  
SID322B  
IDACMIS-  
MATCH2  
5.6  
6.8  
IDACMIS-  
MATCH3  
SID323  
SID324  
SID325  
IDACSET8  
IDACSET7  
CMOD  
Settling time to 0.5 LSB  
for 8-bit IDAC  
Settling time to 0.5 LSB  
for 7-bit IDAC  
External modulator  
capacitor.  
5
5
µs Full-scale transition. No  
external load  
µs Full-scale transition. No  
external load  
nF 5-V rating, X7R or NP0  
cap  
2.2  
Datasheet  
41  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Electrical specifications  
5.3.6  
10-bit CAPSENSE™ ADC  
Table 16  
10-bit CAPSENSE™ ADC specifications  
Spec ID# Parameter  
Description  
Resolution  
Min  
Typ  
Max Unit  
Details/conditions  
SIDA94  
A_RES  
10  
bits Auto-zeroing is required  
every millisecond  
SIDA95  
A_CHNLS_S Number of channels - single  
ended  
16  
Defined by AMUX Bus  
SIDA97  
SIDA98  
A-MONO  
A_GAINERR Gain error  
Monotonicity  
±3  
Yes  
%
In VREF (2.4 V) mode with  
VDDA bypass capacitance  
of 10 µF  
SIDA99  
A_OFFSET Input offset voltage  
±18  
mV In VREF (2.4 V) mode with  
VDDA bypass capacitance  
of 10 µF  
SIDA101 A_VINS  
Input voltage range - single  
ended  
VSSA  
VDDA  
V
SIDA103 A_INRES  
SIDA104 A_INCAP  
SIDA106 A_PSRR  
Input resistance  
Input capacitance  
Power supply rejection ratio  
2.2  
20  
60  
KΩ  
pF  
dB In VREF (2.4 V) mode with  
VDDA bypass capacitance  
of 10 µF  
SIDA107 A_TACQ  
SIDA108 A_CONV8  
Sample acquisition time  
1
21.3  
µs  
Conversion time for 8-bit  
resolution at conversion  
rate = Fhclk/(2^(N+2)).  
Clock frequency = 48 MHz.  
µs Does not include  
acquisition time.  
Equivalent to 44.8 ksps  
including acquisition  
time.  
SIDA108A A_CONV10 Conversion time for 10-bit  
resolution at conversion  
85.3  
µs Does not include  
acquisition time.  
Equivalent to 11.6 ksps  
including acquisition  
time.  
dB With 10-Hz input sine  
wave, external 2.4-V  
reference, VREF (2.4 V)  
mode  
rate = Fhclk/(2^(N+2)).  
Clock frequency = 48 MHz.  
SIDA109 A_SND  
Signal-to-noise and  
Distortion ratio (SINAD)  
61  
SIDA110 A_BW  
SIDA111 A_INL  
SIDA112 A_DNL  
Input bandwidth without  
aliasing  
Integral Non Linearity.  
1 ksps  
Differential Non Linearity.  
1 ksps  
22.4 KHz 8-bit resolution  
2
1
LSB VREF = 2.4 V or greater  
Datasheet  
42  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Electrical specifications  
5.3.7  
Inductive sensing  
Table 17  
Spec ID#  
SID500  
Inductive sense specifications (Preliminary data; unless otherwise mentioned VDD > 2.7 V)  
Parameter  
Nsense  
Description  
Number of sensors  
Sample rate  
Min  
Typ  
4
Max Unit Details/conditions  
SID501  
Lsamp  
12  
ksps Measured at below  
conditions:  
Resolution = 11bits,  
sensor operating  
frequency  
(Fout) = 12 MHz  
refer sec 2.8.8  
SID502  
SID503  
Lres  
Lfreq  
Resolution  
Sensor excitation  
frequency  
1
16  
12  
bits  
MHz –  
SID505  
SID506  
Lval  
Lprox  
Inductance range  
Proximity detection  
range  
1
10000 µH  
0.75 ×  
coil  
diameter  
1.5 × coil  
diameter  
If ECO is used  
SID507  
Rp  
Tank impedance  
500  
10000  
Datasheet  
43  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Electrical specifications  
5.4  
Digital peripherals  
5.4.1  
Timer counter pulse-width modulator (TCPWM)  
Table 18  
TCPWM specifications  
Spec ID  
Parameter  
Description  
Block current  
consumption at 3 MHz  
Block current  
consumption at 12 MHz  
Block current  
consumption at 48 MHz  
Min  
Typ  
Max Unit Details/conditions  
SID.TCPWM.1 ITCPWM1  
SID.TCPWM.2 ITCPWM2  
SID.TCPWM.2A ITCPWM3  
45  
155  
650  
Fc  
A  
All modes (TCPWM)  
