CYB06445LQI-S3D42 [INFINEON]

32-位PSoC™ 6 Arm® Cortex®-M4 / M0+;
CYB06445LQI-S3D42
型号: CYB06445LQI-S3D42
厂家: Infineon    Infineon
描述:

32-位PSoC™ 6 Arm® Cortex®-M4 / M0+

文件: 总73页 (文件大小:1094K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Please note that Cypress is an Infineon Technologies Company.  
The document following this cover page is marked as “Cypress” document as this is the  
company that originally developed the product. Please note that Infineon will continue  
to offer the product to new and existing customers as part of the Infineon product  
portfolio.  
Continuity of document content  
The fact that Infineon offers the following product as part of the Infineon product  
portfolio does not lead to any changes to this document. Future revisions will occur  
when appropriate, and any changes will be set out on the document history page.  
Continuity of ordering part numbers  
Infineon continues to support existing part numbers. Please continue to use the  
ordering part numbers listed in the datasheet for ordering.  
www.infineon.com  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
PSoC 64 "Secure Boot" MCU  
General Description  
PSoC® 6 MCU is a high-performance, ultra-low-power and secured MCU platform, purpose-built for IoT applications. The PSoC 64  
product line, based on the PSoC 6 MCU platform, features out-of-box security functionality, providing an isolated root-of-trust with true  
attestation and provisioning services. In addition, it delivers a pre-configured secured execution environment which supports system  
software for various IoT platforms; and enables TLS authentication, secured storage, and secured firmware management. PSoC 64  
also includes a rich execution environment for application development, with RTOS support that communicates with the secured  
execution environment.  
Features  
32-bit Dual CPU Subsystem  
Cypress Bootloader  
Open source MCUBoot[1] based bootloader optimized for  
PSoC 64  
Note: In PSoC 64 the Cortex M0+ is reserved for system  
functions, and is not available for applications.  
150-MHz Arm® Cortex®-M4F (CM4) CPU with single-cycle  
multiply, floating point, and memory protection unit (MPU)  
Pre-built bootloader binary capable of validating, launching and  
updating signed user application images  
100-MHz Cortex-M0+ (CM0+) CPU with single-cycle multiply  
and MPU  
Tightly integrated with provisioned debug and boot policies to  
inherit and implement security policies  
User-selectable core logic operation at either 1.1 V or 0.9 V  
Low-Power 1.7-V to 3.6-V Operation  
Active CPU current slope with 1.1-V core operation  
Cortex-M4: 40 µA/MHz  
Cortex-M0+: 20 µA/MHz  
Six power modes for fine-grained power management  
On-chip DC-DC buck converter, <1 µA quiescent current  
Backup domain with 64 bytes of memory and real-time clock  
Flexible Clocking Options  
Active CPU current slope with 0.9-V core operation  
Cortex-M4: 22 µA/MHz  
Cortex-M0+: 15 µA/MHz  
8-MHz internal main oscillator (IMO) with ±2% accuracy  
Ultra-low-power 32-kHz internal low-speed oscillator (ILO)  
On-chip crystal oscillators (16 to 35 MHz, and 32 kHz)  
Phase-locked loop (PLL) for multiplying clock frequencies  
Frequency-locked loop (FLL) for multiplying IMO frequency  
Integer and fractional peripheral clock dividers  
Three DMA controllers  
Memory Subsystem  
384-KB application flash, 32-KB auxiliary flash (AUXflash), and  
32-KB supervisory flash (SFlash); read-while-write (RWW)  
support. Two 8-KB flash caches, one for each CPU.  
176-KB SRAM with programmable power control and retention  
granularity  
Quad-SPI (QSPI)/Serial Memory Interface (SMIF)  
Execute-In-Place (XIP) from external quad SPI flash  
On-the-fly encryption and decryption  
One-time-programmable (OTP) 1-Kb eFuse array  
Hardware-Based Root-of-Trust (RoT)  
RoTbased on immutable boot-up code, flash content hash, and  
Cypress public key that ensures firmware integrity prior to  
provisioning  
4-KB cache for greater XIP performance with lower power  
Supports single, dual, and quad interfaces with throughput up  
to 320 Mbps  
Supports trusted RoT handover to maintain chain of trust and  
establish OEM trust anchor for secured boot  
Segment LCD Drive  
Device generates a unique device ID and a device secret key  
during the provisioning process, which can be used for  
attestation and signing  
Supports up to 52 segments and up to 8 commons.  
Operates in system Deep Sleep mode  
Serial Communication  
Immutable “Secure Boot” Support  
Seven run-time configurable serial communication blocks  
(SCBs)  
Flexible chain of trust can use different signatures for different  
images  
Six SCBs: configurable as SPI, I2C, or UART  
One Deep Sleep SCB: configurable as SPI or I2C  
ECC-based image signature validation  
USB Full-Speed device interface  
One SD Host Controller/eMMC/SD controller  
One CAN FD block  
Note  
1. For details, refer to https://mcuboot.com/.  
Cypress Semiconductor Corporation  
Document Number: 002-28785 Rev. *I  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised October 26, 2022  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Timing and Pulse-Width Modulation  
Device Identification and Revisions  
Product line ID (12-bit): 0x105  
Twelve timer/counter/pulse-width modulators (TCPWMs)  
Center-aligned, edge, and pseudo-random modes  
Comparator-based triggering of kill signals  
Major/Minor die revision ID: 1/2  
Firmware revisions: ROM Boot: 7.1, Flash Boot: 4.0.2.1842  
(see Boot Code section)  
Programmable Analog  
12-bit 2-Msps SAR ADC with differential and single-ended  
modes and 16-channel sequencer with result averaging  
This product line has a JTAG ID which is available through the  
SWJ interface. It is a 32-bit ID, where:  
Two low-power comparators available in system Deep Sleep  
and Hibernate modes  
The most significant digit is the device revision, based on the  
Major Die Revision  
Built-in temperature sensor connected to ADC  
The next four digits correspond to the part number, for example  
"E4B0" as a hexadecimal number  
Up to 53 Programmable GPIOs  
Two Smart I/O™ ports (8 I/Os) enable Boolean operations on  
GPIO pins; available during system Deep Sleep  
The three least significant digits are the manufacturer ID, in this  
case "069" as a hexadecimal number  
Programmable drive modes, strengths, and slew rates  
Two overvoltage-tolerant (OVT) pins  
The Silicon ID system call can be used by firmware to get Silicon  
ID and ROM Boot data. For more information, see the technical  
reference manual (TRM).  
Capacitive Sensing  
The Flash Boot version can be read directly from designated  
addresses 0x1600 2004 and 0x1600 2018. For more  
information, see the technical reference manual (TRM).  
CypressCapSense® sigma-delta(CSD)providesbest-in-class  
signal-to-noise ratio (SNR), liquid tolerance, and proximity  
sensing  
Enables dynamic usage of both self and mutual sensing  
Automatic hardware tuning (SmartSense™)  
Cryptography Accelerator  
Hardware acceleration for symmetric and asymmetric  
cryptographic methods and hash functions  
True random number generation (TRNG) function  
Packages  
68 QFN  
Document Number: 002-28785 Rev. *I  
Page 2 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Contents  
Development Ecosystem................................................. 4  
PSoC 6 MCU Resources .............................................4  
Blocks and Functionality................................................. 6  
Functional Description..................................................... 8  
CPU and Memory Subsystem .....................................8  
System Resources ....................................................12  
Programmable Analog Subsystems ..........................14  
Programmable Digital ................................................15  
Fixed-Function Digital ................................................16  
GPIO .........................................................................17  
Special-Function Peripherals ....................................18  
PSoC 64 Security ......................................................21  
Pinouts ............................................................................ 24  
Power Supply Considerations....................................... 31  
Electrical Specifications ................................................ 34  
Absolute Maximum Ratings .......................................34  
Device-Level Specifications ......................................34  
Analog Peripherals ....................................................43  
Digital Peripherals .....................................................49  
Memory .....................................................................52  
System Resources ....................................................53  
Ordering Information...................................................... 62  
PSoC 6 MPN Decoder ..............................................63  
Packaging........................................................................ 64  
Acronyms........................................................................ 66  
Document Conventions ................................................. 68  
Units of Measure .......................................................68  
Errata ............................................................................... 69  
Revision History ............................................................. 70  
Sales, Solutions, and Legal Information ...................... 72  
Worldwide Sales and Design Support .......................72  
Products ....................................................................72  
PSoC® Solutions ......................................................72  
Cypress Developer Community .................................72  
Technical Support .....................................................72  
Document Number: 002-28785 Rev. *I  
Page 3 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Development Ecosystem  
PSoC 6 MCU Resources  
Cypress provides a wealth of data at www.cypress.com to help you select the right PSoC device and quickly and effectively integrate  
it into your design. The following is an abbreviated list of resources for PSoC 6 MCU:  
Overview: PSoC Portfolio, PSoC Roadmap  
Product Selectors: PSoC 6 MCU  
Development Tools  
ModusToolbox® software enables cross platform code de-  
velopment with a robust suite of tools and software libraries  
Application Notes cover a broad range of topics, from basic  
to advanced level, and include the following:  
AN221774: Getting Started with PSoC 6 MCU  
AN218241: PSoC 6 MCU Hardware Design Guide  
AN213924: PSoC 6 MCU Device Firmware Update Guide  
AN215656: PSoC 6 MCU Dual-CPU System Design  
AN219528: PSoC 6 MCU Power Reduction Techniques  
AN85951: PSoC 4, PSoC 6 MCU CapSense Design Guide  
“Secure Boot” SDK includes all required libraries, tools, and  
sample code to provision and develop applications for  
PSoC 64 MCUs.  
CY8CPROTO-064B0S3PSoC64SecureBootPrototyping  
Kit: a low-cost hardware platform that enables design and  
debug of the PSoC 64 CYB06445LQI-S3D42 product line.  
PSoC 6 CAD libraries provide footprint and schematic sup-  
port for common tools. BSDL files and IBIS models are also  
available.  
Training Videos are available on a wide range of topics  
including the PSoC 6 MCU 101 series  
CodeExamplesdemonstrateproductfeaturesandusage,and  
are also available on Cypress GitHub repositories.  
Cypress Developer Community enables connection with  
fellow PSoC developers around the world, 24 hours a day, 7  
days a week, and hosts a dedicated PSoC 6 MCU Community  
Technical Reference Manuals (TRMs) provide detailed  
descriptions of PSoC 6 MCU architecture and registers.  
PSoC 6 MCU Programming Specification provides the infor-  
mation necessary to program PSoC 6 MCU nonvolatile  
memory  
ModusToolbox™ IDE and the PSoC 6 SDK  
ModusToolbox Software is Cypress' comprehensive collection of multi-platform tools and software libraries that enable an immersive  
development experience for creating converged MCU and wireless systems. It is:  
Comprehensive - it has the resources you need  
Flexible - you can use the resources in your own workflow  
Atomic - you can get just the resources you want  
Cypress provides a large collection of code repositories on GitHub. This includes:  
Board Support Packages (BSPs) aligned with Cypress kits  
Low-level resources, including a hardware abstraction layer (HAL) and peripheral driver library (PDL)  
Middleware enabling industry-leading features such as CapSense, Bluetooth Low Energy, and mesh networks  
An extensive set of thoroughly tested code example applications  
Note: The HAL provides a high-level, simplified interface to configure and use the hardware blocks on Cypress MCUs. It is a generic  
interface that can be used across multiple product families. For example, it wraps the PSoC 6 PDL with a simplified API, but the PDL  
exposes all low-level peripheral functionality. You can leverage the HAL's simpler and more generic interface for most of an application,  
even if one portion requires finer-grained control.  
ModusToolbox Software is IDE-neutral and easily adaptable to your workflow and preferred development environment. It includes a  
project creator, peripheral and library configurators, a library manager, as well as the optional Eclipse IDE for ModusToolbox. For  
information on using Cypress tools, refer to the documentation delivered with ModusToolbox software, and AN228571: Getting Started  
with PSoC 6 MCU on ModusToolbox.  
Document Number: 002-28785 Rev. *I  
Page 4 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Figure 1. ModusToolbox Software Tools  
Document Number: 002-28785 Rev. *I  
Page 5 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Blocks and Functionality  
Figure 2 shows the major subsystems and a simplified view of their interconnections. The color coding shows the lowest power mode  
where the particular block is still functional (for example, the SRAM is functional down to system Deep Sleep mode).  
Figure 2. Block Diagram  
Color Key:  
Power Modes and  
PSoC 64 “Secure Boot” MCU  
CYB06445LQI-S3D42  
Domains  
Programmable Analog  
SAR ADC 12 bit  
System Resources  
System LP/ULP Mode  
CPUs Active/Sleep  
Power  
Clocks  
Temperature  
Sensor  
OVP  
POR  
LVD  
BOD  
IMO  
FLL  
ECO  
2x PLL  
System  
DeepSleep Mode  
Buck Regulator  
XRES Reset  
Backup Regs  
2x MCWDT  
ILO  
WDT  
WCO  
RTC  
System  
PMIC Control  
Hibernate Mode  
Backup  
Domain  
CPU Subsystem  
SCB  
Cortex M4F CPU  
150/50 MHz, 1.1/0.9 V  
SWJ, ETM, ITM, CTI  
Cortex M0+ CPU  
100/25 MHz, 1.1/0.9 V  
SWJ, MTB, CTI  
3x DMA  
Controller  
Crypto  
DES/TDES, AES, SHA,  
CRC, TRNG, RSA/ECC  
Accelerator  
USB  
PHY  
Flash  
512 KB + 32 KB + 32 KB  
8 KB cache for each CPU  
SRAM  
256 KB  
ROM  
64 KB  
Document Number: 002-28785 Rev. *I  
Page 6 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
This product line has up to 512 KB of flash; however 128 KB is reserved for system usage, leaving 384 KB for applications. The 32-KB  
auxiliary flash (AUXflash) is also reserved, and is not available for applications. It also has up to 256 KB of SRAM; however 80 KB is  
reserved for system usage, leaving 176 KB for applications.  
The PSoC 64 devices offer an immutable, RoT-based boot-up process, which allows only signed applications to be booted up. In  
addition, user assets such as keys and debug policies can be provisioned on the device in an HSM environment and made immutable.  
PSoC 64 also allows for root-of-trust based cryptography services which can be accessed using system calls.  
There are three debug access ports, one each for CM4 and CM0+, and a system port. All debug and test interfaces can be permanently  
disabled during final production provisioning to avoid any malicious reprogramming or reading of flash and register contents.  
PSoC 6 MCU devices include extensive support for programming, testing, debugging, and tracing both hardware and firmware. All  
device interfaces can be permanently disabled for applications concerned about a reprogrammed device or starting and interrupting  
flash programming sequences. All programming, debug, and test interfaces can be disabled.  
Complete debug-on-chip functionality enables full device debugging in the final system using the standard production device. It does  
not require special interfaces, debugging pods, simulators, or emulators. Only the standard programming connections are required  
to fully support debug.  
The Eclipse IDE for ModusToolbox provides fully integrated programming and debug support for these devices. The SWJ (SWD and  
JTAG) interface is fully compatible with industry-standard third party probes. With the ability to disable debug features, with very robust  
flash protection, and by allowing customer-proprietary functionality to be implemented in on-chip programmable blocks, PSoC 6  
provides multiple levels of device security.  
Document Number: 002-28785 Rev. *I  
Page 7 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Functional Description  
The following sections provide an overview of the features,  
capabilities and operation of each functional block identified in  
the block diagram in Figure 2. For more detailed information,  
refer to the following documentation:  
CPU and Memory Subsystem  
PSoC 6 has multiple bus masters, as Figure 2 shows. They are:  
CPUs, DMA controllers, QSPI, USB, SD Host controller, and a  
Crypto block. Generally, all memory and peripherals can be  
accessed and shared by all bus masters through multi-layer Arm  
AMBA high-performance bus (AHB) arbitration. Accesses  
between CPUs can be synchronized using an inter-processor  
communication (IPC) block.  
Board Support Package (BSP) Documentation  
BSPs are available on GitHub. They are aligned with Cypress  
kits and provide files for basic device functionality such as  
hardware configuration files, startup code, and linker files.  
The BSP also includes other libraries that are required to sup-  
port a kit. Each BSP has its own documentation, but typically  
includes an API reference such as the example here. This  
search link finds all currently available BSPs on the Cypress  
GitHub site.  
CPUs  
There are two Arm Cortex CPUs:  
The Cortex-M4 (CM4) has single-cycle multiply, a floating-point  
unit (FPU), and a memory protection unit (MPU). It can run at up  
to 150 MHz. This is the main CPU, designed for a short interrupt  
response time, high code density, and high throughput.  
Hardware Abstraction Layer API Reference Manual  
The Cypress Hardware Abstraction Layer (HAL) provides a  
high-level interface to configure and use hardware blocks on  
Cypress MCUs. It is a generic interface that can be used  
across multiple product families. You can leverage the HAL's  
simpler and more generic interface for most of an application,  
even if one portion requires finer-grained control. The HAL  
API Reference provides complete details. Example applica-  
tions that use the HAL download it automatically from the  
GitHub repository.  
CM4 implements a version of the Thumb instruction set based  
on Thumb-2 technology (defined in the Armv7-M Architecture  
Reference Manual).  
The Cortex-M0+ (CM0+) has single-cycle multiply, and an MPU.  
It can run at up to 100 MHz; however, for CM4 speeds above 100  
MHz, CM0+ and bus peripherals are limited to half the speed of  
CM4. Thus, for CM4 running at 150 MHz, CM0+ and peripherals  
are limited to 75 MHz.  
In PSoC 64, the initial CM0+ frequency is set according to a  
provisioned security policy (see PSoC 64 Security). The  
frequency ranges from 8 MHz to 50 MHz. For more information,  
see the Register TRM and Architecture TRM.  
Peripheral Driver Library (PDL) Application Programming  
Interface (API) Reference Manual  
The Peripheral Driver Library (PDL) integrates device header  
files and peripheral drivers into a single package and supports  
all PSoC 6 MCU product lines. The drivers abstract the hard-  
ware functions into a set of easy-to-use APIs. These are fully  
documented in the PDLAPI Reference. Example applications  
that use the PSoC 6 PDL download it automatically from the  
GitHub repository.  
CM0+ is the secondary CPU; it is used to implement system calls  
and device-level security, safety, and protection features. CM0+  
provides a secured, uninterruptible boot function. This helps  
ensure that post boot, system integrity is checked and memory  
and peripheral access privileges are enforced.  
CM0+ implements the Armv6-M Thumb instruction set (defined  
in the Armv6-M Architecture Reference Manual).  
Architecture Technical Reference Manual (TRM)  
The architecture TRM provides a detailed description of each  
resource in the device. This is the next reference to use if it is  
necessary to understand the operation of the hardware below  
the software provided by PDL. It describes the architecture  
and functionality of each resource and explains the operation  
of each resource in all modes. It provides specific guidance  
regarding the use of associated registers.  
The CPUs have the following power draw, at VDDD = 3.3 V and  
using the internal buck regulator:  
Table 1. Active Current Slope at VDDD = 3.3 V Using the  
