CYS0644ABZI-S2D44T [INFINEON]

32-位PSoC™ 6 Arm® Cortex®-M4 / M0+;
CYS0644ABZI-S2D44T
型号: CYS0644ABZI-S2D44T
厂家: Infineon    Infineon
描述:

32-位PSoC™ 6 Arm® Cortex®-M4 / M0+

文件: 总88页 (文件大小:1468K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Please note that Cypress is an Infineon Technologies Company.  
The document following this cover page is marked as “Cypress” document as this is the  
company that originally developed the product. Please note that Infineon will continue  
to offer the product to new and existing customers as part of the Infineon product  
portfolio.  
Continuity of document content  
The fact that Infineon offers the following product as part of the Infineon product  
portfolio does not lead to any changes to this document. Future revisions will occur  
when appropriate, and any changes will be set out on the document history page.  
Continuity of ordering part numbers  
Infineon continues to support existing part numbers. Please continue to use the  
ordering part numbers listed in the datasheet for ordering.  
www.infineon.com  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
PSoC 64 "Standard Secure" MCU-AWS  
General Description  
PSoC® 6 MCU is a high-performance, ultra-low-power, and secured MCU platform, purpose-built for IoT applications. The PSoC 64  
product line, based on the PSoC 6 MCU platform, features out-of-box security functionality, providing an isolated root-of-trust with true  
attestation and provisioning services. In addition, it delivers a pre-configured, PSA level-2 compliant secured execution environment,  
which is custom-built to support theAmazon FreeRTOS ecosystem. PSoC 64 also includes a rich execution environment for application  
development, with Amazon FreeRTOS support that communicates with the secured execution environment.  
Features  
32-bit Dual CPU Subsystem  
Immutable “Secure Boot” Support  
Note: In PSoC 64 the Cortex M0+ is reserved for system  
functions, and is not available for applications.  
Flexible chain of trust can use different signatures for different  
images  
150-MHz Arm® Cortex®-M4F (CM4) CPU with single-cycle  
ECC-based image signature validation  
multiply, floating point, and memory protection unit (MPU)  
Cypress Bootloader  
Open Source MCUBoot[1] based bootloader optimized for  
PSoC 64  
100-MHz Cortex-M0+ (CM0+) CPU with single-cycle multiply  
and MPU  
User-selectable core logic operation at either 1.1 V or 0.9 V  
Pre-built bootloader binary capable of validating, launching and  
updating signed user application images  
Active CPU current slope with 1.1-V core operation  
Cortex-M4: 40 µA/MHz  
Cortex-M0+: 28 µA/MHz  
Tightly integrated with provisioned debug and boot policies to  
inherit and implement security policies  
Active CPU current slope with 0.9-V core operation  
Cortex-M4: 27 µA/MHz  
Cortex-M0+: 20 µA/MHz  
Low-Power 1.7-V to 3.6-V Operation  
Six power modes for fine-grained power management  
Deep Sleep mode current of 7 µA with 64-KB SRAM retention  
On-chip DC-DC buck converter, <1 µA quiescent current  
Backup domain with 64 bytes of memory and real-time clock  
Three DMA controllers  
Memory Subsystem  
1856-KB application flash, 32-KB auxiliary flash (AUXflash),  
and 32-KB supervisory flash (SFlash); read-while-write (RWW)  
support. Two 8-KB flash caches, one for each CPU  
Flexible Clocking Options  
8-MHz internal main oscillator (IMO) with ±2% accuracy  
Ultra-low-power 32-kHz internal low-speed oscillator (ILO)  
On-chip crystal oscillators (16 to 35 MHz, and 32 kHz)  
944-KB SRAM with three independent blocks for power and  
data retention control  
One-time-programmable (OTP) 1-Kb eFuse array  
Two phase-locked loops (PLLs) for multiplying clock  
frequencies  
Amazon FreeRTOS PSA Integration  
Out-of-box solution forenablingAmazon FreeRTOS (AFR) with  
Arm Platform Service Architecture (PSA) Level-2 Compliance  
Frequency-locked loop (FLL) for multiplying IMO frequency  
Integer and fractional peripheral clock dividers  
Pre-built Trusted Firmware-M (TF-M) Secure Processing  
Environment (SPE) binary built for this product line  
Quad-SPI (QSPI)/Serial Memory Interface (SMIF)  
Execute-In-Place (XIP) from external quad SPI flash  
On-the-fly encryption and decryption  
Amazon FreeRTOS API-level integration for TLS, firmware  
update, and secured storage  
Hardware-Based Root-of-Trust (RoT)  
4-KB cache for greater XIP performance with lower power  
RoTbasedonimmutableboot-upcode, flashcontenthash, and  
Cypress public key that ensures firmware integrity prior to provi-  
sioning  
Supports single, dual, quad, dual-quad, and octal interfaces  
with throughput up to 640 Mbps  
Segment LCD Drive  
Supports trusted RoT handover to maintain chain of trust and  
establish OEM trust anchor for secured boot  
Supports up to 101 segments and up to 8 commons  
Device generates a unique device ID and a device secret key  
during the provisioning process, which can be used for attes-  
tation and signing  
Note  
1. For details, refer to https://mcuboot.com/.  
Cypress Semiconductor Corporation  
Document Number: 002-28690 Rev. *I  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised October 26, 2022  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Serial Communication  
Profiler  
13 run-time configurable serial communication blocks (SCBs)  
Eight SCBs: configurable as SPI, I2C, or UART  
Four SCBs: configurable as I2C or UART  
Eight counters provide event or duration monitoring of on-chip  
resources  
Packages  
One Deep Sleep SCB: configurable as SPI or I2C  
124-BGA and 100-WLCSP  
USB Full-Speed device interface  
Two independent SD Host Controller/eMMC/SD controllers  
Device Identification and Revisions  
Product Line ID (12-bit): 0x102  
Audio Subsystem  
Two pulse density modulation (PDM) channels and two I2S  
Major/Minor Die Revision ID: 1/2  
channels with time division multiplexed (TDM) mode  
Firmware Revisions: Rom Boot: 7.1, Flash Boot: 4.0.2.1842  
(see Boot Code section)  
Timing and Pulse-Width Modulation  
This product line has a JTAG ID which is available through the  
SWJ interface. It is a 32-bit ID, where:  
Thirty-two timer/counter/pulse-width modulators (TCPWMs)  
Center-aligned, edge, and pseudo-random modes  
Comparator-based triggering of kill signals  
The most significant digit is the device revision, based on the  
Major Die Revision  
Programmable Analog  
The next four digits correspond to the part number, for example  
"E4B0" as a hexadecimal number  
12-bit 2-Msps SAR ADC with differential and single-ended  
modes and 16-channel sequencer with result averaging  
The three least significant digits are the manufacturer ID, in this  
case "069" as a hexadecimal number  
Two low-power comparators available in system Deep Sleep  
and Hibernate modes  
The Silicon ID system call can be used by firmware to get Silicon  
ID and ROM Boot data. For more information, see the technical  
reference manual (TRM).  
Built-in temperature sensor connected to ADC  
Up to 100 Programmable GPIOs  
The Flash Boot version can be read directly from designated  
addresses 0x1600 2004 and 0x1600 2018. For more  
information, see the technical reference manual (TRM).  
Two Smart I/O™ ports (16 I/Os) enable Boolean operations on  
GPIO pins; available during system Deep Sleep  
Programmable drive modes, strengths, and slew rates  
Six overvoltage-tolerant (OVT) pins  
Capacitive Sensing  
CypressCapSense® sigma-delta(CSD)providesbest-in-class  
signal-to-noise ratio (SNR), liquid tolerance, and proximity  
sensing  
Enables dynamic usage of both self and mutual sensing  
Automatic hardware tuning (SmartSense™)  
Cryptography Accelerator  
Hardware acceleration for symmetric and asymmetric  
cryptographic methods and hash functions  
True random number generator (TRNG) function  
Document Number: 002-28690 Rev. *I  
Page 2 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Contents  
General Description ......................................................... 1  
Features............................................................................. 1  
32-bit Dual CPU Subsystem ........................................1  
Memory Subsystem .....................................................1  
Amazon FreeRTOS PSA Integration ...........................1  
Hardware-Based Root-of-Trust (RoT) .........................1  
Immutable “Secure Boot” Support ...............................1  
Cypress Bootloader ....................................................1  
Low-Power 1.7-V to 3.6-V Operation ..........................1  
Flexible Clocking Options ............................................1  
Quad-SPI (QSPI)/Serial Memory Interface (SMIF) .....1  
Segment LCD Drive ....................................................1  
Serial Communication .................................................2  
Audio Subsystem ........................................................2  
Timing and Pulse-Width Modulation ............................2  
Programmable Analog .................................................2  
Capacitive Sensing ......................................................2  
Cryptography Accelerator ............................................2  
Profiler .........................................................................2  
Packages .....................................................................2  
Device Identification and Revisions .............................2  
Contents............................................................................ 3  
Development Ecosystem................................................. 4  
PSoC 6 MCU Resources .............................................4  
ModusToolbox Software ..............................................5  
Blocks and Functionality................................................. 6  
Functional Description..................................................... 8  
CPU and Memory Subsystem .....................................8  
System Resources ....................................................12  
Programmable Analog Subsystems ..........................14  
Programmable Digital ................................................16  
Fixed-Function Digital ................................................16  
GPIO .........................................................................18  
Special-Function Peripherals ....................................18  
PSoC 64 Security ......................................................22  
Pinouts ............................................................................ 28  
Power Supply Considerations....................................... 42  
Electrical Specifications ................................................ 47  
Absolute Maximum Ratings .......................................47  
Device-Level Specifications ......................................47  
Analog Peripherals ....................................................56  
Digital Peripherals .....................................................62  
Memory .....................................................................65  
System Resources ....................................................66  
Ordering Information...................................................... 76  
PSoC 6 MPN Decoder ..............................................77  
Packaging........................................................................ 78  
Acronyms........................................................................ 81  
Document Conventions ................................................. 83  
Units of Measure .......................................................83  
Errata ............................................................................... 84  
Revision History ............................................................. 85  
Sales, Solutions, and Legal Information ...................... 87  
Worldwide Sales and Design Support .......................87  
Products ....................................................................87  
PSoC® Solutions ......................................................87  
Cypress Developer Community .................................87  
Technical Support .....................................................87  
Document Number: 002-28690 Rev. *I  
Page 3 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Development Ecosystem  
PSoC 6 MCU Resources  
Cypress provides a wealth of data at www.cypress.com to help you select the right PSoC device and quickly and effectively integrate  
it into your design. The following is an abbreviated list of resources for PSoC 6 MCU:  
Overview: PSoC Portfolio, PSoC Roadmap  
Product Selectors: PSoC 6 MCU  
PSoC 6 MCU Programming Specification provides the infor-  
mation necessary to program PSoC 6 MCU nonvolatile  
memory  
Application Notes cover a broad range of topics, from basic  
to advanced level, and include the following:  
AN22174: Getting Started with PSoC 6 MCU  
Development Tools  
ModusToolbox® software enables cross platform code de-  
velopment with a robust suite of tools and software libraries  
AN218241: PSoC 6 MCU Hardware Design Guide  
AN213924: PSoC 6 MCU Device Firmware Update Guide  
AN219528: PSoC 6 MCU Power Reduction Techniques  
AN85951: PSoC 4, PSoC 6 MCU CapSense Design Guide  
“Secure Boot” SDK includes all required libraries, tools, and  
sample code to provision and develop applications for  
PSoC 64 MCUs.  
CY8CKIT-064S0S2-4343W[2] PSoC 64 “Standard Secure”  
Prototyping Kit: a low-cost hardware platform that enables  
design and debug of this product line.  
CodeExamplesdemonstrateproductfeaturesandusage,and  
are also available on Cypress GitHub repositories.  
PSoC 6 CAD libraries provide footprint and schematic sup-  
port for common tools. BSDL files and IBIS models are also  
available.  
Technical Reference Manuals (TRMs) provide detailed  
descriptions of PSoC 6 MCU architecture and registers.  
Training Videos are available on a wide range of topics  
including the PSoC 6 MCU 101 series  
Note  
2. The link will be provided in a later revision.  
Document Number: 002-28690 Rev. *I  
Page 4 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
ModusToolbox Software  
ModusToolbox Software is Cypress' comprehensive collection of multi-platform tools and software libraries that enable an immersive  
development experience for creating converged MCU and wireless systems. It is:  
Comprehensive - it has the resources you need  
Flexible - you can use the resources in your own workflow  
Atomic - you can get just the resources you want  
Cypress provides a large collection of code repositories on GitHub. This includes:  
Board Support Packages (BSPs) aligned with Cypress kits  
Low-level resources, including a hardware abstraction layer (HAL) and peripheral driver library (PDL)  
Middleware enabling industry-leading features such as CapSense®, Bluetooth Low Energy, and mesh networks  
An extensive set of thoroughly tested code example applications  
Note: The HAL provides a high-level, simplified interface to configure and use the hardware blocks on Cypress MCUs. It is a generic  
interface that can be used across multiple product families. For example, it wraps the PSoC 6 PDL with a simplified API, but the PDL  
exposes all low-level peripheral functionality. You can leverage the HAL's simpler and more generic interface for most of an application,  
even if one portion requires finer-grained control.  
ModusToolbox Software is IDE-neutral and easily adaptable to your workflow and preferred development environment. It includes a  
project creator, peripheral and library configurators, a library manager, as well as the optional Eclipse IDE for ModusToolbox. For  
information on using Cypress tools, refer to the documentation delivered with ModusToolbox software, and AN228571: Getting Started  
with PSoC 6 MCU on ModusToolbox.  
Figure 1. ModusToolbox Software Tools  
Document Number: 002-28690 Rev. *I  
Page 5 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Blocks and Functionality  
Figure 2 shows the major subsystems and a simplified view of their interconnections. The color coding shows the lowest power mode  
where the particular block is still functional (for example, the SRAM is functional down to system Deep Sleep mode).  
Figure 2. Block Diagram  
Color Key:  
Power Modes and  
PSoC 64 “Standard Secure” MCU  
CYS0644xxxI-S2D4x  
Domains  
Programmable Analog  
System LP/ULP Mode  
SAR ADC 12 bit  
System Resources  
CPUs Active/Sleep  
Power  
Clocks  
Temperature  
Sensor  
OVP  
POR  
LVD  
IMO  
FLL  
ECO  
BOD  
2x PLL  
System  
Deep Sleep Mode  
Buck Regulator  
XRES Reset  
Backup Regs  
2x MCWDT  
ILO  
WDT  
WCO  
RTC  
System  
Hibernate Mode  
PMIC Control  
Backup  
Domain  
CPU Subsystem  
SCB  
Cortex M4F CPU  
150/50 MHz, 1.1/0.9 V  
SWJ, ETM, ITM, CTI  
Cortex M0+ CPU  
100/25 MHz, 1.1/0.9 V  
SWJ, MTB, CTI  
Audio Subsystem  
3x DMA  
Controller  
Crypto  
DES/TDES, AES, SHA,  
CRC, TRNG, RSA/ECC  
Accelerator  
Flash  
2048 KB + 32 KB + 32 KB  
8 KB cache for each CPU  
SRAM0  
512 KB  
USB  
PHY  
SRAM1  
256 KB  
SRAM2  
256 KB  
ROM  
64 KB  
Document Number: 002-28690 Rev. *I  
Page 6 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
This product line has up to 2 MB of flash; however 192 KB is reserved for system usage, leaving 1856 KB for applications. It also has  
up to 1 MB of SRAM; however 80 KB is reserved for system usage, leaving 944 KB for applications.  
The PSoC 64 devices offer an immutable, RoT-based boot-up process, which allows only signed applications to be booted up. In  
addition, user assets such as keys and debug policies can be provisioned on the device in an HSM environment and made immutable.  
PSoC 64 also allows for root-of-trust based cryptography services which can be accessed using system calls.  
There are three debug access ports, one each for CM4 and CM0+, and a system port. All debug and test interfaces can be permanently  
disabled during final production provisioning to avoid any malicious reprogramming or reading of flash and register contents.  
PSoC 6 MCU devices include extensive support for programming, testing, debugging, and tracing both hardware and firmware. All  
device interfaces can be permanently disabled for applications concerned about a reprogrammed device or starting and interrupting  
flash programming sequences. All programming, debug, and test interfaces can be disabled.  
Complete debug-on-chip functionality enables full device debugging in the final system using the standard production device. It does  
not require special interfaces, debugging pods, simulators, or emulators. Only the standard programming connections are required  
to fully support debug.  
The Eclipse IDE for ModusToolbox provides fully integrated programming and debug support for these devices. The SWJ (SWD and  
JTAG) interface is fully compatible with industry-standard third party probes. With the ability to disable debug features, with very robust  
flash protection, and by allowing customer-proprietary functionality to be implemented in on-chip programmable blocks, PSoC 6  
provides multiple levels of device security.  
Document Number: 002-28690 Rev. *I  
Page 7 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Functional Description  
The following sections provide an overview of the features,  
capabilities and operation of each functional block identified in  
the block diagram in Figure 2. For more detailed information,  
refer to the following documentation:  
CPU and Memory Subsystem  
PSoC 6 has multiple bus masters, as Figure 2 shows. They are:  
CPUs, DMA controllers, QSPI, USB, SD Host Controllers, and a  
Crypto block. Generally, all memory and peripherals can be  
accessed and shared by all bus masters through multi-layer Arm  
AMBA high-performance bus (AHB) arbitration. Accesses  
between CPUs can be synchronized using an inter-processor  
communication (IPC) block.  
Board Support Package (BSP) Documentation  
BSPs are available on GitHub. They are aligned with Cypress  
kits and provide files for basic device functionality such as  
hardware configuration files, startup code, and linker files.  
The BSP also includes other libraries that are required to sup-  
port a kit. Each BSP has its own documentation, but typically  
includes an API reference such as the example here. This  
search link finds all currently available BSPs on the Cypress  
GitHub site.  