All modes (TCPWM)  
All modes (TCPWM)  
SID.TCPWM.3 TCPWMFREQ Operating frequency  
MHz  
ns  
Fc max = CLK_SYS  
Maximum = 48 MHz  
SID.TCPWM.4 TPWMENEXT Input trigger pulse  
width  
SID.TCPWM.5 TPWMEXT  
2/Fc  
2/Fc  
For all trigger  
events[5]  
Output trigger pulse  
widths  
Minimum possible  
width of overflow,  
underflow, and CC  
(counter equals  
compare value)  
outputs  
SID.TCPWM.5A TCRES  
Resolution of counter  
PWM resolution  
1/Fc  
Minimum time  
between successive  
counts  
Minimum pulse width  
of PWM Output  
Minimum pulse width  
between Quadrature  
phase inputs  
SID.TCPWM.5B PWMRES  
SID.TCPWM.5C QRES  
1/Fc  
1/Fc  
Quadrature inputs  
resolution  
Note  
5. Guaranteed by characterization.  
Datasheet  
44  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Electrical specifications  
5.4.2  
I2C  
Table 19  
Fixed I2C DC specifications[6]  
Spec ID# Parameter  
Description  
Min  
Typ  
Max Unit  
Details/conditions  
SID149  
SID150  
SID151  
SID152  
II2C1  
II2C2  
II2C3  
II2C4  
Block current consumption  
at 100 kHz  
Block current consumption  
at 400 kHz  
Block current consumption  
at 1 Mbps  
I2C enabled in deep sleep  
mode  
50  
135  
310  
µA  
1
Table 20  
Fixed I2C AC specifications[6]  
Description  
Spec ID# Parameter  
Min  
Typ  
Max Unit  
Details/conditions  
SID153  
FI2C1  
Bit rate  
1
Msps  
Note  
6. Guaranteed by characterization.  
Datasheet  
45  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Electrical specifications  
5.4.3  
SPI  
Table 21  
SPI DC specifications[7]  
Spec ID# Parameter  
Description  
Min  
Typ  
Max Unit  
Details/Conditions  
SID163  
SID164  
SID165  
ISPI1  
ISPI2  
ISPI3  
Block current consumption  
at 1 Mbps  
Block current consumption  
at 4 Mbps  
Block current consumption  
at 8 Mbps  
360  
560  
600  
µA  
Table 22  
SPI AC specifications[8]  
Spec ID# Parameter  
SID166 FSPI  
Description  
SPI Operating frequency  
(Master; 6X Oversampling)  
Min  
Typ  
Max Unit  
Details/conditions  
8
MHz  
Fixed SPI master mode AC specifications  
SID167  
SID168  
SID169  
TDMO  
MOSI Valid after Sclock  
driving edge  
MISO Valid before Sclock  
capturing edge  
Previous MOSI data hold  
time  
20  
0
15  
ns  
TDSI  
Full clock, late MISO  
sampling  
Referred to slave  
capturing edge  
THMO  
Fixed SPI slave mode AC specifications  
SID170  
TDMI  
MOSI valid before Sclock  
capturing edge  
MISO valid after Sclock  
driving edge  
40  
ns  
SID171  
TDSO  
42 + (3  
×
Tcpu)  
T
CPU = 1/FCPU  
SID171A  
TDSO_EXT MISO valid after Sclock  
driving edge in Ext. Clk  
mode  
48  
SID172  
THSO  
Previous MISO data hold  
time  
0
SID172A  
TSSELSSCK SSEL Valid to first SCK valid  
edge  
100  
ns  
Note  
7. Guaranteed by characterization.  
Datasheet  
46  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Electrical specifications  
5.4.4  
UART  
UART DC specifications[8]  
Table 23  
Spec ID# Parameter  
Description  
Block current consumption  
at 100 Kbps  
Block current consumption  
at 1000 Kbps  
Min  
Typ  
Max Unit  
Details/conditions  
Details/conditions  
SID160  
IUART1  
55  
µA  
SID161  
IUART2  
312  
µA  
Table 24  
UART AC specifications[8]  
Description  
Spec ID# Parameter  
Min  
Typ  
Max Unit  
Mbps –  
SID162  
FUART  
Bit rate  
1
5.4.5  
LCD direct drive  
LCD direct drive DC specifications[8]  
Table 25  
Spec ID# Parameter  
Description  
Min  
Typ  
Max Unit Details/conditions  
SID154  
ILCDLOW  
Operating current in low  
power mode  
5
µA 16 4 small segment  
disp. at 50 Hz  
SID155  