Internal Buck Regulator  
System Power Mode  
ULP  
LP  
Register Technical Reference Manual  
Cortex-M0+  
Cortex-M4  
15 A/MHz  
22 A/MHz  
20 A/MHz  
40 A/MHz  
The register TRM provides a complete list of all registers in  
the device. It includes the breakdown of all register fields,  
their possible settings, read/write accessibility, and default  
states. All registers that have a reasonable use in typical ap-  
plications have functions to access them from within PDL.  
Note that ModusToolbox and PDL may provide software de-  
fault conditions for some registers that are different from and  
override the hardware defaults.  
CPU  
The CPUs can be selectively placed in their Sleep and Deep  
Sleep power modes as defined by Arm.  
Both CPUs have nested vectored interrupt controllers (NVIC) for  
rapid and deterministic interrupt response, and wakeup interrupt  
controllers (WIC) for CPU wakeup from Deep Sleep power  
mode.  
The CPUs have extensive debug support. PSoC 6 has a debug  
access port (DAP) that acts as the interface for device  
programming and debug. An external programmer or debugger  
(the “host”) communicates with the DAP through the device  
serial wire debug (SWD) or Joint Test Action Group (JTAG)  
interface pins. Through the DAP (and subject to device security  
Document Number: 002-28785 Rev. *I  
Page 8 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
restrictions), the host can access the device memory and  
peripherals as well as the registers in both CPUs.  
Direct Memory Access (DMA) Controllers  
This product line has three DMA controllers, with 32, 29, and 2  
channels, which support CPU-independent accesses to memory  
and peripherals. The descriptors for DMA channels can be in  
SRAM or flash. Therefore, the number of descriptors is limited  
only by the size of the memory. Each descriptor can transfer data  
in two nested loops with configurable address increments to the  
source and destination. The size of data transfer per descriptor  
varies based on the type of DMA channel. Refer to the technical  
reference manual (TRM) for detail.  
Each CPU offers debug and trace features as follows:  
CM4 supports six hardware breakpoints and four watchpoints,  
4-bit embedded trace macrocell (ETM), serial wire viewer  
(SWV), and printf()-style debugging through the single wire  
output (SWO) pin.  
CM0+ supports four hardware breakpoints and two watch-  
points, and a micro trace buffer (MTB) with 4-KB dedicated  
RAM.  
Cryptography Accelerator (Crypto)  
PSoC 6 also has an Embedded Cross Trigger for synchronized  
debugging and tracing of both CPUs.  
This subsystem consists of hardware implementation and  
acceleration of cryptographic functions and random number  
generators.  
Interrupts  
This product line has 174 system and peripheral interrupt  
sources, and supports interrupts and system exceptions on both  
CPUs. CM4 has 174 interrupt request lines (IRQ), with the  
interrupt source ‘n’ directly connected to IRQn. CM0+ has eight  
interrupts IRQ[7:0] with configurable mapping of one or more  
interrupt sources to any of the IRQ[7:0]. CM0+ also supports  
eight internal (software only) interrupts.  
The Crypto subsystem supports the following:  
Encryption/Decryption Functions  
Data Encryption Standard (DES)  
Triple DES (3DES)  
Advanced Encryption Standard (AES) (128-, 192-, 256-bit)  
Elliptic Curve Cryptography (ECC)  
RSA cryptography functions  
Each interrupt supports configurable priority levels (eight levels  
for CM4 and four levels for CM0+). Up to four system interrupts  
can be mapped to each of the CPUs' non-maskable interrupts  
(NMI). Up to 39 interrupt sources are capable of waking the  
device from Deep Sleep power mode using the WIC. Refer to the  
technical reference manual (TRM).  
Hashing functions  
Secure Hash Algorithm (SHA)  
SHA-1  
SHA-224/-256/-384/-512  
Message authentication functions (MAC)  
Hashed message authentication code (HMAC)  
Cipher-based message authentication code (CMAC)  
InterProcessor Communication (IPC)  
In addition to the Arm SEV and WFE instructions, a hardware  
InterProcessor Communication (IPC) block is included. It  
includes 16 IPC channels and 16 IPC interrupt structures. The  
IPC channels can be used to implement data communication  
between the processors. Each IPC channel also implements a  
locking scheme which can be used to manage shared resources.  
The IPC interrupts let one processor interrupt the other, signaling  
an event. This is used to trigger events such as notify and release  
of the corresponding IPC channels. Some IPC channels and  
other resources are reserved, as Table 2 shows:  
32-bit cyclic redundancy code (CRC) generator  
Random number generators  
Pseudo random number generator (PRNG)  
True random number generator (TRNG)  
Protection Units  
This product line has multiple types of protection units to control  
erroneous or unauthorized access to memory and peripheral  
registers. CM4 and CM0+ have Arm MPUs for protection at the  
bus master level. Other bus masters use additional MPUs.  
Shared memory protection units (SMPUs) help implement  
protection for memory resources that are shared among multiple  
bus masters. Peripheral protection units (PPU) are similar to  
SMPUs but are designed for protecting the peripheral register  
space.  
Table 2. Distribution of IPC Channels and Other Resources  
Resources Available  
Resources Consumed  
IPC channels,  
16 available  
13 reserved  
IPC interrupts,  
16 available  
13 reserved  
Protection units support memory and peripheral access  
attributes including address range, read/write, code/data,  
privilege level, secured/non-secured, and protection context.  
Some protection unit resources are reserved for system usage;  
see the technical reference manual for details. Up to eight  
protection contexts (boot is in protection context 0) allow access  
privileges for memory and system resources to be set by the boot  
process per protection context by bus master and code privilege  
level.  
Other interrupts  
CM0+ NMI  
1 reserved  
Reserved  
Other resources:  
clock dividers, DMA channels, etc.  
4 CM0+ interrupt mux  
Document Number: 002-28785 Rev. *I  
Page 9 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
In PSoC 64, multiple protection contexts are used to isolate the  
different security levels within the device. The CM0+ makes use  
of several of them during the boot sequence, bootloading,  
system calls, etc. Protection context 6 is used for the user  
application code that runs on the CM4 CPU. The SMPUs are set  
up by default and cannot be modified by the user. See section 8  
in the Architecture TRM for the protection context assignment.  
See section 8 in the Architecture TRM for the protection context  
assignment.  
eFuse  
A one-time-programmable (OTP) eFuse array consists of  
1024 bits, all of which are reserved for system use. The bits  
are used for storing hash values, unique IDs, or other similar  
PSoC 64 parameters.  
Each fuse is individually programmed; once programmed (or  
“blown”), its state cannot be changed. Blowing a fuse transi-  
tions it from the default state of 0 to 1. To program an eFuse,  
VDDIO0 must be at 2.5 V ±5%, at 14 mA.  
Memory  
Because blowing an eFuse is an irreversible process, pro-  
gramming is recommended only in mass production under  
controlled factory conditions. For more information, see  
PSoC 6 MCU Programming Specifications.  
PSoC 6 contains flash, SRAM, ROM, and eFuse memory blocks.  
Flash  
There is up to 512 KB of flash; however 128 KB is reserved  
for system usage, leaving 384 KB for applications. The 32-KB  
auxiliary flash (AUXflash) is also reserved, and is not avail-  
able for applications.  
Boot Code  
Two blocks of code, ROM Boot and Flash Boot, are  
pre-programmed into the device and work together to provide  
device startup and configuration, basic security features,  
life-cycle stage management and other system functions.  
There are also two 32-KB flash sectors:  
AUXflash  
Supervisory flash (SFlash). Data stored in Sflash includes  
device trim values, Flash Boot code, and encryption keys.  
After the device transitions into the “Secure” lifecycle stage,  
SFlash can no longer be changed.  
ROM Boot  
On a device reset, the boot code in ROM is the first code to  
execute. This code performs the following:  
Integrity checks of flash boot code  
Device trim setting (calibration)  
Setting the device protection units  
The flash uses 128-bit-wide accesses to reduce power. Write  
operations can be performed at the row level. A row is  
512 bytes. Read operations are supported in both Low Power  
and Ultra-Low Power modes, however write operations may  
not be performed in Ultra-Low Power mode.  
SettingdeviceaccessrestrictionsforSecurelifecyclestates  
ROM cannot be changed and acts as the root of trust in a  
secured system.  
The flash controller has two caches, one for each CPU. Each  
cache is 8 KB, with 4-way set associativity.  
Flash Boot  
SRAM  
Flash boot is firmware stored in SFlash that ensures that only  
a validated application may run on the device. It also ensures  
that the firmware image has not been modified, such as by a  
malicious third party.  
Up to 256 KB of SRAM is provided, however, 80 KB is re-  
served for system usage, leaving 176 KB for applications..  
Power control and retention granularity is implemented in  
32-KB blocks allowing the user to control the amount of mem-  
ory retained in Deep Sleep. Memory is not retained in Hiber-  
nate mode.  
Flash boot:  
Is validated by ROM Boot  
Runs after ROM Boot and before the user application  
Enables system calls  
ROM  
The 64-KB ROM, also referred to as the supervisory ROM  
(SROM), provides code (ROM Boot) for several system func-  
tions. The ROM contains device initialization, flash write, se-  
curity, eFuse programming, and other system-level routines.  
ROM code is executed only by the CM0+ CPU, in protection  
context 0. A system function can be initiated by either CPU,  
or through the DAP. This causes an NMI in CM0+, which  
causes CM0+ to execute the system function.  
Enables provisioning and device policy features  
Implements RoT-based services for cryptography  
Provides secured storage for keys and certificates  
Validates and launches first image based on policies  
provisioned in the device  
Uses mbed TLS v2.24  
If the user application cannot be validated, then flash boot  
ensures that the device is transitioned into a safe state. Refer  
to the PSoC 64 Security section for more details.  
Document Number: 002-28785 Rev. *I  
Page 10 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Memory Map  
Both CPUs have a fixed address map, with shared access to memory and peripherals. The 32-bit (4 GB) address space is divided  
into the Arm-defined regions shown in Table 8. Note that code can be executed from the Code and External RAM regions.  
Table 3. Address Map for CM4 and CM0+  
Address Range  
Name  
Code  
Use  
Program code region. Data can also be placed here. It includes the exception  
vector table, which starts at address 0.  
0x0000 0000 – 0x1FFF FFFF  
0x2000 0000 – 0x3FFF FFFF  
0x4000 0000 – 0x5FFF FFFF  
SRAM  
Data region. This region is not supported in PSoC 6.  
All peripheral registers. Code cannot be executed from this region. CM4 bit-band  
in this region is not supported in PSoC 6.  
Peripheral  
External  
RAM  
SMIF or Quad SPI, (see the Quad-SPI (QSPI)/Serial Memory Interface (SMIF)  
section). Code can be executed from this region.  
0x6000 0000 – 0x9FFF FFFF  
0xA000 0000 – 0xDFFF FFFF  
External  
Device  
Not used.  
Private  
Peripheral  
Bus  
0xE000 0000 – 0xE00F FFFF  
0xE010 0A000 – 0xFFFF FFFF  
Provides access to peripheral registers within the CPU core.  
Device-specific system registers.  
Device  
The device memory map shown in Table 4 applies to both CPUs. That is, the CPUs share access to all PSoC 6 MCU memory and  
peripheral registers.  
Table 4. Internal Memory Address Map for CM4 and CM0+  
Address Range  
Memory Type  
Size  
0x0000 0000 – 0x0000 FFFF  
ROM  
64 KB  
0x0800 0000 – 0x0802 BFFF  
0x0802 C000 - 0x0803 FFFF  
Application SRAM  
System SRAM  
Up to 176 KB  
80 KB  
0x1000 0000 – 0x1005 FFFF  
0x1006 0000 - 0x1007 FFFF  
Application flash  
Secured code flash  
Used for secured boot, secured bootloader,  
and system calls  
Up to 384 KB  
128 KB  
0x1400 0000 – 0x1400 7FFF  
0x1600 0000 – 0x1600 7FFF  
Auxiliary flash, reserved for system use  
Supervisory flash, for secured access  
32 KB  
32 KB  
Note that PSoC 6 SRAM is located in the Arm Code region for both CPUs (see Table 8). There is no physical memory located in the  
CPUs’ Arm SRAM regions.  
Document Number: 002-28785 Rev. *I  
Page 11 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
CPU Sleep – CPU code execution is halted in system LP or  
ULP mode  
System Resources  
Power System  
CPU Deep Sleep – CPU code execution is halted and system  
Deep Sleep is requested in system LP or ULP mode  
The power system provides assurance that voltage levels are as  
required for each respective mode and will either delay mode  
entry (on power-on reset (POR), for example) until voltage levels  
are as required for proper function or generate resets (brown-out  
detect (BOD)) when the power supply drops below specified  
levels. The design guarantees safe chip operation between  
power supply voltage dropping below specified levels (for  
example, below 1.7 V) and the reset occurring. There are no  
voltage sequencing requirements.  
System Deep Sleep – Only low-frequency peripherals are  
available after both CPUs enter CPU Deep Sleep mode  
System Hibernate – Device and I/O states are frozen and the  
device resets on wakeup  
CPU Active, Sleep, and Deep Sleep are standard Arm-defined  
power modes supported by the Arm CPU instruction set  
architecture (ISA). System LP, ULP, Deep Sleep and Hibernate  
modes are additional low-power modes supported by PSoC 6  
MCU.  
The VDDD supply (1.7 to 3.6 V) powers an on-chip buck regulator  
or a low-dropout regulator (LDO), selectable by the user. In  
addition, both the buck and the LDO offer a selectable (0.9 or  
1.1 V) core operating voltage (VCCD). The selection lets users  
choose between two system power modes:  
Clock System  
Figure 15 shows that the clock system of this product line  
consists of the following:  
System Low Power (LP) operates VCCD at 1.1 V and offers high  
performance, with no restrictions on device configuration.  
Internal main oscillator (IMO)  
Internal low-speed oscillator (ILO)  
Watch crystal oscillator (WCO)  
External MHz crystal oscillator (ECO)  
External clock input  
System Ultra Low Power (ULP) operates VCCD at 0.9 V for  
exceptional low power, but imposes limitations on clock  
speeds.  
In addition, a backup domain adds an “always on” functionality  
using a separate power domain supplied by a backup supply  
(VBACKUP) such as a battery or supercapacitor.  
It includes a real-time clock (RTC) with alarm feature, supported  
One phase locked-loop (PLL)  
One frequency-locked loop (FLL)  
by  
a 32.768-kHz watch crystal oscillator (WCO), and  
power-management IC (PMIC) control. Refer to Power Supply  
Considerations for more details.  
Clocks may be buffered and brought out to a pin on a Smart I/O  
port.  
Power Modes  
The default clocking when the application starts is CLK_HF[0]  
being driven by the IMO and the FLL. CLK_HF[0], clk_fast,  
clk_peri, and clk_slow are all either 50 MHz (LP mode) or 25 MHz  
(ULP mode). All other clocks, including all peripheral clocks, are  
off.  
PSoC 6 MCU can operate in four system and three CPU power  
modes. These modes are intended to minimize the average  
power consumption in an application. For more details on power  
modes and other power-saving configuration options, see the  
application note, AN219528: PSoC 6 MCU Low-Power Modes  
and Power Reduction Techniques and the Architecture TRM,  
Power Modes chapter (contact your local Cypress sales  
representative for the latest TRM).  
Internal Main Oscillator (IMO)  
The IMO is the primary source of internal clocking. It is trimmed  
at the factory to achieve the specified accuracy. The IMO  
frequency is 8 MHz and tolerance is ± 2%.  
Power modes supported by PSoC 6 MCUs, in order of  
decreasing power consumption, are:  
The IMO can operate in system Deep Sleep mode to drive the  
LCD block for better contrast (and higher power) than is possible  
with the 32-kHz mode.  
System Low Power (LP) – All peripherals and CPU power  
modes are available at maximum speed  
System Ultra Low Power (ULP) – All peripherals and CPU  
power modes are available, but with limited speed  
Internal Low-Speed Oscillator (ILO)  
The ILO is a very low power oscillator, nominally 32 kHz, which  
operates in all power modes. The ILO can be calibrated against  
a higher accuracy clock for better accuracy.  
CPUActive – CPU is executing code in system LPor ULPmode  
Document Number: 002-28785 Rev. *I  
Page 12 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Figure 3. Clocking Diagram  
Yellow multiplexers  
are glitch safe  
Path Mux  
Root mux  
(FLL/PLL)  
FLL  
clk_fast  
Divider  
Divider  
CM4  
CLK_HF[0]  
CLK_HF[1]  
Predivider  
(1/2/4/8)  
Peripheral  
clocks  
IMO  
clk_peri  
Peripheral  
Clock Dividers  
TCPWM  
SCB  
EXTCLK  
clk_slow  
Predivider  
(1/2/4/8)  
PLL  
clk_ext  
CM0+  
AHB  
Divider  
ECO  
CapSense  
CLK_PATH2  
CLK_HF[2]  
CLK_HF[3]  
CLK_HF[4]  
Analog  
Subsystem  
Predivider  
(1/2/4/8)  
ALTHF  
QSPI/SMIF  
DMA  
CLK_PATH3  
CLK_PATH4  
Smart I/O  
eFuse  
MMIO  
PPU  
Predivider  
(1/2/4/8)  
USB  
Predivider  
(1/2/4/8)  
SD Host  
System LP/ULP Domain  
System Deep Sleep /  
Hibernate Domain  
Crypto  
ILO  
clk_peri  
CLK_LF  
CLK_LF  
clk_mf  
LCD  
Predivider  
(1/2/3...256)  
WCO  
IMO/4  
External Crystal Oscillators  
Table 5. ECO Usage Guidelines  
Figure 4 shows all of the external crystal oscillator circuits for this  
product line. The component values shown are typical; check the  
ECO Specifications for the crystal values, and the crystal  
datasheet for the load capacitor values. The ECO and WCO  
require balanced external load capacitors. For more information,  
see the TRM and AN218241, PSoC 6 MCU Hardware Design  
Considerations.  
Max  
Drive Strength Drive Strength  
Ports  
Frequency for VDDD ≤ 2.7 V for VDDD ≤ 2.7 V  
Port 11  
60 MHz for  
SMIF (QSPI)  
DRIVE_SEL 2 DRIVE_SEL 3  
Ports 12 Slow slew rate No restrictions No restrictions  
and 13 setting  
Figure 4. Oscillator Circuits  
PSoC 6  
Watchdog Timers (WDT, MCWDT)  
PSoC 6 MCU has one WDT and two multi-counter WDTs  
(MCWDT). The WDT has a 16-bit free-running counter. Each  
MCWDT has two 16-bit counters and one 32-bit counter, with  
multiple operating modes. All of the 16-bit counters can generate  
a watchdog device reset. All of the counters can generate an  
interrupt on a match event.  
The WDT is clocked by the ILO. It can generate interrupt/wakeup  
in system LP/ULP, Deep Sleep, and Hibernate power modes.  
The MCWDTs are clocked by LFCLK (ILO or WCO). It can  
generate periodic interrupt/wakeup in system LP/ULP and Deep  
Sleep power modes.  
MHz XTAL  
32.768 kHz XTAL  
Clock Dividers  
CL / 2  
CL / 2  
CL / 2  
CL / 2  
Integer and fractional clock dividers are provided for peripheral  
use and timing purposes. There are:  
If the ECO is used, note that its performance is affected by GPIO  
switching noise. GPIO ports should be used as Table 5 shows.  
See also Table 6 for additional restrictions for general analog  
subsystem use.  
Four 8-bit clock dividers  
Eight 16-bit integer clock dividers  
Two 16.5-bit fractional clock dividers  
One 24.5-bit fractional clock divider  
Document Number: 002-28785 Rev. *I  
Page 13 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Trigger Routing  
Programmable Analog Subsystems  
PSoC 6 MCU contains a trigger multiplexer block. This is a  
collection of digital multiplexers and switches that are used for  
routing trigger signals between peripheral blocks and between  
GPIOs and peripheral blocks.  
12-bit SAR ADC  
The 12-bit, 2-Msps SAR ADC can operate at a maximum clock  
rate of 36 MHz and requires a minimum of 18 clocks at that  
frequency to do a 12-bit conversion. One of three internal  
reference voltages may be used for the ADC reference voltage.  
The references are, VDD, VDD/2, and VREF (nominally 1.2 V and  
trimmed to ±1%). An external reference may also be used, by  
either driving the VREF pin or routing an external reference to  
GPIO pin P9.3. These reference options allow ratio-metric  
readings or absolute readings at the accuracy of the reference  
used. The input range of the ADC is the full supply voltage  
between VSS and VDDA/VDDIOA. The SAR ADC may be  
configured with a mix of single-ended and differential signals in  
the same configuration.  
There are two types of trigger routing. Trigger multiplexers have  
reconfigurability in the source and destination. There are also  
hardwired switches called “one-to-one triggers”, which connect  
a specific source to a destination. The user can enable or disable  
the route.  
Reset  
PSoC 6 MCU can be reset from a variety of sources:  
Power-on reset (POR) to hold the device in reset while the  
power supply ramps up to the level required for the device to  