CPUs  
There are two Arm Cortex CPUs:  
The Cortex-M4 (CM4) has single-cycle multiply, a floating-point  
unit (FPU), and a memory protection unit (MPU). It can run at up  
to 150 MHz. This is the main CPU, designed for a short interrupt  
response time, high code density, and high throughput.  
Hardware Abstraction Layer API Reference Manual  
The Cypress Hardware Abstraction Layer (HAL) provides a  
high-level interface to configure and use hardware blocks on  
Cypress MCUs. It is a generic interface that can be used  
across multiple product families. You can leverage the HAL's  
simpler and more generic interface for most of an application,  
even if one portion requires finer-grained control. The HAL  
API Reference provides complete details. Example applica-  
tions that use the HAL download it automatically from the  
GitHub repository.  
CM4 implements a version of the Thumb instruction set based  
on Thumb-2 technology (defined in the Armv7-M Architecture  
Reference Manual).  
The Cortex-M0+ (CM0+) has single-cycle multiply, and an MPU.  
It can run at up to 100 MHz; however, for CM4 speeds above  
100 MHz, CM0+ and bus peripherals are limited to half the speed  
of CM4. Thus, for CM4 running at 150 MHz, CM0+ and  
peripherals are limited to 75 MHz.  
In PSoC 64, the initial CM0+ frequency is set according to a  
provisioned security policy (see PSoC 64 Security). The  
frequency ranges from 8 MHz to 50 MHz. For more information,  
see the Architecture and Registers TRM.  
Peripheral Driver Library (PDL) Application Programming  
Interface (API) Reference Manual  
The Peripheral Driver Library (PDL) integrates device header  
files and peripheral drivers into a single package and supports  
all PSoC 6 MCU product lines. The drivers abstract the hard-  
ware functions into a set of easy-to-use APIs. These are fully  
documented in the PDLAPI Reference. Example applications  
that use the PSoC 6 PDL download it automatically from the  
GitHub repository.  
CM0+ is the secondary CPU; it is used to implement system calls  
and device-level safety and protection features. CM0+ provides  
a secured, uninterruptible boot function. This helps ensure that  
post boot, system integrity is checked and memory and  
peripheral access privileges are enforced.  
CM0+ implements the Armv6-M Thumb instruction set (defined  
in the Armv6-M Architecture Reference Manual).  
Architecture Technical Reference Manual (TRM)  
The architecture TRM provides a detailed description of each  
resource in the device. This is the next reference to use if it is  
necessary to understand the operation of the hardware below  
the software provided by PDL. It describes the architecture  
and functionality of each resource and explains the operation  
of each resource in all modes. It provides specific guidance  
regarding the use of associated registers.  
The CPUs have the following power draw, at VDDD = 3.3 V and  
using the internal buck regulator:  
Table 1. Active Current Slope at VDDD = 3.3 V Using the  
Internal Buck Regulator  
System Power Mode  
ULP  
LP  
Register Technical Reference Manual  
Cortex-M0+  
Cortex-M4  
20 A/MHz 28 A/MHz  
27 A/MHz 40 A/MHz  
The register TRM provides a complete list of all registers in  
the device. It includes the breakdown of all register fields,  
their possible settings, read/write accessibility, and default  
states. All registers that have a reasonable use in typical ap-  
plications have functions to access them from within PDL.  
Note that ModusToolbox and PDL may provide software de-  
fault conditions for some registers that are different from and  
override the hardware defaults.  
CPU  
The CPUs can be selectively placed in their Sleep and Deep  
Sleep power modes as defined by Arm.  
Both CPUs have nested vectored interrupt controllers (NVIC) for  
rapid and deterministic interrupt response, and wakeup interrupt  
controllers (WIC) for CPU wakeup from Deep Sleep power  
mode.  
The CPUs have extensive debug support. PSoC 6 has a debug  
access port (DAP) that acts as the interface for device  
programming and debug. An external programmer or debugger  
(the “host”) communicates with the DAP through the device  
serial wire debug (SWD) or Joint Test Action Group (JTAG)  
Document Number: 002-28690 Rev. *I  
Page 8 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
interface pins. Through the DAP (and subject to restrictions), the  
host can access the device memory and peripherals as well as  
the registers in both CPUs.  
descriptors for DMA channels can be in SRAM or flash.  
Therefore, the number of descriptors is limited only by the size  
of the memory. Each descriptor can transfer data in two nested  
loops with configurable address increments to the source and  
destination. The size of data transfer per descriptor varies based  
on the type of DMA channel. Refer to the technical reference  
manual for details.  
Each CPU offers debug and trace features as follows:  
CM4 supports six hardware breakpoints and four watchpoints,  
4-bit embedded trace macrocell (ETM), serial wire viewer  
(SWV), and printf()-style debugging through the single wire  
output (SWO) pin.  
Cryptography Accelerator (Crypto)  
This subsystem consists of hardware implementation and  
acceleration of cryptographic functions and random number  
generators.  
CM0+ supports four hardware breakpoints and two watch-  
points, and a micro trace buffer (MTB) with 4-KB dedicated  
RAM.  
The Crypto subsystem supports the following:  
PSoC 6 also has an Embedded Cross Trigger for synchronized  
debugging and tracing of both CPUs.  
Encryption/Decryption Functions  
Data Encryption Standard (DES)  
Triple DES (3DES)  
Interrupts  
This product line has 168 system and peripheral interrupt  
sources, and supports interrupts and system exceptions on both  
CPUs. CM4 has 168 interrupt request lines (IRQ), with the  
interrupt source ‘n’ directly connected to IRQn. CM0+ has eight  
interrupts IRQ[7:0] with configurable mapping of one or more  
interrupt sources to any of the IRQ[7:0]. CM0+ also supports  
eight internal (software only) interrupts.  
Advanced Encryption Standard (AES) (128-, 192-, 256-bit)  
Elliptic Curve Cryptography (ECC)  
RSA cryptography functions  
Hashing functions  
Secure Hash Algorithm (SHA)  
SHA-1  
Each interrupt supports configurable priority levels (eight levels  
for CM4 and four levels for CM0+). Up to four system interrupts  
can be mapped to each of the CPUs' non-maskable interrupts  
(NMI). Up to 39 interrupt sources are capable of waking the  
device from Deep Sleep power mode using the WIC. Refer to the  
technical reference manual for details.  
SHA-224/-256/-384/-512  
Message authentication functions (MAC)  
Hashed message authentication code (HMAC)  
Cipher-based message authentication code (CMAC)  
32-bit cyclic redundancy code (CRC) generator  
InterProcessor Communication (IPC)  
Random number generators  
In addition to the Arm SEV and WFE instructions, a hardware  
InterProcessor Communication (IPC) block is included. It  
includes 16 IPC channels and 16 IPC interrupt structures. The  
IPC channels can be used to implement data communication  
between the processors. Each IPC channel also implements a  
locking scheme which can be used to manage shared resources.  
The IPC interrupts let one processor interrupt the other, signaling  
an event. This is used to trigger events such as notify and release  
of the corresponding IPC channels. Some IPC channels and  
other resources are reserved, as Table 2 shows:  
Pseudo random number generator (PRNG)  
True random number generator (TRNG)  
Protection Units  
This product line has multiple types of protection units to control  
erroneous or unauthorized access to memory and peripheral  
registers. CM4 and CM0+ have Arm MPUs for protection at the  
bus master level. Other bus masters use additional MPUs.  
Shared memory protection units (SMPUs) help implement  
protection for memory resources that are shared among multiple  
bus masters. Peripheral protection units (PPU) are similar to  
SMPUs but are designed for protecting the peripheral register  
space.  
Table 2. Distribution of IPC Channels and Other Resources  
Resources Available Resources Consumed  
IPC channels,  
16 available  
13 reserved  
Protection units support memory and peripheral access  
attributes including address range, read/write, code/data,  
privilege level, secured/non-secured, and protection context.  
Some protection unit resources are reserved for system usage;  
see the technical reference manual for details.  
IPC interrupts,  
16 available  
13 reserved  
Other interrupts  
CM0+ NMI  
1 reserved  
Reserved  
Up to eight protection contexts (boot is in protection context 0)  
allow access privileges for memory and system resources to be  
set by the boot process per protection context by bus master and  
code privilege level.  
Other resources:  
clock dividers, DMA  
channels, etc.  
4 CM0+ interrupt mux  
Direct Memory Access (DMA) Controllers  
This product line has three DMA controllers, which support  
CPU-independent accesses to memory and peripherals. Two of  
them have 29 channels each and the third has 4 channels. The  
Document Number: 002-28690 Rev. *I  
Page 9 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
In PSoC 64, multiple protection contexts are used to isolate the  
different security levels within the device. The CM0+ makes use  
of several of them during the boot sequence, bootloading,  
system calls, etc. Protection context 6 is used for the user  
application code that runs on the CM4 CPU. The SMPUs are set  
up by default and cannot be modified by the user. See section 8  
in the Architecture TRM for the protection context assignment.  
eFuse  
A one-time-programmable (OTP) eFuse array consists of  
1024 bits, all of which are reserved for system use. The bits  
are used for storing hash values, unique IDs, or other similar  
PSoC 64 parameters.  
Each fuse is individually programmed; once programmed (or  
“blown”), its state cannot be changed. Blowing a fuse transi-  
tions it from the default state of 0 to 1. To program an eFuse,  
Memory  
VDDIO0 must be at 2.5 V ±5%, at 14 mA.  
PSoC 6 contains flash, SRAM, ROM, and eFuse memory blocks.  
Because blowing an eFuse is an irreversible process, pro-  
gramming is recommended only in mass production under  
controlled factory conditions. For more information, see  
PSoC 6 MCU Programming Specifications.  
Flash  
There is up to 2 MB of flash; however 192 KB is reserved for  
system usage, leaving 1856 KB for applications, organized in  
256-KB sectors.  
Boot Code  
There are also two 32-KB flash sectors:  
Auxiliary flash (AUXflash), typically used for EEPROM emu-  
lation  
Supervisory flash (Sflash). Data stored in Sflash includes de-  
vice trim values, Flash Boot code, and encryption keys. After  
the device transitions into the “Secure” lifecycle stage, Sflash  
can no longer be changed.  
Two blocks of code, ROM Boot and Flash Boot, are  
pre-programmed into the device and work together to provide  
device startup and configuration, basic security features,  
lifecycle stage management and other system functions.  
ROM Boot  
On a device reset, the boot code in ROM is the first code to  
execute. This code performs the following:  
Integrity checks of flash boot code  
Device trim setting (calibration)  
Setting the device protection units  
The flash has 128-bit-wide accesses to reduce power. Write  
operations can be performed at the row level. A row is  
512 bytes. Read operations are supported in both Low Power  
and Ultra-Low Power modes, however write operations may  
not be performed in Ultra-Low Power mode.  
SettingdeviceaccessrestrictionsforSecurelifecyclestates  
The flash controller has two caches, one for each CPU. Each  
cache is 8 KB, with 4-way set associativity.  
ROM cannot be changed and acts as the root of trust in a  
secured system.  
SRAM  
Flash Boot  
There is 944 KB of SRAM available for applications. The re-  
maining 80 KB is reserved for system usage. SRAM is provid-  
ed in three banks of 432 KB, 256 KB, and 256 KB. Each  
SRAM bank provides control over power modes to manage  
power consumption. For Bank 0 (432 KB), power control and  
retention granularity are configurable in thirteen 32-KB re-  
gions. For banks 1 and 2 (256 KB each) power control is on  
a per bank basis. For normal operation, the banks can be  
enabled or disabled to save power. For Deep Sleep mode, the  
banks can also be configured to retain data.  
Flash boot is firmware stored in SFlash that ensures that only  
a validated application may run on the device. It also ensures  
that the firmware image has not been modified, such as by a  
malicious third party.  
Flash boot:  
Is validated by ROM Boot  
Runs after ROM Boot and before the user application  
Enables system calls  
Enables provisioning and device policy features  
Implements RoT-based services for cryptography  
Provides secured storage for keys and certificates  
Validates and launches first image based on policies  
provisioned in the device  
ROM  
The 64-KB ROM, also referred to as the supervisory ROM  
(SROM), provides code (ROM Boot) for several system func-  
tions. The ROM contains device initialization, flash write, se-  
curity, eFuse programming, and other system-level routines.  
ROM code is executed only by the CM0+ CPU, in protection  
context 0. A system function can be initiated by either CPU,  
or through the DAP. This causes an NMI in CM0+, which  
causes CM0+ to execute the system function.  
Uses mbed TLS v2.24  
If the user application cannot be validated, then flash boot  
ensures that the device is transitioned into a safe state. Refer  
to the PSoC 64 Security section for more details.  
Document Number: 002-28690 Rev. *I  
Page 10 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Memory Map  
Both CPUs have a fixed address map, with shared access to memory and peripherals. The 32-bit (4 GB) address space is divided  
into the Arm-defined regions shown in Table 3. Note that code can be executed from the Code and External RAM regions.  
Table 3. Address Map for CM4 and CM0+  
Address Range  
Name  
Code  
Use  
Program code region. Data can also be placed here. It includes  
the exception vector table, which starts at address 0.  
0x0000 0000 – 0x1FFF FFFF  
0x2000 0000 – 0x3FFF FFFF  
0x4000 0000 – 0x5FFF FFFF  
SRAM  
Data region. This region is not supported in PSoC 6.  
All peripheral registers. Code cannot be executed from this  
region. CM4 bit-band in this region is not supported in PSoC 6.  
Peripheral  
External  
RAM  
SMIF or Quad SPI, (see the Quad-SPI/Serial Memory Interface  
(SMIF) section). Code can be executed from this region.  
0x6000 0000 – 0x9FFF FFFF  
0xA000 0000 – 0xDFFF FFFF  
External  
Device  
Not used.  
Private  
Peripheral  
Bus  
0xE000 0000 – 0xE00F FFFF  
0xE010 0A000 – 0xFFFF FFFF  
Provides access to peripheral registers within the CPU core.  
Device-specific system registers.  
Device  
The device memory map shown in Table 4 applies to both CPUs. That is, the CPUs share access to all PSoC 6 MCU memory and  
peripheral registers.  
Table 4. Internal Memory Address Map for CM4 and CM0+  
Address Range  
Memory Type  
Size  
0x0000 0000 – 0x0000 FFFF  
ROM  
64 KB  
0x0800 0000 – 0x080E BFFF  
0x080E C000 - 0x080F FFFF  
Application SRAM  
System SRAM  
Up to 944 KB  
80 KB  
0x1000 0000 – 0x101C FFFF  
0x101D 0000 - 0x101F FFFF  
Application flash  
Secured code flash  
Used for secured boot, secured boot-  
loader, and system calls  
Up to 1856 KB  
192 KB  
Auxiliary flash, can be used for EE-  
PROM emulation  
0x1400 0000 – 0x1400 7FFF  
0x1600 0000 – 0x1600 7FFF  
32 KB  
Supervisory flash, for secured access 32 KB  
Note that PSoC 6 SRAM is located in the Arm Code region for both CPUs (see Table 3). There is no physical memory located in the  
CPUs’ Arm SRAM regions.  
Document Number: 002-28690 Rev. *I  
Page 11 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
CPU Sleep – CPU code execution is halted in system LP or  
ULP mode  
System Resources  
Power System  
CPU Deep Sleep – CPU code execution is halted and system  
The power system provides assurance that voltage levels are as  
required for each respective mode and will either delay mode  
entry (on power-on reset (POR), for example) until voltage levels  
are as required for proper function or generate resets (brown-out  
detect (BOD)) when the power supply drops below specified  
levels. The design guarantees safe chip operation between  
power supply voltage dropping below specified levels (for  
example, below 1.7 V) and the reset occurring. There are no  
voltage sequencing requirements.  
Deep Sleep is requested in system LP or ULP mode  
System Deep Sleep – Only low-frequency peripherals are  
available after both CPUs enter CPU Deep Sleep mode  
System Hibernate – Device and I/O states are frozen and the  
device resets on wakeup  
CPU Active, Sleep, and Deep Sleep are standard Arm-defined  
power modes supported by the Arm CPU instruction set  
architecture (ISA). System LP, ULP, Deep Sleep and Hibernate  
modes are additional low-power modes supported by PSoC 6  
MCU.  
The VDDD supply (1.7 to 3.6 V) powers an on-chip buck regulator  
or a low-dropout regulator (LDO), selectable by the user. In  
addition, both the buck and the LDO offer a selectable (0.9 or  
1.1 V) core operating voltage (VCCD). The selection lets users  
choose between two system power modes:  
Clock System  
Figure 3 shows that the clock system of this product line consists  
of the following:  
System Low Power (LP) operates VCCD at 1.1 V and offers high  
performance, with no restrictions on device configuration.  
Internal main oscillator (IMO)  
Internal low-speed oscillator (ILO)  
Watch crystal oscillator (WCO)  
External MHz crystal oscillator (ECO)  
External clock input  
System Ultra Low Power (ULP) operates VCCD at 0.9 V for  
exceptional low power, but imposes limitations on clock  
speeds.  
In addition, a backup domain adds an “always on” functionality  
using a separate power domain supplied by a backup supply  
(VBACKUP) such as a battery or supercapacitor. It includes a  
real-time clock (RTC) with alarm feature, supported by a  
Two phase-locked loops (PLLs)  
One frequency-locked loop (FLL)  
32.768-kHz  
watch  
crystal  
oscillator  
(WCO),  
and  
power-management IC (PMIC) control. Refer to Power Supply  
Considerations for more details.  
Clocks may be buffered and brought out to a pin on a smart I/O  
port.  
Power Modes  
The default clocking when the application starts is CLK_HF[0]  
being driven by the IMO and the FLL. CLK_HF[0], clk_fast,  
clk_peri, and clk_slow are all either 50 MHz (LP mode) or 25 MHz  
(ULP mode). All other clocks, including all peripheral clocks, are  
off.  
PSoC 6 MCU can operate in four system and three CPU power  
modes. These modes are intended to minimize the average  
power consumption in an application. For more details on power  
modes and other power-saving configuration options, see the  
application note, AN219528: PSoC 6 MCU Low-Power Modes  
and Power Reduction Techniques. Contact your local Cypress  
sales representative for the latest technical reference manual.  