CLCDCAP  
LCD capacitance per  
segment/common driver  
500  
5000  
pF  
SID156  
SID157  
LCDOFFSET Long-term segment offset  
20  
2
mV  
ILCDOP1  
LCD system operating  
current Vbias = 5 V  
mA 32 4 segments at  
50 Hz, 25°C  
SID158  
ILCDOP2  
LCD system operating  
current Vbias = 3.3 V  
2
32 4 segments at  
50 Hz, 25°C  
Table 26  
LCD direct drive AC specifications[8]  
Description  
LCD frame rate  
Spec ID# Parameter  
SID159  
Min  
10  
Typ  
50  
Max Unit Details/conditions  
150 Hz  
FLCD  
Note  
8. Guaranteed by characterization.  
Datasheet  
47  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Electrical specifications  
5.5  
Memory  
5.5.1  
Flash  
Table 27  
Flash DC specifications  
Spec ID#  
SID173  
Parameter  
VPE  
Description  
Erase and program voltage 1.71  
Min Typ Max  
5.5  
Unit Details/conditions  
V
Table 28  
Flash AC specifications  
Parameter  
Spec ID#  
SID174  
Description  
Min Typ Max  
Unit Details/conditions  
[9]  
TROWWRITE  
Row (block) write time  
(erase and program)  
Row erase time  
Row program time after  
erase  
Bulk erase time (64KB)  
Total device program time  
Flash endurance  
20  
ms  
Row (block) =  
256 bytes  
[9]  
SID175  
SID176  
TROWERASE  
TROWPROGRAM  
16  
4
[9]  
[9]  
SID178  
TBULKERASE  
35  
7
[9]  
SID180[10] TDEVPROG  
SID181[10] FEND  
SID182[10] FRET  
Seconds –  
100K  
20  
Cycles  
Years  
Flash retention. TA 55°C,  
100K P/E cycles  
Flash retention. TA 85°C,  
10K P/E cycles  
SID182A[1 FRET  
10  
0]  
SID182B  
FRETQ  
Flash retention. TA 105°C, 10  
10K P/E cycles with no more  
than 3 years at TA 85°C  
Guaranteed by  
design  
SID256  
SID257  
TWS48  
TWS24  
Number of Wait states at  
48 MHz  
Number of Wait states at  
24 MHz  
2
CPU execution  
from Flash  
CPU execution  
from Flash  
1
Notes  
9. It can take as much as 20 milliseconds to write to flash. During this time the device should not be reset, or  
flash operations will be interrupted and cannot be relied on to have completed. Reset sources include the  
XRES pin, software resets, CPU lockup states and privilege violations, improper power supply levels, and  
watchdogs. Make certain that these are not inadvertently activated.  
10.Guaranteed by characterization.  
Datasheet  
48  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Electrical specifications  
5.6  
System resources  
5.6.1  
Power-on reset (POR)  
Table 29  
Power-on reset (PRES)  
Spec ID#  
SID.CLK#6 SR_POWER  
Parameter  
Description  
Power supply slew  
rate  
Min  
1[11]  
Typ  
Max  
67  
Unit Details/conditions  
V/ms On power-up and  
power-down  
SID185[12] VRISEIPOR  
SID186[12] VFALLIPOR  
Rising trip voltage  
Falling trip voltage  
0.80  
0.70  
1.5  
1.4  
V
5.6.2  
Brown-out detect (BOD)  
Table 30  
Brown-out detect (BOD) for VCCD  
Spec ID#  
Parameter  
Description  
Min  
1.48  
Typ  
Max  
1.62  
Unit Details/conditions  
SID190[12] VFALLPPOR  
BOD trip voltage in  
active and sleep  
modes  
BOD trip voltage in  
Deep Sleep  
V
SID192[12] VFALLDPSLP  
1.11  
1.5  
5.6.3  
SWD interface  
Table 31  
SWD interface specifications  
Spec ID#  
Parameter  
Description  
Min  
Typ  
Max  
Unit Details/conditions  
SID213  
F_SWDCLK1  
3.3 V VDD 5.5 V  
14  
MHz SWDCLK 1/3 CPU  
clock frequency  
SID214  
F_SWDCLK2  
1.71 V VDD 3.3 V  
7
SWDCLK 1/3 CPU  
clock frequency  
SID215[12] T_SWDI_SETUP T = 1/f SWDCLK  
SID216[12] T_SWDI_HOLD T = 1/f SWDCLK  
SID217[12] T_SWDO_VALID T = 1/f SWDCLK  
SID217A[12] T_SWDO_HOLD T = 1/f SWDCLK  
0.25 × T  
0.25 × T  
ns  
0.5 × T  
1