function properly. POR activates automatically at power-up.  
The SAR ADC’s sample-and-hold (S/H) aperture is  
programmable to allow sufficient time for signals with a high  
impedance to settle sufficiently, if required. System performance  
is 65 dB for true 12-bit precision provided appropriate references  
are used and system noise levels permit it. To improve  
performance in noisy conditions, an external bypass capacitor  
for the internal reference amplifier (through the fixed “VREF”  
pin), may be added.  
Brown-out detect (BOD) reset to monitor the digital voltage  
supply VDDD and generate a reset if VDDD falls below the  
minimum required logic operating voltage.  
External reset dedicated pin (XRES) to reset the device using  
an external source. The XRES pin is active low. It can be  
connected either to a pull-up resistor to VDDD, or to an active  
drive circuit, as Figure 5 shows. If a pull-up resistor is used,  
select its value to minimize current draw when the pin is pulled  
low; 4.7 kΩ is typical.  
The SAR is connected to a fixed set of pins through an input  
multiplexer. The multiplexer cycles through the selected  
channels autonomously (sequencer scan) and does so with zero  
switching overhead (that is, the aggregate sampling bandwidth  
is equal to 2 Msps whether it is for a single channel or distributed  
over several channels). The result of each channel is buffered,  
so that an interrupt may be triggered only when a full scan of all  
channels is complete. Also, a pair of range registers can be set  
to detect and cause an interrupt if an input exceeds a minimum  
and/or maximum value. This allows fast detection of out-of-range  
values without having to wait for a sequencer scan to be  
completed and the CPU to read the values and check for  
out-of-range values in software. The SAR can also be  
connected, under firmware control, to most other GPIO pins via  
the Analog Multiplexer Bus (AMUXBUS). The SAR is not  
available in system Deep Sleep and Hibernate modes as it  
requires a high-speed clock (up to 36 MHz). The SAR operating  
range is 1.71 to 3.6 V.  
Figure 5. XRES Connection Diagram  
1.7 to 3.6 V  
PSoC 6  
VDDD  
4.7 kΩ typ.  
XRES  
XRES  
drive  
Watchdog timer (WDT or MCWDT) to reset the device if  
firmware fails to service it within a specified timeout period.  
Software-initiated reset to reset the device on demand using  
firmware.  
Temperature Sensor  
Logic-protectionfaultcantrigger aninterruptorresetthedevice  
if unauthorized operating conditions occur; for example,  
reaching a debug breakpoint while executing privileged code.  
An on-chip temperature sensor is part of the SAR and may be  
scanned by the SAR ADC. It consists of a diode, which is biased  
by a current source that can be disabled to save power. The  
temperature sensor may be connected directly to the SAR ADC  
as one of the measurement channels. The ADC digitizes the  
temperature sensor’s output and a Cypress-supplied software  
function may be used to convert the reading to temperature  
which includes calibration and linearization.  
Hibernate wakeup reset to bring the device out of the system  
Hibernate power mode.  
Reset events are asynchronous and guarantee reversion to a  
known state. Some of the reset sources are recorded in a  
register, which is retained through reset and allows software to  
determine the cause of the reset.  
Low-Power Comparators  
Two low-power comparators are provided, which can operate in  
all power modes. This allows other analog system resources to  
be disabled while retaining the ability to monitor external voltage  
levels during system Deep Sleep and Hibernate modes. The  
comparator outputs are normally synchronized to avoid  
metastability unless operating in an asynchronous power mode  
(Hibernate) where the system wake-up circuit is activated by a  
comparator-switch event.  
Document Number: 002-28785 Rev. *I  
Page 14 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Figure 6 shows an overview of the analog subsystem. This diagram is a high-level abstraction. See the TRM for detailed connectivity  
information.  
Figure 6. Analog Subsystem  
Red dots indicate  
AMUXBUS splitter  
switches  
AMUXBUSA  
AMUXBUSB  
CSD  
shield_pad  
vref_ext  
csh  
cmod  
amuxbusa  
amuxbusb  
P6.0  
LPCOMP0  
P6.1  
P6.2  
P6.3  
P6.4  
P6.5  
P6.6  
P6.7  
inp  
inn  
LPCOMP1  
inp  
inn  
P5.0  
P5.1  
P5.6  
P5.7  
P9.3  
P9.2  
P9.1  
P9.0  
AREF, 1.2 V  
P10.0  
P10.1  
P10.2  
P10.3  
P10.4  
P10.5  
P10.6  
P10.7  
SAR ADC  
vplus  
vminus  
vref  
SARREF  
VDDA  
VDDA / 2  
TEMP  
temp  
VSS  
To VREF pin, for bypass capacitor  
Each Smart I/O block contains a data unit (DU) and eight lookup  
tables (LUTs).  
Programmable Digital  
Smart I/O  
The DU:  
Smart I/O is a programmable logic fabric that enables Boolean  
operations on signals traveling from device internal resources to  
the GPIO pins or on signals traveling into the device from  
external sources. A Smart I/O block sits between the GPIO pins  
and the high-speed I/O matrix (HSIOM) and is dedicated to a  
single port.  
Performs unique functions based on a selectable opcode.  
Can source input signals from internal resources, the GPIO  
port, or a value in the DU register.  
Each LUT:  
Has three selectable input sources. The input signals may be  
sourced from another LUT, an internal resource, an external  
signal from a GPIO pin, or from the DU.  
There are two Smart I/O blocks: one on Port 8 and one on Port 9.  
When Smart I/O is not enabled, all signals on Port 8 and Port 9  
bypass the Smart I/O hardware.  
Acts as a programmable Boolean logic table.  
Can be synchronous or asynchronous.  
Smart I/O supports:  
System Deep Sleep operation  
Boolean operations without CPU intervention  
Asynchronous or synchronous (clocked) operation  
Document Number: 002-28785 Rev. *I  
Page 15 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
SPI Mode: The SPI mode supports full Motorola SPI, TI Secure  
Simple Pairing (SSP) (essentially adds a start pulse that is used  
to synchronize SPI Codecs), and National Microwire (half-duplex  
form of SPI). The SPI block supports an EZSPI mode in which  
the data interchange is reduced to reading and writing an array  
in memory. The SPI interface operates with a 25-MHz clock.  
Fixed-Function Digital  
Timer/Counter/Pulse-width Modulator (TCPWM)  
The TCPWM supports the following operational modes:  
Timer-counter with compare  
Timer-counter with capture  
USB Full-Speed Device Interface  
Quadrature decoding  
Pulse width modulation (PWM)  
Pseudo-random PWM  
PWM with dead time  
This product line incorporates a full-speed USB device interface.  
The device can have up to eight endpoints. A 512-byte SRAM  
buffer is provided and DMA is supported.  
Up, down, and up/down counting modes.  
Note: If the USB pins are not used, connect VDDUSB to ground  
and leave the P14.0/USBDP and P14.1/USBDM pins  
unconnected.  
Clock prescaling (division by 1, 2, 4, ... 64, 128)  
Double buffering of compare/capture and period values  
Underflow, overflow, and capture/compare output signals  
Supports interrupt on:  
Terminal count – Depends on the mode; typically occurs on  
overflow or underflow  
Capture/compare – The count is captured to the capture reg-  
ister or the counter value equals the value in the compare  
register  
Quad-SPI/Serial Memory Interface (SMIF)  
A serial memory interface is provided, running at up to 80 MHz.  
It supports single, dual, and quad SPI configurations, and  
supports up to four external memory devices. It supports two  
modes of operation:  
Memory-mapped I/O (MMIO), a command mode interface that  
provides data access via registers and FIFOs  
Complementary output for PWMs  
Execute in Place (XIP), in which AHB reads and writes are  
directly translated to SPI read and write transfers.  
Selectable start, reload, stop, count, and capture event signals  
for each TCPWM; with rising edge, falling edge, both edges,  
and level trigger options. The TCPWM has a Kill input to force  
outputs to a predetermined state.  
In XIP mode, the external memory is mapped into the PSoC 6  
MCU internal address space, enabling code execution directly  
from the external memory. To improve performance, a 4-KB  
cache is included. XIP mode also supports AES-128 on-the-fly  
encryption and decryption, enabling secured storage and access  
of code and data in the external memory.  
In this device there are:  
Four 32-bit TCPWMs  
Eight 16-bit TCPWMs  
Serial Communication Blocks (SCB)  
This product line has seven SCBs:  
LCD  
This block drives LCD commons and segments; routing is  
available to most of the GPIOs. One to eight of the GPIOs must  
be used for commons, the rest can be used for segments.  
Six can implement either I2C, UART, or SPI.  
One SCB (SCB #6) can operate in system Deep Sleep mode  
with an external clock; this SCB can be either SPI slave or I2C  
slave.  
I2C Mode: The SCB can implement a full multi-master and slave  
interface (it is capable of multimaster arbitration). This block can  
operate at speeds of up to 1 Mbps (Fast Mode Plus). It also  
supports EZI2C, which creates a mailbox address range and  
effectively reduces I2C communication to reading from and  
writing to an array in memory. The SCB supports a 256-byte  
FIFO for receive and transmit.  
The LCD block has two modes of operation: high speed (8 MHz)  
and low speed (32 kHz). Both modes operate in system LP, ULP,  
and Deep Sleep modes, however the low-speed mode operates  
with reduced contrast in system Deep Sleep mode. The 8-MHz  
IMO is available in system Deep Sleep mode, and can be used  
to generate a clock for the LCD block. Review the number of  
common and segment lines, viewing angle requirements, and  
prototype performance, and then select the appropriate LCD  
clock frequency before using system Deep Sleep mode.  
SD Host Controller  
The I2C peripheral is compatible with I2C standard-mode, Fast  
Mode, and Fast Mode Plus devices as defined in the NXP  
I2C-bus specification and user manual (UM10204). The I2C bus  
I/O is implemented with GPIO in open-drain modes.  
This product line contains one Secure Digital (SD) host  
controller. It provides communication with IoT connectivity  
devices such as Bluetooth, Bluetooth Low-Energy and WiFi  
radios, as well as combination devices. The controller also  
supports embedded MultiMediaCards (eMMC) and Secure  
Digital (SD) cards.  
UART Mode: This is a full-feature UART operating at up to  
8 Mbps. It supports automotive single-wire interface (LIN),  
infrared interface (IrDA), and SmartCard (ISO7816) protocols, all  
of which are minor variants of the basic UART protocol. In  
addition, it supports the 9-bit multiprocessor mode that allows the  
addressing of peripherals connected over common RX and TX  
lines. Common UART functions such as parity error, break  
detect, and frame error are supported. A 256-byte FIFO allows  
much greater CPU service latencies to be tolerated.  
Several bus speed modes under the SD specification are  
supported:  
DS (default speed)  
HS (high speed)  
SDR12 (single data rate)  
SDR25  
Document Number: 002-28785 Rev. *I  
Page 16 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
SDR50  
Open drain with strong pull-down  
Open drain with strong pull-up  
Strong pull-up with strong pull-down  
Weak pull-up with weak pull-down  
DDR50 (double data rate)  
For eMMC, the supported modes are:  
BWC (backward compatibility)  
SDR  
Input threshold select (CMOS or LVTTL)  
Hold mode for latching previous state (used for retaining the  
I/O state in system Hibernate mode)  
Maximum clock restrictions and capacitive loads apply to some  
modes, and are also dependent on system power mode  
(LP/ULP). Refer to the SD Host Controller and eMMC  
Specifications for details.  
Selectable slew rates for dV/dt-related noise control to improve  
EMI  
The pins are organized in logical entities called ports, which are  
up to 8 pins in width. Data output and pin state registers store,  
respectively, the values to be driven on the pins and the input  
states of the pins.  
The SD Host Controller complies with the following standards.  
Refer to the specifications documents for more information on  
the protocol and operations.  
SD Specifications Part 1 Physical Layer Specification Version  
6.00, supporting card capacities for SDSC (up to 2 GB), SDHC  
(up to 32 GB) and SDXC (up to 2 TB).  
Every pin can generate an interrupt if enabled; each port has an  
interrupt request (IRQ) associated with it.  
The port 3 pins are capable of overvoltage-tolerant (OVT)  
SD Specifications Part A2 SD Host Controller Standard Speci-  
fication Version 4.20  
operation, where the input voltage may be higher than VDDD  
.
OVT pins are commonly used with I2C, to allow powering the  
chip OFF while maintaining a physical connection to an  
operating I2C bus without affecting its functionality.  
SD Specifications Part E1 SDIO Specifications Version 4.10  
Embedded Multi-Media Card (eMMC) Electrical Standard 5.1  
GPIO pins can be ganged to source or sink higher values of  
current. GPIO pins, including OVT pins, may not be pulled up  
higher than the absolute maximum; see Electrical Specifications.  
The SD host controller is configured as a master. To be fully  
compatible with features provided in the driver software for  
speed and efficiency, it supports advanced DMA version 3  
(ADMA3), defined by the SDIO standard, and has a 1 KB RX/TX  
FIFO allowing double buffering of 512-byte blocks.  
During power-on and reset, the pins are forced to the analog  
input drive mode, with input and output buffers disabled, so as  
not to crowbar any inputs and/or cause excess turn-on current.  
CAN FD Block  
A multiplexing network known as the high-speed I/O matrix  
(HSIOM) is used to multiplex between various peripheral and  
analog signals that may connect to an I/O pin.  
This product line has one CAN FD block for industrial and  
automotive applications. The block includes Time-Stamp support  
and has a 4-KB message RAM. FD Data rates of up to 5 Mbps  
are supported. DMA transfers are supported.  
Analog performance is affected by GPIO switching noise. In  
order to get the best analog performance, the following  
frequency and drive mode constraints must be applied. The  
DRIVE_SEL values (see Table 6) represent drive strengths  
(please see the Architecture and Register TRMs for further  
detail).  
GPIO  
This product line has up to 53 GPIOs, which implement the  
following:  
See also Table 5 for additional restrictions for ECO use.  
Eight drive strength modes:  
Analog input mode (input and output buffers disabled)  
Input only  
Weak pull-up with strong pull-down  
Strong pull-up with weak pull-down  
Table 6. DRIVE_SEL Values  
Ports  
Ports 0, 1  
Max Frequency  
8 MHz  
Drive Strength for VDDD ≤ 2.7 V Drive Strength for VDDD > 2.7 V  
DRIVE_SEL 2  
DRIVE_SEL 1  
DRIVE_SEL 2  
DRIVE_SEL 1  
No restrictions  
DRIVE_SEL 3  
DRIVE_SEL 2  
DRIVE_SEL 3  
DRIVE_SEL 2  
No restrictions  
Port 2  
50 MHz  
Ports 3 to 10  
Ports 11 to 12  
Ports 9 and 10  
16 MHz; 25 MHz for SPI  
80 MHz for SMIF (QSPI).  
Slow slew rate setting for TQFP  
Packages for ADC performance  
Document Number: 002-28785 Rev. *I  
Page 17 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
IDAC  
Special-Function Peripherals  
The CSD block has two programmable current sources, which  
offer the following features:  
CapSense Subsystem  
CapSense is supported in PSoC 6 MCU through a CapSense  
sigma-delta (CSD) hardware block. It is designed for  
high-sensitivity self-capacitance and mutual-capacitance  
measurements, and is specifically built for user interface  
solutions.  
7-bit resolution  
Sink and source current modes  
A current source programmable from 37.5 nA to 609 A  
In addition to CapSense, the CSD hardware block supports three  
general-purpose functions. These are available when CapSense  
is not being used. Alternatively, two or more functions can be  
time-multiplexed in an application under firmware control. The  
four functions supported by the CSD hardware block are:  
Two IDACs that can be used in parallel to form one 8-bit IDAC  
Comparator  
The CapSense subsystem comparator operates in the system  
Low Power and Ultra-Low Power modes. The inverting input is  
connected to an internal programmable reference voltage and  
the non-inverting input can be connected to any GPIO via the  
AMUXBUS.  
CapSense  
10-bit ADC  
Programmable current sources (IDAC)  
Comparator  
CapSense Hardware Subsystem  
Figure 7 shows the high-level hardware overview of the  
CapSense subsystem, which includes a delta sigma converter,  
internal clock dividers, a shield driver, and two programmable  
current sources.  
CapSense  
Capacitive touch sensors are designed for user interfaces that  
rely on human body capacitance to detect the presence of a  
finger on or near a sensor. Cypress CapSense solutions bring  
elegant, reliable, and simple capacitive touch sensing functions  
to applications including IoT, industrial, automotive, and home  
appliances.  
The inputs are managed through analog multiplexed buses  
(AMUXBUS A/B). The input and output of all functions offered by  
the CSD block can be provided on any GPIO or on a group of  
GPIOs under software control, with the exception of the  
comparator output and external capacitors that use dedicated  
GPIOs.  
The Cypress-proprietary CapSense technology offers the  
following features:  
Self-capacitance is supported by the CSD block using  
AMUXBUS A, an external modulator capacitor, and a GPIO for  
each sensor. There is a shield electrode (optional) for  
self-capacitance sensing. This is supported using AMUXBUS B  
and an optional external shield tank capacitor (to increase the  
drive capability of the shield driver) should this be required.  
Mutual-capacitance is supported by the CSD block using  
AMUXBUS A, two external integrated capacitors, and a GPIO for  
transmit and receive electrodes.  
Best-in-class signal-to-noise ratio (SNR) and robust sensing  
under harsh and noisy conditions  
Self-capacitance (CSD) and mutual-capacitance (CSX)  
sensing methods  
Support for various widgets, including buttons, matrix buttons,  
sliders, touchpads, and proximity sensors  
High-performance sensing across a variety of materials  
Best-in-class liquid tolerance  
The ADC does not require an external component. Any GPIO  
that can be connected to AMUXBUS A can be an input to the  
ADC under software control. The ADC can accept VDDA as an  
input without needing GPIOs (for applications such as battery  
voltage measurement).  
SmartSense™ auto-tuning technology that helps avoid  
complex manual tuning processes  
Superior immunity against external noise  
Spread-spectrum clocks for low radiated emissions  
Gesture and built-in self-test libraries  
Ultra-low power consumption  
The two programmable current sources (IDACs) in  
general-purpose mode can be connected to AMUXBUS A or B.  
They can therefore connect to any GPIO pin. The comparator  
resides in the delta-sigma converter. The comparator inverting  
input can be connected to the reference. Both comparator inputs  
can be connected to any GPIO using AMUXBUS B; see  
Figure 6. The reference has a direct connection to a dedicated  
GPIO; see Table 9.  
An integrated graphical CapSense tuner for real-time tuning,  
testing, and debugging  
ADC  
The CSD block can operate in active and sleep CPU power  
modes, and seamlessly transition between system LP and ULP  
modes. It can be powered down in system Deep Sleep and  
Hibernate modes. Upon wakeup from Hibernate mode, the CSD  
block requires re-initialization. However, operation can be  
resumed without re-initialization upon exit from Deep Sleep  
mode, under firmware control.  
The CapSense subsystem slope ADC offers the following  
features:  
Selectable 8- or 10-bit resolution  
Selectable input range: GND to VREF and GND to VDDA on any  
GPIO input  
MeasurementofVDDA against aninternal referencewithoutthe  
use of GPIO or external components  
Document Number: 002-28785 Rev. *I  
Page 18 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Figure 7. CapSense Hardware Subsystem  
AMUXBUS  
A
B
GPIO Pin  
GPIO  
Cell  
CSD Sensor 1  
CS1  
Clock Input  
GPIO Pin  
CMOD Pin  
GPIO  
Cell  
CSD Sensor 2  
CS2  
CSD Hardware Block  
CMOD  
Sense clock  
Clock  
Generator  
CSH_TANK  
(optional)  
GPIO Pin  
GPIO Pin  
Shield Drive  
Circuit  
Modulator  
Clock  
GPIO  
Cell  
Compensation  
IDAC  
CSHIELD  
Shield Electrode  
Modulator  
IDAC  
GPIO Pin  
Tx  
IDAC control  
GPIO  
Cell  
CSX Sensor 3  
CS3  
Raw  
Count  
Sigma Delta  
Converter  
GPIO Pin  
CINTA Pin  
Rx  
GPIO  
Cell  
VREF  
GPIO  
Cell  
CINTA  
CINTB  
CINTB Pin  
GPIO  
Cell  
ADC Input  
IDAC Outputs  
Comp Input  
Document Number: 002-28785 Rev. *I  
Page 19 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Figure 18 shows the high-level software overview. Cypress  
provides middleware libraries for CapSense, ADC, and IDAC on  
GitHub to enable quick integration. The Board Support Package  
for any kit with CapSense capabilities automatically includes the  
CapSense library in any application that uses the BSP.  
CapSense and ADC middleware use the CSD interrupt to  