Internal Main Oscillator (IMO)  
The IMO is the primary source of internal clocking. It is trimmed  
at the factory to achieve the specified accuracy. The IMO  
frequency is 8 MHz and tolerance is ± 2%.  
Power modes supported by PSoC 6 MCUs, in order of  
decreasing power consumption, are:  
System Low Power (LP) – All peripherals and CPU power  
modes are available at maximum speed  
Internal Low-speed Oscillator (ILO)  
The ILO is a very low power oscillator, nominally 32 kHz, which  
operates in all power modes. The ILO can be calibrated against  
a higher accuracy clock for better accuracy.  
System Ultra Low Power (ULP) – All peripherals and CPU  
power modes are available, but with limited speed  
CPUActive – CPU is executing code in system LPor ULPmode  
Document Number: 002-28690 Rev. *I  
Page 12 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Figure 3. Clocking Diagram  
Yellow multiplexers  
are glitch safe  
Root mux  
Path Mux  
(FLL/PLL)  
FLL  
Divider  
Divider  
CM4  
CLK_HF[0]  
Predivider  
(1/2/4/8)  
Peripheral  
clocks  
IMO  
clk_peri  
Divider  
Peripheral  
Clock Dividers  
TCPWM  
SCB  
EXTCLK  
Predivider  
(1/2/4/8)  
CLK_HF[1]  
CLK_HF[2]  
CLK_HF[3]  
PLL 0  
Audio  
CM0+  
AHB  
ECO  
CapSense  
LCD  
QSPI/SMIF,  
SD Host [1]  
Predivider  
(1/2/4/8)  
PLL 1  
DMA  
Analog  
Subsystem  
CLK_PATH3  
eFuse  
MMIO  
PPU  
Predivider  
(1/2/4/8)  
USB  
Smart I/O  
CLK_PATH4  
CLK_PATH5  
Predivider  
(1/2/4/8)  
CLK_HF[4]  
CLK_HF[5]  
SD Host[0]  
clk_ext  
Crypto  
Predivider  
(1/2/4/8)  
System LP/ULP Domain  
System Deep Sleep /  
Hibernate Domain  
ILO  
CLK_LF  
WCO  
External Crystal Oscillators  
See also Table 6 for additional restrictions for general analog  
subsystem use.  
Figure 4 shows all of the external crystal oscillator circuits for this  
product line. The component values shown are typical; check  
ECO Specifications for the crystal values, and the crystal  
datasheet for the load capacitor values. The ECO and WCO  
require balanced external load capacitors. For more information,  
see the TRM and AN218241, PSoC 6 MCU Hardware Design  
Considerations.  
Table 5. ECO Usage Guidelines  
Drive  
Strength for  
VDDD ≤ 2.7 V  
Drive Strength  
for VDDD ≤ 2.7 V  
Ports  
Max Frequency  
Port 11  
60MHzforSMIF DRIVE_SEL 2 DRIVE_SEL 3  
(QSPI)  
Figure 4. Oscillator Circuits  
PSoC 6  
Ports12and Slow slew rate No restrictions No restrictions  
13 setting  
Watchdog Timers (WDT, MCWDT)  
PSoC 6 MCU has one WDT and two multi-counter WDTs  
(MCWDT). The WDT has a 16-bit free-running counter. Each  
MCWDT has two 16-bit counters and one 32-bit counter, with  
multiple operating modes. All of the 16-bit counters can generate  
a watchdog device reset. All of the counters can generate an  
interrupt on a match event.  
The WDT is clocked by the ILO. It can generate interrupt/wakeup  
in system LP/ULP, Deep Sleep, and Hibernate power modes.  
The MCWDTs are clocked by LFCLK (ILO or WCO). It can  
generate periodic interrupt / wakeup in system LP/ULP and Deep  
Sleep power modes.  
MHz XTAL  
32.768 kHz XTAL  
CL / 2  
CL / 2  
CL / 2  
CL / 2  
Clock Dividers  
Integer and fractional clock dividers are provided for peripheral  
use and timing purposes. There are:  
If the ECO is used, note that its performance is affected by GPIO  
switching noise. GPIO ports should be used as Table 5 shows.  
Eight 8-bit clock dividers  
Sixteen 16-bit integer clock dividers  
Four 16.5-bit fractional clock dividers  
One 24.5-bit fractional clock divider  
Document Number: 002-28690 Rev. *I  
Page 13 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Trigger Routing  
Programmable Analog Subsystems  
PSoC 6 MCU contains a trigger multiplexer block. This is a  
collection of digital multiplexers and switches that are used for  
routing trigger signals between peripheral blocks and between  
GPIOs and peripheral blocks.  
12-bit SAR ADC  
The 12-bit, 2-Msps SAR ADC can operate at a maximum clock  
rate of 36 MHz and requires a minimum of 18 clocks at that  
frequency to do a 12-bit conversion. One of three internal  
reference voltages may be used for an ADC reference voltage.  
The references are, VDD, VDD/2, and VREF (nominally 1.2 V and  
trimmed to ±1%). An external reference may also be used, by  
either driving the VREF pin or routing an external reference to  
GPIO pin P9.7. These reference options allow ratio-metric  
readings or absolute readings at the accuracy of the reference  
used. The input range of the ADC is the full supply voltage  
between VSS and VDDA/VDDIOA. The SAR ADC may be  
configured with a mix of single-ended and differential signals in  
the same configuration.  
There are two types of trigger routing. Trigger multiplexers have  
reconfigurability in the source and destination. There are also  
hardwired switches called “one-to-one triggers”, which connect  
a specific source to a destination. The user can enable or disable  
the route.  
Reset  
PSoC 6 MCU can be reset from a variety of sources:  
Power-on reset (POR) to hold the device in reset while the  
power supply ramps up to the level required for the device to  
function properly. POR activates automatically at power-up.  
Brown-out detect (BOD) reset to monitor the digital voltage  
supply VDDD and generate a reset if VDDD falls below the  
minimum required logic operating voltage.  
The SAR ADC’s sample-and-hold (S/H) aperture is  
programmable to allow sufficient time for signals with a high  
impedance to settle sufficiently, if required. System performance  
is 65 dB for true 12-bit precision provided appropriate references  
are used and system noise levels permit it. To improve  
performance in noisy conditions, an external bypass capacitor  
for the internal reference amplifier (through the fixed “VREF”  
pin), may be added.  
External reset dedicated pin (XRES) to reset the device using  
an external source. The XRES pin is active low. It can be  
connected either to a pull-up resistor to VDDD, or to an active  
drive circuit, as Figure 5 shows. If a pull-up resistor is used,  
select its value to minimize current draw when the pin is pulled  
low; 4.7 kΩ is typical.  
The SAR is connected to a fixed set of pins through an input  
multiplexer. The multiplexer cycles through the selected  
channels autonomously (sequencer scan) and does so with zero  
switching overhead (that is, the aggregate sampling bandwidth  
is equal to 2 Msps whether it is for a single channel or distributed  
over several channels). The result of each channel is buffered,  
so that an interrupt may be triggered only when a full scan of all  
channels is complete. Also, a pair of range registers can be set  
to detect and cause an interrupt if an input exceeds a minimum  
and/or maximum value. This allows fast detection of out-of-range  
values without having to wait for a sequencer scan to be  
completed and the CPU to read the values and check for  
out-of-range values in software. The SAR can also be  
connected, under firmware control, to most other GPIO pins via  
the Analog Multiplexer Bus (AMUXBUS). The SAR is not  
available in system Deep Sleep and Hibernate modes as it  
requires a high-speed clock (up to 36 MHz). The SAR operating  
range is 1.71 to 3.6 V.  
Figure 5. XRES Connection Diagram  
1.7 to 3.6 V  
PSoC 6  
VDDD  
4.7 kΩ typ.  
XRES  
XRES  
drive  
Watchdog timer (WDT or MCWDT) to reset the device if  
firmware fails to service it within a specified timeout period.  
Software-initiated reset to reset the device on demand using  
firmware.  
Temperature Sensor  
An on-chip temperature sensor is part of the SAR and may be  
scanned by the SAR ADC. It consists of a diode, which is biased  
by a current source that can be disabled to save power. The  
temperature sensor may be connected directly to the SAR ADC  
as one of the measurement channels. The ADC digitizes the  
temperature sensor’s output and a Cypress-supplied software  
function may be used to convert the reading to temperature  
which includes calibration and linearization.  
Logic-protectionfaultcantrigger aninterruptorresetthedevice  
if unauthorized operating conditions occur; for example,  
reaching a debug breakpoint while executing privileged code.  
Hibernate wakeup reset to bring the device out of the system  
Hibernate power mode.  
Reset events are asynchronous and guarantee reversion to a  
known state. Some of the reset sources are recorded in a  
register, which is retained through reset and allows software to  
determine the cause of the reset.  
Low-Power Comparators  
Two low-power comparators are provided, which can operate in  
all power modes. This allows other analog system resources to  
be disabled while retaining the ability to monitor external voltage  
levels during system Deep Sleep and Hibernate modes. The  
comparator outputs are normally synchronized to avoid  
metastability unless operating in an asynchronous power mode  
(Hibernate) where the system wake-up circuit is activated by a  
comparator-switch event.  
Document Number: 002-28690 Rev. *I  
Page 14 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Figure 6 shows an overview of the analog subsystem. This diagram is a high-level abstraction. See the TRM for detailed connectivity  
information.  
Figure 6. Analog Subsystem  
AMUXBUSA  
Red dots indicate  
AMUXBUS splitter  
switches  
AMUXBUSB  
P6.0  
P6.1  
P6.2  
P6.3  
P6.4  
P6.5  
P6.6  
P6.7  
CSD  
LPCOMP0  
inp  
inn  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
shield_pad  
vref_ext  
csh  
cmod  
amuxbusa  
amuxbusb  
LPCOMP1  
inp  
inn  
P2.0  
P2.1  
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
P5.0  
P5.1  
P5.2  
P5.3  
P5.4  
P5.5  
P5.6  
P5.7  
P3.0  
P3.1  
P3.2  
P3.3  
P3.4  
P3.5  
P4.0  
P4.1  
P4.2  
P4.3  
P14.0  
P14.1  
P9.7  
P9.6  
P9.5  
P9.4  
P9.3  
P9.2  
P9.1  
P9.0  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
AREF, 1.2 V  
P11.0  
P11.1  
P11.2  
P11.3  
P11.4  
P11.5  
P11.6  
P11.7  
P10.0  
P10.1  
P10.2  
P10.3  
P10.4  
P10.5  
P10.6  
P10.7  
SAR ADC  
vplus  
vminus  
vref  
P12.0  
P12.1  
P12.2  
P12.3  
P12.4  
P12.5  
P12.6  
P12.7  
SARREF  
VDDA  
VDDA / 2  
TEMP  
temp  
VSS  
To VREF pin, for bypass capacitor  
P13.0  
P13.1  
P13.2  
P13.3  
P13.4  
P13.5  
P13.6  
P13.7  
Document Number: 002-28690 Rev. *I  
Page 15 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
In this device there are:  
Eight 32-bit TCPWMs  
Twenty-four 16-bit TCPWMs  
Programmable Digital  
Smart I/O  
Smart I/O is a programmable logic fabric that enables Boolean  
operations on signals traveling from device internal resources to  
the GPIO pins or on signals traveling into the device from  
external sources. A Smart I/O block sits between the GPIO pins  
and the high-speed I/O matrix (HSIOM) and is dedicated to a  
single port.  
Serial Communication Blocks (SCB)  
This product line has 13 SCBs:  
Eight can implement either I2C, UART, or SPI.  
Four can implement either I2C or UART.  
One SCB (SCB #8) can operate in system Deep Sleep mode  
with an external clock; this SCB can be either SPI slave or I2C  
slave.  
There are two Smart I/O blocks: one on Port 8 and one on Port 9.  
When Smart I/O is not enabled, all signals on Port 8 and Port 9  
bypass the Smart I/O hardware.  
I2C Mode: The SCB can implement a full multi-master and slave  
interface (it is capable of multimaster arbitration). This block can  
operate at speeds of up to 1 Mbps (Fast Mode Plus). It also  
supports EZI2C, which creates a mailbox address range and  
effectively reduces I2C communication to reading from and  
writing to an array in memory. The SCB supports a 256-byte  
FIFO for receive and transmit.  
The I2C peripheral is compatible with I2C standard-mode, Fast  
Mode, and Fast Mode Plus devices as defined in the NXP  
I2C-bus specification and user manual (UM10204). The I2C bus  
I/O is implemented with GPIO in open-drain modes.  
Smart I/O supports:  
System Deep Sleep operation  
Boolean operations without CPU intervention  
Asynchronous or synchronous (clocked) operation  
Each Smart I/O block contains a data unit (DU) and eight lookup  
tables (LUTs).  
The DU:  
Performs unique functions based on a selectable opcode.  
Can source input signals from internal resources, the GPIO  
port, or a value in the DU register.  
UART Mode: This is a full-feature UART operating at up to  
8 Mbps. It supports automotive single-wire interface (LIN),  
infrared interface (IrDA), and SmartCard (ISO7816) protocols, all  
of which are minor variants of the basic UART protocol. In  
addition, it supports the 9-bit multiprocessor mode that allows the  
addressing of peripherals connected over common Rx and Tx  
lines. Common UART functions such as parity error, break  
detect, and frame error are supported. A 256-byte FIFO allows  
much greater CPU service latencies to be tolerated.  
Each LUT:  
Has three selectable input sources. The input signals may be  
sourced from another LUT, an internal resource, an external  
signal from a GPIO pin, or from the DU.  
Acts as a programmable Boolean logic table.  
Can be synchronous or asynchronous.  
Fixed-Function Digital  
SPI Mode: The SPI mode supports full Motorola SPI, TI Secure  
Simple Pairing (SSP) (essentially adds a start pulse that is used  
to synchronize SPI Codecs), and National Microwire (half-duplex  
form of SPI). The SPI block supports an EZSPI mode in which  
the data interchange is reduced to reading and writing an array  
in memory. The SPI interface operates with a 25-MHz clock.  
Timer/Counter/Pulse-width Modulator (TCPWM)  
The TCPWM supports the following operational modes:  
Timer-counter with compare  
Timer-counter with capture  
Quadrature decoding  
USB Full-Speed Device Interface  
Pulse width modulation (PWM)  
Pseudo-random PWM  
PWM with dead time  
This product line incorporates a full-speed USB device interface.  
The device can have up to eight endpoints. A 512-byte SRAM  
buffer is provided and DMA is supported.  
Up, down, and up/down counting modes  
Clock prescaling (division by 1, 2, 4, ... 64, 128)  
Double buffering of compare/capture and period values  
Underflow, overflow, and capture/compare output signals  
Supports interrupt on:  
Terminal count – Depends on the mode; typically occurs on  
overflow or underflow  
Capture/compare – The count is captured to the capture reg-  
ister or the counter value equals the value in the compare  
register  
Note: If the USB pins are not used, connect VDDUSB to ground  
and leave the P14.0/USBDP and P14.1/USBDM pins  
unconnected.  
Quad-SPI/Serial Memory Interface (SMIF)  
A serial memory interface is provided, running at up to 80 MHz.  
It supports single, dual, quad, dual-quad and octal SPI  
configurations, and supports up to four external memory devices.  
It supports two modes of operation:  
Memory-mapped I/O (MMIO), a command mode interface that  
provides data access via registers and FIFOs  
Complementary output for PWMs  
Execute in Place (XIP), in which AHB reads and writes are  
directly translated to SPI read and write transfers.  
Selectable start, reload, stop, count, and capture event signals  
for each TCPWM; with rising edge, falling edge, both edges,  
and level trigger options. The TCPWM has a Kill input to force  
outputs to a predetermined state.  
Document Number: 002-28690 Rev. *I  
Page 16 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
In XIP mode, the external memory is mapped into the PSoC 6  
MCU internal address space, enabling code execution directly  
from the external memory. To improve performance, a 4-KB  
cache is included. XIP mode also supports AES-128 on-the-fly  
encryption and decryption, enabling secured storage and access  
of code and data in the external memory.  
For eMMC, the supported modes are:  
BWC (backward compatibility)  
SDR  
Maximum clock restrictions and capacitive loads apply to some  
modes, and are also dependent on system power mode  
(LP/ULP). Refer to the SD Host Controller and eMMC  
Specifications for details.  
LCD  
This block drives LCD commons and segments; routing is  
available to most of the GPIOs. One to eight of the GPIOs must  
be used for commons, the rest can be used for segments.  
The SD Host Controller complies with the following standards.  
Refer to the specifications documents for more information on  
the protocol and operations.  
The LCD block has two modes of operation: high speed (8 MHz)  
and low speed (32 kHz). Both modes operate in system LP and  
ULP modes. Low-speed mode operates with reduced contrast in  
system Deep Sleep mode - review the number of common and  
segment lines, viewing angle requirements, and prototype  
performance before using this mode.  
SD Specifications Part 1 Physical Layer Specification Version  
6.00, supporting card capacities for SDSC (up to 2 GB), SDHC  
(up to 32 GB) and SDXC (up to 2 TB).  
SD Specifications Part A2 SD Host Controller Standard Speci-  
fication Version 4.20  
SD Host Controllers  
SD Specifications Part E1 SDIO Specifications Version 4.10  
Embedded Multi-Media Card (eMMC) Electrical Standard 5.1  
This product line contains two Secure Digital (SD) host  
controllers. They provide communication with IoT connectivity  
devices such as Bluetooth, Bluetooth Low-Energy and WiFi  
radios, as well as combination devices. The controller also  
supports embedded MultiMediaCards (eMMC) and Secure  
Digital (SD) cards.  
The SD Host Controller is configured as a master. To be fully  
compatible with features provided in the driver software for  
speed and efficiency, it supports advanced DMA version 3  
(ADMA3), defined by the SDIO standard, and has a 1-KB Rx/Tx  
FIFO allowing double buffering of 512-byte blocks.  