Notes  
11.If the minimum ramp rate cannot be met, XRES should be asserted during the voltage ramp  
(1.5 V > VDDD > 1.0 V for ramp-down or until the voltage is stable for ramp-up). Note that a glitch on the I2C  
bus could occur during the voltage ramp in this case.  
12.Guaranteed by characterization.  
Datasheet  
49  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Electrical specifications  
5.6.4  
Internal Main Oscillator  
Table 32  
IMO DC specifications  
(Guaranteed by design)  
Spec ID#  
SID218  
Parameter  
IIMO1  
Description  
IMO operating current  
at 48 MHz  
Min  
Typ  
Max  
250  
Unit Details/conditions  
µA  
SID219  
IIMO2  
IMO operating current  
at 24 MHz  
180  
µA  
Table 33  
IMO AC specifications  
Spec ID# Parameter  
Description  
Min  
Typ  
Max Unit  
Details/conditions  
SID223  
SID223A  
SID333  
FIMOTOL1  
FIMOTOL1A  
IMOWCO  
Frequency variation at 24,  
32, and 48 MHz (trimmed)  
Frequency variation at 24,  
32, and 48 MHz (trimmed)  
±2  
%
%
%
–40°C TA 105°C  
±2.5  
±0.25  
–40°C TA 125°C  
All IMO settings  
IMO variation in  
WCO-locked DPLL  
mode  
SID226  
SID228  
TSTARTIMO  
TJITRMSIMO2 RMS jitter at 24 MHz  
IMO startup time  
145  
7
µs  
ps  
5.6.5  
Internal low-speed oscillator  
Table 34  
ILO DC specifications  
(Guaranteed by design)  
Spec ID# Parameter  
Description  
ILO operating current  
Min  
Typ  
0.3  
Max Unit  
1.05 µA  
Details/conditions  
SID231  
IILO1  
Table 35  
ILO AC specifications  
Description  
SID234[13] TSTARTILO1 ILO startup time  
Spec ID# Parameter  
Min  
40  
20  
Typ  
50  
40  
Max Unit  
Details/conditions  
2
60  
80  
ms  
%
SID236[13] TILODUTY  
ILO duty cycle  
SID237  
FILOTRIM1  
ILO frequency range  
kHz  
Notes  
13.Guaranteed by characterization.  
Datasheet  
50  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Electrical specifications  
5.6.6  
Watch crystal oscillator (WCO)  
Table 36  
WCO specifications  
Spec ID# Parameter  
Description  
Crystal frequency  
Frequency tolerance  
Equivalent series resistance  
Drive level  
Startup time  
Crystal load capacitance  
Crystal shunt capacitance  
Min  
6
Typ  
32.768  
50  
50  
1.35  
Max Unit Details/conditions  
kHz –  
250 ppm With 20-ppm crystal  
SID398  
SID399  
SID400  
SID401  
SID402  
SID403  
SID404  
SID405  
FWCO  
FTOL  
ESR  
PD  
TSTART  
CL  
1
kΩ  
µW  
ms  
pF  
500  
12.5  
C0  
IWCO1  
pF  
Operating current (high  
power mode)  
8
µA  
5.6.7  
External clock  
Table 37  
External clock specifications  
Spec ID# Parameter  
Description  
Min  
0
Typ  
Max Unit Details/conditions  
SID305[14] ExtClkFreq External clock input  
frequency  
48  
MHz –40°C TA 85°C  
SID306[14] ExtClkDuty Duty cycle; measured at  
VDD/2  
45  
55  
%
–40°C TA 85°C  
Notes  
14.Guaranteed by design.  
Datasheet  
51  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Electrical specifications  
5.6.8  
External Crystal Oscillator (ECO) and PLL  
Table 38  
ECO specifications  
Spec ID# Parameter  
Description  
External clock input  
frequency  
Min  
Typ  
Max Unit Details/conditions  
SID316[15] IECO1  
1.5  
mA  
SID317[15] FECO  
Crystal frequency range  
4
33  
MHz –  
Table 39  
PLL specifications  
Spec ID# Parameter  
Description  
Min  
1
1
Typ  
530  
300  
Max Unit Details/conditions  
SID410  
SID411  
SID412  
SID413  
IDD_PLL_48 In = 3 MHz, Out = 48 MHz  
IDD_PLL_24 In = 3 MHz, Out = 24 MHz  
Fpllin  
610  
405  
48  
µA  
µA  
MHz –  
MHz –  
PLL input frequency  
PLL intermediate  
frequency; prescaler out  
Fpllint  
3
SID414  
SID415  
Fpllvco  