implement non-blocking sensing and A-to-D conversion.  
Therefore, interrupt service routines are a defined part of the  
middleware, which must be initialized by the application.  
Middleware and drivers can operate on either CPU. Cypress  
recommends using the middleware only in one CPU. If both  
CPUs must access the CSD driver, memory access should be  
managed in the application.  
User applications interact only with middleware to implement  
functions of the CSD block. The middleware interacts with  
underlying drivers to access hardware as necessary. The CSD  
driver facilitates time-multiplexing of the CSD hardware if more  
than one piece of CSD-related middleware is present in a project.  
It prevents access conflicts in this case.  
Refer to AN85951: PSoC 4 and PSoC 6 MCU CapSense Design  
Guide for more details on CSX sensing, CSD sensing, shield  
electrode usage and its benefits, and capacitive system design  
guidelines.  
ModusToolbox Software provides a CapSense configurator to  
enable fast library configuration. It also provides a tuner for  
performance evaluation and real-time tuning of the system. The  
tuner requires an EZI2C communication interface in the  
application to enable real-time tuning capability. The tuner can  
update configuration parameters directly in the device as well as  
in the configurator.  
Refer to theAPI reference guides for CapSense, ADC, and IDAC  
available on GitHub.  
Figure 8. CapSense Software/Firmware Subsystem  
Application Program  
Middleware  
Software  
Configuration  
Tuner  
SCB Driver  
(EZI2C)  
GPIO / Clock  
CSD Driver  
CSD Block  
Drivers  
SCB  
GPIOs / Clock  
Hardware and Drivers  
Document Number: 002-28785 Rev. *I  
Page 20 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
The first step in using a PSoC 64 device is to inject the following  
information into the device - a process called provisioning:  
PSoC 64 Security  
All PSoC 64 “Secure” MCU product lines feature enhanced  
security functionality. They provide an isolated root of trust (RoT)  
with true attestation and provisioning services. Cypress also  
provides a “Secure Boot” SDK which includes all required  
libraries, tools, and sample code to provision PSoC 64 devices.  
The SDK also provides provisioning scripts with sample keys  
and policies, a pre-built bootloader image, and tools for signing  
firmware images. For more information, see the “Secure Boot”  
SDK User Guide.  
A set of cryptographic public keys, which are used to:  
Transfer the RoT from Cypress to the user/OEM, as Figure 9  
shows  
Validate applications  
A set of security policies that define how the device should  
behave  
Certificates (optional) used to bind device identity or provide a  
The “Secure Boot” SDK also includes entrance exam scripts. An  
entrance exam can optionally be run on PSoC 64 devices before  
provisioning to ensure that no device tampering has occurred.  
chain of trust to a higher certifying authority  
The Cypress bootloader  
Provisioning is done before an application is programmed into  
the device.  
Figure 9. PSoC 64 Usage Processes  
Program  
Manufacture  
Take Over Root-of-Trust  
Setup chip security  
Application  
User RoT  
User RoT  
OEM RoT  
Public Key  
Cy RoT  
Public Key  
Public Key  
Public Key  
Unique Device  
Identity  
Unique Device  
Identity  
Unique Device  
Identity  
PSoC 64  
Keys, Security  
Policies, Certificates  
Keys, Security  
Policies, Certificates  
PSoC 64  
Cypress Bootloader  
Cypress Bootloader  
PSoC 64  
User Application  
PSoC 64  
Provisioning is done using a hardware security module (HSM). An HSM is a physical computing device, placed in a secured facility,  
that safeguards and manages digital keys for strong authentication, and provides cryptographic processing.  
After the device is provisioned, it can be programmed with signed applications. The signature and authenticity of the application is  
verified before control is transferred to it.  
Document Number: 002-28785 Rev. *I  
Page 21 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Figure 10 shows a simplified flash memory map of PSoC 64 assets and immutable sections. As noted in Memory, a portion of device  
SRAM is also reserved for system usage.  
Figure 10. PSoC 64 “Secure” MCU Asset Memory Map  
0x1000:0000  
User Application Space  
Typically immutable, can be  
0x101D:0000  
updated if allowed by security  
Cypress Bootloader  
policy during provisioning  
0x101E:0000  
“Secure Flash Boot”  
Immutable after Cypress  
Manufacturing  
OEM Asset storage  
0x101F:BF00  
0x101F:FFFF  
Typically immutable, can be  
partially updated if allowed by  
security policy during provisioning  
User Flash  
0x1600:7FFF  
“Secure Flash Boot” +  
Cypress Public Key  
0x1600:0000  
0x0001:FFFF  
Supervisory Flash  
Boot ROM  
ROM  
Immutable after Cypress  
Manufacturing  
0x0000:0000  
Document Number: 002-28785 Rev. *I  
Page 22 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Cypress Bootloader  
Cypress Bootloader supports external memory over the  
PSoC 64 Serial Memory Interface (SMIF). The bootloader  
currently supports only external memory vendors who support  
the Serial Flash Discovery Protocol (SFDP).  
Cypress Bootloader is a port of the open source MCUBoot  
library. For more details about this library, refer to MCUBoot  
Bootloader design. The current version of Cypress Bootloader  
for this device does not support the swap-based images feature  
as documented in the MCUBoot design document.  
Cypress Bootloader enforces protection contexts for the  
bootloader code, so code running in another protection context  
cannot overwrite/tamper with the bootloader code. Figure 11  
shows the launch sequence of Cypress Bootloader:  
Cypress Bootloader is included in the “Secure Boot” SDK as a  
pre-built hex image. This image acts as the first image launched  
by the PSoC 64 boot code. It parses the provisioned  
Boot&Upgrade policy to launch an application image.  
Figure 11. Bootloader Launch Sequence  
Reads for setting  
access policies  
Boot ROM +  
“Secure Flash Boot”  
Address of Bootloader image  
and key for verification  
Verifies & Launches  
Verifies & Launches  
Debug Policy  
Cypress Bootloader  
Boot Policy  
Bootloader Certificate  
Address of User image  
and key for verification  
Provisioned Policies  
First User Image  
Signed with OEM Pvt key  
Figure 12 shows a typical application update scenario using Cypress Bootloader:  
Figure 12. Bootloader Application Update Sequence  
New image available  
Bootloader verifies new image  
Bootloader updates current  
image  
Immutable Boot Code  
Cypress Bootloader  
Immutable Boot Code  
Immutable Boot Code  
Cypress Bootloader  
Keys, Policies  
Cypress Bootloader  
Keys, Policies  
Keys, Policies  
Update image,  
launches  
New Image  
Customer  
Verifies new  
Application v2  
Customer Application v1  
Signed with User Privkey  
Customer Application v2  
Signed with User Privkey  
image content  
and signature  
with provisioned  
keys  
Customer Application v1  
Signed with User Privkey  
Signed with User  
Privkey  
Image  
Written  
Slot#0  
Slot#0  
Slot#0  
Customer Application v2  
Signed with User Privkey  
Slot#1, empty  
Slot#1, empty  
Slot#1  
Internal (or) External flash  
Internal (or) External flash  
Internal (or) External flash  
Document Number: 002-28785 Rev. *I  
Page 23 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Pinouts  
Note: The CYB06445LQI-S3D42 datasheet web page contains a spreadsheet with a consolidated list of pinouts and pin alternate  
functions with HSIOM mapping. GPIO ports are powered by VDDx pins as follows:  
P0: VBACKUP  
P2, P3: VDDIO2  
P5, P6, P7, P8: VDDIO1  
P9, P10: VDDIOA, VDDA (VDDIOA and VDDA must be connected together on the PCB)  
P11, P12: VDDIO0  
P14: VDDUSB  
Table 7. Packages and Pin Information  
Package  
Package  
68-QFN  
30  
Pin  
Pin  
68-QFN  
VDDD  
VCCD  
VDDA  
VDDIOA  
VDDIO0  
VDDIO1  
VDDIO2  
VBACKUP  
VDDUSB  
VSS  
68  
P6.3  
P6.4  
67  
31  
48  
P6.5  
32  
36  
P6.6  
33  
64  
P6.7  
34  
35  
P7.0  
37  
22  
P7.1  
38  
1
P7.2  
39  
11  
P7.3  
40  
GND PAD  
P7.7  
41  
VDD_NS  
VIND1  
XRES  
VREF  
P0.0  
9
10  
8
P8.0  
42  
P8.1  
43  
P9.0  
44  
49  
2
P9.1  
45  
P9.2  
46  
P0.1  
3
P9.3  
47  
P0.2  
4
P10.0  
P10.1  
P10.2  
P10.3  
P10.4  
P10.5  
P11.0  
P11.1  
P11.2  
P11.3  
P11.4  
P11.5  
P11.6  
P11.7  
50  
P0.3  
5
51  
P0.4  
6
52  
P0.5  
7
53  
P2.0  
14  
15  
16  
17  
18  
19  
20  
21  
23  
24  
54  
P2.1  
55  
P2.2  
56  
P2.3  
57  
P2.4  
58  
P2.5  
59  
P2.6  
60  
P2.7  
61  
P3.0  
62  
P3.1  
63  
Document Number: 002-28785 Rev. *I  
Page 24 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Table 7. Packages and Pin Information  
Package  
Package  
68-QFN  
65  
Pin  
Pin  
68-QFN  
P5.0  
P5.1  
P5.6  
P5.7  
P6.2  
25  
26  
27  
28  
29  
P12.6  
P12.7  
66  
P14.0 / USBDP  
P14.1 / USBDM  
13  
12  
Note: If the USB pins are not used, connect VDDUSB to ground and leave the P14.0/USBDP and P14.1/USBDM pins unconnected.  
Figure 13. Device Pinout for 68-QFN Package[2]  
VBACKUP  
P0.0  
P10.1  
P10.0  
VREF  
1
2
3
4
5
6
51  
50  
P0.1  
49  
48  
47  
P0.2  
P0.3  
P0.4  
VDDA  
P9.3  
P9.2  
46  
P0.5  
XRES  
45  
44  
43  
42  
P9.1  
P9.0  
P8.1  
P8.0  
7
8
9
QFN  
(TOP VIEW)  
VDD_NS  
10  
VIND1  
VDDUSB  
P14.1 / USBDM  
P7.7  
P7.3  
11  
12  
13  
41  
40  
39  
P14.0 / USBDP  
P7.2  
P7.1  
P2.0 14  
38  
37  
36  
35  
P2.1  
P2.2  
P2.3  
15  
16  
17  
P7.0  
VDDIOA  
VDDIO 1  
Note  
2. The center pad on the QFN package should be connected to PCB ground relative to device VDDx for best mechanical, thermal, and electrical performance. For more  
information, see AN72845, Design Guidelines for QFN Devices.  
Document Number: 002-28785 Rev. *I  
Page 25 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Each port pin has multiple alternate functions. These are defined in Table 8. The columns ACT #x and DS #y denote active (System LP/ULP) and Deep Sleep mode signals  
respectively.  
The notation for a signal is of the form IPName[x].signal_name[u]:y.  
IPName = Name of the block (such as tcpwm), x = Unique instance of the IP, Signal_name = Name of the signal, u = Signal number where there is more than one signal for  
a particular signal name, y = Designates copies of the signal name.  
For example, the name tcpwm[0].line_compl[3]:4 indicates that this is instance 0 of a tcpwm block, the signal is line_compl # 3 (complement of the line output) and this is the  
fourth occurrence (copy) of the signal. Signal copies are provided to allow flexibility in routing and to maximize use of on-chip resources.  
Table 8. Multiple Alternate Functions  
Port/Pin ACT #0 ACT #1 ACT #2 ACT #3  
DS #2  
DS #3  
ACT #4 ACT #5 ACT #6 ACT #7 ACT #8 ACT #9 ACT #10 ACT #12 ACT #13 ACT #14 ACT #15 DS #5  
DS #6  
DS #7  
P0.0  
P0.1  
tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line[0]:0 .line[0]:0 tx:0 tx_n:0  
srss.ext_  
clk:0  
scb[0].spi  
_select1:  
0
peri.tr_io  
_input[0]  
:0  
tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line_- .line_- tx:1 tx_n:1  
compl[0]: compl[0]:  
scb[0].spi  
_select2:  
0
peri.tr_io  
_input[1]  
:0  
cpuss.s  
wj_trstn  
0
0
P0.2  
P0.3  
tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line[1]:0 .line[1]:0 tx:2 tx_n:2  
scb[0].ua scb[0].i2 scb[0].spi  
rt_rx:0  
c_scl:0 _mosi:0  
tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line_- .line_- tx:3 tx_n:3  
compl[1]: compl[1]:  
scb[0].ua scb[0].i2 scb[0].spi  
rt_tx:0  
c_sda:0 _miso:0  
0
0
P0.4  
P0.5  
tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line[2]:0 .line[2]:0 tx:4 tx_n:4  
scb[0].ua  
rt_rts:0  
scb[0].spi  
_clk:0  
peri.tr_io peri.tr_io  
_input[2] _output[  
:0  
0]:2  
tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line_- .line_- tx:5 tx_n:5  
compl[2]: compl[2]:  
srss.ext_  
clk:1  
scb[0].ua  
rt_cts:0  
scb[0].spi  
_select0:  
0
peri.tr_io peri.tr_io  
_input[3] _output[  
:0  
1]:2  
0
0
P2.0  
P2.1  
tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line[3]:0 .line[3]:0 tx:6 tx_n:6  
scb[1].ua scb[1].i2 scb[1].spi  
rt_rx:0 c_scl:0 _mosi:0  
peri.tr_io  
_input[4]  
:0  
sdhc[0].c  
ard_dat_  
3to0[0]  
tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line_- .line_- tx:7 tx_n:7  
compl[3]: compl[3]:  
scb[1].ua scb[1].i2 scb[1].spi  
peri.tr_io  
_input[5]  
:0  
sdhc[0].c  
ard_dat_  
3to0[1]  
rt_tx:0  
c_sda:0 _miso:0  
0
0
P2.2  
P2.3  
tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line[0]:1 .line[4]:0 tx:8 tx_n:8  
scb[1].ua  
rt_rts:0  
scb[1].spi  
_clk:0  
sdhc[0].c  
ard_dat_  
3to0[2]  
tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line_- .line_- tx:9 tx_n:9  
compl[0]: compl[4]:  
scb[1].ua  
rt_cts:0  
scb[1].spi  
_select0:  
0
sdhc[0].c  
ard_dat_  
3to0[3]  
1
0
P2.4  
tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line[1]:1 .line[5]:0 tx:10 tx_n:10  
scb[1].spi  
_select1:  
0
sdhc[0].c  
ard_cmd  
Document Number: 002-28785 Rev. *I  
Page 26 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Table 8. Multiple Alternate Functions (continued)  
Port/Pin ACT #0 ACT #1 ACT #2 ACT #3  
DS #2  
DS #3  
ACT #4 ACT #5 ACT #6 ACT #7 ACT #8 ACT #9 ACT #10 ACT #12 ACT #13 ACT #14 ACT #15 DS #5  
DS #6  
DS #7  
P2.5  
tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line_- .line_- tx:11 tx_n:11  
compl[1]: compl[5]:  
scb[1].spi  
_select2:  
0
sdhc[0].c  
lk_card  
1
0
P2.6  
P2.7  
tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line[2]:1 .line[6]:0 tx:12 tx_n:12  
scb[1].spi  
_select3:  
0
peri.tr_io  
_input[8]  
:0  
sdhc[0].c  
ard_de-  
tect_n  
tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line_- .line_- tx:13 tx_n:13  
compl[2]: compl[6]:  
peri.tr_io  
_input[9]  
:0  
sdhc[0].c  
ard_mec  
h_write_  
prot  
1
0
P3.0  
P3.1  
tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line[3]:1 .line[7]:0 tx:14 tx_n:14  
scb[2].ua scb[2].i2 scb[2].spi  
peri.tr_io  
_input[6]  
:0  
sdhc[0].i  
o_volt_s  
el  
rt_rx:1  
c_scl:1 _mosi:1  
tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line_- .line_- tx:15 tx_n:15  
compl[3]: compl[7]:  
scb[2].ua scb[2].i2 scb[2].spi  
rt_tx:1 c_sda:1 _miso:1  
peri.tr_io  
_input[7]  
:0  
sdhc[0].c  
ard_if_p-  
wr_en  
1
0
P5.0  
P5.1  
tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line[0]:2 .line[0]:1 tx:16 tx_n:16  
scb[5].ua scb[5].i2 scb[5].spi  
rt_rx:1 c_scl:1 _mosi:1  
canfd[0]. peri.tr_io  
ttcan_rx[ _input[1  
0]  
0]:0  
tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line_- .line_- tx:17 tx_n:17  
compl[0]: compl[0]:  
scb[5].ua scb[5].i2 scb[5].spi  
canfd[0]. peri.tr_io  
ttcan_tx[ _input[11  
rt_tx:1  
c_sda:1 _miso:1  
0]  
]:0  
2
1
P5.6  
P5.7  
tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line[1]:2 .line[1]:1 tx:18 tx_n:18  
tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line_- .line_- tx:19 tx_n:19  
compl[1]: compl[1]:  
2
1
P6.2  
P6.3  
tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line[3]:2 .line[3]:1 tx:22 tx_n:22  
scb[3].ua  
rt_rts:0  
scb[3].spi  
_clk:0  
tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line_- .line_- tx:23 tx_n:23  
compl[3]: compl[3]:  
scb[3].ua  
rt_cts:0  
scb[3].spi  
_select0:  
0
2
1
P6.4  
P6.5  
tcpwm[0] tcpwm[1] csd.csd_ csd.csd_ scb[6].i2  
.line[0]:3 .line[4]:1 tx:24 tx_n:24 c_scl:0  
peri.tr_io peri.tr_io  
_input[1 _output[  
cpuss.s scb[6].sp srss.ddft  
wj_swo_ i_mosi:0 _pin_in[0  
2]:0  
0]:1  
tdo  
]:0  
tcpwm[0] tcpwm[1] csd.csd_ csd.csd_ scb[6].i2  
.line_- .line_- tx:25 tx_n:25 c_sda:0  
compl[0]: compl[4]:  
peri.tr_io peri.tr_io  
_input[1 _output[  
cpuss.s scb[6].sp srss.ddft  
wj_swdo i_miso:0 _pin_in[1  
3]:0  
1]:1  
e_tdi  
]:0  
3
1
P6.6  
P6.7  
tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line[1]:3 .line[5]:1 tx:26 tx_n:26  
cpuss.s scb[6].sp  
wj_swdio i_clk:0  
_tms  
tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line_- .line_- tx:27 tx_n:27  
compl[1]: compl[5]:  
cpuss.s scb[6].sp  
wj_swclk i_select0  
_tclk  
:0  
3
1
Document Number: 002-28785 Rev. *I  
Page 27 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Table 8. Multiple Alternate Functions (continued)  
Port/Pin ACT #0 ACT #1 ACT #2 ACT #3  
DS #2  
DS #3  
ACT #4 ACT #5 ACT #6 ACT #7 ACT #8 ACT #9 ACT #10 ACT #12 ACT #13 ACT #14 ACT #15 DS #5  
DS #6  
DS #7  
P7.0  
P7.1  
tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line[2]:3 .line[6]:1 tx:28 tx_n:28  
scb[4].ua scb[4].i2 scb[4].spi  
rt_rx:1 c_scl:1 _mosi:1  
peri.tr_io  
_input[1  
4]:0  
cpuss.tra  
ce_clock  
tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line_- .line_- tx:29 tx_n:29  
compl[2]: compl[6]:  
scb[4].ua scb[4].i2 scb[4].spi  
peri.tr_io  
_input[1  
5]:0  
rt_tx:1  
c_sda:1 _miso:1  
3
1
P7.2  
P7.3  
tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line[3]:3 .line[7]:1 tx:30 tx_n:30  
scb[4].ua  
rt_rts:1  
scb[4].spi  
_clk:1  
tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line_- .line_- tx:31 tx_n:31  
compl[3]: compl[7]:  
scb[4].ua  
rt_cts:1  
scb[4].spi  
_select0:  
1
3
1
P7.7  
tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line_- .line_- tx:35 tx_n:35  
compl[1]: compl[1]:  
cpuss.cl  
k_fm_pu  
mp  
cpuss.tra  
ce_data[  
0]:2  
4
2
P8.0  
P8.1  
tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line[2]:4 .line[2]:2 tx:36 tx_n:36  
scb[4].ua scb[4].i2 scb[4].spi  
rt_rx:0 c_scl:0 _mosi:0  
peri.tr_io  
_input[1  
6]:0  
tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line_- .line_- tx:37 tx_n:37  
compl[2]: compl[2]:  
scb[4].ua scb[4].i2 scb[4].spi  
rt_tx:0 c_sda:0 _miso:0  
peri.tr_io  
_input[1  
7]:0  
4
2
P9.0  
P9.1  
tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line[0]:5 .line[4]:2 tx:40 tx_n:40  
scb[2].ua scb[2].i2 scb[2].spi  
rt_rx:0 c_scl:0 _mosi:0  
peri.tr_io  
_input[1  
8]:0  
cpuss.tra  
ce_data[  
3]:0  
tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line_- .line_- tx:41 tx_n:41  
compl[0]: compl[4]:  
scb[2].ua scb[2].i2 scb[2].spi  
peri.tr_io  
_input[1  
9]:0  
cpuss.tra  
ce_data[  
2]:0  
srss.ddft  
_pin_in[0  
]:1  
rt_tx:0  
c_sda:0 _miso:0  
5
2
P9.2  
P9.3  
tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line[1]:5 .line[5]:2 tx:42 tx_n:42  
scb[2].ua  
rt_rts:0  
scb[2].spi  
_clk:0  
cpuss.tra  
ce_data[  
1]:0  
tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line_- .line_- tx:43 tx_n:43  
compl[1]: compl[5]:  
scb[2].ua  
rt_cts:0  
scb[2].spi  
_select0:  
0
cpuss.tra  
ce_data[  
0]:0  
srss.ddft  
_pin_in[1  
]:1  
5
2
P10.0 tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line[2]:5 .line[6]:2 tx:44 tx_n:44  
scb[1].ua scb[1].i2 scb[1].spi  
rt_rx:1 c_scl:1 _mosi:1  
peri.tr_io  
_input[2  
0]:0  
cpuss.tra  
ce_data[  
3]:1  
P10.1 tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line_- .line_- tx:45 tx_n:45  
compl[2]: compl[6]:  
scb[1].ua scb[1].i2 scb[1].spi  
peri.tr_io  
_input[2  
1]:0  
cpuss.tra  
ce_data[  
2]:1  
rt_tx:1  
c_sda:1 _miso:1  
5
2
P10.2 tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line[3]:5 .line[7]:2 tx:46 tx_n:46  
scb[1].ua  
rt_rts:1  
scb[1].spi  
_clk:1  
cpuss.tra  
ce_data[  
1]:1  
Document Number: 002-28785 Rev. *I  
Page 28 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Table 8. Multiple Alternate Functions (continued)  
Port/Pin ACT #0 ACT #1 ACT #2 ACT #3  
DS #2  
DS #3  
ACT #4 ACT #5 ACT #6 ACT #7 ACT #8 ACT #9 ACT #10 ACT #12 ACT #13 ACT #14 ACT #15 DS #5  
DS #6  
DS #7  
P10.3 tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
scb[1].ua  
rt_cts:1  
scb[1].spi  
_select0:  
1
cpuss.tra  
ce_data[  
0]:1  
.line_-  
.line_-  
tx:47  
tx_n:47  
compl[3]: compl[7]:  
5
2
P10.4 tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line[0]:6 .line[0]:3 tx:48 tx_n:48  
scb[1].spi  
_select1:  
1
P10.5 tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line_- .line_- tx:49 tx_n:49  
compl[0]: compl[0]:  
scb[1].spi  
_select2:  
1
6
3
P11.0 tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line[2]:6 .line[2]:3 tx:52 tx_n:52  
smif.spi_ scb[5].ua scb[5].i2 scb[5].spi  
select2 rt_rx:0 c_scl:0 _mosi:0  
peri.tr_io  
_input[2  
2]:0  
P11.1 tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line_- .line_- tx:53 tx_n:53  
compl[2]: compl[2]:  
smif.spi_ scb[5].ua scb[5].i2 scb[5].spi  
peri.tr_io  
_input[2  
3]:0  
select1  
rt_tx:0  
c_sda:0 _miso:0  
6
3
P11.2 tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line[3]:6 .line[3]:3 tx:54 tx_n:54  
smif.spi_ scb[5].ua  
select0 rt_rts:0  
scb[5].spi  
_clk:0  
P11.3 tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line_- .line_- tx:55 tx_n:55  
compl[3]: compl[3]:  
smif.spi_ scb[5].ua  
scb[5].spi  
_select0:  
0
peri.tr_io  
_output[  
0]:0  
data3  
rt_cts:0  
6
3
P11.4 tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line[0]:7 .line[4]:3 tx:56 tx_n:56  
smif.spi_  
data2  
scb[5].spi  
_select1:  
0
peri.tr_io  
_output[  
1]:0  
P11.5 tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line_- .line_- tx:57 tx_n:57  
compl[0]: compl[4]:  
smif.spi_  
data1  
scb[5].spi  
_select2:  
0
7
3
P11.6 tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line[1]:7 .line[5]:3 tx:58 tx_n:58  
smif.spi_  
data0  
scb[5].spi  
_select3:  
0
P11.7 tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line_- .line_- tx:59 tx_n:59  
compl[1]: compl[5]:  
smif.spi_  
clk  
7
3