Several bus speed modes under the SD specification are  
supported:  
DS (default speed)  
HS (high speed)  
SDR12 (single data rate)  
SDR25  
SDR50  
DDR50 (double data rate)  
Document Number: 002-28690 Rev. *I  
Page 17 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
The port 1 pins are capable of overvoltage-tolerant (OVT)  
GPIO  
operation, where the input voltage may be higher than VDDD  
.
This product line has up to 100 GPIOs, which implement the  
following:  
OVT pins are commonly used with I2C, to allow powering the  
chip OFF while maintaining a physical connection to an  
operating I2C bus without affecting its functionality.  
Eight drive strength modes:  
Analog input mode (input and output buffers disabled)  
Input only  
GPIO pins can be ganged to source or sink higher values of  
current. GPIO pins, including OVT pins, may not be pulled up  
higher than the absolute maximum; see Electrical Specifications.  
Weak pull-up with strong pull-down  
Strong pull-up with weak pull-down  
Open drain with strong pull-down  
Open drain with strong pull-up  
Strong pull-up with strong pull-down  
Weak pull-up with weak pull-down  
During power-on and reset, the pins are forced to the analog  
input drive mode, with input and output buffers disabled, so as  
not to crowbar any inputs and/or cause excess turn-on current.  
A multiplexing network known as the high-speed I/O matrix  
(HSIOM) is used to multiplex between various peripheral and  
analog signals that may connect to an I/O pin.  
Input threshold select (CMOS or LVTTL)  
Hold mode for latching previous state (used for retaining the  
I/O state in system Hibernate mode)  
Analog performance is affected by GPIO switching noise. In  
order to get the best analog performance, the following  
frequency and drive mode constraints must be applied. The  
DRIVE_SEL values (refer to Table 6) represent drive strengths  
Architecture and Register TRMs . Contact your local Cypress  
sales representative for the latest TRM.  
Selectable slew rates for dV/dt-related noise control to improve  
EMI  
The pins are organized in logical entities called ports, which are  
up to 8 pins in width. Data output and pin state registers store,  
respectively, the values to be driven on the pins and the input  
states of the pins.  
See also Table 5 for additional restrictions for ECO use.  
Every pin can generate an interrupt if enabled; each port has an  
interrupt request (IRQ) associated with it.  
Table 6. DRIVE_SEL Values  
Ports  
Ports 0, 1  
Port 2  
Max Frequency  
8 MHz  
Drive Strength for VDDD ≤ 2.7 V Drive Strength for VDDD > 2.7 V  
DRIVE_SEL 2  
DRIVE_SEL 1  
DRIVE_SEL 2  
DRIVE_SEL 1  
DRIVE_SEL 3  
DRIVE_SEL 2  
DRIVE_SEL 3  
DRIVE_SEL 2  
50 MHz  
Ports 3 to 10  
Ports 11 to 13  
16 MHz; 25 MHz for SPI  
80 MHz for SMIF (QSPI).  
The PDM-to-PCM decoder implements a single hardware Rx  
FIFO that decodes a stereo or mono 1-bit PDM input stream to  
PCM data output. The following features are supported:  
Special-Function Peripherals  
Audio Subsystem  
This subsystem consists of the following hardware blocks:  
Programmable data output word length – 16/18/20/24 bits  
Two Inter-IC Sound (I2S) interfaces  
Programmable gain amplifier (PGA) for volume control – from  
Two PDM to PCM decoder channels  
–12 dB to +10.5 dB in 1.5 dB steps  
Each of the I2S interfaces implements two independent  
hardware FIFO buffers – Tx and Rx, which can operate in master  
or slave mode. The following features are supported:  
Configurable PDM clock generation. Range from 384 kHz to  
3.072 MHz  
Droop correction and configurable decimation rate for  
sampling; up to 48 ksps  
Multiple data formats – I2S, left-justified, Time Division Multi-  
plexed (TDM) mode A, and TDM mode B  
Programmable high-pass filter gain  
Programmable channel/word lengths – 8/16/18/20/24/32 bits  
Internal/external clock operation up to 192 ksps  
Interrupt mask events – not empty, overflow, trigger, underflow  
Configurable FIFO trigger level with DMA support  
Interrupt mask events – trigger, not empty, full, overflow,  
underflow, watchdog  
The PDM-to-PCM decoder is commonly used to connect to  
digital PDM microphones. Up to two microphones can be  
connected to the same PDM Data line.  
Configurable FIFO trigger level with DMA support  
The I2S interface is commonly used to connect with audio  
codecs, simple DACs, and digital microphones.  
Document Number: 002-28690 Rev. *I  
Page 18 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
CapSense Subsystem  
IDAC  
CapSense is supported in PSoC 6 MCU through a CapSense  
sigma-delta (CSD) hardware block. It is designed for  
high-sensitivity self-capacitance and mutual-capacitance  
measurements, and is specifically built for user interface  
solutions.  
The CSD block has two programmable current sources, which  
offer the following features:  
7-bit resolution  
Sink and source current modes  
A current source programmable from 37.5 nA to 609 A  
In addition to CapSense, the CSD hardware block supports three  
general-purpose functions. These are available when CapSense  
is not being used. Alternatively, two or more functions can be  
time-multiplexed in an application under firmware control. The  
four functions supported by the CSD hardware block are:  
Two IDACs that can be used in parallel to form one 8-bit IDAC  
Comparator  
The CapSense subsystem comparator operates in the system  
Low Power and Ultra-Low Power modes. The inverting input is  
connected to an internal programmable reference voltage and  
the non-inverting input can be connected to any GPIO via the  
AMUXBUS.  
CapSense  
10-bit ADC  
Programmable current sources (IDAC)  
Comparator  
CapSense Hardware Subsystem  
CapSense  
Figure 7 shows the high-level hardware overview of the  
CapSense subsystem, which includes a delta sigma converter,  
internal clock dividers, a shield driver, and two programmable  
current sources.  
Capacitive touch sensors are designed for user interfaces that  
rely on human body capacitance to detect the presence of a  
finger on or near a sensor. Cypress CapSense solutions bring  
elegant, reliable, and simple capacitive touch sensing functions  
to applications including IoT, industrial, automotive, and home  
appliances.  
The inputs are managed through analog multiplexed buses  
(AMUXBUS A/B). The input and output of all functions offered by  
the CSD block can be provided on any GPIO or on a group of  
GPIOs under software control, with the exception of the  
comparator output and external capacitors that use dedicated  
GPIOs.  
The Cypress-proprietary CapSense technology offers the  
following features:  
Best-in-class signal-to-noise ratio (SNR) and robust sensing  
under harsh and noisy conditions  
Self-capacitance is supported by the CSD block using  
AMUXBUS A, an external modulator capacitor, and a GPIO for  
each sensor. There is a shield electrode (optional) for  
self-capacitance sensing. This is supported using AMUXBUS B  
and an optional external shield tank capacitor (to increase the  
drive capability of the shield driver) should this be required.  
Mutual-capacitance is supported by the CSD block using  
AMUXBUS A, two external integrated capacitors, and a GPIO for  
transmit and receive electrodes.  
Self-capacitance (CSD) and mutual-capacitance (CSX)  
sensing methods  
Support for various widgets, including buttons, matrix buttons,  
sliders, touchpads, and proximity sensors  
High-performance sensing across a variety of materials  
Best-in-class liquid tolerance  
The ADC does not require an external component. Any GPIO  
that can be connected to AMUXBUS A can be an input to the  
ADC under software control. The ADC can accept VDDA as an  
input without needing GPIOs (for applications such as battery  
voltage measurement).  
SmartSense™ auto-tuning technology that helps avoid  
complex manual tuning processes  
Superior immunity against external noise  
Spread-spectrum clocks for low radiated emissions  
Gesture and built-in self-test libraries  
Ultra-low power consumption  
The two programmable current sources (IDACs) in  
general-purpose mode can be connected to AMUXBUS A or B.  
They can therefore connect to any GPIO pin. The comparator  
resides in the delta-sigma converter. The comparator inverting  
input can be connected to the reference. Both comparator inputs  
can be connected to any GPIO using AMUXBUS B; see  
Figure 7. The reference has a direct connection to a dedicated  
GPIO; see Table 9.  
An integrated graphical CapSense tuner for real-time tuning,  
testing, and debugging  
ADC  
The CapSense subsystem slope ADC offers the following  
features:  
The CSD block can operate in active and sleep CPU power  
modes, and seamlessly transition between system LP and ULP  
modes. It can be powered down in system Deep Sleep and  
Hibernate modes. Upon wakeup from Hibernate mode, the CSD  
block requires re-initialization. However, operation can be  
resumed without re-initialization upon exit from Deep Sleep  
mode, under firmware control.  
Selectable 8- or 10-bit resolution  
Selectable input range: GND to VREF and GND to VDDA on any  
GPIO input  
MeasurementofVDDA against aninternal referencewithoutthe  
use of GPIO or external components  
Document Number: 002-28690 Rev. *I  
Page 19 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Figure 7. CapSense Hardware Subsystem  
AMUXBUS  
A
B
GPIO Pin  
GPIO  
Cell  
CSD Sensor1  
Clock Input  
C
S1  
GPIO Pin  
GPIO  
Cell  
CSD Sensor 2  
C
S2  
CSD Hardware Block  
C
Pin  
MOD  
C
Sense clock  
MOD  
Clock  
Generator  
C
_
SH TANK  
GPIO Pin  
( optional  
)
Shield Drive  
Circuit  
Modulator  
Clock  
GPIO Pin  
GPIO  
Cell  
Compensation  
IDAC  
C
Shield Electrode  
SHIELD  
Modulator  
IDAC  
GPIO Pin  
IDAC control  
Tx  
GPIO  
Cell  
CSX Sensor3  
C
S3  
Raw  
Count  
Sigma Delta  
Converter  
GPIO Pin  
Rx  
GPIO  
Cell  
V
REF  
C
Pin  
INTA  
GPIO  
Cell  
C
INTA  
C
INTB  
C
Pin  
INTB  
GPIO  
Cell  
ADC Input  
IDAC Outputs  
Comp Input  
Document Number: 002-28690 Rev. *I  
Page 20 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Figure 8 shows the high-level software overview. Cypress  
provides middleware libraries for CapSense, ADC, and IDAC on  
GitHub to enable quick integration. The Board Support Package  
for any kit with CapSense capabilities automatically includes the  
CapSense library in any application that uses the BSP.  
CapSense and ADC middleware use the CSD interrupt to  
implement non-blocking sensing and A-to-D conversion.  
Therefore, interrupt service routines are a defined part of the  
middleware, which must be initialized by the application.  
Middleware and drivers can operate on either CPU. Cypress  
recommends using the middleware only in one CPU. If both  
CPUs must access the CSD driver, memory access should be  
managed in the application.  
User applications interact only with middleware to implement  
functions of the CSD block. The middleware interacts with  
underlying drivers to access hardware as necessary. The CSD  
driver facilitates time-multiplexing of the CSD hardware if more  
than one piece of CSD-related middleware is present in a project.  
It prevents access conflicts in this case.  
Refer to AN85951: PSoC 4 and PSoC 6 MCU CapSense Design  
Guide for more details on CSX sensing, CSD sensing, shield  
electrode usage and its benefits, and capacitive system design  
guidelines.  
ModusToolbox Software provides a CapSense configurator to  
enable fast library configuration. It also provides a tuner for  
performance evaluation and real-time tuning of the system. The  
tuner requires an EZI2C communication interface in the  
application to enable real-time tuning capability. The tuner can  
update configuration parameters directly in the device as well as  
in the configurator.  
Refer to theAPI reference guides for CapSense, ADC, and IDAC  
available on GitHub.  
Figure 8. CapSense Software/Firmware Subsystem  
Application Program  
Middleware  
Software  
Configurator  
Tuner  
SCB Driver (EZI 2C)  
CSD Driver  
GPIO / Clock Drivers  
SCB  
CSD Block  
GPIOs / Clock  
Hardware and Drivers  
Document Number: 002-28690 Rev. *I  
Page 21 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
The first step in using a PSoC 64 device is to inject the following  
information into the device - a process called provisioning:  
PSoC 64 Security  
All PSoC 64 “Secure” MCU product lines feature enhanced  
security functionality. They provide an isolated root of trust (RoT)  
with true attestation and provisioning services. Cypress also  
provides a “Secure Boot” SDK User Guide, which includes all  
required libraries, tools, and sample code to provision PSoC 64  
devices. The SDK also provides provisioning scripts with sample  
keys and policies, a pre-built bootloader image, and tools for  
signing firmware images. For more information, see the “Secure  
Boot” SDK User Guide.  
A set of cryptographic public keys, which are used to:  
Transfer the RoT from Cypress to the user/OEM, as Figure 9  
shows  
Validate applications  
A set of security policies that define how the device should  
behave  
Certificates (optional) used to bind device identity or provide a  
The “Secure Boot” SDK also includes entrance exam scripts. An  
entrance exam can optionally be run on PSoC 64 devices before  
provisioning to ensure that no device tampering has occurred.  
chain of trust to a higher certifying authority  
The Cypress Bootloader  
Provisioning is done before an application is programmed into  
the device.  
Figure 9. PSoC 64 Usage Processes  
Program  
Manufacture  
Take Over Root-of-Trust  
Setup chip security  
Application  
User RoT  
User RoT  
OEM RoT  
Public Key  
Cy RoT  
Public Key  
Public Key  
Public Key  
Unique Device  
Identity  
Unique Device  
Identity  
Unique Device  
Identity  
PSoC 64  
Keys, Security  
Policies, Certificates  
Keys, Security  
Policies, Certificates  
PSoC 64  
Cypress Bootloader  
Cypress Bootloader  
PSoC 64  
User Application  
PSoC 64  
Provisioning is done using a hardware security module (HSM). An HSM is a physical computing device, placed in a secured facility,  
that safeguards and manages digital keys for strong authentication, and provides cryptographic processing.  
After the device is provisioned, it can be programmed with signed applications. The signature and authenticity of the application is  
verified before control is transferred to it.  
Document Number: 002-28690 Rev. *I  
Page 22 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Figure 10 shows a simplified flash memory map of PSoC 64 assets and immutable sections. As noted in Memory, a portion of device  
SRAM is also reserved for system usage.  
Figure 10. PSoC 64 “Secure” MCU Asset Memory Map  
0x1000:0000  
User Application Space  
Typically immutable, can be  
0x101D:0000  
updated if allowed by security  
Cypress Bootloader  
policy during provisioning  
0x101E:0000  
“Secure Flash Boot”  
Immutable after Cypress  
Manufacturing  
OEM Asset storage  
0x101F:BF00  
0x101F:FFFF  
Typically immutable, can be  
partially updated if allowed by  
security policy during provisioning  
User Flash  
0x1600:7FFF  
“Secure Flash Boot” +  
Cypress Public Key  
0x1600:0000  
0x0001:FFFF  
Supervisory Flash  
Boot ROM  
ROM  
Immutable after Cypress  
Manufacturing  
0x0000:0000  
Document Number: 002-28690 Rev. *I  
Page 23 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Cypress Bootloader  
The Cypress Bootloader supports external memory over the  
PSoC 64 Serial Memory Interface (SMIF). The bootloader  
currently supports only external memory vendors who support  
the Serial Flash Discovery Protocol (SFDP).  
The Cypress Bootloader is a port of the open source MCUBoot  
library. For more details about this library, refer to MCUBoot  
Bootloader design. The current version of the Cypress  
Bootloader for this device does not support the swap-based  
images feature as documented in the MCUBoot design  
document.  
The Cypress Bootloader enforces protection contexts for the  
bootloader code, so code running in another protection context  
may be prohibited from overwriting/tampering with the  
bootloader code. Figure 11 shows the launch sequence of the  
Cypress Bootloader:  
The Cypress Bootloader is included in the “Secure Boot” SDK as  
a pre-built hex image. This image acts as the first image  
launched by the PSoC 64 boot code. It parses the provisioned  
Boot&Upgrade policy to launch an application image.  
Figure 11. Bootloader Launch Sequence  
Reads for setting  
access policies  
Boot ROM +  
“Secure Flash Boot”  
Address of Bootloader image  
and key for verification  
Verifies & Launches  
Verifies & Launches  
Debug Policy  
Cypress Bootloader  
Boot Policy  
Bootloader Certificate  
Address of User image  
and key for verification  
Provisioned Policies  
First User Image  
Signed with OEM Pvt key  
Figure 12 shows a typical application update scenario using the Cypress Bootloader:  
Figure 12. Bootloader Application Update Sequence  
New image available  
Bootloader verifies new image  
Bootloader updates current  
image  
Immutable Boot Code  
Cypress Bootloader  
Immutable Boot Code  
Immutable Boot Code  
Cypress Bootloader  
Keys, Policies  
Cypress Bootloader  
Keys, Policies  
Keys, Policies  
Update image,  
launches  
New Image  
Customer  
Verifies new  
Application v2  
Customer Application v1  
Signed with User Privkey  
Customer Application v2  
Signed with User Privkey  
image content  
and signature  
with provisioned  
keys  
Customer Application v1  
Signed with User Privkey  
Signed with User  
Privkey  
Image  
Written  
Slot#0  
Slot#0  
Slot#0  
Customer Application v2  
Signed with User Privkey  
Slot#1, empty  
Slot#1, empty  
Slot#1  
Internal (or) External flash  
Internal (or) External flash  
Internal (or) External flash  
Document Number: 002-28690 Rev. *I  
Page 24 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Amazon FreeRTOS PSA  
this binary against the Amazon FreeRTOS ecosystem. Cypress  
adds a layer in the Amazon FreeRTOS side that uses the TF-M  
binary using standard PSA calls.  
Note: This product line has been tested with FreeRTOS version  
202007.00.  
Platform Security Architecture (PSA). The goal of PSA is to  
design security into IoT devices right from the start with specific  
hardware requirements. This gives vendors a direction and  
confidence in providing secured IoT devices. The PSA  
certification program allows OEM vendors to declare they have  
followed the recommendations to make their device secured. For  
consumers, the PSA certification gives them confidence in  
buying a secured device from a vendor. Depending on the level  
of security sought, PSA provides three levels of certification  
where each level has more stringent testing.  