Divvco  
VCO output frequency  
before post-divide  
VCO Output post-divider  
range; PLL output  
frequency is Fpplvco/Divvco  
22.5  
1
104  
8
MHz –  
SID416  
SID417  
Plllocktime Lock time at startup  
250  
150  
µs  
Jperiod_1  
Period jitter for  
VCO 67 MHz  
ps Guaranteed by  
design  
–40°C TA 85°C  
SID416A  
Jperiod_2  
Period jitter for  
VCO 67 MHz  
200  
ps Guaranteed by  
design  
–40°C TA 85°C  
5.6.9  
System clock  
Table 40  
Block specs  
Spec ID# Parameter  
Description  
Min  
3
Typ  
Max  
4
Unit Details/conditions  
Periods –  
SID262[15] TCLKSWITCH System clock source  
switching time  
5.6.10  
Smart I/O  
Table 41  
Smart I/O pass-through time (delay in bypass mode)  
Spec ID# Parameter  
Description  
Min  
Typ  
Max  
Unit Details/conditions  
SID252  
PRG_BYPASS Max delay added by smart  
I/O in bypass mode  
1.6  
ns  
Notes  
15.Guaranteed by design.  
Datasheet  
52  
002-34139 Rev. *C  
2023-03-17  
6
Ordering information  
Table 42 lists the marketing part numbers (MPNs) for the PSoC™ 4700S Plus devices.  
Table 42 Ordering information  
4700S Plus CY8C4746LQS-S263 48 64  
4700S Plus CY8C4747LQS-S453 48 128  
8
8
2
X
X
X
X
X
1000 Ksps  
1000 Ksps  
2
2
8
8
4
4
X
X
X
X
19  
19  
34  
34  
X
X
X
X
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Ordering information  
The nomenclature used in the preceding table is based on the following part numbering convention:  
Field  
CY8C  
4
A
B
Description  
Infineon prefix  
Architecture  
Family  
Values  
Meaning  
4
7
2
PSoC™ 4  
4700S family  
CPU speed  
24 MHz  
4
48 MHz  
C
Flash capacity  
4
16 KB  
5
32 KB  
6
7
64 KB  
128 KB  
DE  
F
S
Package code  
Temperature range  
Silicon family  
LQ  
S
S
QFN  
Automotive (AEC-Q100: –40°C to +105°C)  
PSoC™ 4 S-series  
M
L
PSoC™ 4 M-series  
PSoC™ 4 L-series  
XYZ  
Attributes code  
000-999  
Code of feature set in the specific family  
The following is an example of a part number:  
CY8C  
4
A
B
C
DE  
F
S
XYZ  
T
T = Tape and reel  
Attributes code  
Silicon family  
Temperature range  
Package code  
Flash capacity  
CPU speed  
Family within architecture  
Architecture  
Infineon prefix  
Example  
4: PSoC™ 4  
1: 4700S Plus family  
4: 48 MHz  
6: 64 KB  
LQ: QFN  
S: Automotive  
Datasheet  
54  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Packaging  
7
Packaging  
The PSoC™ 4700S Plus will be offered in 40-QFN package.  
Table 43 provides the package dimensions and drawing numbers.  
Table 43  
Spec ID#  
BID27A  
Package list  
Package  
Description  
Package dwg  
002-25105  
40-pin QFN  
6 × 6 × 0.6-mm height with 0.5-mm pitch with wettable  
flanks  
Table 44  
Package thermal characteristics  
Parameter  
Description  
Package  
Conditions  
Min  
Typ  
Max Unit  
TA  
Operating ambient  
temperature  
Operating junction  
temperature  
For S-grade devices  
–40  
25  
105  
TJ  
For S-grade devices  
–40  
115  
TJA  
TJC  
Package θJA  
40-pin QFN  
40-pin QFN  
25  
3
°C/W  
°C/W  
Package θJC  
Table 45  
Solder reflow peak temperature  
Package Maximum peak temperature  
All 260 °C  
Maximum time at peak temperature  
30 seconds  
Table 46  
Package moisture sensitivity level (MSL), IPC/JEDEC J-STD-020  
Package  
All  
MSL  
MSL 3  
Datasheet  
55  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Packaging  
7.1  
Package diagram  
002-25105 *A  
Figure 8  
40-pin QFN (6 × 6 × 0.6 mm (4.6 × 4.6 mm E-Pad (Sawn))) package outline  
Datasheet  
56  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Acronyms  
8
Acronyms  
Table 47  
Acronyms used in this document  