P12.6 tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line[3]:7 .line[7]:3 tx:62 tx_n:62  
P12.7 tcpwm[0] tcpwm[1] csd.csd_ csd.csd_  
.line_- .line_- tx:63 tx_n:63  
compl[3]: compl[7]:  
7
3
Document Number: 002-28785 Rev. *I  
Page 29 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Analog and Smart I/O alternate port pin functionality is provided in Table 9.  
Table 9. Port Pin Analog, and Smart I/O Functions  
Name  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
Analog  
wco_in  
Digital HV  
AMUXA  
AMUXB  
SMARTIO  
wco_out  
pmic_wakeup_in  
hibernate_wakeup[1]  
P0.5  
P5.6  
P5.7  
P6.2  
P6.3  
P6.6  
P6.7  
P7.0  
P7.1  
pmic_wakeup_out  
lpcomp.inp_comp0  
lpcomp.inn_comp0  
lpcomp.inp_comp1  
lpcomp.inn_comp1  
swd_data  
swd_clk  
amuxbus_a_csd0  
amuxbus_a_csd0  
amuxbus_b_csd0  
amuxbus_b_csd0  
csd.cmodpadd  
csd.cmodpads  
P7.2  
csd.csh_tankpadd  
csd.csh_tankpads  
amuxbus_a_csd0  
amuxbus_b_csd0  
P7.3  
P7.7  
csd.vref_ext  
amuxbus_a_csd0  
amuxbus_a_csd0  
amuxbus_a_csd0  
amuxbus_a_csd0  
amuxbus_a_sar  
amuxbus_a_sar  
amuxbus_a_sar  
amuxbus_a_sar  
amuxbus_b_csd0  
amuxbus_b_csd0  
amuxbus_b_csd0  
amuxbus_b_csd0  
amuxbus_b_sar  
amuxbus_b_sar  
amuxbus_b_sar  
amuxbus_b_sar  
csd.cshieldpads  
P8.0  
smartio[8].io[0]  
smartio[8].io[1]  
smartio[9].io[0]  
smartio[9].io[1]  
smartio[9].io[2]  
smartio[9].io[3]  
P8.1  
P9.0  
P9.1  
P9.2  
P9.3  
aref_ext_vref  
sarmux_pads[0]  
sarmux_pads[1]  
sarmux_pads[2]  
sarmux_pads[3]  
sarmux_pads[4]  
sarmux_pads[5]  
eco_in  
P10.0  
P10.1  
P10.2  
P10.3  
P10.4  
P10.5  
P12.6  
P12.7  
eco_out  
Document Number: 002-28785 Rev. *I  
Page 30 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Power Supply Considerations  
The following power system diagrams show typical connections for power pins, with and without usage of the buck regulator.  
In these diagrams, the package pin is shown with the pin name, for example "VDDA, 36". For VDDx pins, the I/O port that is powered  
by that pin is also shown, for example "VBACKUP, 1; I/O port P0".  
In the QFN package, all internal grounds are routed to the metal pad (epad) in the package. This pad must be grounded on the PCB.  
Figure 14. 68-QFN Power Connections Diagram  
1.7 to 3.6 V  
CYB06445LQI-S3D42, 68-QFN package  
1 KΩ at  
100 MHz  
1 KΩ at  
100 MHz  
VDDD, 68  
VDD_NS, 9  
VIND1, 10  
VCCD, 67  
10 µF  
1 µF  
1 µF  
1 µF  
1 µF  
1 µF  
10 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
10 µF  
VBACKUP, 1; I/O port P0  
VDDIO0, 64; I/O ports P11, P12  
VDDIO1, 35; I/O ports P5, P6, P7, P8  
VDDIO2, 22; I/O ports P2, P3  
VDDUSB, 11; I/O port P14  
2.2 µH  
4.7 µF  
1 KΩ at  
100 MHz  
VDDA, 48  
VDDIOA, 36; I/O ports P9, P10  
GND PAD  
Document Number: 002-28785 Rev. *I  
Page 31 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Figure 15. 68-QFN (No Buck) Power Connections Diagram  
1.7 to 3.6 V  
CYB06445LQI-S3D42, 68-QFN package  
1 KΩ at  
100 MHz  
VDDD, 68  
BACKUP, 1; I/O port P0  
VDDIO0, 64; I/O ports P11, P12  
DDIO1, 35; I/O ports P5, P6, P7, P8  
VDDIO2, 22; I/O ports P2, P3  
DDUSB, 11; I/O port P14  
VDDA, 48  
DDIOA, 36; I/O ports P9, P10  
VDD_NS, 9  
10 µF  
1 µF  
1 µF  
1 µF  
1 µF  
1 µF  
10 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
V
VIND1, 10  
V
CCD, 67  
4.7 µF  
V
V
1 KΩ at  
100 MHz  
V
GND PAD  
There are as many as eight VDDx supply pins, depending on the  
package, and multiple VSS ground pins. The power pins are:  
VBACKUP: the supply for the backup domain, which includes the  
32-kHz WCO and the RTC. It can be a separate supply as low  
as 1.4 V, for battery or supercapacitor backup, as Figure 16  
shows, otherwise it is connected to VDDD. It powers I/O port 0.  
VDDD: the main digital supply. It powers the LDO and switching  
regulators.  
Figure 16. Separate Battery Connection to VBACKUP  
VCCD: the main LDO output. It requires a 4.7-µF capacitor for  
regulation. The LDO can be turned off when VCCD is driven  
from the switching regulator (see below). For more information,  
see the power system block diagram in the device technical  
reference manual (TRM).  
1.7 to 3.6 V  
VDDD  
10 µF  
1 µF  
0.1 µF  
0.1 µF  
VDDA: the supply for the analog peripherals. Voltage must be  
applied to this pin for correct device initialization and boot up.  
VBACKUP  
VDDIOA: the supply for I/O ports 9 and 10. It must be connected  
to VDDA  
.
1.4 to 3.6 V  
VDDIO0: the supply for I/O ports 11 and 12.  
VDDIO1: the supply for I/O ports 5, 6, 7, and 8.  
VDDIO2: the supply for I/O ports 2 and 3.  
VDDUSB: the supply for the USB peripheral and the USBDPand  
USBDM pins. It must be 2.85 V to 3.6 V for USB operation. If  
USB is not used, it can be 1.7 V to 3.6 V, and the USB pins can  
be used as limited-capability GPIOs on I/O port 14.  
Document Number: 002-28785 Rev. *I  
Page 32 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Table 10 shows a summary of the I/O port supplies:  
No external load should be placed on VCCD, or VIND1, whether  
or not these pins are used.  
Table 10. I/O Power Supplies  
There are no power pin sequencing requirements; power  
supplies may be brought up in any order. The power  
management system holds the device in reset until all power pins  
are at the voltage levels required for proper operation.  
Port  
0
Supply  
VBACKUP  
VDDIO2  
VDDIO1  
VDDIOA  
VDDIO0  
VDDUSB  
Alternate Supply  
VDDD  
2, 3  
Note: If a battery is installed on the PCB first, VDDD must be  
cycled for at least 50 µs. This prevents premature drain of the  
battery during product manufacture and storage.  
5, 6, 7, 8  
9, 10  
11, 12  
14  
VDDA  
Bypass capacitors must be connected to a common ground from  
the VDDx and other pins, as indicated in the diagrams. Typical  
practice for systems in this frequency range is to use a 10-µF or  
1-µF capacitor in parallel with a smaller capacitor (0.1 µF, for  
example). Note that these are simply rules of thumb and that, for  
critical applications, the PCB layout, lead inductance, and  
bypass capacitor parasitic should be simulated for optimal  
bypassing.  
Note: If the USB pins are not used, connect VDDUSB to ground  
and leave the P14.0/USBDP and P14.1/USBDM pins unconnect-  
ed.  
Voltage must be applied to the VDDD pin, and the VDDA pin as  
noted above, for correct device initialization and operation. If an  
I/O port is not being used, applying voltage to the corresponding  
All capacitors and inductors should be ±20% or better. The  
recommended inductor value is 2.2 µH ±20% (for example, TDK  
MLP2012H2R2MT0S1).  
V
DDx pin is optional.  
VSS: ground pins for the above supplies.All ground pins should  
be connected together to a common ground.  
It is good practice to check the datasheets for your bypass  
capacitors, specifically the working voltage and the DC bias  
specifications. With some capacitors, the actual capacitance can  
decrease considerably when the applied voltage is a significant  
percentage of the rated working voltage.  
In addition to the LDO regulator, a switching regulator is  
included. The regulator pins are:  
VDD_NS: the regulator supply.  
For more information on pad layout, refer to PSoC 6 CAD  
libraries.  
VIND1: the regulator output. It is typically used to drive VCCD  
through an inductor.  
The VDD power pins are not connected on chip. They can be  
connected off chip, in one or more separate nets. If separate  
power nets are used, they can be isolated from noise from the  
other nets using optional ferrite beads, as indicated in the  
diagrams.  
Document Number: 002-28785 Rev. *I  
Page 33 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Electrical Specifications  
All specifications are valid for –40 °C ≤ TA ≤ 85 °C and for 1.71 V to 3.6 V except where noted.  
Absolute Maximum Ratings  
Table 11. Absolute Maximum Ratings[3]  
Spec ID#  
SID1  
Parameter  
Description  
Min  
Typ  
Max Units  
Details / Conditions  
Analog or digital supply relative to V  
–0.5  
4
V
V
V
SS  
V
DD_ABS  
(V  
= V  
)
SSD  
SSA  
Direct digital core voltage input relative to  
–0.5  
–0.5  
1.2  
SID2  
SID3  
V
CCD_ABS  
GPIO_ABS  
V
SSD  
VDD  
0.5  
+
V
I
GPIO voltage; V  
or V  
DDD DDA  
SID4  
Current per GPIO  
–25  
–0.5  
2200  
500  
25  
0.5  
mA  
mA  
V
GPIO_ABS  
SID5  
I
GPIO injection current per pin  
GPIO_injection  
SID3A  
ESD_HBM  
ESD_CDM  
LU  
Electrostatic discharge Human Body Model  
Electrostatic discharge Charged Device  
Model  
V
SID4A  
SID5A  
Pin current for latchup-free operation  
–100  
100  
mA  
Device-Level Specifications  
Table 14 provides detailed specifications of CPU current. Table 12 summarizes these specifications, for rapid review of CPU currents  
under common conditions. Note that the max frequency for CM4 is 150 MHz, and for CM0+ is 100 MHz. IMO and FLL are used to  
generate the CPU clocks; FLL is not used when the CPU clock frequency is 8 MHz.  
Table 12. CPU Current Specifications Summary  
Condition  
= 3.3 V, V  
Range  
Typ Range  
Max Range  
LP Mode, V  
= 1.1 V, with buck regulator  
CCD  
DDD  
CM4 active, CM0+ sleep  
CM0+ active, CM4 sleep  
CM4 sleep, CM0+ sleep  
CM0+ sleep, CM4 off  
0.9–6.3 mA  
0.8–3.8 mA  
0.7–1.5 mA  
0.7–1.3 mA  
0.6–0.7 mA  
1.5–7 mA  
1.3–4.5 mA  
1.3–2.2 mA  
1.3–2 mA  
Across CPUs clock ranges: 8–150/100 MHz; Dhrystone  
with flash cache enabled  
Minimum regulator current mode  
ULP Mode, V = 3.3 V, V  
Across CM4/CM0+ CPU active/sleep modes  
1.1–1.1 mA  
= 0.9 V, with buck regulator  
CCD  
DDD  
CM4 active, CM0+ sleep  
CM0+ active, CM4 sleep  
CM4 sleep, CM0+ sleep  
CM0+ sleep, CM4 off  
0.65–1.6 mA  
0.51–0.91 mA  
0.42–0.76 mA  
0.41–0.62 mA  
0.39–0.54 mA  
7–9 µA  
0.8–2.2mA  
0.72–1.25 mA  
0.65–1.1 mA  
0.6–0.9 mA  
0.6–0.76 mA  
-
Across CPUs clock ranges: 8 – 50/25 MHz; Dhrystone  
with flash cache enabled  
Minimum regulator current mode  
Deep Sleep  
Across CM4/CM0+ CPU active/sleep modes  
Across SRAM retention  
Hibernate  
Across V  
300–800 nA  
-
DDD  
Note  
3. Usage above the absolute maximum conditions listed in Table 11 may cause permanent damage to the device. Exposure to absolute maximum conditions for extended  
periods of time may affect device reliability. The maximum storage temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature  
Storage Life. When used below absolute maximum conditions but above normal operating conditions, the device may not operate to specification.  
Document Number: 002-28785 Rev. *I  
Page 34 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Figure 17. Typical Device Currents vs. CPU Frequency; System Low Power (LP) Mode  
7
6
5
4
3
2
1
0
CM4 Active, CM0+ Sleep 1/2 CM4  
CM4 Active, CM0+ Sleep same as CM4  
CM0+ Active, CM4 Sleep  
0
25  
50  
75  
100  
125  
150  
CPU Clock, MHz  
Power Supplies  
Table 13. Power Supply DC Specifications  
Spec ID#  
SID6  
Parameter  
Description  
Internal regulator  
Analog power supply voltage. Shorted to  
on PCB.  
Min  
Typ  
Max  
Units  
Details / Conditions  
V
V
1.7  
3.6  
V
DDD  
Internally unregulated  
supply  
SID7  
1.7  
3.6  
V
DDA  
V
DDIOA  
Must be VDDA if the  
CapSense (CSD) block is  
used in the application  
SID7A  
V
GPIO supply for Ports 5 to 8 when present  
1.7  
3.6  
V
DDIO1  
SID7B  
SID7C  
V
V
GPIO supply for Ports 11 and 12  
1.7  
1.7  
3.6  
3.6  
V
V
DDIO0  
DDIO2  
GPIO supply for Ports 2 and 3 when present  
GPIO supply for Ports 9 and 10 when present.  
SID7D  
SID7F  
V
V
1.7  
1.7  
3.6  
3.6  
V
V
DDIOA  
Must be connected to V  
on PCB.  
DDA  
Supply for Port 14 (USB or GPIO) when  
present  
Min supply is 2.85 V for USB  
DDUSB  
Backup power and GPIO Port 0 supply when  
present  
Min. is 1.4 V when V  
removed  
is  
DDD  
SID6B  
SID8  
V
V
V
1.7  
3.6  
V
V
BACKUP  
CCD1  
Output voltage (for core logic bypass)  
1.1  
0.9  
System LP mode  
ULP mode. Valid for –20 to  
85 °C.  
SID9  
Output voltage (for core logic bypass)  
CCD2  
X5Rceramicorbetter. Value  
for 0.8 to 1.2 V  
SID10  
SID11  
C
C
External regulator voltage (V  
) bypass  
CCD  
3.8  
4.7  
10  
5.6  
µF  
EFC  
EXC  
Power supply decoupling capacitor  
µF X5R ceramic or better  
Document Number: 002-28785 Rev. *I  
Page 35 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
CPU Current and Transition Times  
Table 14. CPU Current and Transition Times  
Spec ID#  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details / Conditions  
LP Range Power Specifications (for V  
Cortex-M4. Active Mode  
= 1.1 V with Buck and LDO)  
CCD  
Execute with Cache Disabled (Flash)  
V
= 3.3 V, Buck ON, Max  
DDD  
2.3  
3.1  
5.7  
0.9  
1.2  
2.8  
3.2  
3.6  
6.5  
1.5  
1.6  
3.5  
mA  
mA  
mA  
mA  
mA  
mA  
at 60 °C.  
Execute from flash; CM4 Active 50 MHz,  
CM0+ Sleep 25 MHz. With IMO and FLL.  
While(1).  
V
= 1.8 V, Buck ON, Max  
DDD  
SIDF1  
SIDF2  
I
DD1  
at 60 °C.  
V
= 1.8 to 3.3 V, LDO,  
DDD  
max at 85 °C.  
V
= 3.3 V, Buck ON, Max  
DDD  
at 60 °C.  
V = 1.8 V, Buck ON, Max  
DDD  
at 60 °C.  
Execute from flash; CM4 Active 8 MHz,  
CM0+ Sleep 8 MHz.With IMO. While(1).  
I
DD2  
V
= 1.8 to 3.3 V, LDO,  
DDD  
Max at 85 °C.  
Execute with Cache Enabled  
V
= 3.3 V, Buck ON, Max  
DDD  
6.3  
9.7  
14.4  
4.8  
7.4  
11.3  
2.4  
3.7  
6.3  
0.90  
1.3  
3
7
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
at 60 °C.  
Execute from cache;CM4 Active 150 MHz,  
CM0+ Sleep 75 MHz. IMO and PLL.  
Dhrystone.  
V
= 1.8 V, Buck ON, Max  
DDD  
SIDC1  
SIDC2  
SIDC3  
SIDC4  
I
I
I
I
11.2  
15.1  
5.8  
8.4  
12  
DD3  
DD4  
DD5  
DD6  
at 60 °C.  
V
= 1.8 to 3.3 V, LDO,  
DDD  
max at 85 °C.  
V
= 3.3 V, Buck ON, Max  
DDD  
at 60 °C.  
Execute from cache;CM4 Active 100 MHz,  
CM0+ Sleep 100MHz. IMO and FLL.  
Dhrystone.  
V
= 1.8 V, Buck ON, Max  
DDD  
at 60 °C.  
V
= 1.8 to 3.3 V, LDO,  
DDD  
Max at 85 °C.  
V
=3.3 V, Buck ON, Max  
DDD  
3.4  
4.1  
7.2  
1.5  
1.8  
3.8  
at 60 °C.  
Execute from cache;CM4 Active 50 MHz,  
CM0+ Sleep 25MHz. IMO and FLL.  
Dhrystone.  
V
= 1.8V, Buck ON, Max  
DDD  
at 60 °C.  
V
= 1.8 to 3.3 V, LDO,  
DDD  
Max at 85 °C.  
V
= 3.3 V, Buck ON, Max  
DDD  
at 60 °C.  
V = 1.8 V, Buck ON, Max  
DDD  
at 60 °C.  
Execute from cache;CM4 Active 8 MHz,  
CM0+ Sleep 8 MHz. IMO. Dhrystone.  
V
= 1.8 to 3.3 V, LDO,  
DDD  
Max at 85 °C.  
Document Number: 002-28785 Rev. *I  
Page 36 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Table 14. CPU Current and Transition Times (continued)  
Spec ID# Parameter Description  
Min  
Typ  
Max  
Units  
Details / Conditions  
Cortex-M0+. Active Mode  
Execute with Cache Disabled (Flash)  
V
= 3.3 V, Buck ON, Max  
DDD  
2.4  
3.2  
5.6  
0.8  
1.1  
2.6  
3.3  
3.7  
6.3  
1.5  
1.6  
3.4  
mA  
mA  
mA  
mA  
mA  
mA  
at 60 °C.  
V = 1.8 V, Buck ON, Max  
DDD  
at 60 °C.  
Execute from flash;CM4 OFF, CM0+ Active  
50 MHz. With IMO and FLL. While (1).  
SIDF3  
SIDF4  
I
DD7  
V
= 1.8 to 3.3 V, LDO,  
DDD  
Max at 85 °C.  
V
= 3.3 V, Buck ON, Max  
DDD  
at 60 °C.  
V = 1.8 V, Buck ON, Max  
DDD  
at 60 °C.  
Execute from flash;CM4 OFF, CM0+ Active  
8 MHz. With IMO. While (1).  
I
DD8  
V
= 1.8 to 3.3 V, LDO,  
DDD  
Max at 85 °C.  
Execute with Cache Enabled  
V
= 3.3V, Buck ON, Max  
DDD  
3.8  
5.9  
9
4.5  
6.5  
9.7  
1.3  
1.7  
3.4  
mA  
mA  
mA  
mA  
mA  
mA  
at 60 °C.  
V = 1.8 V, Buck ON, Max  
DDD  
at 60 °C.  
Execute from cache;CM4 OFF, CM0+Active  
100 MHz. With IMO and FLL. Dhrystone.  
SIDC5  
SIDC6  
I
DD9  
V
= 1.8 to 3.3 V, LDO,  
DDD  
Max at 85 °C.  
V
= 3.3 V, Buck ON, Max  
DDD  
0.8  
1.2  
2.6  
at 60 °C.  
V = 1.8 V, Buck ON, Max  
DDD  
at 60 °C.  
Execute from cache;CM4 OFF, CM0+Active  
8 MHz. With IMO. Dhrystone.  
I
DD10  
V
= 1.8 to 3.3 V, LDO,  
DDD  
Max at 85 °C.  
Cortex-M4. Sleep Mode  
V
= 3.3 V, Buck ON, Max  
DDD  
1.5  
2.2  
4
2.2  
2.7  
4.6  
1.9  
2.2  
4.3  
1.3  
1.5  
3.3  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
at 60 °C.  
V = 1.8 V, Buck ON, Max  
DDD  
at 60 °C.  
CM4 Sleep 100 MHz, CM0+ Sleep 25 MHz.  
With IMO and FLL.  
SIDS1  
SIDS2  
SIDS3  
I
I
I
DD11  
DD12  
DD13  
V
= 1.8 to 3.3 V, LDO,  
DDD  
max at 85 °C.  
V
= 3.3 V, Buck ON, Max  
DDD  
1.2  
1.7  
3.4  
0.7  
1
at 60 °C.  
V = 1.8 V, Buck ON, Max  
DDD  
at 60 °C.  
CM4 Sleep 50 MHz, CM0+ Sleep 25 MHz.  
With IMO & FLL.  
V
= 1.8 to 3.3 V, LDO,  
DDD  
Max at 85 °C.  
V
= 3.3 V, Buck ON, Max  
DDD  
at 60 °C.  
V = 1.8 V, Buck ON, Max  
DDD  
at 60 °C.  
CM4 Sleep 8 MHz, CM0+ Sleep 8 MHz. With  
IMO.  
V
= 1.8 to 3.3 V, LDO,  
DDD  
2.4  
Max at 85 °C.  
Document Number: 002-28785 Rev. *I  
Page 37 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Table 14. CPU Current and Transition Times (continued)  
Spec ID#  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details / Conditions  
= 3.3 V, Buck ON, Max  
at 60 °C.  
V = 1.8 V, Buck ON, Max  
DDD  
Cortex-M0+. Sleep Mode  
V
DDD  
1.3  
1.9  
3.8  
0.7  
1
2
mA  
mA  
mA  
mA  
mA  
mA  
CM4 Off, CM0+ Sleep 50 MHz. With IMO  
and FLL.  
SIDS4  
SIDS5  
I
I
2.4  
4.6  
1.3  
1.5  
3.3  
DD14  
at 60 °C.  
V
= 1.8 to 3.3 V, LDO,  
DDD  
Max at 85 °C.  
V
= 3.3V, Buck ON, Max  
DDD  
at 60 °C.  
V
= 1.8 V, Buck ON, Max  
DDD  
CM4 Off, CM0+ Sleep 8 MHz. With IMO.  
DD15  
at 60 °C.  
V
= 1.8 to 3.3 V, LDO,  
DDD  
2.4  
Max at 85 °C.  
Cortex-M4. Minimum Regular Current Mode  
V
= 3.3 V, Buck ON, Max  
DDD  
0.9  
1.2  
2.8  
0.9  
1.3  
2.9  
1.5  
1.7  
3.5  
1.5  
1.8  
3.7  
mA  
mA  
mA  
mA  
mA  
mA  
at 60 °C.  
V = 1.8 V, Buck ON, Max  
DDD  
at 60 °C.  
Execute from flash; CM4 Active 8 MHz,  
CM0+ Sleep 8 MHz. With IMO. While (1).  
SIDLPA1  
SIDLPA2  
I
I
DD16  
V
= 1.8 to 3.3 V, LDO,  
DDD  
max at 85 °C.  
V
= 3.3 V, Buck ON, Max  
DDD  
at 60 °C.  
V = 1.8 V, Buck ON, Max  
DDD  
at 60 °C.  
Execute from cache; CM4 Active 8 MHz,  
CM0+ Sleep 8 MHz. With IMO. Dhrystone.  
DD17  
V
= 1.8 to 3.3 V, LDO,  
DDD  
Max at 85 °C.  
Cortex-M0+. Minimum Regulator Current Mode  
V
= 3.3 V, Buck ON, Max  
DDD  
0.8  
1.1  
2.7  
0.8  
1.2  
2.7  
1.4  
1.6  
3.6  
1.4  
1.7  
3.6  
mA  
mA  
mA  
mA  
mA  
mA  
at 60 °C.  
V = 1.8 V, Buck ON, Max  
DDD  
at 60 °C.  
Execute from flash; CM4 OFF, CM0+ Active  
8 MHz. With IMO. While (1).  
SIDLPA3  
SIDLPA4  
I
I
DD18  
V
= 1.8 to 3.3 V, LDO,  
DDD  
Max at 85 °C.  
V
= 3.3 V, Buck ON, Max  
DDD  
at 60 °C.  
V = 1.8 V, Buck ON, Max  
DDD  
at 60 °C.  
Execute from cache; CM4 Off, CM0+ Active  
8 MHz. With IMO. Dhrystone  
DD19  
V
= 1.8 to 3.3 V, LDO,  
DDD  
Max at 85 °C.  
Cortex-M4. Minimum Regulator Current Mode  
V
=3.3 V, Buck ON, Max  
DDD  
0.7  
1
1.1  
1.5  
3.3  
mA  
mA  
mA  
at 60 °C.  
V =1.8 V, Buck ON, Max  
DDD  
at 60 °C.  
CM4 Sleep 8 MHz, CM0+ Sleep 8 MHz. With  
IMO.  
SIDLPS1  
I
DD20  
V
= 1.8 to 3.3 V, LDO,  
DDD  
2.4  
Max at 85 °C.  
Document Number: 002-28785 Rev. *I  
Page 38 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Table 14. CPU Current and Transition Times (continued)  
Spec ID# Parameter Description  
Cortex-M0+. Minimum Regulator Current Mode  
Min  
Typ  
Max  
Units  
Details / Conditions  
= 3.3 V, Buck ON, Max  
V
DDD  
0.6  
0.9  
2.4  
1.1  
1.5  
3.3  
mA  
mA  
mA  
at 60 °C.  
V
= 1.8 V, Buck ON, Max  
DDD  
SIDLPS3  
I
CM4 Off, CM0+ Sleep 8 MHz. With IMO.  
DD22  
at 60 °C.  
V
= 1.8 to 3.3 V, LDO,  
DDD  
Max at 85 °C.  
ULP RANGE POWER SPECIFICATIONS (for V  
Cortex-M4. Active Mode  
= 0.9 V using the Buck). ULP mode is valid from –20 to +85 °C.  
CCD  
Execute with Cache Disabled (Flash)  
V
= 3.3 V, Buck ON, Max  
DDD  
1.7  
2.1  
2.2  
2.4  
0.8  
1
mA  
mA  
mA  
mA  
Execute from flash; CM4 Active 50 MHz,  
CM0+ Sleep 25 MHz. With IMO and FLL.  
While(1).  
at 60 °C.  
SIDF5  
SIDF6  
I
DD3  
V
= 1.8 V, Buck ON, Max  
DDD  
at 60 °C.  
V
= 3.3 V, Buck ON, Max  
DDD  
0.56  
0.75  
at 60 °C.  
Execute from flash; CM4 Active 8 MHz,  
CM0+ Sleep 8 MHz. With IMO. While (1).  
I
DD4  
V
= 1.8 V, Buck ON, Max  
DDD  
at 60 °C.  
Execute with Cache Enabled  
V
= 3.3 V, Buck ON, Max  
DDD  
1.6  
2.4  
2.2  
2.7  
0.8  
1.1  
mA  
mA  
mA  
mA  
Execute from cache; CM4 Active 50 MHz,  
CM0+ Sleep 25 MHz. With IMO and FLL.  
Dhrystone.  
at 60 °C.  
SIDC8  
SIDC9  
I
DD10  
V
= 1.8 V, Buck ON, Max  
DDD  
at 60 °C.  
V
= 3.3 V, Buck ON, Max  
DDD  
0.65  
0.8  
at 60 °C.  
Execute from cache; CM4 Active 8 MHz,  
CM0+ Sleep 8 MHz. With IMO. Dhrystone.  
I
DD11  
V
= 1.8 V, Buck ON, Max  
DDD  
at 60 °C.  
Cortex-M0+. Active Mode  
Execute with Cache Disabled (Flash)  
V
= 3.3 V, Buck ON, Max  
DDD  
1
1.4  
1.6  
0.75  
1
mA  
mA  
mA  
mA  
at 60 °C.  
Execute from flash; CM4 OFF, CM0+ Active  
25 MHz. With IMO and FLL. Write(1).  
SIDF7  
SIDF8  
I
DD16  
V
= 1.8 V, Buck ON, Max  
DDD  
1.34  
0.54  
0.73  
at 60 °C.  
V
= 3.3 V, Buck ON, Max  
DDD  
at 60 °C.  
Execute from flash; CM4 OFF, CM0+ Active  
8 MHz. With IMO. While(1).  
I
DD17  
V
= 1.8 V, Buck ON, Max  
DDD  
at 60 °C.  
Execute with Cache Enabled  
V
= 3.3 V, Buck ON, Max  
DDD  
0.91  
1.34  
0.51  
0.73  
1.25  
1.6  
mA  
mA  
mA  
mA  
at 60 °C.  
Executefromcache;CM4OFF, CM0+Active  
25 MHz. With IMO and FLL. Dhrystone.  
SIDC10  
SIDC11  
I
DD18  
V
= 1.8 V, Buck ON, Max  
DDD  
at 60 °C.  
V
= 3.3 V, Buck ON, Max  
DDD  
0.72  
0.95  
at 60 °C.  
Executefromcache;CM4OFF, CM0+Active  
8 MHz. With IMO. Dhrystone.  
I
DD19  
V
= 1.8 V, Buck ON, Max  
DDD  
at 60 °C.  
Cortex-M4. Sleep Mode  
V
= 3.3 V, Buck ON, Max  
DDD  
0.76  
1.1  
1.1  
1.4  
mA  
mA  
at 60 °C.  
CM4 Sleep 50 MHz, CM0+ Sleep 25 MHz.  