The PSoC 64 “Standard Secure” AWS product line provides a  
platform security architecture (PSA) level-2 certified method to  
connect to Amazon Web Services. PSA is a set of threat models,  
security analysis, hardware and firmware architecture  
specifications, open source firmware reference implementation,  
and independent evaluation and certification. PSA provides the  
following:  
A hardware and firmware architecture based on a set of speci-  
fications such as the Security Model (PSA-SM) and Firmware  
Framework (PSA-FF)  
PSA is currently supported on Cortex-M based IoT solutions.  
PSA provides a reference implementation of PSA FF that allows  
vendors to quickly implement a PSA compliant system. The  
reference implementation for Cortex-M based solutions is called  
Trusted Firmware M.  
Documents pertaining to boot and upgrade requirements  
Defined isolation levels that compartmentalize software and  
services  
An outline of a certification process that helps identify the level  
of security. Currently it has three levels of certification: L1, L2,  
and L3.  
TF-M is a reference implementation of PSA. This reference  
implementation is governed by Linaro and hosted on  
trustedfirmware.org. Arm and partner companies including  
Cypress contribute to this open source project.  
An API for secured services such as crypto, secured storage,  
As indicated in the name, TF-M is a solution for Cortex-M based  
solutions. TF-M implements the necessary framework as well as  
the following services.  
and attestation  
A reference implementation for Cortex-M class processors  
called Trusted Firmware M (TF-M)  
PSA Cryptography, to provide crypto functionality  
Amazon FreeRTOS is an Amazon-supported embedded  
ecosystem that provides a development environment for IoT  
devices including WiFi connectivity. The PSoC 64 “Standard  
Secure” AWS provides a pre-built TF-M layer to Amazon  
FreeRTOS, as well as all the required AWS FreeRTOS  
enhancements.  
PSAProtected Storage, used to provide security in storing data  
in external flash  
PSA Internal Trusted Storage, used to provide trusted storage  
in internal flash  
PSA Attestation, to provide a method for a server to verify the  
authenticity of a device that is connected.  
The TF-M binary delivered in this product line is based on code  
maintained in trustedfirmware.org. Cypress tests and validates  
Document Number: 002-28690 Rev. *I  
Page 25 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Amazon FreeRTOS and AWS “Standard Secure”  
Amazon FreeRTOS is an Amazon supported ecosystem that provides an IoT development environment for IoT devices including WiFi  
connectivity. The intention is to help users/OEMs create IoT devices that connect to Amazon AWS. AWS “Standard Secure” provides  
an SPE and PSA compliance. Figure 13 depicts the overall AWS “Standard Secure” Solution.  
Figure 13. AWS “Standard Secure” Solution Diagram  
NSPE  
SPE  
AFR API  
Root of  
Trust  
PKCS#11  
I
I
PSA  
API  
P P  
C C  
FreeRTOS  
WHD  
FW  
Update  
mbedTLS  
LWIP  
SPM  
As shown, the system has two separate processing  
environments. Amazon FreeRTOS runs in the NSPE. The SPE  
used in AWS “Standard Secure” is Trusted Firmware M.  
PKCS#11: The PKCS#11 API is used by Amazon FreeRTOS for  
secured storage of certificates/keys and for asymmetric  
cryptography using these keys. PKCS#11 integration uses the  
“Secure” Storage and Crypto in the SPE.  
In this model, Amazon FreeRTOS is free to execute without  
accessing any features or APIs provided by the SPE. However,  
the idea of the integration is to allow Amazon FreeRTOS to  
provide secured storage, device identity, and cryptography by  
using the secured services made available by SPE.  
Mbed TLS: Amazon FreeRTOS uses Mbed TLS for symmetric  
cryptography.  
OTA: Although OTA requires authentication of the incoming  
upgrade package, no specific PSA integration is currently  
implemented in the SPE layer. The Cypress Bootloader meets  
the requirements set out by PSA on boot requirements. An OTA  
upgrade package in AWS “Standard Secure” consists of either  
one or both of the SPE and NSPE images. The SPE and NSPE  
images are individually signed and can be authenticated with  
Cypress Bootloader. In this case, the bootloader and PSoC 64's  
secured boot and provisioning procedure provides the secured  
upgrade. If the authentication fails, the bootloader does not  
perform the upgrade.  
Communication between NSPE and SPE is accomplished using  
the PSoC 6 InterProcessor Communication (IPC), as Figure 13  
shows.  
The SPE implementation provides a library of source and header  
files ("PSA API" in Figure 13) that is included in the NSPE to  
access the services provided by the SPE. PSA can then be  
integrated into Amazon FreeRTOS.  
PSA Integration: PSA Integration redirects security sensitive  
functionality to the SPE. This is done using the PSA API. PSA  
Integration is done in Amazon FreeRTOS in the following areas;  
note that this list is constantly evolving. Please check the  
https://github.com/aws/amazon-freertos for the latest details.  
This upgrade package is double-signed with an Amazon OTA  
verification key. The OTA agent has a verification certificate built  
into the image that is used to initially authenticate the incoming  
package. If the verification key pair needs to be upgraded, that  
can be accomplished by upgrading the NSPE image with a new  
verification certificate.  
TRNG: True Random Number Generation is accomplished using  
the PSoC 6 Crypto block, which is exclusively controlled by the  
SPE.  
Document Number: 002-28690 Rev. *I  
Page 26 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Arm PSA Certification Level 2  
This product line is certified PSA Level 2. Retaining the  
certification in an end system requires several constraints on the  
use of the product:  
for cryptographic purposes without thoroughly understanding  
the potential security weaknesses.  
The features that are present in the product but fall outside of the  
secured configuration are:  
OEMs must follow the direction in the “Secure Boot” SDK User  
Guide for transferring root of trust and signing the images with  
the OEM RoT private key  
Symmetric Algorithms  
DES  
The Debug Access Port (DAP) must be disabled for the CM0+  
Secured Processing Environment  
Triple DES  
RC4  
Use cryptographic algorithms that are within the scope of the  
PSA L2 certification such as the ones defined in the PSA  
Platform Security Boot Guide  
RSA – with 2048 key lengths or higher and the RSA-PSS  
scheme  
Symmetric Modes  
CBC  
CBCMAC  
Hashes  
MD2  
MD4  
ECC and ECDSA – with 256-bit key lengths or higher with  
NIST P-256 curves  
Hashing – Secure Hash Algorithm 2 (at least 256 bits)  
MD5  
RIPEMD160  
SHA_1  
Avoid use of legacy cryptographic algorithms that are outside  
the scope of the PSA L2 certification and only provided for  
compatibility. The use of these algorithms is not recommended  
Document Number: 002-28690 Rev. *I  
Page 27 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Pinouts  
Power supplies and ports correspond as follows:  
P0: VBACKUP  
P1: VDDD. Port 1 pins are overvoltage tolerant (OVT).  
P2, P3, P4: VDDIO2  
P5, P6, P7, P8: VDDIO1  
P9, P10: VDDIO, VDDA (VDDIOA and VDDA must be connected together on the PCB)  
P11, P12, P13: VDDIO0  
P14: VDDUSB  
Table 7. Packages and Pin Information  
Packages  
Pin  
124-BGA  
100-WLCSP  
VDDD  
VCCD  
VDDA  
VDDIOA  
VDDIO0  
VDDIO1  
VDDIO2  
VBACKUP  
VDDUSB  
VSS  
A1  
D14  
A2  
C15  
A12  
J1  
A13  
-
C4  
A11  
K12  
K2  
L4  
M10  
D1  
C17  
M1  
J17  
B12, C3, D4, D10, K4, K10  
D2, E13, J13, L1  
VDD_NS  
VIND1  
XRES  
VREF  
P0.0  
J1  
J2  
J15  
H16  
E17  
C3  
F1  
B13  
E3  
E2  
E1  
F3  
F2  
G3  
G2  
G1  
H3  
H2  
H1  
J3  
F14  
G13  
D16  
E15  
G11  
F16  
H12  
G15  
-
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P1.0  
P1.1  
P1.2  
P1.3  
-
P1.4  
H14  
G17  
L17  
K12  
L15  
P1.5  
P2.0  
M2  
N2  
L3  
P2.1  
P2.2  
Document Number: 002-28690 Rev. *I  
Page 28 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Table 7. Packages and Pin Information (continued)  
Packages  
Pin  
124-BGA  
100-WLCSP  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
P3.0  
P3.1  
P3.2  
P3.3  
P3.4  
P3.5  
P4.0  
P4.1  
P5.0  
P5.1  
P5.2  
P5.3  
P5.4  
P5.5  
P5.6  
P5.7  
P6.0  
P6.1  
P6.2  
P6.3  
P6.4  
P6.5  
P6.6  
P6.7  
P7.0  
P7.1  
P7.2  
P7.3  
P7.4  
P7.5  
P7.6  
P7.7  
P8.0  
P8.1  
P8.2  
P8.3  
P8.4  
M3  
N3  
L13  
L11  
M16  
M14  
M12  
-
N1  
M4  
N4  
L5  
M5  
-
N5  
-
L6  
-
M6  
-
N6  
-
L7  
-
M7  
-
N7  
M8  
K10  
J11  
H10  
L9  
M6  
G9  
G7  
M4  
L7  
L5  
K8  
J9  
L3  
M2  
K4  
K6  
J7  
J3  
H8  
-
L8  
M8  
N8  
L9  
M9  
N9  
N10  
M10  
L10  
L11  
M11  
N11  
M12  
N12  
M13  
L13  
L12  
K13  
N13  
K11  
J13  
J12  
J11  
H13  
H12  
H11  
G13  
G12  
-
-
G1  
H2  
J5  
H6  
H4  
F2  
Document Number: 002-28690 Rev. *I  
Page 29 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Table 7. Packages and Pin Information (continued)  
Packages  
Pin  
124-BGA  
100-WLCSP  
P8.5  
P8.6  
G11  
F13  
F12  
E11  
E12  
E13  
F11  
D13  
D12  
D11  
C13  
C12  
A11  
B11  
C11  
A10  
B10  
C10  
A9  
-
-
P8.7  
-
P9.0  
E1  
G3  
G5  
F4  
E3  
-
P9.1  
P9.2  
P9.3  
P9.4  
P9.5  
P9.6  
-
P9.7  
C1  
F6  
E5  
B2  
D4  
C5  
B4  
A3  
P10.0  
P10.1  
P10.2  
P10.3  
P10.4  
P10.5  
P10.6  
P10.7  
P11.0  
P11.1  
P11.2  
P11.3  
P11.4  
P11.5  
P11.6  
P11.7  
P12.0  
P12.1  
P12.2  
P12.3  
P12.4  
P12.5  
P12.6  
P12.7  
P13.0  
P13.1  
P13.2  
P13.3  
P13.4  
F8  
E9  
B9  
C9  
D6  
A8  
E7  
B8  
A7  
C8  
B6  
A7  
A5  
B7  
C7  
C7  
B8  
A6  
A9  
B6  
D8  
C6  
A13  
B10  
C9  
A5  
B5  
C5  
B12  
C11  
D10  
B14  
A15  
C13  
D12  
E11  
A4  
B4  
B1  
A3  
B3  
B2  
C2  
Document Number: 002-28690 Rev. *I  
Page 30 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Table 7. Packages and Pin Information (continued)  
Packages  
Pin  
124-BGA  
100-WLCSP  
F10  
C1  
D3  
D2  
L2  
L1  
P13.5  
P13.6  
F12  
P13.7  
B16  
P14.0/ USBDP  
P14.1/ USBDM  
K14  
K16  
Note: Balls K2 and K3 are connected together internally in the 124-BGA package.  
Note: If the USB pins are not used, connect VDDUSB to ground and leave the P14.0/USBDP and P14.1/USBDM pins unconnected.  
Note  
3. DNC means Do Not Connect. Do Not Connect anything to these pins.  
Document Number: 002-28690 Rev. *I  
Page 31 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Each port pin has multiple alternate functions. These are defined in Table 8. The columns ACT #x and DS #y denote active (System LP/ULP) and Deep Sleep mode signals  
respectively.  
The notation for a signal is of the form IPName[x].signal_name[u]:y.  
IPName = Name of the block (such as tcpwm), x = Unique instance of the IP, Signal_name = Name of the signal, u = Signal number where there is more than one signal for  
a particular signal name, y = Designates copies of the signal name.  
For example, the name tcpwm[0].line_compl[3]:4 indicates that this is instance 0 of a tcpwm block, the signal is line_compl # 3 (complement of the line output) and this is the  
fourth occurrence (copy) of the signal. Signal copies are provided to allow flexibility in routing and to maximize use of on-chip resources.  
Table 8. Multiple Alternate Functions  
Port/  
Pin  
ACT ACT ACT ACT  
ACT ACT  
ACT  
#10  
ACT  
#12  
ACT  
#14  
ACT  
#15  
ACT #0 ACT #1 ACT #2 ACT #3 DS #2 DS #3  
ACT #13  
DS #5 DS #6  
#4  
#5  
#6  
#7  
#8  
#9  
P0.0  
tcpwm[0].  
line[0]:0  
tcpwm[1]  
.line[0]:0  
csd.csd  
_tx:0  
csd.csd  
_tx_n:0  
srss.e  
xt_clk:  
0
scb[0].  
spi_se  
lect1:0  
peri.tr  
_io_in  
put[0]:  
0
P0.1  
tcpwm[0].  
line_com  
pl[0]:0  
tcpwm[1]  
.line_co  
mpl[0]:0  
csd.csd  
_tx:1  
csd.csd  
_tx_n:1  
scb[0].  
spi_se  
lect2:0  
peri.tr  
_io_in  
put[1]:  
0
P0.2  
P0.3  
P0.4  
P0.5  
P1.0  
tcpwm[0].  
line[1]:0  
tcpwm[1]  
.line[1]:0  
csd.csd  
_tx:2  
csd.csd  
_tx_n:2  
scb[0]  
.uart_  
rx:0  
scb[0].  
i2c_scl  
:0  
scb[0].  
spi_m  
osi:0  
tcpwm[0].  
line_com  
pl[1]:0  
tcpwm[1]  
.line_co  
mpl[1]:0  
csd.csd  
_tx:3  
csd.csd  
_tx_n:3  
scb[0]  
.uart_  
tx:0  
scb[0].  
i2c_sd  
a:0  
scb[0].  
spi_mi  
so:0  
tcpwm[0].  
line[2]:0  
tcpwm[1]  
.line[2]:0  
csd.csd  
_tx:4  
csd.csd  
_tx_n:4  
scb[0]  
.uart_  
rts:0  
scb[0].  
spi_cl  
k:0  
peri.tr_io_  
output[0]:2  
tcpwm[0].  
line_com  
pl[2]:0  
tcpwm[1]  
.line_co  
mpl[2]:0  
csd.csd  
_tx:5  
csd.csd  
_tx_n:5  
srss.e  
xt_clk:  
1
scb[0]  
.uart_  
cts:0  
scb[0].  
spi_se  
lect0:0  
peri.tr_io_  
output[1]:2  
tcpwm[0].  
line[3]:0  
tcpwm[1]  
.line[3]:0  
csd.csd  
_tx:6  
csd.csd  
_tx_n:6  
scb[7]  
.uart_  
rx:0  
scb[7].  
i2c_scl  
:0  
scb[7].  
spi_m  
osi:0  
peri.tr  
_io_in  
put[2]:  
0
P1.1  
tcpwm[0].  
line_com  
pl[3]:0  
tcpwm[1]  
.line_co  
mpl[3]:0  
csd.csd  
_tx:7  
csd.csd  
_tx_n:7  
scb[7]  
.uart_  
tx:0  
scb[7].  
i2c_sd  
a:0  
scb[7].  
spi_mi  
so:0  
peri.tr  
_io_in  
put[3]:  
0
P1.2  
P1.3  
tcpwm[0].  
line[4]:4  
tcpwm[1]  
.line[12]:  
1
csd.csd  
_tx:8  
csd.csd  
_tx_n:8  
scb[7]  
.uart_  
rts:0  
scb[7].  
spi_cl  
k:0  
tcpwm[0].  
line_com  
pl[4]:4  
tcpwm[1]  
.line_co  
mpl[12]:1  
csd.csd  
_tx:9  
csd.csd  
_tx_n:9  
scb[7]  
.uart_  
cts:0  
scb[7].  
spi_se  
lect0:0  
Document Number: 002-28690 Rev. *I  
Page 32 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Table 8. Multiple Alternate Functions (continued)  
Port/  
ACT ACT ACT ACT  
ACT ACT  
ACT  
#10  
ACT  
#12  
ACT  
#14  
ACT  
#15  
ACT #0 ACT #1 ACT #2 ACT #3 DS #2 DS #3  
Pin  
ACT #13  
DS #5 DS #6  
#4  
#5  
#6  
#7  
#8  
#9  
P1.4  
P1.5  
P2.0  
tcpwm[0].  
line[5]:4  
tcpwm[1]  
.line[13]:  
1
csd.csd  
_tx:10  
csd.csd  
_tx_n:1  
0
scb[7].  
spi_se  
lect1:0  
tcpwm[0].  
line_com  
pl[5]:4  
tcpwm[1]  
.line_co  
mpl[14]:1  
csd.csd  
_tx:11  
csd.csd  
_tx_n:1  
1
scb[7].  
spi_se  
lect2:0  
tcpwm[0].  
line[6]:4  
tcpwm[1]  
.line[15]:  
1
csd.csd  
_tx:12  
csd.csd  
_tx_n:1  
2
scb[1]  
.uart_  
rx:0  
scb[1].  
i2c_scl  
:0  
scb[1].  
spi_m  
osi:0  
peri.tr  
_io_in  
put[4]:  
0
sdhc[0].  
card_da  
t_3to0[0  
]
P2.1  
P2.2  
P2.3  
tcpwm[0].  