Acronym  
Description  
abus  
ADC  
AG  
analog local bus  
analog-to-digital converter  
analog global  
AMBA (advanced microcontroller bus architecture) high-performance bus, an ARM data  
transfer bus  
AHB  
ALU  
arithmetic logic unit  
AMUXBUS  
API  
APSR  
ARM®  
ATM  
BW  
analog multiplexer bus  
application programming interface  
application program status register  
advanced RISC machine, a CPU architecture  
automatic thump mode  
bandwidth  
CAN  
CMRR  
CPU  
CRC  
DAC  
DFB  
Controller Area Network, a communications protocol  
common-mode rejection ratio  
central processing unit  
cyclic redundancy check, an error-checking protocol  
digital-to-analog converter, see also IDAC, VDAC  
digital filter block  
DIO  
digital input/output, GPIO with only digital capabilities, no analog. See GPIO.  
Dhrystone million instructions per second  
direct memory access, see also TD  
differential nonlinearity, see also INL  
do not use  
DMIPS  
DMA  
DNL  
DNU  
DR  
port write data registers  
DSI  
digital system interconnect  
DWT  
ECC  
data watchpoint and trace  
error correcting code  
ECO  
EEPROM  
EMI  
EMIF  
EOC  
EOF  
external crystal oscillator  
electrically erasable programmable read-only memory  
electromagnetic interference  
external memory interface  
end of conversion  
end of frame  
EPSR  
ESD  
execution program status register  
electrostatic discharge  
ETM  
FIR  
FPB  
embedded trace macrocell  
finite impulse response, see also IIR  
flash patch and breakpoint  
Datasheet  
57  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Acronyms  
Table 47  
Acronyms used in this document (continued)  
Description  
Acronym  
FS  
full-speed  
GPIO  
HVI  
IC  
general-purpose input/output, applies to a PSoC™ pin  
high-voltage interrupt, see also LVI, LVD  
integrated circuit  
IDAC  
IDE  
I2C, or IIC  
IIR  
ILO  
IMO  
INL  
current DAC, see also DAC, VDAC  
integrated development environment  
Inter-Integrated Circuit, a communications protocol  
infinite impulse response, see also FIR  
internal low-speed oscillator, see also IMO  
internal main oscillator, see also ILO  
integral nonlinearity, see also DNL  
input/output, see also GPIO, DIO, SIO, USBIO  
initial power-on reset  
I/O  
IPOR  
IPSR  
IRQ  
interrupt program status register  
interrupt request  
ITM  
LCD  
LIN  
instrumentation trace macrocell  
liquid crystal display  
Local Interconnect Network, a communications protocol.  
link register  
LR  
LUT  
LVD  
LVI  
LVTTL  
MAC  
MCU  
MISO  
NC  
lookup table  
low-voltage detect, see also LVI  
low-voltage interrupt, see also HVI  
low-voltage transistor-transistor logic  
multiply-accumulate  
microcontroller unit  
master-in slave-out  
no connect  
NMI  
NRZ  
NVIC  
NVL  
opamp  
PAL  
nonmaskable interrupt  
non-return-to-zero  
nested vectored interrupt controller  
nonvolatile latch, see also WOL  
operational amplifier  
programmable array logic, see also PLD  
program counter  
PC  
PCB  
PGA  
PHUB  
PHY  
PICU  
PLA  
printed circuit board  
programmable gain amplifier  
peripheral hub  
physical layer  
port interrupt control unit  
programmable logic array  
Datasheet  
58  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Acronyms  
Table 47  
Acronyms used in this document (continued)  
Description  
Acronym  
PLD  
PLL  
programmable logic device, see also PAL  
phase-locked loop  
PMDD  
POR  
PRES  
PRS  
PS  
package material declaration data sheet  
power-on reset  
precise power-on reset  
pseudo random sequence  
port read data register  