With IMO and FLL.  
SIDS7  
I
DD21  
V
= 1.8 V, Buck ON, Max  
DDD  
at 60 °C.  
Document Number: 002-28785 Rev. *I  
Page 39 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Table 14. CPU Current and Transition Times (continued)  
Spec ID#  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details / Conditions  
= 3.3 V, Buck ON, Max  
at 60 °C.  
V
DDD  
0.42  
0.65  
mA  
CM4 Sleep 8 MHz, CM0+ Sleep 8 MHz. With  
IMO.  
SIDS8  
I
DD22  
V
= 1.8 V, Buck ON, Max  
DDD  
0.59  
0.8  
mA  
at 60 °C.  
Cortex-M0+. Sleep Mode  
V
= 3.3 V, Buck ON, Max  
DDD  
0.62  
0.88  
0.41  
0.58  
0.9  
1.1  
0.6  
0.8  
mA  
mA  
mA  
mA  
at 60 °C.  
CM4 Off, CM0+ Sleep 25 MHz. With IMO  
and FLL.  
SIDS9  
I
DD23  
V
= 1.8 V, Buck ON, Max  
DDD  
at 60 °C.  
V
= 3.3 V, Buck ON, Max  
DDD  
at 60 °C.  
SIDS10  
I
CM4 Off, CM0+ Sleep 8 MHz. With IMO.  
DD24  
V
= 1.8°V, Buck ON,  
DDD  
Max at 60 °C.  
Cortex-M4. Minimum Regulator Current Mode  
V
= 3.3 V, Buck ON, Max  
DDD  
0.52  
0.76  
0.54  
0.78  
0.75  
1
mA  
mA  
mA  
mA  
at 60 °C.  
Execute from flash. CM4 Active 8 MHz,  
CM0+ Sleep 8 MHz. With IMO. While(1).  
SIDLPA5  
SIDLPA6  
I
I
DD25  
V
= 1.8 V, Buck ON, Max  
DDD  
at 60 °C.  
V
= 3.3 V, Buck ON, Max  
DDD  
0.76  
1
at 60 °C.  
Execute from cache. CM4 Active 8 MHz,  
CM0+ Sleep 8 MHz. With IMO. Dhrystone.  
DD26  
V
= 1.8 V, Buck ON, Max  
DDD  
at 60 °C.  
Cortex-M0+. Minimum Regulator Current Mode  
V
= 3.3 V, Buck ON, Max  
DDD  
0.51  
0.75  
0.48  
0.7  
0.75  
1
mA  
mA  
mA  
mA  
at 60 °C.  
Execute from flash. CM4 OFF, CM0+ Active  
8 Hz. With IMO. While (1).  
SIDLPA7  
SIDLPA8  
I
I
DD27  
V
= 1.8 V, Buck ON, Max  
DDD  
at 60 °C.  
V
= 3.3 V, Buck ON, Max  
DDD  
0.7  
0.95  
at 60 °C.  
Executefromcache. CM4OFF, CM0+Active  
8 MHz. With IMO. Dhrystone.  
DD28  
V
= 1.8 V, Buck ON, Max  
DDD  
at 60 °C.  
Cortex-M4. Minimum Regulator Current Mode  
V
= 3.3 V, Buck ON, Max  
DDD  
0.4  
0.6  
0.8  
mA  
mA  
at 60 °C.  
CM4 Sleep 8 MHz, CM0+ Sleep 8 MHz. With  
IMO.  
SIDLPS5  
I
DD29  
V
= 1.8 V, Buck ON, Max  
DDD  
0.57  
at 60 °C.  
Cortex-M0+. Minimum Regulator Current Mode  
V
= 3.3 V, Buck ON, Max  
DDD  
0.39  
0.56  
0.6  
0.8  
mA  
mA  
at 60 °C.  
SIDLPS7  
I
CM4 Off, CM0+ Sleep 8 MHz. With IMO.  
DD31  
V
= 1.8 V, Buck ON, Max  
DDD  
at 60 °C.  
Deep Sleep Mode  
SIDDS2  
With internal Buck enabled and 128-KB  
SRAM retention  
I
8
µA  
DD33B  
Document Number: 002-28785 Rev. *I  
Page 40 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Table 14. CPU Current and Transition Times (continued)  
Spec ID#  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details / Conditions  
Hibernate Mode  
SIDHIB1  
SIDHIB2  
I
I
V
V
= 1.8 V  
= 3.3 V  
300  
800  
nA No clocks running  
DD34  
DD34A  
DDD  
DDD  
nA No clocks running  
Power Mode Transition Times  
Minimum regulator current to LP transition  
time  
SID12  
T
35  
µs Including PLL lock time  
LPACT_ACT  
SID13  
SID14  
T
T
Deep Sleep to LP transition time  
Hibernate to LP transition time  
15  
µs Guaranteed by design  
µs Including PLL lock time  
DS_LPACT  
HIB_ACT  
2000  
XRES  
Table 15. XRES DC Specifications  
Spec ID#  
SID17  
Parameter  
Description  
when XRES asserted  
when XRES asserted  
Min  
Typ  
Max  
Units  
Details / Conditions  
T
T
I
I
300  
800  
nA  
nA  
V
V
= 1.8 V  
DDD  
XRES_IDD  
DD  
DD  
SID17A  
SID77  
V
= 3.3 V  
DDD  
XRES_IDD_1  
V
V
Input voltage HIGH threshold  
Input voltage LOW threshold  
Input capacitance  
0.7 * VDD  
CMOS input  
IH  
IL  
SID78  
0.3 * VDD  
V
CMOS input  
SID80  
C
V
3
pF  
mV  
µA  
IN  
SID81  
Input voltage hysteresis  
100  
HYSXRES  
DIODE  
Current through protection diode to  
100  
SID82  
I
V
/V  
DD SS  
Table 16. XRES AC Specifications  
Spec ID#  
SID15  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details / Conditions  
POR or XRES release to Active  
transition time  
Normal mode, 50-MHz  
CM0+  
2000  
µs  
T
T
XRES_ACT  
XRES_PW  
SID16  
XRES pulse width  
5
µs  
GPIO  
Table 17. GPIO DC Specifications  
Spec ID# Parameter  
SID57  
Description  
Input voltage HIGH threshold  
Input current when Pad > V  
Min  
Typ  
Max  
Units Details / Conditions  
V
0.7 * VDD  
V
CMOS Input  
IH  
for  
10  
µA  
2
DDIO  
SID57A  
I
Per I C Spec  
IHS  
OVT inputs  
SID58  
V
V
V
V
V
V
V
Input voltage LOW threshold  
0.3 * VDD  
V
V
CMOS Input  
IL  
SID241  
SID242  
SID243  
SID244  
SID59  
LVTTL input, V < 2.7 V  
0.7 * VDD  
0.3 * VDD  
IH  
IL  
DD  
LVTTL input, V < 2.7 V  
V
DD  
LVTTL input, V ≥ 2.7 V  
2.0  
V
IH  
IL  
DD  
LVTTL input, V ≥ 2.7 V  
VDD – 0.5  
0.8  
V
DD  
Output voltage HIGH level  
Output voltage LOW level  
Pull-up resistor  
V
I
I
= 8 mA  
= 8 mA  
OH  
OL  
OH  
OL  
SID62A  
SID63  
0.4  
V
R
R
3.5  
5.6  
5.6  
8.5  
kΩ  
kΩ  
PULLUP  
SID64  
Pull-down resistor  
3.5  
8.5  
PULLDOWN  
Document Number: 002-28785 Rev. *I  
Page 41 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Table 17. GPIO DC Specifications (continued)  
Spec ID#  
SID65  
Parameter  
Description  
Input leakage current (absolute value)  
Input capacitance  
Min  
Typ  
Max  
2
Units Details / Conditions  
I
nA 25 °C, V = 3.0 V  
IL  
DD  
SID66  
SID67  
SID68  
C
V
100  
5
pF  
mV  
mV  
µA  
IN  
Input hysteresis LVTTL V > 2.7 V  
0
HYSTTL  
DD  
V
Input hysteresis CMOS  
0.05 * VDD  
HYSCMOS  
Current through protection diode to  
100  
SID69  
I
DIODE  
V
/V  
DD SS  
Maximum total source or sink chip  
current  
200  
mA  
SID69A  
I
TOT_GPIO  
Table 18. GPIO AC Specifications  
Spec ID#  
SID70  
Parameter  
Description  
Min  
Typ  
Max  
Units Details / Conditions  
Rise time in Fast Strong Mode. 10% to  
Cload = 15 pF, 8-mA  
drive strength  
2.5  
ns  
ns  
ns  
T
T
RISEF  
90% of V  
.
DD  
Fall time in Fast Strong Mode. 10% to  
90% of V  
Cload = 15 pF, 8-mA  
drive strength  
2.5  
SID71  
SID72  
FALLF  
.
DD  
Cload = 15 pF, 8-mA  
52  
142  
Rise time in Slow Strong Mode. 10% to  
90% of V  
T
drive strength, V  
RISES_1  
DD  
.
DD  
2.7 V  
Cload = 15 pF, 8-mA  
drive strength, 2.7 V <  
48  
102  
ns  
Rise time in Slow Strong Mode. 10% to  
90% of V  
SID72A  
SID73  
T
T
T
RISES_2  
FALLS_1  
FALLS_2  
.
DD  
V
3.6 V  
DD  
Fall time in Slow Strong Mode. 10% to  
90% of V  
Cload= 15 pF, 8 mAdrive  
44  
42  
211  
93  
ns  
ns  
.
strength, V 2.7 V  
DD  
DD  
Cload = 15 pF, 8-mA  
drive strength, 2.7 V <  
Fall time in Slow Strong Mode. 10% to  
90% of V  
SID73A  
.
DD  
V
3.6 V  
DD  
Fall time (30% to 70% of V ) in Slow  
Strong mode.  
Cload = 10 pF to 400 pF,  
8-mA drive strength  
20 * VDDIO  
5.5  
/
250  
100  
1.5  
ns  
DD  
SID73G  
SID74  
T
F
F
F
F
F
FALL_I2C  
GPIOUT1  
GPIOUT2  
GPIOUT3  
GPIOUT4  
GPIOIN  
90/10%, 15-pF load,  
60/40 duty cycle  
MHz  
MHz  
MHz  
MHz  
MHz  
GPIO Fout. Fast Strong mode.  
90/10%, 15-pF load,  
60/40 duty cycle  
SID75  
GPIO Fout; Slow Strong mode.  
GPIO Fout; Fast Strong mode.  
90/10%, 25-pF load,  
60/40 duty cycle  
100  
1.3  
SID76  
90/10%, 25-pF load,  
60/40 duty cycle  
SID245  
SID246  
GPIO Fout; Slow Strong mode.  
GPIO input operating frequency;  
100  
90/10% V  
IO  
1.71 V V 3.6 V  
DD  
Document Number: 002-28785 Rev. *I  
Page 42 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Analog Peripherals  
Low-Power (LP) Comparator  
Table 19. LP Comparator DC Specifications  
Spec ID#  
SID84  
Parameter  
Description  
Min  
–10  
–25  
–25  
Typ  
Max  
10  
Units Details/Conditions  
Input offset voltage. Normal power  
mode.  
V
V
V
mV  
mV  
mV  
OFFSET1  
OFFSET2  
OFFSET3  
SID85A  
SID85B  
Input offset voltage. Low-power mode.  
±12  
±12  
25  
Input offset voltage. Ultra low-power  
mode.  
25  
Hysteresis when enabled in Normal  
mode  
SID86  
V
V
V
V
V
60  
80  
mV  
mV  
V
HYST1  
HYST2  
ICM1  
HysteresiswhenenabledinLow-power  
mode  
SID86A  
SID87  
Input common mode voltage in Normal  
mode  
0
VDDIO1 – 0.1  
VDDIO1 – 0.1  
VDDIO1 – 0.1  
Input common mode voltage in Low  
power mode  
SID247  
SID247A  
SID88  
0
V
ICM2  
Input common mode voltage in Ultra  
low power mode  
0
V
ICM3  
Common mode rejection ratio in  
Normal power mode  
CMRR  
50  
dB  
SID89  
SID248  
SID259  
SID90  
I
Block current, Normal mode  
150  
10  
µA  
µA  
µA  
MΩ  
CMP1  
I
Block current, Low-power mode  
Block current in Ultra low-power mode  
DC input impedance of comparator  
CMP2  
I
0.3  
0.85  
CMP3  
ZCMP  
35  
Table 20. LP Comparator AC Specifications  
Spec ID# Parameter Description  
LP Comparator AC Specifications  
Min  
Typ  
Max  
Units Details/Conditions  
Response time, Normal mode, 100 mV  
overdrive  
SID91  
SID258  
SID92  
T
T
T
100  
1000  
20  
ns  
ns  
µs  
µs  
RESP1  
RESP2  
RESP3  
Response time, Low power mode, 100  
mV overdrive  
Response time, Ultra-low power mode,  
100 mV overdrive  
Normal and low-power  
modes  
SID92E  
SID92F  
T_CMP_EN1  
T_CMP_EN2  
Time from Enabling to operation  
Time from Enabling to operation  
10  
50  
µs Ultra-low-power mode  
Document Number: 002-28785 Rev. *I  
Page 43 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Temperature Sensor  
Table 21. Temperature Sensor Specifications  
Spec ID  
SID93  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details/Conditions  
T
Temperature sensor accuracy  
–5  
±1  
5
°C –40 to +85 °C  
SENSACC  
Internal Reference  
Table 22. Internal Reference Specification  
Spec ID  
SID93R  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details/Conditions  
V
1.188  
1.2  
1.212  
V
REFBG  
SAR ADC  
Table 23. 12-bit SAR ADC DC Specifications  
Spec ID  
SID94  
Parameter  
Description  
SAR ADC Resolution  
Min  
Typ  
Max Units  
Details/Conditions  
A_RES  
12  
16  
8
bits  
SID95  
SID96  
SID97  
SID98  
SID99  
A_CHNLS_S Number of channels - single-ended  
A-CHNKS_D Number of channels - differential  
8 full speed.  
Diff inputs use neighboring I/O  
Yes.  
A-MONO  
Monotonicity  
-
A_GAINERR Gain error  
±0.2  
2
%
With external reference.  
A_OFFSET  
A_ISAR_1  
Input offset voltage  
mV Measured with 1-V reference  
At 1 Msps. External reference  
mode  
1.05  
mA  
mA  
mA  
mA  
SID100  
Current consumption at 1 Msps  
Current consumption at 1 Msps  
Current consumption at 2 Msps  
Current consumption at 2 Msps  
At 1 Msps. Internal reference  
mode  
1.3  
SID100A  
SID1002  
SID1003  
A_ISAR_2  
A_ISAR_3  
A_ISAR_4  
At 2 Msps. External reference  
mode  
1.65  
2.15  
At 2 Msps. Internal reference  
mode  
SID101  
SID102  
SID103  
SID104  
A_VINS  
Input voltage range - single-ended  
Input voltage range - differential  
Input resistance  
VSS  
VSS  
1
5
VDDA  
VDDA  
V
V
A_VIND  
A_INRES  
A_INCAP  
kΩ  
pF  
Input capacitance  
Table 24. 12-bit SAR ADC AC Specifications  
Spec ID  
SID106  
SID107  
Parameter  
A_PSRR  
Description  
Min  
70  
Typ  
Max Units  
Details/Conditions  
Power supply rejection ratio  
dB  
dB Measured at 1 V  
A_CMRR  
Common mode rejection ratio  
Sample rate with external reference  
With bypass cap  
66  
SID1081 A_SAMP_1  
SID1082 A_SAMP_1  
SID108A1 A_SAMP_2  
SID108A2 A_SAMP_2  
SID108B A_SAMP_3  
2
1
2
1
1
Msps  
Msps  
Msps  
Msps  
Msps  
V
V
V
V
-
2.7 - 3.6  
1.7 - 3.6  
2.7 - 3.6  
1.7 - 3.6  
DDA  
DDA  
DDA  
DDA  
Sample rate with external reference  
With bypass cap  
Sample rate with V reference;  
DD  
No bypass cap  
Sample rate with V reference;  
DD  
No bypass cap  
Sample rate with internal reference;  
With bypass cap  
Document Number: 002-28785 Rev. *I  
Page 44 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Table 24. 12-bit SAR ADC AC Specifications (continued)  
Spec ID  
SID108C A_SAMP_4  
SID109 A_SINAD  
Parameter  
Description  
Sample rate with Internal Reference.  
No bypass cap  
Min  
Typ  
Max Units  
Details/Conditions  
200  
ksps  
-
Signal-to-noise and distortion ratio  
(SINAD).  
64  
–2  
dB Fin = 10 kHz  
Integral non-linearity.  
Up to 1 Msps  
SID111A A_INL  
SID111B A_INL  
SID112A A_DNL  
SID112B A_DNL  
2
LSB All Reference Mode  
External Reference or V  
DDA  
Integral non-linearity.  
2 Msps.  
–2.5  
–1  
2.5  
1.5  
LSB Reference Mode, V  
≥ 2 V.  
REF  
V
= 2.7 V to 3.6 V  
DDA  
Differential non-linearity.  
Up to 1Msps  
LSB All Reference Modes  
External Reference or V  
DDA  
Differential non-linearity.  
2Msps.  
–1  
1.6  
LSB Reference Mode, V  
≥ 2V.  
REF  
V
= 2.7 to 3.6 V  
DDA  
SID113  
A_THD  
Total harmonic distortion. 1 Msps.  
–65  
dB Fin = 10 kHz. V  
= 2.7 to 3.6 V.  
DDA  
CSD  
Table 25. CapSense Sigma-Delta (CSD) Specifications  
Spec ID#  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details / Conditions  
CSD V2 Specifications  
V
> 2 V (with ripple),  
DDA  
Max allowed ripple on power supply,  
DC to 10 MHz  
25 °C T ,  
SYS.PER#3  
V
±50  
mV  
A
DD_RIPPLE  
Sensitivity = 0.1 pF  
V
> 1.75 V (with ripple),  
DDA  
25 ° C T ,  
Max allowed ripple on power supply,  
DC to 10 MHz  
A
SYS.PER#16  
V
I
±25  
mV  
DD_RIPPLE_1.8  
Parasitic Capacitance (C ) <  
P
20 pF, Sensitivity ≥ 0.4 pF  
SID.CSD.BLK  
SID.CSD#15  
Maximum block current  
4500  
µA  
V
CSD  
Voltage reference for CSD and  
Comparator  
VDDA  
0.6  
V
0.6  
1.2  
V
V
– V  
– V  
≥ 0.6 V  
≥ 0.6 V  
REF  
DDA  
DDA  
REF  
REF  
External Voltage reference for CSD  
and Comparator  
VDDA  
0.6  
SID.CSD#15A  
V
I
0.6  
V
REF_EXT  
SID.CSD#16  
SID.CSD#17  
SID308  
IDAC1 (7-bits) block current  
IDAC2 (7-bits) block current  
Voltage range of operation  
1900  
1900  
3.6  
µA  
µA  
V
DAC1IDD  
DAC2IDD  
I
V
V
I
1.7  
1.71 to 3.6 V  
CSD  
VDDA  
0.6  
SID308A  
SID309  
SID310  
SID311  
SID312  
Voltage compliance range of IDAC  
0.6  
–1  
–3  
–1  
–3  
V
V
– V ≥ 0.6 V  
REF  
COMPIDAC  
DDA  
DNL  
INL  
1
3
1
3
LSB  
LSB  
LSB  
LSB  
DAC1DNL  
DAC1INL  
DAC2DNL  
DAC2INL  
If V  
< 2 V then for LSB of  
DDA  
I
I
I
2.4 µA or less  
DNL  
INL  
If V  
< 2 V then for LSB of  
DDA  
2.4 µA or less  
SNRC of the following is Ratio of counts of finger to noise. Guaranteed by characterization.  
SRSS reference. IMO + FLL clock  
SID313_1A  
SNRC_1  
5
Ratio 9.5-pF max. capacitance  
source. 0.1-pF sensitivity.  
Document Number: 002-28785 Rev. *I  
Page 45 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Table 25. CapSense Sigma-Delta (CSD) Specifications (continued)  
Spec ID#  
Parameter  
SNRC_2  
Description  
Min  
Typ  
Max  
Units  
Details / Conditions  
SRSS reference. IMO + FLL clock  
source. 0.3-pF sensitivity.  
SID313_1B  
5
Ratio 31-pF max. capacitance  
Ratio 61-pF max. capacitance  
Ratio 12-pF max. capacitance  
Ratio 47-pF max. capacitance  
Ratio 86-pF max. capacitance  
Ratio 27-pF max. capacitance  
Ratio 86-pF max. capacitance  
Ratio 168 pF Max. capacitance  
SRSS reference. IMO + FLL clock  
source. 0.6-pF sensitivity.  
SID313_1C  
SID313_2A  
SID313_2B  
SID313_2C  
SID313_3A  
SID313_3B  
SID313_3C  
SID314  
SNRC_3  
SNRC_4  
SNRC_5  
SNRC_6  
SNRC_7  
SNRC_8  
SNRC_9  
IDAC  
5
5
PASS reference. IMO + FLL clock  
source. 0.1-pF sensitivity.  
PASS reference. IMO + FLL clock  
source. 0.3-pF sensitivity.  
5
PASS reference. IMO + FLL clock  
source. 0.6-pF sensitivity.  
5
PASS reference. IMO + PLL clock  
source. 0.1-pF sensitivity.  
5
PASS reference. IMO + PLL clock  
source. 0.3-pF sensitivity.  
5
PASS reference. IMO + PLL clock  
source. 0.6-pf sensitivity.  
5
Output current of IDAC1 (7 bits) in  
low range  
4.2  
33.7  
270  
8
5.7  
45.6  
365  
11.4  
91  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
LSB  
LSB = 37.5-nA typ.  
LSB = 300-nA typ.  
LSB = 2.4-µA typ.  
1CRT1  
Output current of IDAC1 (7 bits) in  
medium range  
SID314A  
SID314B  
SID314C  
SID314D  
SID314E  
SID315  
IDAC  
IDAC  
IDAC  
IDAC  
IDAC  
IDAC  
IDAC  
IDAC  
IDAC  
IDAC  
IDAC  
IDAC  
IDAC  
IDAC  
IDAC  
1CRT2  
Output current of IDAC1 (7 bits) in  
high range  
1CRT3  
Output current of IDAC1 (7 bits) in  
low range, 2X mode  
LSB = 37.5-nAtyp. 2X output  
stage  
1CRT12  
1CRT22  
1CRT32  
2CRT1  
Output current of IDAC1 (7 bits) in  
medium range, 2X mode  
LSB = 300-nA typ. 2X output  
stage  
67  
540  
4.2  
33.7  
270  
8
Output current of IDAC1 (7 bits) in  
LSB = 2.4-µA typ. 2X output  
stage  
730  
5.7  
45.6  
365  
11.4  
91  
high range, 2X mode. V  
> 2 V  
DDA  
Output current of IDAC2 (7 bits) in  
low range  
LSB = 37.5-nA typ.  
LSB = 300-nA typ.  
LSB = 2.4-µA typ.  
Output current of IDAC2 (7 bits) in  
medium range  
SID315A  
SID315B  
SID315C  
SID315D  
SID315E  
SID315F  
SID315G  
SID315H  
SID320  
2CRT2  
Output current of IDAC2 (7 bits) in  
high range  
2CRT3  
Output current of IDAC2 (7 bits) in  
low range, 2X mode  
LSB = 37.5-nAtyp. 2X output  
stage  
2CRT12  
2CRT22  
2CRT32  
3CRT13  
3CRT23  
3CRT33  
OFFSET  
Output current of IDAC2 (7 bits) in  
medium range, 2X mode  
LSB = 300-nA typ. 2X output  
stage  
67  
540  
8
Output current of IDAC2 (7 bits) in  
LSB = 2.4-µA typ. 2X output  
stage  
730  
11.4  
91  
high range, 2X mode. V  
> 2V  
DDA  
Output current of IDAC in 8-bit mode  
in low range  
LSB = 37.5-nA typ.  
LSB = 300-nA typ.  
LSB = 2.4-µA typ.  
Output current of IDAC in 8-bit mode  
in medium range  
67  
540  
Output current of IDAC in 8-bit mode  
730  
1
in high range. V  
> 2V  
DDA  
Polarity set by Source or  
Sink  
All zeroes input  
Document Number: 002-28785 Rev. *I  
Page 46 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Table 25. CapSense Sigma-Delta (CSD) Specifications (continued)  
Spec ID#  
SID321  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details / Conditions  
IDAC  
Full-scale error less offset  
±15  
%
LSB = 2.4-µA typ.  
GAIN  
Mismatch between IDAC1 and  
IDAC2 in Low mode  
SID322  
IDAC  
IDAC  
IDAC  
IDAC  
IDAC  
9.2  
6
LSB LSB = 37.5-nA typ.  
LSB LSB = 300-nA typ.  
LSB LSB = 2.4-µA typ.  
MISMATCH1  
Mismatch between IDAC1 and  
IDAC2 in Medium mode  
SID322A  
SID322B  
SID323  
MISMATCH2  
MISMATCH3  
SET8  
Mismatch between IDAC1 and  
IDAC2 in High mode  
5.8  
10  
Settling time to 0.5 LSB for 8-bit  
IDAC  
Full-scale transition. No  
external load.  
µs  
Settling time to 0.5 LSB for 7-bit  
IDAC  
Full-scale transition. No  
external load.  
SID324  
SID325  
10  
µs  
SET7  
CMOD  
External modulator capacitor.  
2.2  
nF  
5-V rating, X7R or NP0 cap.  
Table 26. CSD ADC Specifications  
Spec ID# Parameter  
CSDv2 ADC Specifications  
Description  
Min Typ Max Units  
Details / Conditions  
Auto-zeroing is required every milli-  
second  
10  
bits  
SIDA94  
A_RES  
Resolution  
SID95  
A_CHNLS_S  
A-MONO  
Number of channels - single ended  
Monotonicity  
Yes  
16  
SIDA97  
V
mode  
REF  
Reference Source: SRSS  
0.6  
%
(V  
(V  
= 1.20 V, V  
= 1.6 V, 2.2 V < V  
< 2.2 V),  
DDA  
REF  
SIDA98  
A_GAINERR_VREF Gain error  
<
REF  
DDA  
2.7 V), (V  
2.7 V)  
= 2.13 V, V  
>
REF  
DDA  
Reference Source: SRSS  
0.2  
0.5  
%
(V  
(V  
=1.20 V, V  
=1.6 V,  
< 2.2V),  
DDA  
REF  
SIDA98A A_GAINERR_VDDA Gain error  
REF  
2.2 V < V  
< 2.7 V),  
DDA  
(V  
= 2.13 V, V  
> 2.7 V)  
REF  
DDA  
After ADC calibration, Ref. Src =  
LSB  
SRSS, (V  
2.2 V),  
= 1.20 V, V  
<
REF  
DDA  
SIDA99  
A_OFFSET_VREF  
Input offset voltage  
Input offset voltage  
(V  
= 1.6 V, 2.2 V < V  
<
DDA  
REF  
2.7 V),  
(V = 2.13 V, V  
> 2.7 V)  
DDA  
REF  
After ADC calibration, Ref. Src =  
SRSS, (V  
2.2 V),  
0.5  
LSB  
= 1.20 V, V  
<
REF  
DDA  
SIDA99A A_OFFSET_VDDA  
(V  
= 1.6 V, 2.2 V < V  
<
DDA  
REF  
2.7 V),  
(V = 2.13 V, V  
> 2.7 V)  
DDA  
REF  
SIDA100 A_ISAR_VREF  
SIDA100A A_ISAR_VDDA  
Current consumption  
Current consumption  
0.3  
0.3  
mA CSD ADC Block current  
mA CSD ADC Block current  
Document Number: 002-28785 Rev. *I  
Page 47 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Table 26. CSD ADC Specifications (continued)  
Spec ID#  
Parameter  
Description  
Min Typ Max Units  
Details / Conditions  
= 1.20 V, V < 2.2 V),  
(V  
(V  
VSSA  
VREF  
V
REF  
DDA  
= 1.6 V, 2.2 V < V  
<
REF  
DDA  
SIDA101 A_VINS_VREF  
SIDA101A A_VINS_VDDA  
Input voltage range - single ended  
2.7 V),  
(V  
= 2.13 V, V  
> 2.7 V)  
< 2.2 V),  
REF  
DDA  
DDA  
(V  
(V  
= 1.20 V, V  
VSSA  
VDDA  
V
REF  
= 1.6 V, 2.2 V < V  
<
DDA  
RE F  
Input voltage range - single ended  
2.7 V),  
(V  
= 2.13 V, V  
> 2.7 V)  
DDA  
REF  
SIDA103 A_INRES  
SIDA104 A_INCAP  
SIDA106 A_PSRR  
Input charging resistance  
Input capacitance  
15  
41  
60  
10  
kΩ  
pF  
dB  
µs  
Power supply rejection ratio (DC)  
Measured with 50-Ω source  
impedance. 10 µs is default  
software driver acquisition time  
setting. Settling to within 0.05%.  
SIDA107 A_TACQ  
Sample acquisition time  
Conversion time for 8-bit resolution at  
conversion rate = Fhclk / (2"(N + 2)).  
Clock frequency = 50 MHz.  
25  
60  
µs  
µs  
SIDA108 A_CONV8  
SIDA108A A_CONV10  
Does not include acquisition time.  
Does not include acquisition time.  
Conversion time for 10-bit resolution at  
conversion rate = Fhclk / (2"(N + 2)).  
Clock frequency = 50 MHz.  
Signal-to-noise and distortion ratio  
(SINAD)  
Measured with 50-Ω source  
impedance  
57  
52  
2
2
1
1
dB  
SIDA109 A_SND_VRE  
SIDA109A A_SND_VDDA  
Signal-to-noise and distortion ratio  
(SINAD)  
Measured with 50-Ω source  
impedance  
dB  
Measured with 50-Ω source  
impedance  
LSB  
LSB  
LSB  
LSB  
SIDA111  
SIDA111A A_INL_VDDA  
SIDA112 A_DNL_VREF  
SIDA112A A_DNL_VDDA  
A_INL_VREF  
Integral non-linearity. 11.6 ksps  