line_com  
pl[6]:4  
tcpwm[1]  
.line_co  
mpl[15]:1  
csd.csd  
_tx:13  
csd.csd  
_tx_n:1  
3
scb[1]  
.uart_  
tx:0  
scb[1].  
i2c_sd  
a:0  
scb[1].  
spi_mi  
so:0  
peri.tr  
_io_in  
put[5]:  
0
sdhc[0].  
card_da  
t_3to0[1  
]
tcpwm[0].  
line[7]:4  
tcpwm[1]  
.line[16]:  
1
csd.csd  
_tx:14  
csd.csd  
_tx_n:1  
4
scb[1]  
.uart_  
rts:0  
scb[1].  
spi_cl  
k:0  
sdhc[0].  
card_da  
t_3to0[2  
]
tcpwm[0].  
line_com  
pl[7]:4  
tcpwm[1]  
.line_co  
mpl[16]:1  
csd.csd  
_tx:15  
csd.csd  
_tx_n:1  
5
scb[1]  
.uart_  
cts:0  
scb[1].  
spi_se  
lect0:0  
sdhc[0].  
card_da  
t_3to0[3  
]
P2.4  
P2.5  
P2.6  
P2.7  
tcpwm[0].  
line[0]:5  
tcpwm[1]  
.line[17]:  
1
csd.csd  
_tx:16  
csd.csd  
_tx_n:1  
6
scb[9]  
.uart_  
rx:0  
scb[9].  
i2c_scl  
:0  
scb[1].  
spi_se  
lect1:0  
sdhc[0].  
card_c  
md  
tcpwm[0].  
line_com  
pl[0]:5  
tcpwm[1]  
.line_co  
mpl[17]:1  
csd.csd  
_tx:17  
csd.csd  
_tx_n:1  
7
scb[9]  
.uart_  
tx:0  
scb[9].  
i2c_sd  
a:0  
scb[1].  
spi_se  
lect2:0  
sdhc[0].  
clk_card  
tcpwm[0].  
line[1]:5  
tcpwm[1]  
.line[18]:  
1
csd.csd  
_tx:18  
csd.csd  
_tx_n:1  
8
scb[9]  
.uart_  
rts:0  
scb[1].  
spi_se  
lect3:0  
sdhc[0].  
card_de  
tect_n  
tcpwm[0].  
line_com  
pl[1]:5  
tcpwm[1]  
.line_co  
mpl[18]:1  
csd.csd  
_tx:19  
csd.csd  
_tx_n:1  
9
scb[9]  
.uart_  
cts:0  
sdhc[0].  
card_m  
ech_writ  
e_prot  
P3.0  
P3.1  
tcpwm[0].  
line[2]:5  
tcpwm[1]  
.line[19]:  
1
csd.csd  
_tx:20  
csd.csd  
_tx_n:2  
0
scb[2]  
.uart_  
rx:1  
scb[2].  
i2c_scl  
:1  
scb[2].  
spi_m  
osi:1  
peri.tr  
_io_in  
put[6]:  
0
sdhc[0].i  
o_volt_s  
el  
tcpwm[0].  
line_com  
pl[2]:5  
tcpwm[1]  
.line_co  
mpl[19]:1  
csd.csd  
_tx:21  
csd.csd  
_tx_n:2  
1
scb[2]  
.uart_  
tx:1  
scb[2].  
i2c_sd  
a:1  
scb[2].  
spi_mi  
so:1  
peri.tr  
_io_in  
put[7]:  
0
sdhc[0].  
card_if_  
pwr_en  
Document Number: 002-28690 Rev. *I  
Page 33 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Table 8. Multiple Alternate Functions (continued)  
Port/  
ACT ACT ACT ACT  
ACT ACT  
ACT  
#10  
ACT  
#12  
ACT  
#14  
ACT  
#15  
ACT #0 ACT #1 ACT #2 ACT #3 DS #2 DS #3  
Pin  
ACT #13  
DS #5 DS #6  
#4  
#5  
#6  
#7  
#8  
#9  
P3.2  
P3.3  
P3.4  
P3.5  
P4.0  
tcpwm[0].  
line[3]:5  
tcpwm[1]  
.line[20]:  
1
csd.csd  
_tx:22  
csd.csd  
_tx_n:2  
2
scb[2]  
.uart_  
rts:1  
scb[2].  
spi_cl  
k:1  
tcpwm[0].  
line_com  
pl[3]:5  
tcpwm[1]  
.line_co  
mpl[20]:1  
csd.csd  
_tx:23  
csd.csd  
_tx_n:2  
3
scb[2]  
.uart_  
cts:1  
scb[2].  
spi_se  
lect0:1  
tcpwm[0].  
line[4]:5  
tcpwm[1]  
.line[21]:  
1
csd.csd  
_tx:24  
csd.csd  
_tx_n:2  
4
scb[2].  
spi_se  
lect1:1  
tcpwm[0].  
line_com  
pl[4]:5  
tcpwm[1]  
.line_co  
mpl[21]:1  
csd.csd  
_tx:25  
csd.csd  
_tx_n:2  
5
scb[2].  
spi_se  
lect2:1  
tcpwm[0].  
line[5]:5  
tcpwm[1]  
.line[22]:  
1
csd.csd  
_tx:26  
csd.csd  
_tx_n:2  
6
scb[7]  
.uart_  
rx:1  
scb[7].  
i2c_scl  
:1  
scb[7].  
spi_m  
osi:1  
peri.tr  
_io_in  
put[8]:  
0
P4.1  
tcpwm[0].  
line_com  
pl[5]:5  
tcpwm[1]  
.line_co  
mpl[22]:1  
csd.csd  
_tx:27  
csd.csd  
_tx_n:2  
7
scb[7]  
.uart_  
tx:1  
scb[7].  
i2c_sd  
a:1  
scb[7].  
spi_mi  
so:1  
peri.tr  
_io_in  
put[9]:  
0
P4.2  
P4.3  
P5.0  
tcpwm[0].  
line[6]:5  
tcpwm[1]  
.line[23]:  
1
csd.csd  
_tx:28  
csd.csd  
_tx_n:2  
8
scb[7]  
.uart_  
rts:1  
scb[7].  
spi_cl  
k:1  
tcpwm[0].  
line_com  
pl[6]:5  
tcpwm[1]  
.line_co  
mpl[23]:1  
csd.csd  
_tx:29  
csd.csd  
_tx_n:2  
9
scb[7]  
.uart_  
cts:1  
scb[7].  
spi_se  
lect0:1  
tcpwm[0].  
line[4]:0  
tcpwm[1]  
.line[4]:0  
csd.csd  
_tx:30  
csd.csd  
_tx_n:3  
0
scb[5]  
.uart_  
rx:0  
scb[5].  
i2c_scl  
:0  
scb[5].  
spi_m  
osi:0  
peri.tr  
_io_in  
put[10  
]:0  
audioss  
[0].clk_i  
2s_if:0  
P5.1  
tcpwm[0].  
line_com  
pl[4]:0  
tcpwm[1]  
.line_co  
mpl[4]:0  
csd.csd  
_tx:31  
csd.csd  
_tx_n:3  
1
scb[5]  
.uart_  
tx:0  
scb[5].  
i2c_sd  
a:0  
scb[5].  
spi_mi  
so:0  
peri.tr  
_io_in  
put[11  
]:0  
audioss  
[0].tx_s  
ck:0  
P5.2  
P5.3  
P5.4  
tcpwm[0].  
line[5]:0  
tcpwm[1]  
.line[5]:0  
csd.csd  
_tx:32  
csd.csd  
_tx_n:3  
2
scb[5]  
.uart_  
rts:0  
scb[5].  
spi_cl  
k:0  
audioss  
[0].tx_w  
s:0  
tcpwm[0].  
line_com  
pl[5]:0  
tcpwm[1]  
.line_co  
mpl[5]:0  
csd.csd  
_tx:33  
csd.csd  
_tx_n:3  
3
scb[5]  
.uart_  
cts:0  
scb[5].  
spi_se  
lect0:0  
audioss  
[0].tx_s  
do:0  
tcpwm[0].  
line[6]:0  
tcpwm[1]  
.line[6]:0  
csd.csd  
_tx:34  
csd.csd  
_tx_n:3  
4
scb[1  
0].uar  
t_rx:0  
scb[10  
].i2c_s  
cl:0  
scb[5].  
spi_se  
lect1:0  
audioss  
[0].rx_s  
ck:0  
Document Number: 002-28690 Rev. *I  
Page 34 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Table 8. Multiple Alternate Functions (continued)  
Port/  
ACT ACT ACT ACT  
ACT ACT  
ACT  
#10  
ACT  
#12  
ACT  
#14  
ACT  
#15  
ACT #0 ACT #1 ACT #2 ACT #3 DS #2 DS #3  
Pin  
ACT #13  
DS #5 DS #6  
#4  
#5  
#6  
#7  
#8  
#9  
P5.5  
tcpwm[0].  
line_com  
pl[6]:0  
tcpwm[1]  
.line_co  
mpl[6]:0  
csd.csd  
_tx:35  
csd.csd  
_tx_n:3  
5
scb[1  
0].uar  
t_tx:0  
scb[10  
].i2c_s  
da:0  
scb[5].  
spi_se  
lect2:0  
audioss  
[0].rx_w  
s:0  
P5.6  
tcpwm[0].  
line[7]:0  
tcpwm[1]  
.line[7]:0  
csd.csd  
_tx:36  
csd.csd  
_tx_n:3  
6
scb[1  
0].uar  
t_rts:  
0
scb[5].  
spi_se  
lect3:0  
audioss  
[0].rx_s  
di:0  
P5.7  
P6.0  
P6.1  
tcpwm[0].  
line_com  
pl[7]:0  
tcpwm[1]  
.line_co  
mpl[7]:0  
csd.csd  
_tx:37  
csd.csd  
_tx_n:3  
7
scb[1  
0].uar  
t_cts:  
0
scb[3].  
spi_se  
lect3:0  
tcpwm[0].  
line[0]:1  
tcpwm[1]  
.line[8]:0  
csd.csd  
_tx:38  
csd.csd  
_tx_n:3  
8
scb[8].  
i2c_scl  
:0  
scb[3]  
.uart_  
rx:0  
scb[3].  
i2c_scl  
:0  
scb[3].  
spi_m  
osi:0  
cpuss.faul  
t_out[0]  
scb[8]  
.spi_  
mosi:  
0
tcpwm[0].  
line_com  
pl[0]:1  
tcpwm[1]  
.line_co  
mpl[8]:0  
csd.csd  
_tx:39  
csd.csd  
_tx_n:3  
9
scb[8].  
i2c_sd  
a:0  
scb[3]  
.uart_  
tx:0  
scb[3].  
i2c_sd  
a:0  
scb[3].  
spi_mi  
so:0  
cpuss.faul  
t_out[1]  
scb[8]  
.spi_  
miso:  
0
P6.2  
P6.3  
tcpwm[0].  
line[1]:1  
tcpwm[1]  
.line[9]:0  
csd.csd  
_tx:40  
csd.csd  
_tx_n:4  
0
scb[3]  
.uart_  
rts:0  
scb[3].  
spi_cl  
k:0  
scb[8]  
.spi_c  
lk:0  
tcpwm[0].  
line_com  
pl[1]:1  
tcpwm[1]  
.line_co  
mpl[9]:0  
csd.csd  
_tx:41  
csd.csd  
_tx_n:4  
1
scb[3]  
.uart_  
cts:0  
scb[3].  
spi_se  
lect0:0  
scb[8]  
.spi_s  
elect0  
:0  
P6.4  
P6.5  
P6.6  
P6.7  
tcpwm[0].  
line[2]:1  
tcpwm[1]  
.line[10]:  
0
csd.csd  
_tx:42  
csd.csd  
_tx_n:4  
2
scb[8].  
i2c_scl  
:1  
scb[6]  
.uart_  
rx:2  
scb[6].  
i2c_scl  
:2  
scb[6].  
spi_m  
osi:2  
peri.tr  
_io_in  
put[12  
]:0  
peri.tr_io_  
output[0]:1  
cpuss.  
swj_s  
wo_td  
o
scb[8]  
.spi_  
mosi:  
1
tcpwm[0].  
line_com  
pl[2]:1  
tcpwm[1]  
.line_co  
mpl[10]:0  
csd.csd  
_tx:43  
csd.csd  
_tx_n:4  
3
scb[8].  
i2c_sd  
a:1  
scb[6]  
.uart_  
tx:2  
scb[6].  
i2c_sd  
a:2  
scb[6].  
spi_mi  
so:2  
peri.tr  
_io_in  
put[13  
]:0  
peri.tr_io_  
output[1]:1  
cpuss.  
swj_s  
wdoe_  
tdi  
scb[8]  
.spi_  
miso:  
1
tcpwm[0].  
line[3]:1  
tcpwm[1]  
.line[11]:  
0
csd.csd  
_tx:44  
csd.csd  
_tx_n:4  
4
scb[6]  
.uart_  
rts:2  
scb[6].  
spi_cl  
k:2  
cpuss.  
swj_s  
wdio_t  
ms  
scb[8]  
.spi_c  
lk:1  
tcpwm[0].  
line_com  
pl[3]:1  
tcpwm[1]  
.line_co  
mpl[11]:0  
csd.csd  
_tx:45  
csd.csd  
_tx_n:4  
5
scb[6]  
.uart_  
cts:2  
scb[6].  
spi_se  
lect0:2  
cpuss.  
swj_s  
wclk_t  
clk  
scb[8]  
.spi_s  
elect0  
:1  
Document Number: 002-28690 Rev. *I  
Page 35 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Table 8. Multiple Alternate Functions (continued)  
Port/  
ACT ACT ACT ACT  
ACT ACT  
ACT  
#10  
ACT  
#12  
ACT  
#14  
ACT  
#15  
ACT #0 ACT #1 ACT #2 ACT #3 DS #2 DS #3  
Pin  
ACT #13  
DS #5 DS #6  
#4  
#5  
#6  
#7  
#8  
#9  
P7.0  
tcpwm[0].  
line[4]:1  
tcpwm[1]  
.line[12]:  
0
csd.csd  
_tx:46  
csd.csd  
_tx_n:4  
6
scb[4]  
.uart_  
rx:1  
scb[4].  
i2c_scl  
:1  
scb[4].  
spi_m  
osi:1  
peri.tr  
_io_in  
put[14  
]:0  
cpuss.tr  
ace_clo  
ck  
P7.1  
tcpwm[0].  
line_com  
pl[4]:1  
tcpwm[1]  
.line_co  
mpl[12]:0  
csd.csd  
_tx:47  
csd.csd  
_tx_n:4  
7
scb[4]  
.uart_  
tx:1  
scb[4].  
i2c_sd  
a:1  
scb[4].  
spi_mi  
so:1  
peri.tr  
_io_in  
put[15  
]:0  
P7.2  
P7.3  
P7.4  
P7.5  
P7.6  
P7.7  
tcpwm[0].  
line[5]:1  
tcpwm[1]  
.line[13]:  
0
csd.csd  
_tx:48  
csd.csd  
_tx_n:4  
8
scb[4]  
.uart_  
rts:1  
scb[4].  
spi_cl  
k:1  
tcpwm[0].  
line_com  
pl[5]:1  
tcpwm[1]  
.line_co  
mpl[13]:0  
csd.csd  
_tx:49  
csd.csd  
_tx_n:4  
9
scb[4]  
.uart_  
cts:1  
scb[4].  
spi_se  
lect0:1  
tcpwm[0].  
line[6]:1  
tcpwm[1]  
.line[14]:  
0
csd.csd  
_tx:50  
csd.csd  
_tx_n:5  
0
scb[4].  
spi_se  
lect1:1  
cpuss.tr  
ace_da  
ta[3]:2  
tcpwm[0].  
line_com  
pl[6]:1  
tcpwm[1]  
.line_co  
mpl[14]:0  
csd.csd  
_tx:51  
csd.csd  
_tx_n:5  
1
scb[4].  
spi_se  
lect2:1  
cpuss.tr  
ace_da  
ta[2]:2  
tcpwm[0].  
line[7]:1  
tcpwm[1]  
.line[15]:  
0
csd.csd  
_tx:52  
csd.csd  
_tx_n:5  
2
scb[4].  
spi_se  
lect3:1  
cpuss.tr  
ace_da  
ta[1]:2  
tcpwm[0].  
line_com  
pl[7]:1  
tcpwm[1]  
.line_co  
mpl[15]:0  
csd.csd  
_tx:53  
csd.csd  
_tx_n:5  
3
scb[3].  
spi_se  
lect1:0  
cpuss.  
clk_fm  
_pum  
p
cpuss.tr  
ace_da  
ta[0]:2  
P8.0  
P8.1  
P8.2  
P8.3  
tcpwm[0].  
line[0]:2  
tcpwm[1]  
.line[16]:  
0
csd.csd  
_tx:54  
csd.csd  
_tx_n:5  
4
scb[4]  
.uart_  
rx:0  
scb[4].  
i2c_scl  
:0  
scb[4].  
spi_m  
osi:0  
peri.tr  
_io_in  
put[16  
]:0  
tcpwm[0].  
line_com  
pl[0]:2  
tcpwm[1]  
.line_co  
mpl[16]:0  
csd.csd  
_tx:55  
csd.csd  
_tx_n:5  
5
scb[4]  
.uart_  
tx:0  
scb[4].  
i2c_sd  
a:0  
scb[4].  
spi_mi  
so:0  
peri.tr  
_io_in  
put[17  
]:0  
tcpwm[0].  
line[1]:2  
tcpwm[1]  
.line[17]:  
0
csd.csd  
_tx:56  
csd.csd  
_tx_n:5  
6
lpcom  
p.dsi_  
comp  
0:0  
scb[4]  
.uart_  
rts:0  
scb[4].  
spi_cl  
k:0  
tcpwm[0].  
line_com  
pl[1]:2  
tcpwm[1]  
.line_co  
mpl[17]:0  
csd.csd  
_tx:57  
csd.csd  
_tx_n:5  
7
lpcom  
p.dsi_  
comp  
1:0  
scb[4]  
.uart_  
cts:0  
scb[4].  