PSoC™  
PSRR  
PWM  
RAM  
RISC  
RMS  
RTC  
RTL  
Programmable system-on-chip  
power supply rejection ratio  
pulse-width modulator  
random-access memory  
reduced-instruction-set computing  
root-mean-square  
real-time clock  
register transfer language  
remote transmission request  
receive  
RTR  
RX  
SAR  
SC/CT  
SCL  
SDA  
S/H  
successive approximation register  
switched capacitor/continuous time  
I2C serial clock  
I2C serial data  
sample and hold  
SINAD  
SIO  
SOC  
SOF  
SPI  
signal to noise and distortion ratio  
special input/output, GPIO with advanced features. See GPIO.  
start of conversion  
start of frame  
Serial Peripheral Interface, a communications protocol  
slew rate  
SR  
SRAM  
SRES  
SWD  
SWV  
TD  
THD  
TIA  
TRM  
TTL  
static random access memory  
software reset  
serial wire debug, a test protocol  
single-wire viewer  
transaction descriptor, see also DMA  
total harmonic distortion  
transimpedance amplifier  
technical reference manual  
transistor-transistor logic  
transmit  
TX  
UART  
UDB  
Universal Asynchronous Transmitter Receiver, a communications protocol  
universal digital block  
Datasheet  
59  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Acronyms  
Table 47  
Acronyms used in this document (continued)  
Description  
Acronym  
USB  
Universal Serial Bus  
USBIO  
VDAC  
WDT  
USB input/output, PSoC™ pins used to connect to a USB port  
voltage DAC, see also DAC, IDAC  
watchdog timer  
WOL  
write once latch, see also NVL  
watchdog timer reset  
external reset I/O pin  
WRES  
XRES  
XTAL  
crystal  
Datasheet  
60  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Document conventions  
9
Document conventions  
9.1  
Units of measure  
Table 48  
Units of measure  
Symbol  
Unit of measure  
°C  
dB  
degrees celsius  
decibel  
fF  
Hz  
femto farad  
hertz  
KB  
1024 bytes  
kbps  
Khr  
kHz  
k  
ksps  
LSB  
Mbps  
MHz  
M  
Msps  
µA  
kilobits per second  
kilohour  
kilohertz  
kilo ohm  
kilosamples per second  
least significant bit  
megabits per second  
megahertz  
mega-ohm  
megasamples per second  
microampere  
microfarad  
µF  
µH  
µs  
µV  
microhenry  
microsecond  
microvolt  
µW  
mA  
ms  
mV  
nA  
microwatt  
milliampere  
millisecond  
millivolt  
nanoampere  
nanosecond  
nanovolt  
ns  
nV  
ohm  
pF  
picofarad  
ppm  
ps  
s
parts per million  
picosecond  
second  
sps  
sqrtHz  
V
samples per second  
square root of hertz  
volt  
Datasheet  
61  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Revision history  
Revision history  
Document  
Date  
Description of changes  
revision  
**  
2021-12-16  
Initial release.  
Changed the datasheet status from Target datasheet to Datasheet (Final).  
Updated Electrical specifications:  
Updated Analog peripherals:  
Updated Inductive sensing:  
Updated Table 17.  
Updated System resources:  
*A  
2022-03-21  
Updated Power-on reset (POR):  
Added Note 11 and referred the same note in minimum value of SR_POWER  
parameter in Table 29.  
Updated Packaging:  
Updated Table 44.  
Updated Block diagram:  
Updated Figure 2.  
Updated Functional definition:  
Updated Inductive sensing:  
Added SNR vs target distance.  
Added Distance delta (metal target displacement) when SNR = 5.  
Added Raw counts vs target distance.  
Added Noiseless precision.  
Added Sensitivity.  
*B  
2022-09-19  
Added Noise floor (%).  
Added Effective number of bits (ENOB).  
Added Scan time.  
Added Detection range.  
Updated Electrical specifications:  
Updated Analog peripherals:  