Integral non-linearity. 11.6 ksps  
Differential non-linearity. 11.6 ksps  
Differential non-linearity. 11.6 ksps  
Measured with 50-Ω source  
impedance  
Measured with 50-Ω source  
impedance  
Measured with 50-Ω source  
impedance  
Document Number: 002-28785 Rev. *I  
Page 48 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Digital Peripherals  
Timer/Counter/PWM  
Table 27. Timer/Counter/PWM (TCPWM) Specifications  
Spec ID#  
SID.TCPWM.1  
SID.TCPWM.2  
SID.TCPWM.2A  
Parameter  
Description  
Min Typ Max Units  
Details/Conditions  
I
I
I
Block current consumption at 8 MHz  
Block current consumption at 24 MHz  
Block current consumption at 50 MHz  
70  
µA All modes (TCPWM)  
µA All modes (TCPWM)  
µA All modes (TCPWM)  
TCPWM1  
TCPWM2  
TCPWM3  
180  
270  
SID.TCPWM.2B  
SID.TCPWM.3  
I
Block current consumption at 100 MHz  
Operating frequency  
540  
µA All modes (TCPWM)  
TCPWM4  
TCPWM  
100 MHz Maximum = 100 MHz  
FREQ  
Trigger events can be Stop,  
Start, Reload, Count, Capture,  
or Kill depending on which  
mode of operation is selected.  
Fc is counter operating  
frequency.  
Input trigger pulse width for all trigger  
events  
SID.TCPWM.4  
SID.TCPWM.5  
TPWM  
2/Fc  
ns  
ns  
ENEXT  
Minimum possible width of  
Overflow, Underflow, and CC  
(Counter equals Compare  
value) trigger outputs  
TPWM  
Output trigger pulse widths  
1.5/Fc  
EXT  
Minimum time between  
successive counts  
SID.TCPWM.5A TC  
Resolution of counter  
PWM resolution  
1/Fc  
1/Fc  
ns  
ns  
RES  
Minimum pulse width of PWM  
output  
SID.TCPWM.5B PWM  
RES  
Minimum pulse width between  
Quadrature phase inputs.  
Delays from pins should be  
similar.  
SID.TCPWM.5C  
Q
Quadrature inputs resolution  
2/Fc  
ns  
RES  
Serial Communication Block (SCB)  
Table 28. Serial Communication Block (SCB) Specifications  
Spec ID#  
Parameter  
Description  
Min Typ Max Units  
Details / Conditions  
2
Fixed I C DC Specifications  
SID149  
SID150  
SID151  
SID152  
I
I
I
I
Block current consumption at 100 kHz  
Block current consumption at 400 kHz  
Block current consumption at 1 Mbps  
30  
80  
µA  
µA  
µA  
I2C1  
I2C2  
I2C3  
I2C4  
180  
1.7  
2
I C enabled in Deep Sleep mode  
µA At 60°C.  
2
Fixed I C AC Specifications  
SID153  
Fixed UART DC Specifications  
F
Bit Rate  
1
Mbps –  
I2C1  
SID160  
SID161  
I
I
Block current consumption at 100 kbps  
Block current consumption at 1000 kbps  
30  
µA  
µA  
UART1  
UART2  
180  
Fixed UART AC Specifications  
SID162A  
SID162B  
F
F
3
8
Mbps ULP Mode  
LP Mode  
UART1  
UART2  
Bit Rate  
Fixed SPI DC Specifications  
SID163  
I
Block current consumption at 1 Mbps  
220  
µA  
SPI1  
Document Number: 002-28785 Rev. *I  
Page 49 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Table 28. Serial Communication Block (SCB) Specifications (continued)  
Spec ID#  
SID164  
Parameter  
Description  
Min Typ Max Units  
Details / Conditions  
I
I
I
Block current consumption at 4 Mbps  
Block current consumption at 8 Mbps  
Block current consumption at 25 Mbps  
340  
360  
800  
µA  
µA  
µA  
SPI2  
SID165  
SPI3  
SID165A  
SP14  
Fixed SPI AC Specifications for LP Mode (1.1 V) unless noted otherwise.  
SPIOperatingfrequencyexternallyclocked  
slave  
12-MHz max for ULP (0.9 V)  
mode  
25  
MHz  
SID166  
F
F
F
SPI  
F
max is 100 MHz in LP  
Fscb/4 MHz  
scb  
SPI operating frequency master (F  
SPI clock).  
is  
scb  
SID166B  
(1.1 V) mode, 25 MHz in ULP  
mode.  
SPI_EXT  
5 MHz max for ULP (0.9 V)  
mode  
15  
MHz  
SID166A  
SPI slave internally clocked  
SPI_IC  
Fixed SPI Master mode AC Specifications for LP Mode (1.1 V) unless noted otherwise.  
20 ns max for ULP (0.9 V)  
mode  
5
0
12  
ns  
ns  
ns  
SID167  
SID168  
SID169  
T
T
T
MOSI valid after SClock driving edge  
MISO valid before SClock capturing edge  
MOSI data hold time  
DMO  
Full clock, late MISO  
sampling  
DSI  
Referred to Slave capturing  
edge  
HMO  
Fixed SPI Slave mode AC Specifications for LP Mode (1.1 V) unless noted otherwise.  
SID170  
T
MOSI valid before Sclock capturing edge  
5
ns  
ns  
DMI  
MISO valid after Sclock driving edge in Ext.  
Clk. mode  
35 ns max. for ULP (0.9 V)  
mode  
20  
SID171A  
T
DSO_EXT  
TDSO_ ns  
EXT+3  
* Tscb  
MISO valid after Sclock driving edge in  
Internally Clk. mode  
Tscb is Serial Comm. Block  
clock period.  
SID171  
T
DSO  
TDSO_ ns  
MISO Valid after Sclock driving edge in  
Internally Clk. Mode with median filter  
enabled.  
+
Tscb is Serial Comm. Block  
clock period.  
EXT  
SID171B  
T
T
DSO  
4 *  
Tscb  
SID172  
Previous MISO data hold time  
5
ns  
ns  
ns  
HSO  
SID172A  
SID172B  
TSSEL  
TSSEL  
SSEL Valid to first SCK valid edge  
SSEL Hold after Last SCK valid edge  
65  
65  
SCK1  
SCK2  
Document Number: 002-28785 Rev. *I  
Page 50 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
LCD Specifications  
Table 29. LCD Direct Drive DC Specifications  
Spec ID#  
Parameter  
Description  
Min  
Typ Max Units  
Details / Conditions  
32×4 small display. 30-Hz.  
µA PWM mode. Slow slew rate.  
Operating current with 100-kHz LCD  
block clock in ULP mode in Deep Sleep  
SID154  
I
I
90  
50  
LCDLOW1  
460-kseries resistors  
32×4 small display. 30-Hz.  
µA PWM mode. Slow slew rate.  
460-kseries resistors  
Operating current with 32- kHz LCD block  
clock in ULP mode in Deep Sleep  
SID154A  
LCDLOW2  
LCD capacitance per segment/common  
driver  
SID155  
SID156  
SID157  
C
500 5000 pF  
LCDCAP  
LCD  
I
Long-term segment offset  
20  
mV  
mA  
OFFSET  
PWM Mode current.  
32 × 4 segments  
50 Hz  
0.6  
LCDOP1  
LCDOP2  
3.3 V bias. 8 MHz IMO. 25 °C.  
PWM Mode current.  
32 × 4 segments  
50 Hz  
SID158  
I
0.5  
mA  
3.3 V bias. 8 MHz IMO. 25 °C.  
Table 30. LCD Direct Drive AC Specifications  
Spec ID Parameter Description  
SID159 LCD frame rate  
Min  
Typ Max Units  
50 150 Hz  
Details/Conditions  
F
10  
LCD  
Document Number: 002-28785 Rev. *I  
Page 51 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Memory  
Table 31. Flash Specifications[6]  
Spec ID  
Flash DC Specifications  
SID173A IPE  
Flash AC Specifications  
Parameter  
Description  
Min Typ Max  
Units  
Details/Conditions  
Erase and Program current  
6
mA  
SID174  
SID175  
SID176  
SID178  
SID179  
SID178S  
T
T
T
T
T
T
Row write time (erase and program)  
Row erase time  
16  
11  
5
ms  
ms  
ms  
ms  
ms  
ms  
Row = 512 bytes  
ROWWRITE  
ROWERASE  
ROWPROGRAM  
BULKERASE  
SECTORERASE  
SSERIAE  
Row program time after erase  
Bulk erase time (512 KB)  
Sector erase time (256 KB)  
Subsector erase time  
11  
11  
11  
512 rows per sector  
8 rows per subsector  
Subsector write time; 1 erase plus 8  
program times  
SID179S  
SID180S  
T
T
51  
ms  
SSWRITE  
SWRITE  
Sector write time; 1 erase plus 512 program  
times  
2.6 seconds –  
7.5 seconds –  
SID180  
SID181  
T
F
Total device write time  
Flash endurance  
DEVPROG  
END  
100K  
cycles  
Flash retention. Ta 25 °C, 100K P/E  
cycles  
SID182  
F
10  
years  
RET1  
SID182A  
SID182B  
SID256  
F
F
T
T
Flash retention. Ta 85 °C, 10K P/E cycles 10  
Flash retention. Ta 55 °C, 20K P/E cycles 20  
years  
years  
RET2  
RET3  
WS100  
WS50  
Number of Wait states at 100 MHz  
Number of Wait states at 50 MHz  
3
2
SID257  
Note  
4. It can take as much as 16 milliseconds to write to flash. During this time, the device should not be reset, or flash operations will be interrupted and cannot be relied  
on to have completed. Reset sources include the XRES pin, software resets, CPU lockup states and privilege violations, improper power supply levels, and watchdogs.  
Make certain that these are not inadvertently activated.  
Document Number: 002-28785 Rev. *I  
Page 52 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
System Resources  
Table 32. System Resources  
Spec ID  
Parameter  
Description  
Min Typ Max Units  
Details/Conditions  
Power-On-Reset with Brown-out DC Specifications  
Precise POR (PPOR)  
BOD trip voltage in Active and Sleep  
modes. V  
BOD reset guaranteed for levels  
below 1.54 V  
SID190  
SID192  
SID192A  
V
V
V
1.54  
1.54  
V
V
FALLPPOR  
FALLDPSLP  
DDRAMP  
.
DDD  
BOD trip voltage in Deep Sleep. V  
.
DDD  
Maximum power supply ramp rate (any  
supply)  
100 mV/µs Active mode  
POR with Brown-out AC Specification  
Maximum power supply ramp rate (any  
supply) in Deep Sleep  
SID194A  
V
10  
mV/µs BOD operation guaranteed  
DDRAMP_DS  
Voltage Monitors DC Specifications  
SID195  
SID196  
SID197  
SID198  
SID199  
SID200  
SID201  
SID202  
SID203  
SID204  
SID205  
SID206  
SID207  
SID208  
SID209  
SID211  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
1.38 1.43 1.47  
1.57 1.63 1.68  
1.76 1.83 1.89  
1.95 2.03 2.1  
2.05 2.13 2.2  
2.15 2.23 2.3  
2.24 2.33 2.41  
2.34 2.43 2.51  
2.44 2.53 2.61  
2.53 2.63 2.72  
2.63 2.73 2.82  
2.73 2.83 2.92  
2.82 2.93 3.03  
2.92 3.03 3.13  
3.02 3.13 3.23  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
µA  
HVDI1  
HVDI2  
HVDI3  
HVDI4  
HVDI5  
HVDI6  
HVDI7  
HVDI8  
HVDI9  
HVDI10  
HVDI11  
HVDI12  
HVDI13  
HVDI14  
HVDI15  
LVI_IDD  
Block current  
5
15  
Voltage Monitors AC Specification  
SID212 Voltage monitor trip time  
T
170  
ns  
MONTRIP  
Document Number: 002-28785 Rev. *I  
Page 53 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
SWD Interface  
Table 33. SWD and Trace Specifications  
Spec ID#  
Parameter  
Description  
Min  
Typ  
Max  
Units Details / Conditions  
SWD and Trace Interface  
LP Mode.  
MHz  
SID214  
F_SWDCLK2  
F_SWDCLK2L  
1.7 V V  
1.7 VV  
3.6 V  
25  
12  
DDD  
V
= 1.1 V.  
CCD  
ULP Mode.  
SID214L  
3.6 V  
MHz  
DDD  
V
= 0.9 V.  
CCD  
SID215  
SID216  
SID217  
SID217A  
T_SWDI_SETUP T = 1/f SWDCLK  
T_SWDI_HOLD T = 1/f SWDCLK  
T_SWDO_VALID T = 1/f SWDCLK  
T_SWDO_HOLD T = 1/f SWDCLK  
0.25 * T  
ns  
ns  
ns  
ns  
0.25 * T  
0.5 * T  
1
With Trace Data setup/hold times of  
2/1 ns respectively  
SID214T  
SID215T  
SID216T  
F_TRCLK_LP1  
F_TRCLK_LP2  
F_TRCLK_ULP  
50  
50  
20  
MHz LP Mode. V = 1.1 V.  
DD  
With Trace Data setup/hold times of  
3/2 ns respectively  
MHz LP Mode. V = 1.1 V.  
DD  
With Trace Data setup/hold times of  
3/2 ns respectively  
MHz ULP Mode. V = 0.9 V.  
DD  
Internal Main Oscillator  
Table 34. IMO DC Specifications  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details/Conditions  
9
15  
µA  
SID218  
I
IMO operating current at 8 MHz  
IMO1  
Table 35. IMO AC Specifications  
Spec ID  
SID223  
Parameter  
Description  
Min  
Typ  
Max  
±2  
Units  
%
Details/Conditions  
Frequency variation centered on  
8 MHz  
F
T
IMOTOL1  
JITR  
SID227  
Cycle-to-Cycle and Period jitter  
250  
ps  
Internal Low-Speed Oscillator  
Table 36. ILO DC Specification  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details/Conditions  
SID231  
I
ILO operating current at 32 kHz  
0.3  
0.7  
µA  
ILO2  
Table 37. ILO AC Specifications  
Spec ID  
Parameter  
Description  
ILO startup time  
Min  
Typ  
Max  
Units  
Details/Conditions  
Startup time to 95% of  
final frequency  
SID234  
T
7
µs  
STARTILO1  
SID236  
SID237  
TLIODUTY  
ILO Duty cycle  
45  
50  
32  
55  
%
F
32 kHz trimmed frequency  
28.8  
35.2  
kHz  
10% variation  
ILOTRIM1  
Document Number: 002-28785 Rev. *I  
Page 54 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Crystal Oscillator Specifications  
Table 38. ECO Specifications  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details/Conditions  
MHz ECO DC Specification  
Max = 35 MHz,  
Typ = 16 MHz  
Block operating current with Cload up to  
18 pF  
SID316  
MHz ECO AC Specification  
SID317 F_MHz  
I
800  
1600  
µA  
DD_MHz  
Some restrictions apply.  
Refer to the device TRM.  
Crystal frequency range  
16  
35  
MHz  
kHz ECO DC Specification  
SID318  
I
Block operating current with 32-kHz crystal  
Equivalent series resistance  
Drive level  
0.38  
80  
1
1
µA  
kΩ  
DD_kHz  
SID321E ESR32K  
SID322E PD32K  
µW  
kHz ECO AC Specification  
SID319  
SID320  
SID320E  
F_kHz  
32 kHz frequency  
Startup time  
32.768  
kHz  
ms  
Ton_kHz  
500  
250  
F
Frequency tolerance  
50  
ppm  
TOL32K  
External Clock Specifications  
Table 39. External Clock Specifications  
Spec ID  
SID305  
SID306  
Parameter  
Description  
Min  
0
Typ  
Max  
100  
55  
Units  
MHz  
%
Details/Conditions  
EXTCLK  
External clock input frequency  
FREQ  
DUTY  
EXTCLK  
Duty cycle; measured at V /2  
45  
DD  
PLL Specifications  
Table 40. PLL Specifications  
Spec ID Parameter  
Description  
Input frequency to PLL block  
Time to achieve PLL lock  
Output frequency from PLL block  
PLL current  
Min  
Typ  
Max  
64  
Units  
MHz  
µs  
Details/Conditions  
SID304P PLL_IN  
4
SID305P PLL_LOCK  
SID306P PLL_OUT  
SID307P PLL_IDD  
16  
35  
10.625  
150  
1.1  
150  
MHz  
0.55  
mA Typ. at 100 MHz out.  
ps  
100-MHz output  
frequency  
SID308P PLL_JTR  
Period jitter  
Table 41. Clock Source Switching Time  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details/Conditions  
Clock switching from clk1 to clk2 in clock  
periods; for example, from IMO (clk1) to FLL  
(clk2).  
4 clk1 +  
3 clk2  
SID262  
TCLK  
periods –  
SWITCH  
[5]  
Note  
5. As an example, if the clk_path[1] source is changed from the IMO to the FLL (see Figure 3) then clk1 is the IMO and clk2 is the FLL.  
Document Number: 002-28785 Rev. *I  
Page 55 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
FLL Specifications  
Table 42. Frequency Locked Loop (FLL) Specifications  
Spec ID#  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details / Conditions  
Frequency Locked Loop (FLL) Specifications  
0.001  
100  
MHz  
Lower limit allows lock to  
USB SOF signal (1 kHz).  
Upper limit is for External  
input.  
SID450  
SID451  
FLL_RANGE  
Input frequency range.  
Output frequency range.  
VCCD = 1.1 V  
24.00  
24.00  
100.00  
50.00  
MHz  
MHz  
Output range of FLL  
divided-by-2 output  
FLL_OUT_DIV2  
FLL_OUT_DIV2  
Output frequency range.  
VCCD = 0.9 V  
Output range of FLL  
divided-by-2 output  
SID451A  
SID452  
FLL_DUTY_DIV2 Divided-by-2 output; High or Low  
47.00  
53.00  
7.50  
%
µs  
With IMO input, less than  
10 °C change in  
temperaturewhileinDeep  
Sleep, and Fout ≥ 50 MHz.  
Time from stable input clock to 1%  
of final value on Deep Sleep  
wakeup  
SID454  
FLL_WAKEUP  
35.00  
5.50  
ps  
50 ps at 48 MHz, 35 ps at  
100 MHz  
SID455  
SID456  
FLL_JITTER  
Period jitter (1 sigma) at 100 MHz  
CCO + Logic current  
FLL_CURRENT  
µA/MHz –  
USB  
Table 43. USB Specifications (USB requires LP Mode 1.1-V internal supply)  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details/Conditions  
USB Block Specifications  
SID322U VUSB_3.3  
Device supply for USB operation  
3.15  
2.85  
3.6  
3.6  
V
V
USB Configured  
USB Configured  
VDDD = 3.3 V  
Device supply for USB operation  
(functional operation only)  
SID323U VUSB_3  
SID325U Iusb_config  
Block supply current in Active mode  
8
mA  
mA  
Block supply current in suspend  
mode  
VDDD = 3.3 V, Device  
connected  
SID328  
SID329  
Iusb_suspend  
Iusb_suspend  
0.5  
Block supply current in suspend  
mode  
VDDD = 3.3 V, Device  
disconnected  
0.3  
mA  
Series resistors are on  
chip  
SID330U USB_Drive_Res  
USB driver impedance  
28  
44  
SID332U USB_Pullup_Idle Idle mode range  
SID333U USB_Pullup Active mode  
900  
1575  
3090  
Bus idle  
Upstream device trans-  
mitting  
1425  
Document Number: 002-28785 Rev. *I  
Page 56 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Table 44. QSPI Specifications  
Spec ID# Parameter  
SMIF QSPI Specifications. All specs with 15-pF load. Measured from 50% to 50% waveform transitions.  
Description  
Min  
Typ  
Max  
Units Details / Conditions  
SID390Q  
Fsmifclock  
SMIF QSPI output clock frequency  
80  
MHz LP mode (1.1 V)  
ULP mode (0.9 V).  
MHz  
SID390QU  
Fsmifclocku  
SMIF QSPI output clock frequency  
50  
Guaranteed by Char.  
SID399Q  
SID397Q  
SID398Q  
Clk_dutycycle Clock duty cycle (high or low time)  
45  
55  
%
Idd_qspi  
Block current in LP mode (1.1 V)  
Block current in ULP mode (0.9 V)  
1900  
590  
µA  
µA  
LP mode (1.1 V)  
Idd_qspi_u  
ULP mode (0.9 V)  
Input data set-up time with respect to  
clock capturing falling edge  
SID391Q  
SID392Q  
SID393Q  
SID394Q  
SID395Q  
SID396Q  
Tsetup  
4.5  
ns  
ns  
ns  
ns  
ns  
ns  
Input data hold time with respect to  
clock capturing falling edge  
Tdatahold  
Tdataoutvalid  
Tholdtime  
Tseloutvalid  
Tselouthold  
1
Output data valid time with respect to  
clock falling edge  
7.5-ns max for ULP  
mode (0.9 V)  
3.7  
Output data hold time with respect to  
clock rising edge  
3
OutputSelectvalid time with respect to  
clock rising edge  
15-ns max for ULP  
mode (0.9 V)  
7.5  
Output Select hold time with respect to  
clock rising edge  
Tsclk = Fsmifclk cycle  
time  
Tsclk/2  
Smart I/O  
Table 45. Smart I/O Specifications  
Spec ID#  
SID420  
SID421  
Parameter  
SMIO_BYP  
SMIO_LUT  
Description  
Smart I/O bypass delay  
Smart I/O LUT prop delay  
Min  
Typ  
Max  
2
Units Details/Conditions  
ns  
ns  
8
SD Host Controller and eMMC  
Table 46. SD Host Controller and eMMC Specifications  
Spec ID# Parameter Description  
Min  
Typ  
Max  
Units Details / Conditions  
SD Host Controller and eMMC Specifications (SD Host clock (see the Clocking Diagram) must be divided by 2 or more  
when used as source in DDR modes. Specs are Guaranteed by Design.)  
drive_sel = '01' for all  
modes  
SID_SD390  
SD_DS  
SD_TR  
I/O drive select  
4
4
3
mA  
ns  
SID_SD391  
SD:DS Timing  
SID_SD392  
SID_SD393  
SID_SD394  
SID_SD395  
Input transition time  
0.7  
SD_CLK  
SD_CLK  
Interface clock period (LP mode)  
Interface clock period (ULP mode)  
25  
8
MHz (40-ns period)  
MHz (125-ns period)  
SD_DCMD_CL I/O loading at DATA/CMD pins  
30  
30  
pF  
pF  
SD_CLK_CL  
I/O loading at CLK pins  
Output: Setup time of CMD/DATprior to  
CLK  
SID_SD396  
SD_TS_OUT  
5.1  
ns  
Document Number: 002-28785 Rev. *I  
Page 57 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Table 46. SD Host Controller and eMMC Specifications (continued)  
Spec ID#  
Parameter  
Description  
Min  
Typ  
Max  
Units Details / Conditions  
Output: Hold time of CMD/DAT after  
CLK  
SID_SD397  
SD_HLD_OUT  
5.1  
ns  
ns  
Input: Setup time of CMD/DAT prior to  
CLK (LP mode)  
SID_SD398  
SID_SD399  
SD_TS_IN  
24  
Input: Setup time of CMD/DAT prior to  
CLK (ULP mode)  
SD_TS_IN  
109  
0
ns  
ns  
SID_SD400  
SD:HS Timing  
SID_SD401  
SID_SD402  
SID_SD403  
SID_SD404  
SD_HLD_IN  
Input: Hold time of CMD/DAT after CLK  
SD_CLK  
SD_CLK  
Interface clock period (LP mode)  
Interface clock period (ULP mode)  
45  
16  
MHz (22.5-ns period)  
MHz (62.5-ns period)  
SD_DCMD_CL I/O loading at DATA/CMD pins  
30  
30  
pF  
pF  
SD_CLK_CL  
I/O loading at CLK pins  
Output: Setup time of CMD/DATprior to  
CLK  
SID_SD405  
SID_SD406  
SID_SD407  
SD_TS_OUT  
6.1  
2.1  
8
ns  
ns  
ns  
Output: Hold time of CMD/DAT after  
CLK  
SD_HLD_OUT  
SD_TS_IN  
Input: Setup time of CMD/DAT prior to  
CLK (LP mode)  
Input: Setup time of CMD/DAT prior to  
CLK (ULP mode)  
SID_SD408  
SID_SD409  
SD_TS_IN  
48.3  
ns  
ns  
SD_HLD_IN  
Input: Hold time of CMD/DAT after CLK 2.5  
SD:SDR-12 Timing  
SID_SD410  
SID_SD411  
SID_SD412  
SID_SD413  
SID_SD414  
SD_CLK  
Interface clock period (LP mode)  
Interface clock period (ULP mode)  
Duty cycle of output CLK  
25  
8
MHz (40-ns period)  
MHz (125-ns period)  
SD_CLK  
SD_CLK_DC  
30  
70  
%
pF  
pF  
SD_DCMD_CL I/O loading at DATA/CMD pins  
30  
30  
SD_CLK_CL  
I/O loading at CLK pins  
Output: Setup time of CMD/DATprior to  
CLK  
SID_SD415  
SID_SD416  
SID_SD417  
SD_TS_OUT  
3.1  
0.9  
24  
ns  
ns  
ns  
Output: Hold time of CMD/DAT after  
CLK  
SD_HLD_OUT  
SD_TS_IN  
Input: Setup time of CMD/DAT prior to  
CLK (LP mode)  
Input: Setup time of CMD/DAT prior to  
CLK (ULP mode)  
SID_SD418  
SID_SD419  
SD_TS_IN  
109  
ns  
ns  
SD_HLD_IN  
Input: Hold time of CMD/DAT after CLK 1.5  
SD:SDR-25 Timing  
SID_SD420  
SID_SD421  
SID_SD422  
SID_SD423  
SID_SD424  
SD_CLK  
Interface clock period (LP mode)  
Interface clock period (ULP mode)  
Duty cycle of output CLK  
50  
16  
70  
MHz (20-ns period)  
MHz (62.5-ns period)  
SD_CLK  
SD_CLK_DC  
30  
%
pF  
pF  
SD_DCMD_CL I/O loading at DATA/CMD pins  
SD_CLK_CL I/O loading at CLK pins  
30  
30  
Document Number: 002-28785 Rev. *I  
Page 58 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Table 46. SD Host Controller and eMMC Specifications (continued)  
Spec ID#  
Parameter  
Description  
Min  
Typ  
Max  
Units Details / Conditions  
Output: Setup time of CMD/DATprior to  
CLK  
SID_SD425  
SD_TS_OUT  
3.1  
ns  
ns  
ns  
Output: Hold time of CMD/DAT after  
CLK  
SID_SD426  
SID_SD427  
SD_HLD_OUT  
SD_TS_IN  
0.9  
5.8  
Input: Setup time of CMD/DAT prior to  
CLK (LP mode)  
Input: Setup time of CMD/DAT prior to  
CLK (ULP mode)  
SID_SD428  
SID_SD429  
SD_TS_IN  
48.3  
ns  
ns  
SD_HLD_IN  
Input: Hold time of CMD/DAT after CLK 1.5  
SD:SDR-50 Timing  
SID_SD430  
SID_SD431  
SID_SD432  
SID_SD433  
SID_SD434  
SD_CLK  
Interface clock period (LP mode)  
Interface clock period (ULP mode)  
Duty cycle of output CLK  
80  
32  
70  
MHz (12.5-ns period)  
MHz (31.25-ns period)  
SD_CLK  
SD_CLK_DC  
30  
%
pF  
pF  
SD_DCMD_CL I/O loading at DATA/CMD pins  
20  
20  
SD_CLK_CL  