spi_se  
lect0:0  
Document Number: 002-28690 Rev. *I  
Page 36 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Table 8. Multiple Alternate Functions (continued)  
Port/  
ACT ACT ACT ACT  
ACT ACT  
ACT  
#10  
ACT  
#12  
ACT  
#14  
ACT  
#15  
ACT #0 ACT #1 ACT #2 ACT #3 DS #2 DS #3  
Pin  
ACT #13  
DS #5 DS #6  
#4  
#5  
#6  
#7  
#8  
#9  
P8.4  
P8.5  
P8.6  
tcpwm[0].  
line[2]:2  
tcpwm[1]  
.line[18]:  
0
csd.csd  
_tx:58  
csd.csd  
_tx_n:5  
8
scb[1  
1].uar  
t_rx:0  
scb[11  
].i2c_s  
cl:0  
scb[4].  
spi_se  
lect1:0  
tcpwm[0].  
line_com  
pl[2]:2  
tcpwm[1]  
.line_co  
mpl[18]:0  
csd.csd  
_tx:59  
csd.csd  
_tx_n:5  
9
scb[1  
1].uar  
t_tx:0  
scb[11  
].i2c_s  
da:0  
scb[4].  
spi_se  
lect2:0  
tcpwm[0].  
line[3]:2  
tcpwm[1]  
.line[19]:  
0
csd.csd  
_tx:60  
csd.csd  
_tx_n:6  
0
scb[1  
1].uar  
t_rts:  
0
scb[4].  
spi_se  
lect3:0  
P8.7  
P9.0  
P9.1  
tcpwm[0].  
line_com  
pl[3]:2  
tcpwm[1]  
.line_co  
mpl[19]:0  
csd.csd  
_tx:61  
csd.csd  
_tx_n:6  
1
scb[1  
1].uar  
t_cts:  
0
scb[3].  
spi_se  
lect2:0  
tcpwm[0].  
line[4]:2  
tcpwm[1]  
.line[20]:  
0
csd.csd  
_tx:62  
csd.csd  
_tx_n:6  
2
scb[2]  
.uart_  
rx:0  
scb[2].  
i2c_scl  
:0  
scb[2].  
spi_m  
osi:0  
peri.tr  
_io_in  
put[18  
]:0  
cpuss.tr  
ace_da  
ta[3]:0  
audioss  
[0].clk_i  
2s_if:1  
tcpwm[0].  
line_com  
pl[4]:2  
tcpwm[1]  
.line_co  
mpl[20]:0  
csd.csd  
_tx:63  
csd.csd  
_tx_n:6  
3
scb[2]  
.uart_  
tx:0  
scb[2].  
i2c_sd  
a:0  
scb[2].  
spi_mi  
so:0  
peri.tr  
_io_in  
put[19  
]:0  
cpuss.tr  
ace_da  
ta[2]:0  
audioss  
[0].tx_s  
ck:1  
P9.2  
P9.3  
P9.4  
P9.5  
P9.6  
P9.7  
P10.0  
tcpwm[0].  
line[5]:2  
tcpwm[1]  
.line[21]:  
0
csd.csd  
_tx:64  
csd.csd  
_tx_n:6  
4
scb[2]  
.uart_  
rts:0  
scb[2].  
spi_cl  
k:0  
audioss  
[0].tx_w  
s:1  
cpuss.tr  
ace_da  
ta[1]:0  
tcpwm[0].  
line_com  
pl[5]:2  
tcpwm[1]  
.line_co  
mpl[21]:0  
csd.csd  
_tx:65  
csd.csd  
_tx_n:6  
5
scb[2]  
.uart_  
cts:0  
scb[2].  
spi_se  
lect0:0  
audioss  
[0].tx_s  
do:1  
cpuss.tr  
ace_da  
ta[0]:0  
tcpwm[0].  
line[7]:5  
tcpwm[1]  
.line[0]:2  
csd.csd  
_tx:66  
csd.csd  
_tx_n:6  
6
scb[2].  
spi_se  
lect1:0  
audioss  
[0].rx_s  
ck:1  
tcpwm[0].  
line_com  
pl[7]:5  
tcpwm[1]  
.line_co  
mpl[0]:2  
csd.csd  
_tx:67  
csd.csd  
_tx_n:6  
7
scb[2].  
spi_se  
lect2:0  
audioss  
[0].rx_w  
s:1  
tcpwm[0].  
line[0]:6  
tcpwm[1]  
.line[1]:2  
csd.csd  
_tx:68  
csd.csd  
_tx_n:6  
8
scb[2].  
spi_se  
lect3:0  
audioss  
[0].rx_s  
di:1  
tcpwm[0].  
line_com  
pl[0]:6  
tcpwm[1]  
.line_co  
mpl[1]:2  
csd.csd  
_tx:69  
csd.csd  
_tx_n:6  
9
tcpwm[0].  
line[6]:2  
tcpwm[1]  
.line[22]:  
0
csd.csd  
_tx:70  
csd.csd  
_tx_n:7  
0
scb[1]  
.uart_  
rx:1  
scb[1].  
i2c_scl  
:1  
scb[1].  
spi_m  
osi:1  
peri.tr  
_io_in  
put[20  
]:0  
cpuss.tr  
ace_da  
ta[3]:1  
Document Number: 002-28690 Rev. *I  
Page 37 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Table 8. Multiple Alternate Functions (continued)  
Port/  
ACT ACT ACT ACT  
ACT ACT  
ACT  
#10  
ACT  
#12  
ACT  
#14  
ACT  
#15  
ACT #0 ACT #1 ACT #2 ACT #3 DS #2 DS #3  
Pin  
ACT #13  
DS #5 DS #6  
#4  
#5  
#6  
#7  
#8  
#9  
P10.1  
tcpwm[0].  
line_com  
pl[6]:2  
tcpwm[1]  
.line_co  
mpl[22]:0  
csd.csd  
_tx:71  
csd.csd  
_tx_n:7  
1
scb[1]  
.uart_  
tx:1  
scb[1].  
i2c_sd  
a:1  
scb[1].  
spi_mi  
so:1  
peri.tr  
_io_in  
put[21  
]:0  
cpuss.tr  
ace_da  
ta[2]:1  
P10.2  
P10.3  
P10.4  
tcpwm[0].  
line[7]:2  
tcpwm[1]  
.line[23]:  
0
csd.csd  
_tx:72  
csd.csd  
_tx_n:7  
2
scb[1]  
.uart_  
rts:1  
scb[1].  
spi_cl  
k:1  
cpuss.tr  
ace_da  
ta[1]:1  
tcpwm[0].  
line_com  
pl[7]:2  
tcpwm[1]  
.line_co  
mpl[23]:0  
csd.csd  
_tx:73  
csd.csd  
_tx_n:7  
3
scb[1]  
.uart_  
cts:1  
scb[1].  
spi_se  
lect0:1  
cpuss.tr  
ace_da  
ta[0]:1  
tcpwm[0].  
line[0]:3  
tcpwm[1]  
.line[0]:1  
csd.csd  
_tx:74  
csd.csd  
_tx_n:7  
4
scb[1].  
spi_se  
lect1:1  
audios  
s[0].p  
dm_cl  
k:0  
P10.5  
tcpwm[0].  
line_com  
pl[0]:3  
tcpwm[1]  
.line_co  
mpl[0]:1  
csd.csd  
_tx:75  
csd.csd  
_tx_n:7  
5
scb[1].  
spi_se  
lect2:1  
audios  
s[0].p  
dm_d  
ata:0  
P10.6  
P10.7  
P11.0  
tcpwm[0].  
line[1]:6  
tcpwm[1]  
.line[2]:2  
csd.csd  
_tx:76  
csd.csd  
_tx_n:7  
6
scb[1].  
spi_se  
lect3:1  
tcpwm[0].  
line_com  
pl[1]:6  
tcpwm[1]  
.line_co  
mpl[2]:2  
csd.csd  
_tx:77  
csd.csd  
_tx_n:7  
7
tcpwm[0].  
line[1]:3  
tcpwm[1]  
.line[1]:1  
csd.csd  
_tx:78  
csd.csd  
_tx_n:7  
8
smif.  
spi_s  
elect  
2
scb[5]  
.uart_  
rx:1  
scb[5].  
i2c_scl  
:1  
scb[5].  
spi_m  
osi:1  
audioss  
[1].clk_i  
2s_if:1  
peri.tr  
_io_in  
put[22  
]:0  
P11.1  
P11.2  
P11.3  
P11.4  
tcpwm[0].  
line_com  
pl[1]:3  
tcpwm[1]  
.line_co  
mpl[1]:1  
csd.csd  
_tx:79  
csd.csd  
_tx_n:7  
9
smif.  
spi_s  
elect  
1
scb[5]  
.uart_  
tx:1  
scb[5].  
i2c_sd  
a:1  
scb[5].  
spi_mi  
so:1  
audioss  
[1].tx_s  
ck:1  
peri.tr  
_io_in  
put[23  
]:0  
tcpwm[0].  
line[2]:3  
tcpwm[1]  
.line[2]:1  
csd.csd  
_tx:80  
csd.csd  
_tx_n:8  
0
smif.  
spi_s  
elect  
0
scb[5]  
.uart_  
rts:1  
scb[5].  
spi_cl  
k:1  
audioss  
[1].tx_w  
s:1  
tcpwm[0].  
line_com  
pl[2]:3  
tcpwm[1]  
.line_co  
mpl[2]:1  
csd.csd  
_tx:81  
csd.csd  
_tx_n:8  
1
smif.  
spi_  
data  
3
scb[5]  
.uart_  
cts:1  
scb[5].  
spi_se  
lect0:1  
audioss  
[1].tx_s  
do:1  
peri.tr_io_  
output[0]:0  
tcpwm[0].  
line[3]:3  
tcpwm[1]  
.line[3]:1  
csd.csd  
_tx:82  
csd.csd  
_tx_n:8  
2
smif.  
spi_  
data  
2
scb[5].  
spi_se  
lect1:1  
audioss  
[1].rx_s  
ck:1  
peri.tr_io_  
output[1]:0  
Document Number: 002-28690 Rev. *I  
Page 38 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Table 8. Multiple Alternate Functions (continued)  
Port/  
ACT ACT ACT ACT  
ACT ACT  
ACT  
#10  
ACT  
#12  
ACT  
#14  
ACT  
#15  
ACT #0 ACT #1 ACT #2 ACT #3 DS #2 DS #3  
Pin  
ACT #13  
DS #5 DS #6  
#4  
#5  
#6  
#7  
#8  
#9  
P11.5  
tcpwm[0].  
line_com  
pl[3]:3  
tcpwm[1]  
.line_co  
mpl[3]:1  
csd.csd  
_tx:83  
csd.csd  
_tx_n:8  
3
smif.  
spi_  
data  
1
scb[5].  
spi_se  
lect2:1  
audioss  
[1].rx_w  
s:1  
P11.6  
csd.csd  
_tx:84  
csd.csd  
_tx_n:8  
4
smif.  
spi_  
data  
0
scb[5].  
spi_se  
lect3:1  
audioss  
[1].rx_s  
di:1  
P11.7  
P12.0  
smif.  
spi_c  
lk  
tcpwm[0].  
line[4]:3  
tcpwm[1]  
.line[4]:1  
csd.csd  
_tx:85  
csd.csd  
_tx_n:8  
5
smif.  
spi_  
data  
4
scb[6]  
.uart_  
rx:0  
scb[6].  
i2c_scl  
:0  
scb[6].  
spi_m  
osi:0  
peri.tr  
_io_in  
put[24  
]:0  
sdhc[1].  
card_e  
mmc_re  
set_n  
P12.1  
P12.2  
P12.3  
P12.4  
P12.5  
tcpwm[0].  
line_com  
pl[4]:3  
tcpwm[1]  
.line_co  
mpl[4]:1  
csd.csd  
_tx:86  
csd.csd  
_tx_n:8  
6
smif.  
spi_  
data  
5
scb[6]  
.uart_  
tx:0  
scb[6].  
i2c_sd  
a:0  
scb[6].  
spi_mi  
so:0  
peri.tr  
_io_in  
put[25  
]:0  
sdhc[1].  
card_de  
tect_n  
tcpwm[0].  
line[5]:3  
tcpwm[1]  
.line[5]:1  
csd.csd  
_tx:87  
csd.csd  
_tx_n:8  
7
smif.  
spi_  
data  
6
scb[6]  
.uart_  
rts:0  
scb[6].  
spi_cl  
k:0  
sdhc[1].  
card_m  
ech_writ  
e_prot  
tcpwm[0].  
line_com  
pl[5]:3  
tcpwm[1]  
.line_co  
mpl[5]:1  
csd.csd  
_tx:88  
csd.csd  
_tx_n:8  
8
smif.  
spi_  
data  
7
scb[6]  
.uart_  
cts:0  
scb[6].  
spi_se  
lect0:0  
sdhc[1].l  
ed_ctrl  
tcpwm[0].  
line[6]:3  
tcpwm[1]  
.line[6]:1  
csd.csd  
_tx:89  
csd.csd  
_tx_n:8  
9
smif.  
spi_s  
elect  
3
scb[6].  
spi_se  
lect1:0  
audios  
s[0].p  
dm_cl  
k:1  
sdhc[1].  
card_c  
md  
tcpwm[0].  
line_com  
pl[6]:3  
tcpwm[1]  
.line_co  
mpl[6]:1  
csd.csd  
_tx:90  
csd.csd  
_tx_n:9  
0
scb[6].  
spi_se  
lect2:0  
audios  
s[0].p  
dm_d  
ata:1  
sdhc[1].  
clk_card  
P12.6  
P12.7  
P13.0  
tcpwm[0].  
line[7]:3  
tcpwm[1]  
.line[7]:1  
csd.csd  
_tx:91  
csd.csd  
_tx_n:9  
1
scb[6].  
spi_se  
lect3:0  
sdhc[1].  
card_if_  
pwr_en  
tcpwm[0].  
line_com  
pl[7]:3  
tcpwm[1]  
.line_co  
mpl[7]:1  
csd.csd  
_tx:92  
csd.csd  
_tx_n:9  
2
sdhc[1].i  
o_volt_s  
el  
tcpwm[0].  
line[0]:4  
tcpwm[1]  
.line[8]:1  
csd.csd  
_tx:93  
csd.csd  
_tx_n:9  
3
scb[6]  
.uart_  
rx:1  
scb[6].  
i2c_scl  
:1  
scb[6].  
spi_m  
osi:1  
peri.tr  
_io_in  
put[26  
]:0  
sdhc[1].  
card_da  
t_3to0[0  
]
audioss  
[1].clk_i  
2s_if:0  
Document Number: 002-28690 Rev. *I  
Page 39 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Table 8. Multiple Alternate Functions (continued)  
Port/  
ACT ACT ACT ACT  
ACT ACT  
ACT  
#10  
ACT  
#12  
ACT  
#14  
ACT  
#15  
ACT #0 ACT #1 ACT #2 ACT #3 DS #2 DS #3  
Pin  
ACT #13  
DS #5 DS #6  
#4  
#5  
#6  
#7  
#8  
#9  
P13.1  
P13.2  
P13.3  
P13.4  
P13.5  
P13.6  
P13.7  
tcpwm[0].  
line_com  
pl[0]:4  
tcpwm[1]  
.line_co  
mpl[8]:1  
csd.csd  
_tx:94  
csd.csd  
_tx_n:9  
4
scb[6]  
.uart_  
tx:1  
scb[6].  
i2c_sd  
a:1  
scb[6].  
spi_mi  
so:1  
peri.tr  
_io_in  
put[27  
]:0  
sdhc[1].  
card_da  
t_3to0[1  
]
audioss  
[1].tx_s  
ck:0  
tcpwm[0].  
line[1]:4  
tcpwm[1]  
.line[9]:1  
csd.csd  
_tx:95  
csd.csd  
_tx_n:9  
5
scb[6]  
.uart_  
rts:1  
scb[6].  
spi_cl  
k:1  
sdhc[1].  
card_da  
t_3to0[2  
]
audioss  
[1].tx_w  
s:0  
tcpwm[0].  
line_com  
pl[1]:4  
tcpwm[1]  
.line_co  
mpl[9]:1  
csd.csd  
_tx:96  
csd.csd  
_tx_n:9  
6
scb[6]  
.uart_  
cts:1  
scb[6].  
spi_se  
lect0:1  
sdhc[1].  
card_da  
t_3to0[3  
]
audioss  
[1].tx_s  
do:0  
tcpwm[0].  
line[2]:4  
tcpwm[1]  
.line[10]:  
1
csd.csd  
_tx:97  
csd.csd  
_tx_n:9  
7
scb[1  
2].uar  
t_rx:0  
scb[12  
].i2c_s  
cl:0  
scb[6].  
spi_se  
lect1:1  
sdhc[1].  
card_da  
t_7to4[0  
]
audioss  
[1].rx_s  
ck:0  
tcpwm[0].  
line_com  
pl[2]:4  
tcpwm[1]  
.line_co  
mpl[10]:1  
csd.csd  
_tx:98  
csd.csd  
_tx_n:9  
8
scb[1  
2].uar  
t_tx:0  
scb[12  
].i2c_s  
da:0  
scb[6].  
spi_se  
lect2:1  
sdhc[1].  
card_da  
t_7to4[1  
]
audioss  
[1].rx_w  
s:0  
tcpwm[0].  
line[3]:4  
tcpwm[1]  
.line[11]:  
1
csd.csd  
_tx:99  
csd.csd  
_tx_n:9  
9
scb[1  
2].uar  
t_rts:  
0
scb[6].  
spi_se  
lect3:1  
sdhc[1].  
card_da  
t_7to4[2  
]
audioss  
[1].rx_s  
di:0  
tcpwm[0].  
line_com  
pl[3]:4  
tcpwm[1]  
.line_co  
mpl[11]:1  
csd.csd  
_tx:100  
csd.csd  
_tx_n:1  
00  
scb[1  
2].uar  
t_cts:  
0
sdhc[1].  
card_da  
t_7to4[3  
]
Document Number: 002-28690 Rev. *I  
Page 40 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Analog and Smart I/O alternate port pin functionality is provided in Table 9.  