Updated Inductive sensing:  
Updated Table 17.  
Completing Sunset Review.  
Updated General description:  
Updated description.  
Updated Features:  
Updated description.  
Updated Block diagram:  
Updated Figure 2.  
Updated Functional definition:  
Updated Inductive sensing:  
Updated description.  
*C  
2023-03-17  
Added Figure 5.  
Updated Pinouts:  
Updated description.  
Updated Alternate pin functions:  
Updated description.  
Updated Table 2.  
Updated Power:  
Updated Mode 2: 1.8 V ± 5% external supply:  
Updated Figure 7.  
Datasheet  
62  
002-34139 Rev. *C  
2023-03-17  
Automotive PSoC™ 4 MCU: PSoC™ 4700S Plus  
Revision history  
Document  
Date  
Description of changes  
revision  
Updated Electrical specifications:  
Updated Analog peripherals:  
Updated Inductive sensing:  
Updated Table 17.  
*C  
2023-03-17  
Updated Ordering information:  
Updated Table 42 (No change in part numbers; updated details under  
“Smart IOs” column).  
Updated to new template.  
Datasheet  
63  
002-34139 Rev. *C  
2023-03-17  
Please read the Important Notice and Warnings at the end of this document  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
WARNINGS  
The information given in this document shall in no Due to technical requirements products may contain  
Edition 2023-03-17  
Published by  
event be regarded as a guarantee of conditions or dangerous substances. For information on the types  
characteristics (“Beschaffenheitsgarantie”).  
in question please contact your nearest Infineon  
Technologies office.  
With respect to any examples, hints or any typical  
Infineon Technologies AG  
81726 Munich, Germany  
values stated herein and/or any information Except as otherwise explicitly approved by Infineon  
regarding the application of the product, Infineon Technologies in  
a
written document signed by  
Technologies hereby disclaims any and all authorized  
representatives of Infineon  
warranties and liabilities of any kind, including Technologies, Infineon Technologies’ products may  
without limitation warranties of non-infringement of not be used in any applications where a failure of the  
intellectual property rights of any third party.  
product or any consequences of the use thereof can  
reasonably be expected to result in personal injury.  
© 2023 Infineon Technologies AG.  
All Rights Reserved.  
In addition, any information given in this document  
is subject to customer’s compliance with its  
obligations stated in this document and any  
applicable legal requirements, norms and standards  
concerning customer’s products and any use of the  
product of Infineon Technologies in customer’s  
applications.  
Do you have a question about this  
document?  
Email:  
erratum@infineon.com  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  
Document reference  
002-34139 Rev. *C  

相关型号:

CY8C52

Programmable System-on-Chip (PSoC)
CYPRESS

CY8C5245PVI-112

Programmable System-on-Chip (PSoC)
CYPRESS

CY8C5245PVI-113

Programmable System-on-Chip (PSoC)
CYPRESS

CY8C5246AXI-002

Programmable System-on-Chip (PSoC)
CYPRESS

CY8C5246AXI-038

Programmable System-on-Chip (PSoC)
CYPRESS

CY8C5246AXI-054

Programmable System-on-Chip (PSoC)
CYPRESS

CY8C5246AXI-054T

Micro Peripheral IC, CMOS, PQFP100
CYPRESS

CY8C5246AXI-093

Programmable System-on-Chip (PSoC)
CYPRESS

CY8C5246LTI-029

Programmable System-on-Chip (PSoC)
CYPRESS

CY8C5246LTI-087

Programmable System-on-Chip (PSoC)
CYPRESS

CY8C5246PVI-012

Programmable System-on-Chip (PSoC)
CYPRESS

CY8C5246PVI-071

Programmable System-on-Chip (PSoC)
CYPRESS