I/O loading at CLK pins  
Output: Setup time of CMD/DATprior to  
CLK  
SID_SD435  
SID_SD436  
SID_SD437  
SD_TS_OUT  
3.1  
0.9  
5
ns  
ns  
ns  
Output: Hold time of CMD/DAT after  
CLK  
SD_HLD_OUT  
SD_TS_IN  
Input: Setup time of CMD/DAT prior to  
CLK (LP mode)  
Input: Setup time of CMD/DAT prior to  
CLK (ULP mode)  
SID_SD438  
SID_SD439  
SD_TS_IN  
23.6  
ns  
ns  
SD_HLD_IN  
Input: Hold time of CMD/DAT after CLK 1.5  
SD:DDR-50 Timing  
SID_SD440  
SID_SD441  
SID_SD442  
SID_SD443  
SID_SD444  
SD_CLK  
Interface clock period (LP mode)  
Interface clock period (ULP mode)  
Duty cycle of output CLK  
40  
16  
55  
MHz (25-ns period).  
MHz (62.5-ns period)  
SD_CLK  
SD_CLK_DC  
45  
%
pF  
pF  
ns  
SD_DCMD_CL I/O loading at DATA/CMD pins  
30  
30  
SD_CLK_CL  
I/O loading at CLK pins  
Output: Setup time of CMD/DATprior to  
CLK  
3.1  
SID_SD445  
SID_SD446  
SID_SD447  
SD_TS_OUT  
Output: Hold time of CMD/DAT after  
CLK  
0.9  
5.7  
24  
ns  
ns  
ns  
ns  
SD_HLD_OUT  
SD_TS_IN  
Input: Setup time of CMD/DAT prior to  
CLK (LP mode)  
Input: Setup time of CMD/DAT prior to  
CLK (ULP mode)  
SID_SD448  
SID_SD449  
SD_TS_IN  
SD_HLD_IN  
Input: Hold time of CMD/DAT after CLK 1.5  
eMMC:BWC Timing  
SID_SD450  
SID_SD451  
SID_SD452  
SD_CLK  
SD_CLK  
Interface clock period (LP mode)  
Interface clock period (ULP mode)  
26  
8
MHz (38.4-ns period)  
MHz (125-ns period)  
SD_DCMD_CL I/O loading at DATA/CMD pins  
30  
pF  
Document Number: 002-28785 Rev. *I  
Page 59 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Table 46. SD Host Controller and eMMC Specifications (continued)  
Spec ID#  
Parameter  
Description  
Min  
Typ  
30  
Max  
Units Details / Conditions  
SID_SD453  
SD_CLK_CL  
I/O loading at CLK pins  
pF  
ns  
Output: Setup time of CMD/DATprior to  
CLK  
3.1  
SID_SD454  
SID_SD455  
SID_SD456  
SD_TS_OUT  
SD_HLD_OUT  
SD_TS_IN  
Output: Hold time of CMD/DAT after  
CLK  
3.1  
9.7  
ns  
ns  
ns  
ns  
Input: Setup time of CMD/DAT prior to  
CLK (LP mode)  
Input: Setup time of CMD/DAT prior to  
CLK (ULP mode)  
96.3  
SID_SD457  
SID_SD458  
SD_TS_IN  
SD_HLD_IN  
Input: Hold time of CMD/DAT after CLK 8.3  
eMMC:SDR Timing  
SID_SD459  
SID_SD460  
SID_SD461  
SID_SD462  
SD_CLK  
SD_CLK  
Interface clock period (LP mode)  
Interface clock period (ULP mode)  
52  
16  
MHz (19.2-ns period)  
MHz (62.5-ns period)  
SD_DCMD_CL I/O loading at DATA/CMD pins  
30  
30  
pF  
pF  
ns  
SD_CLK_CL  
I/O loading at CLK pins  
Output: Setup time of CMD/DATprior to  
CLK  
3.1  
SID_SD463  
SID_SD464  
SID_SD465  
SD_TS_OUT  
Output: Hold time of CMD/DAT after  
CLK  
3.1  
5.3  
ns  
ns  
ns  
ns  
SD_HLD_OUT  
SD_TS_IN  
Input: Setup time of CMD/DAT prior to  
CLK (LP mode)  
Input: Setup time of CMD/DAT prior to  
CLK (ULP mode)  
48.6  
SID_SD466  
SID_SD467  
SD_TS_IN  
SD_HLD_IN  
Input: Hold time of CMD/DAT after CLK 2.5  
SD Host Block Current Specs  
SD Host block current consumption at  
100 MHz  
SID400SD  
SID401SD  
IDD_SD_1  
IDD_SD_2  
4.65  
3.75  
5
mA  
SDR-50  
SD Host block current consumption at  
50 MHz  
4.3  
mA SDR-25  
JTAG Boundary Scan  
Table 47. JTAG Boundary Scan  
Spec ID#  
Parameter  
Min  
Typ Max Units Details / Conditions  
JTAG Boundary Scan Parameters  
JTAG Boundary Scan Parameters for 1.1 V (LP) Mode Operation:  
SID468  
SID469  
SID470  
SID471  
SID472  
TCKLOW  
TCKHIGH  
TCK_TDO  
TSU_TCK  
TCk_THD  
TCK LOW  
52  
10  
ns  
ns  
ns  
ns  
ns  
ns  
TCK HIGH  
TCK falling edge to output valid  
Input valid to TCK rising edge  
Input hold time to TCK rising edge  
40  
12  
10  
40  
TCK falling edge to output valid (High-Z  
to Active).  
SID473  
SID474  
TCK_TDOV  
TCK_TDOZ  
TCK falling edge to output valid (Active  
to High-Z).  
40  
ns  
Document Number: 002-28785 Rev. *I  
Page 60 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Table 47. JTAG Boundary Scan (continued)  
Spec ID#  
Parameter  
Min  
Typ Max Units Details / Conditions  
JTAG Boundary Scan Parameters for 0.9 V (ULP) Mode Operation:  
SID468A  
SID469A  
SID470A  
SID471A  
SID472A  
TCKLOW  
TCKHIGH  
TCK_TDO  
TSU_TCK  
TCk_THD  
TCK low  
102  
20  
ns  
ns  
ns  
ns  
ns  
ns  
TCK high  
TCK falling edge to output valid  
Input valid to TCK rising edge  
Input hold time to TCK rising edge  
80  
22  
20  
80  
TCK falling edge to output valid (high-Z  
to active).  
SID473A  
SID474A  
TCK_TDOV  
TCK_TDOZ  
TCK falling edge to output valid (active  
to high-Z).  
80  
ns  
Document Number: 002-28785 Rev. *I  
Page 61 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Ordering Information  
Table 51 lists the CYB06445LQI-S3D42 part numbers and features. See also the product selector guide.  
Table 48. Ordering Information  
Arm CM4 and CM0+, DC-DC  
converter, 12-bit SAR ADC, 2  
LPCOMPs, 7 SCBs, 12 TCPWMs,  
SD Host Controller, USB-FS  
64  
CYB06445LQI-S3D42  
512  
256  
Y
1
Y
53  
68-QFN  
Document Number: 002-28785 Rev. *I  
Page 62 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
PSoC 6 MPN Decoder  
CY XX 6 A B C DD E - FF G H I JJ K L  
Field  
Description Values  
Meaning  
Cypress  
Field  
Description  
Values  
Meaning  
Consumer  
CY  
Cypress  
CY  
8C  
B0  
C
I
Standard  
E
Temperature Range  
Industrial  
“Secure Boot” v1  
Q
Extended Industrial  
XX  
6
Firmware  
Architecture  
“Standard Secure” -  
AWS  
S0  
Cypress internal  
FF  
Feature Code  
6
0
1
2
3
4
2
3
4
PSoC 6  
S2-S6  
Value  
BL  
F
Integrated Bluetooth LE  
Single Core  
Dual Core  
Feature set  
31-50  
Programmable  
Performance  
Connectivity  
Secured  
G
H
CPU Core  
A
B
Line  
D
Attributes Code  
0–9  
1
100 MHz  
2
51-70  
I
GPIO count  
Speed  
150 MHz  
3
71-90  
150/50 MHz  
4
91-110  
Engineering sample  
(optional)  
Engineering samples or  
not  
0-3  
Reserved  
JJ  
K
ES  
4
5
256K/128K  
512K/256K  
Base  
Die Revision  
(optional)  
A1-A9 Die revision  
Tape/Reel Shipment  
(optional)  
Memory Size  
(Flash/SRAM)  
6
512K/128K  
L
T
Tape and Reel shipment  
C
7
8
9
A
1024K/288K  
1024K/512K  
Reserved  
2048K/1024K  
AZ, AX TQFP  
LQ  
BZ  
FM  
QFN  
BGA  
DD  
Package  
M-CSP  
FN, FD,  
FT  
WLCSP  
Document Number: 002-28785 Rev. *I  
Page 63 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Packaging  
This product line is offered in a 68-QFN package.  
Table 49. Package Dimensions  
Spec ID# Package  
PKG_1 68-QFN  
Description  
Package Dwg #  
68-QFN package  
001-96836  
Table 50. Package Characteristics  
Parameter Description  
Conditions  
Min  
–40  
–40  
Typ  
25  
Max  
85  
100  
Units  
°C  
T
T
T
T
Operating ambient temperature  
Operating junction temperature  
A
°C  
J
Package (68-QFN)  
15.4  
2
°C/watt  
°C/watt  
JA  
JC  
JA  
Package (68-QFN)  
JC  
Table 51. Solder Reflow Peak Temperature  
Package  
Maximum Peak Temperature  
Maximum Time at Peak Temperature  
68-QFN  
260°C  
30 seconds  
Table 52. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2  
Package  
MSL  
68 QFN  
MSL 3  
Document Number: 002-28785 Rev. *I  
Page 64 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Figure 18. 68-QFN Package Diagram  
001-96836 *A  
Document Number: 002-28785 Rev. *I  
Page 65 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Acronyms  
Acronym  
ECC  
Description  
error correcting code  
Acronym  
3DES  
Description  
triple DES (data encryption standard)  
analog-to-digital converter  
ECC  
ECO  
elliptic curve cryptography  
external crystal oscillator  
ADC  
advanced DMA version 3, a Secure Digital data  
transfer mode  
ADMA3  
AES  
electrically erasable programmable read-only  
memory  
EEPROM  
advanced encryption standard  
EMI  
electromagnetic interference  
embedded MultiMediaCard  
electrostatic discharge  
embedded trace macrocell  
first-in, first-out  
AMBA(advanced microcontroller bus architecture)  
high-performance bus, an Arm data transfer bus  
eMMC  
ESD  
ETM  
FIFO  
FLL  
AHB  
AMUX  
AMUXBUS  
API  
analog multiplexer  
analog multiplexer bus  
application programming interface  
advanced RISC machine, a CPU architecture  
ball grid array  
frequency locked loop  
floating-point unit  
®
Arm  
FPU  
FS  
BGA  
full-speed  
BOD  
brown-out detect  
GND  
Ground  
BREG  
BWC  
CAD  
backup registers  
general-purpose input/output, applies to a PSoC  
pin  
GPIO  
backward compatibility (eMMC data transfer mode)  
computer aided design  
HMAC  
HSIOM  
I/O  
Hash-based message authentication code  
high-speed I/O matrix  
CCO  
current controlled oscillator  
a stream cipher  
ChaCha  
CM0+  
CM4  
input/output, see also GPIO, DIO, SIO, USBIO  
Inter-Integrated Circuit, a communications protocol  
inter-IC sound  
2
Cortex-M0+, an Arm CPU  
Cortex-M4, an Arm CPU  
I C, or IIC  
2
I S  
CMAC  
cypher-based messge authentication code  
IC  
integrated circuit  
IDAC  
IDE  
ILO  
current DAC, see also DAC, VDAC  
integrated development environment  
internal low-speed oscillator, see also IMO  
internal main oscillator, see also ILO  
integral nonlinearity, see also DNL  
input output subsystem  
complementary metal-oxide-semicondutor, a  
process technology for IC fabrication  
CMOS  
CMRR  
CPU  
common-mode rejection ratio  
central processing unit  
IMO  
INL  
cyclic redundancy check, an error-checking  
protocol  
CRC  
IOSS  
IoT  
CSD  
CSV  
CapSense Sigma-Delta  
clock supervisor  
internet of things  
IPC  
IRQ  
ISR  
ITM  
JTAG  
LCD  
inter-processor communication  
interrupt request  
Cypress mutual capacitance sensing method. See  
also CSD  
CSX  
interrupt service routine  
CTI  
cross trigger interface  
instrumentation trace macrocell  
Joint Test Action Group  
DAC  
DAP  
DDR  
DES  
DFT  
DMA  
DNL  
DSI  
digital-to-analog converter, see also IDAC, VDAC  
debug access port  
liquid crystal display  
double data rate  
Local Interconnect Network, a communications  
protocol  
data encryption standard  
design for test  
LIN  
LP  
low power  
direct memory access, see also TD  
differential nonlinearity, see also INL  
digital system interconnect  
data unit  
LS  
low-speed  
LUT  
LVD  
LVI  
lookup table  
low-voltage detect, see also LVI  
low-voltage interrupt  
low-voltage transistor-transistor logic  
DU  
DW  
data wire, a DMA implementation  
LVTTL  
Document Number: 002-28785 Rev. *I  
Page 66 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Acronym  
MAC  
Description  
multiply-accumulate  
Acronym  
SAR  
Description  
successive approximation register  
SAR ADC multiplexer bus  
MCU  
MISO  
MMIO  
MOSI  
MPU  
MSL  
Msps  
MTB  
MUL  
NC  
microcontroller unit  
SARMUX  
SC/CT  
SCB  
master-in slave-out  
switched capacitor/continuous time  
serial communication block  
memory-mapped input output  
master-out slave-in  
2
SCL  
I C serial clock  
memory protection unit  
moisture sensitivity level  
million samples per second  
micro trace buffer  
SD  
Secure Digital  
2
SDA  
I C serial data  
SDHC  
SDR  
Secure Digital host controller  
single data rate  
multiplier  
Sflash  
SHA  
supervisory flash  
no connect  
secure hash algorithm  
signal to noise and distortion ratio  
shared memory protection unit  
signal-to-noise ration  
start of frame  
NMI  
nonmaskable interrupt  
nested vectored interrupt controller  
nonvolatile latch, see also WOL  
one-time programmable  
over voltage protection  
overvoltage tolerant  
SINAD  
SMPU  
SNR  
NVIC  
NVL  
OTP  
OVP  
OVT  
PASS  
PCB  
PCM  
PDM  
PHY  
PICU  
PLL  
SOF  
silicon-oxide-nitride-oxide-silicon, a flash memory  
technology  
SONOS  
SPI  
Serial Peripheral Interface, a communications  
protocol  
programmable analog subsystem  
printed circuit board  
SRAM  
SROM  
SRSS  
SWD  
SWJ  
static random access memory  
supervisory read-only memory  
system resources subsystem  
serial wire debug, a test protocol  
serial wire JTAG  
pulse code modulation  
pulse density modulation  
physical layer  
port interrupt control unit  
phase-locked loop  
SWO  
SWV  
TCPWM  
TDM  
single wire output  
PMIC  
POR  
PPU  
PRNG  
power management integrated circuit  
power-on reset  
single-wire viewer  
timer, counter, pulse-width modulator  
time division multiplexed  
total harmonic distortion  
thin quad flat package  
peripheral protection unit  
pseudo random number generator  
Programmable System-on-Chip™  
power supply rejection ratio  
pulse-width modulator  
quadrature decoder  
THD  
®
PSoC  
PSRR  
PWM  
QD  
TQFP  
TRM  
technical reference manual  
true random number generator  
transmit  
TRNG  
TX  
QSPI  
RAM  
RISC  
RMS  
ROM  
quad serial peripheral interface  
random-access memory  
reduced-instruction-set computing  
root-mean-square  
Universal Asynchronous Transmitter Receiver, a  
communications protocol  
UART  
ULP  
ultra-low power  
USB  
Universal Serial Bus  
watch crystal oscillator  
watchdog timer  
read-only memory  
WCO  
WDT  
WIC  
Rivest–Shamir–Adleman, a public-key cryptog-  
raphy algorithm  
RSA  
wakeup interrupt controller  
wafer level chip scale package  
execute-in-place  
RTC  
RWW  
RX  
real-time clock  
read-while-write  
receive  
WLCSP  
XIP  
XRES  
external reset input pin  
S/H  
sample and hold  
Document Number: 002-28785 Rev. *I  
Page 67 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Document Conventions  
Table 53. Units of Measure (continued)  
Units of Measure  
Table 53. Units of Measure  
Symbol  
µH  
Unit of Measure  
microhenry  
microsecond  
microvolt  
Symbol  
°C  
Unit of Measure  
µs  
degrees Celsius  
decibel  
µV  
µW  
mA  
ms  
mV  
nA  
ns  
dB  
microwatt  
milliampere  
millisecond  
millivolt  
fF  
femto farad  
Hz  
hertz  
KB  
1024 bytes  
kbps  
khr  
kilobits per second  
kilohour  
nanoampere  
nanosecond  
nanovolt  
kHz  
k  
kilohertz  
nV  
W
kilo ohm  
ohm  
ksps  
LSB  
Mbps  
MHz  
M  
Msps  
µA  
kilosamples per second  
least significant bit  
megabits per second  
megahertz  
pF  
picofarad  
ppm  
ps  
parts per million  
picosecond  
second  
s
mega-ohm  
sps  
sqrtHz  
V
samples per second  
square root of hertz  
volt  
megasamples per second  
microampere  
microfarad  
µF  
Document Number: 002-28785 Rev. *I  
Page 68 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Errata  
This section describes the errata for the CYB06445LQI-S3D42 product line. Details include errata trigger conditions, scope of impact,  
available workarounds, and silicon revision applicability. Compare this document to the device's datasheet for a complete functional  
description.  
Contact your local Cypress Sales Representative if you have questions.  
Part Numbers Affected  
Part Number  
Device Characteristics  
CYB06445LQI-S3D42  
CYB06445LQI-S3D42 Product Line  
Qualification Status  
Engineering Samples  
Errata Summary  
This table defines the errata applicability to available PSoC 6 CYB06445LQI-S3D42 devices.  
PSoC  
CYB06445LQI-S3D42  
Items  
Silicon Revision  
Fix Status  
[1.] DMA controllers are not available  
All  
Production silicon Resolution planned by Q4 '22  
1. DMA controllers are not available  
The 32- and 29-channel DMA controllers are not available. Register access to these controllers is not  
available. The 2-channel controller is available; there are no USB or audio connections to it.  
Problem Definition  
Parameters Affected  
Trigger Condition(s)  
Scope of Impact  
Workaround  
The 32- and 29-channel DMA controllers  
Attempt to use the 32- or the 29-channel DMA controller, by accessing their registers  
CPU exceptions are generated  
Use the 2-channel controller for DMA operations  
Investigation underway. Fix planned by Q3’21.  
Fix Status  
Document Number: 002-28785 Rev. *I  
Page 69 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Revision History  
Description Title: PSoC 6 MCU: CYB06445LQI-S3D42 Datasheet  
Document Number: 002-28785  
Submission  
Revision  
ECN  
Description of Change  
Date  
**  
6711017  
10/22/2019 New datasheet.  
Updated Features.  
Updated Blocks and Functionality and Functional Description.  
Updated Pinouts and Power Supply Considerations.  
*A  
6776273  
01/16/2020  
04/10/2020  
Updated Packaging.  
Updated Features.  
Updated Functional Description.  
Updated Pinouts.  
*B  
*C  
6851682  
6894902  
Updated PSoC 6 MPN Decoder.  
Updated Development Ecosystem, GPIO, and LCD sections.  
06/16/2020 Added External Crystal Oscillators.  
Updated Revision History  
Updated Flexible Clocking Options, Block Diagram, and CPUs.  
Updated list of application notes and links and the kit link in PSoC 6 MCU Resources.  
Updated the amount of available SRAM in Features, Blocks and Functionality, Memory, Table 3,  
and Ordering Information. Updated the PSoC 64 Security section.  
Updated ModusToolbox Software.  
Updated Quad-SPI (QSPI)/Serial Memory Interface (SMIF).  
Added InterProcessor Communication (IPC).  
Updated Analog Subsystem diagram.  
*D  
6981432  
11/16/2020  
Updated Direct Memory Access (DMA) Controllers.  
Updated VDDA bullet in Power Supply Considerations.  
Updated the XRES bullet in Reset, SID15 Description and Conditions, and System Resources  
(Power-On-Reset specifications)  
Updated SID7A conditions, SID7D description, and SID8 conditions.  
Updated SD Host Controller and eMMC Specifications.  
Integrated ECO erratum into External Crystal Oscillators. Added ECO Usage Guidelines table.  
Added Errata items.  
Updated Security terminology to Infineon standards.  
Changed BLE references to Bluetooth LE.  
*E  
*F  
7139142  
7231613  
05/13/2021 Added Table 14 and Figure 33 in Electrical Specifications.  
Removed SIDDS1 and SIDDS1_B and updated Typ values for SIDDS2 and SIDDS2_B  
Added “DMA controllers are not available” errata item.  
Updated SIDDS2 - Corrected Deep Sleep current values.  
08/20/2021  
Removed "System Deep Sleep power higher than specification" errata item.  
Removed Preliminary tag from the datasheet.  
Updated Figure 6.  
Added note regarding unused USB pins in USB Full-Speed Device Interface, Power Supply  
Considerations, and Pinouts.  
*G  
*H  
7487079  
7758801  
12/03/2021  
Updated SIDC1 description.  
Updated details/conditions for SID7A.  
Updated SID325U, SID328, and SID329 description.  
Updated Errata.  
05/05/2022 Corrected typo in Figure 14 and Figure 15.  
Document Number: 002-28785 Rev. *I  
Page 70 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Description Title: PSoC 6 MCU: CYB06445LQI-S3D42 Datasheet  
Document Number: 002-28785  
Added device identification and revision information in Features.  
Added spec SID304P.  
Updated PLL Specifications and Clock System.  
Updated Protection Units.  
*I  
7788568  
10/26/2022  
Document Number: 002-28785 Rev. *I  
Page 71 of 72  
PSoC 6 MCU: CYB06445LQI-S3D42  
Datasheet  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
Arm® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU  
Automotive  
Cypress Developer Community  
Clocks & Buffers  
Interface  
Community | Projects | Video | Blogs | Training | Components  
Technical Support  
Internet of Things  
Memory  
cypress.com/support  
cypress.com/memory  
cypress.com/mcu  
Microcontrollers  
PSoC  
cypress.com/psoc  
cypress.com/pmic  
cypress.com/touch  
cypress.com/usb  
Power Management ICs  
Touch Sensing  
USB Controllers  
Wireless Connectivity  
cypress.com/wireless  
© Cypress Semiconductor Corporation, 2019-2022. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document,  
including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries  
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other  
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress  
hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to  
modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users  
(either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as  
provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation  
of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing  
device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach,  
such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product  
to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any  
liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming  
code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this  
information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons  
systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances  
management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device  
or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you  
shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from  
and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in  
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 002-28785 Rev. *I  
Revised October 26, 2022  
Page 72 of 72  

相关型号:

CYBER9320

Peripheral IC
ETC

CYBER9385/2

Peripheral IC
ETC

CYBER9388

Peripheral IC
ETC

CYBER9397/95

Peripheral IC
ETC

CYBL10172-56LQXI

Multifunction Peripheral, CMOS, QFN-56
CYPRESS

CYBL10173-56LQXI

Multifunction Peripheral, CMOS, QFN-56
CYPRESS

CYBL10462-56LQXI

Multifunction Peripheral, CMOS, 7 X 7 MM, 0.60 MM HEIGHT, LEAD FREE, MO-248, QFN-56
CYPRESS

CYBL10471-56LQXI

Multifunction Peripheral, CMOS, QFN-56
CYPRESS

CYBL10473-56LQXI

Multifunction Peripheral, CMOS, QFN-56
CYPRESS

CYBL10473-56LQXIT

Multifunction Peripheral, CMOS, QFN-56
CYPRESS

CYBL10563-56LQXI

Multifunction Peripheral, CMOS, 7 X 7 MM, 0.60 MM HEIGHT, LEAD FREE, MO-248, QFN-56
CYPRESS

CYBL10563-68FNXI

暂无描述
CYPRESS