Table 9. Port Pin Analog, Digital, and Smart I/O Functions  
Table 9. Port Pin Analog, Digital, and Smart I/O Functions  
Port/Pin  
Digital  
Port/Pin  
P0.0  
Analog  
P0.4  
pmic_wakeup_in  
hibernate_wakeup[1]  
hibernate_wakeup[0]  
pmic_wakeup_out  
SMARTIO  
wco_in  
P0.1  
wco_out  
P1.4  
P0.5  
P5.6  
lpcomp.inp_comp0  
lpcomp.inn_comp0  
lpcomp.inp_comp1  
lpcomp.inn_comp1  
P5.7  
Port/Pin  
P6.2  
P8.0  
P8.1  
P8.2  
P8.3  
P8.4  
P8.5  
P8.6  
P8.7  
P9.0  
P9.1  
P9.2  
P9.3  
P9.4  
P9.5  
P9.6  
P9.7  
smartio[8].io[0]  
smartio[8].io[1]  
smartio[8].io[2]  
smartio[8].io[3]  
smartio[8].io[4]  
smartio[8].io[5]  
smartio[8].io[6]  
smartio[8].io[7]  
smartio[9].io[0]  
smartio[9].io[1]  
smartio[9].io[2]  
smartio[9].io[3]  
smartio[9].io[4]  
smartio[9].io[5]  
smartio[9].io[6]  
smartio[9].io[7]  
P6.3  
P6.6  
P6.7  
swd_data  
swd_clk  
P7.2  
P7.3  
P7.7  
csd.csh_tank  
csd.vref_ext  
csd.shield  
P9.7  
aref_ext_vref  
sarmux_pads[0]  
sarmux_pads[1]  
sarmux_pads[2]  
sarmux_pads[3]  
sarmux_pads[4]  
sarmux_pads[5]  
sarmux_pads[6]  
sarmux_pads[7]  
eco_in  
P10.0  
P10.1  
P10.2  
P10.3  
P10.4  
P10.5  
P10.6  
P10.7  
P12.6  
P12.7  
eco_out  
Document Number: 002-28690 Rev. *I  
Page 41 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Power Supply Considerations  
The following power system diagrams show typical connections for power pins for all supported packages and with and without usage  
of the buck regulator.  
In these diagrams, the package pin is shown with the pin name, for example "VDDA, A12". For VDDx pins, the I/O port that is powered  
by that pin is also shown, for example "VDDD, A1; I/O port P1".  
Figure 14. 124-BGA Power Connection Diagram124-BGA Power Connection Diagram  
1.7 to 3.6 V  
CYS0644xxxI-S2D4x, 124-BGA package  
1 KΩ at  
100 MHz  
1 KΩ at  
100 MHz  
VDDD, A1; I/O port P1  
VDD_NS, J1  
VIND1, J2  
VCCD, A2  
10 µF  
1 µF  
1 µF  
1 µF  
1 µF  
1 µF  
10 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
10 µF  
VBACKUP, D1; I/O port P0  
2.2 µH  
VDDIO0, C4; I/O ports P11, P12, P13  
VDDIO1, K12; I/O ports P5, P6, P7, P8  
VDDIO2, L4; I/O ports P2, P3, P4  
VDDUSB, M1; I/O port P14  
4.7 µF  
1 KΩ at  
100 MHz  
VDDA, A12  
VDDIOA, A13; I/O ports P9, P10  
B12, C3, D4, D10, K4, K10  
VSS  
Document Number: 002-28690 Rev. *I  
Page 42 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Figure 15. 124-BGA (No Buck) Power Connection Diagram  
1.7 to 3.6 V  
CYS0644xxxI-S2D4x, 124-BGA package  
1 KΩ at  
100 MHz  
VDDD, A1; I/O port P1  
VDD_NS, J1  
10 µF  
1 µF  
1 µF  
1 µF  
1 µF  
1 µF  
10 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
VBACKUP, D1; I/O port P0  
VIND1, J2  
VCCD, A2  
VDDIO0, C4; I/O ports P11, P12, P13  
VDDIO1, K12; I/O ports P5, P6, P7, P8  
VDDIO2, L4; I/O ports P2, P3, P4  
VDDUSB, M1; I/O port P14  
4.7 µF  
1 KΩ at  
100 MHz  
VDDA, A12  
VDDIOA, A13; I/O ports P9, P10  
B12, C3, D4, D10, K4, K10  
VSS  
Document Number: 002-28690 Rev. *I  
Page 43 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Figure 16. 100-WLCSP Power Connection Diagram  
1.7 to 3.6 V  
CYS0644xxxI-S2D4x, 100-WLCSP package  
1 KΩ at  
100 MHz  
1 KΩ at  
100 MHz  
VDDD, D14; I/O port P1  
VDD_NS, J15  
VIND1, H16  
VCCD, C15  
10 µF  
1 µF  
1 µF  
1 µF  
1 µF  
1 µF  
10 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
10 µF  
VBACKUP, C17; I/O port P0  
2.2 µH  
VDDIO0, A11; I/O ports P11, P12, P13  
VDDIO1, K2; I/O ports P5, P6, P7, P8  
VDDIO2, M10; I/O port P2  
4.7 µF  
VDDUSB, J17; I/O port P14  
1 KΩ at  
100 MHz  
VDDA, J1; I/O ports P9, P10  
D2, E13, J13, L1  
VSS  
Document Number: 002-28690 Rev. *I  
Page 44 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Figure 17. 100-WLCSP (No Buck) Power Connection Diagram  
1.7 to 3.6 V  
CYS0644xxxI-S2D4x, 100-WLCSP package  
1 KΩ at  
100 MHz  
VDDD, D14; I/O port P1  
VDD_NS, J15  
10 µF  
1 µF  
1 µF  
1 µF  
1 µF  
1 µF  
10 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
V
V
V
V
BACKUP, C17; I/O port P0  
V
IND1, H16  
DDIO0, A11; I/O ports P11, P12, P13  
DDIO1, K2; I/O ports P5, P6, P7, P8  
DDIO2, M10; I/O port P2  
V
CCD, C15  
4.7 µF  
VDDUSB, J17; I/O port P14  
VDDA, J1; I/O ports P9, P10  
1 KΩ at  
100 MHz  
D2, E13, J13, L1  
VSS  
There are as many as eight VDDx supply pins, depending on the  
package, and multiple VSS ground pins. The power pins are:  
as 1.4 V, for battery or supercapacitor backup, as Figure 18  
shows, otherwise it is connected to VDDD. It powers I/O port 0.  
VDDD: the main digital supply. It powers the low dropout (LDO)  
regulators and I/O port 1  
Figure 18. Separate Battery Connection to VBACKUP  
1.7 to 3.6 V  
VCCD: the main LDO output. It requires a 4.7-µF capacitor for  
regulation. The LDO can be turned off when VCCD is driven  
from the switching regulator (see below). For more information,  
see the power system block diagram in the device technical  
reference manual (TRM).  
VDDD  
10 µF  
1 µF  
0.1 µF  
0.1 µF  
VDDA: the supply for the analog peripherals. Voltage must be  
applied to this pin for correct device initialization and boot up.  
VBACKUP  
VDDIOA: the supply for I/O ports 9 and 10. It must be connected  
1.4 to 3.6 V  
to VDDA  
.
VDDIO0: the supply for I/O ports 11, 12, and 13.  
VDDIO1: the supply for I/O ports 5, 6, 7, and 8.  
VDDIO2: the supply for I/O ports 2, 3, and 4.  
VDDUSB: the supply for the USB peripheral and the USBDPand  
USBDM pins. It must be 2.85 V to 3.6 V for USB operation. If  
USB is not used, it can be 1.7 V to 3.6 V, and the USB pins can  
be used as limited-capability GPIOs on I/O port 14.  
VBACKUP: the supply for the backupdomain, which includes the  
32-kHz WCO and the RTC. It can be a separate supply as low  
Document Number: 002-28690 Rev. *I  
Page 45 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Table 10 shows a summary of the I/O port supplies:  
No external load should be placed on VCCD, or VIND1, whether  
or not these pins are used.  
Table 10. I/O Port Supplies  
There are no power pin sequencing requirements; power  
supplies may be brought up in any order. The power  
management system holds the device in reset until all power pins  
are at the voltage levels required for proper operation.  
Port  
0
Supply  
VBACKUP  
VDDD  
Alternate Supply  
VDDD  
1
-
Note: If a battery is installed on the PCB first, VDDD must be  
cycled for at least 50 µs. This prevents premature drain of the  
battery during product manufacture and storage.  
2, 3, 4  
5, 6, 7, 8  
9, 10  
11, 12, 13  
14  
VDDIO2  
VDDIO1  
VDDIOA  
VDDIO0  
VDDUSB  
-
-
VDDA  
Bypass capacitors must be connected to a common ground from  
the VDDx and other pins, as indicated in the diagrams. Typical  
practice for systems in this frequency range is to use a 10-µF or  
1-µF capacitor in parallel with a smaller capacitor (0.1 µF, for  
example). Note that these are simply rules of thumb and that, for  
critical applications, the PCB layout, lead inductance, and  
bypass capacitor parasitic should be simulated for optimal  
bypassing.  
-
-
Note: If the USB pins are not used, connect VDDUSB to ground  
and leave the P14.0/USBDP and P14.1/USBDM pins unconnect-  
ed.  
All capacitors and inductors should be ±20% or better. The  
recommended inductor value is 2.2 µH ±20% (for example, TDK  
MLP2012H2R2MT0S1).  
Voltage must be applied to the VDDD pin, and the VDDA pin as  
noted above, for correct device initialization and operation. If an  
I/O port is not being used, applying voltage to the corresponding  
V
DDx pin is optional.  
It is good practice to check the datasheets for your bypass  
capacitors, specifically the working voltage and the DC bias  
specifications. With some capacitors, the actual capacitance can  
decrease considerably when the applied voltage is a significant  
percentage of the rated working voltage.  
VSS: ground pins for the above supplies.All ground pins should  
be connected together to a common ground.  
In addition to the LDO regulator, a switching regulator is  
included. The regulator pins are:  
For more information on pad layout, refer to PSoC 6 CAD  
libraries.  
VDD_NS: the regulator supply.  
VIND1: the regulator output. It is typically used to drive VCCD  
through an inductor.  
The VDD power pins are not connected on chip. They can be  
connected off chip, in one or more separate nets. If separate  
power nets are used, they can be isolated from noise from the  
other nets using optional ferrite beads, as indicated in the  
diagrams.  
Document Number: 002-28690 Rev. *I  
Page 46 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Electrical Specifications  
All specifications are valid for –40 °C ≤ TA ≤ 85 °C and for 1.71 V to 3.6 V except where noted.  
Note: These are preliminary and subject to change.  
Absolute Maximum Ratings  
Table 11. Absolute Maximum Ratings[4]  
Spec ID#  
SID1  
Parameter  
Description  
Min  
Typ  
Max Units  
Details / Conditions  
Analog or digital supply relative to VSS  
VDD_ABS  
–0.5  
4
V
V
V
(VSSD = VSSA  
)
Direct digital core voltage input relative to  
VSSD  
SID2  
SID3  
VCCD_ABS  
–0.5  
–0.5  
1.2  
VDD  
0.5  
+
VGPIO_ABS  
IGPIO_ABS  
GPIO voltage; VDDD or VDDA  
Current per GPIO  
SID4  
SID5  
–25  
25  
mA  
mA  
IGPIO_injection GPIO injection current per pin  
–0.5  
0.5  
Electrostatic discharge Human Body  
SID3A  
ESD_HBM  
Model  
2200  
V
Electrostatic discharge Charged Device  
SID4A  
SID5A  
ESD_CDM  
Model  
500  
V
LU  
Pin current for latchup-free operation  
–100  
100  
mA  
Device-Level Specifications  
Table 14 provides detailed specifications of CPU current. Table 12 summarizes these specifications, for rapid review of CPU currents  
under common conditions. Note that the max frequency for CM4 is 150 MHz, and for CM0+ is 100 MHz. IMO and FLL are used to  
generate the CPU clocks; FLL is not used when the CPU clock frequency is 8 MHz.  
Table 12. CPU Current Specifications Summary  
Condition  
Range  
Typ Range  
Max Range  
LP Mode, V  
= 3.3 V, V  
= 1.1 V, with buck regulator  
DDD  
CCD  
CM4 active, CM0+ sleep  
CM0+ active, CM4 sleep  
CM4 sleep, CM0+ sleep  
CM0+ sleep, CM4 off  
0.9–7.35 mA  
0.8–4.4 mA  
0.7–1.55 mA  
0.7–1.3 mA  
0.64–0.85 mA  
2–9.5 mA  
2–5.8 mA  
1.3–2.2 mA  
1.3–2 mA  
1.2–1.5 mA  
Across CPUs clock ranges: 8 – 150/100 MHz;  
Dhrystone with flash cache enabled  
Minimum regulator current mode  
ULP Mode, V = 3.3 V, V  
Across CM4/CM0+ CPU active/sleep modes  
= 0.9 V, with buck regulator  
CCD  
DDD  
CM4 active, CM0+ sleep  
CM0+ active, CM4 sleep  
CM4 sleep, CM0+ sleep  
CM0+ sleep, CM4 off  
0.65–1.85 mA  
0.55–1 mA  
1.2–2.5 mA  
0.95–1.5 mA  
0.9–1.2 mA  
0.72–1.2 mA  
1–1 mA  
-
Across CPUs clock ranges: 8–50/25 MHz; Dhrystone  
with flash cache enabled  
0.45–0.85 mA  
0.41–0.62 mA  
0.4–0.55 mA  
7–9 µA  
Minimum regulator current mode  
Deep Sleep  
Across CM4/CM0+ CPU active/sleep modes  
Across SRAM retention  
Hibernate  
Across V  
300–2100 nA  
-
DDD  
Note  
4. Usage above the absolute maximum conditions listed in Table 11 may cause permanent damage to the device. Exposure to absolute maximum conditions for extended  
periods of time may affect device reliability. The maximum storage temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature  
Storage Life. When used below absolute maximum conditions but above normal operating conditions, the device may not operate to specification.  
Document Number: 002-28690 Rev. *I  
Page 47 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Figure 19. Typical Device Currents vs. CPU Frequency; System Low Power (LP) Mode  
8
7
6
5
4
3
2
1
0
CM4 Active, CM0+ Sleep 1/2 CM4  
CM4 Active, CM0+ Sleep same as CM4  
CM0+ Active, CM4 Sleep  
0
25  
50  
75  
100  
125  
150  
CPU Clock, MHz  
Power Supplies  
Table 13. Power Supply DC Specifications  
Spec ID# Parameter Description  
SID6 VDDD  
Min  
Typ  
Max  
Units  
Details / Conditions  
Internal regulator and Port 1 GPIO supply 1.7  
3.6  
V
Analog power supply voltage. Shorted to  
VDDIOA on PCB.  
Internally unregulated  
supply  
SID7  
VDDA  
1.7  
3.6  
V
Must be VDDA if the  
CapSense (CSD) block is  
used in the application  
SID7A  
VDDIO1  
GPIO supply for ports 5 to 8 when present 1.7  
3.6  
V
GPIO supply for ports 11 to 13 when  
present  
SID7B  
SID7C  
VDDIO0  
VDDIO2  
VDDIOA  
1.7  
3.6  
3.6  
V
V
GPIO supply for ports 2 to 4 when present 1.7  
GPIO supply for ports 9 and 10 when  
present. Must be connected to VDDA on  
PCB.  
SID7D  
SID7F  
1.7  
3.6  
3.6  
V
V
Supply for port 14 (USB or GPIO) when  
present  
Min supply is 2.85 V for  
USB  
VDDUSB  
VBACKUP  
VCCD1  
1.7  
Backup power and GPIO Port 0 supply  
when present  
Min is 1.4 V when VDDD is  
removed  
SID6B  
SID8  
1.7  
3.6  
V
V
Output voltage (for core logic bypass)  
1.1  
0.9  
System LP mode  
ULP mode. Valid for –20 to  
85 °C.  
SID9  
VCCD2  
Output voltage (for core logic bypass)  
X5R ceramic or better.  
Value for 0.8 to 1.2 V.  
SID10  
SID11  
CEFC  
CEXC  
External regulator voltage (VCCD) bypass 3.8  
Power supply decoupling capacitor  
4.7  
10  
5.6  
µF  
µF X5R ceramic or better  
Document Number: 002-28690 Rev. *I  
Page 48 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
CPU Current and Transition Times  
Table 14. CPU Current and Transition Times  
Spec ID# Parameter  
Description  
Min  
Typ  
Max Units  
Details / Conditions  
LP RANGE POWER SPECIFICATIONS (for VCCD = 1.1 V with Buck and LDO)  
Cortex-M4. Active Mode  
Execute with Cache Disabled (Flash)  
VDDD=3.3V, BuckON, Max  
at 60 °C  
2.85  
4.5  
Execute from Flash; CM4 Active 50 MHz,  
CM0+ Sleep 25 MHz. With IMO & FLL.  
While(1).  
VDDD=1.8V, BuckON, Max  
at 60 °C  
SIDF1  
SIDF2  
IDD1  
IDD2  
4.1  
6.8  
0.9  
1.2  
2.4  
5.1  
10  
mA  
mA  
VDDD = 1.8 to 3.3 V, LDO,  
max at 60 °C  
VDDD=3.3V, BuckON, Max  
at 60 °C  
2.1  
2.2  
5.5  
Execute from Flash; CM4 Active 8 MHz,  
CM0+ Sleep 8 MHz.With IMO. While(1).  
VDDD=1.8V, BuckON, Max  
at 60 °C  
VDDD = 1.8 to 3.3 V, LDO,  
max at 60 °C  
Execute with Cache Enabled  
VDDD=3.3V, BuckON, Max  
at 60 °C  
7.35  
12  
9.5  
14.5  
21  
Execute from Cache;CM4Active150 MHz,  
CM0+ Sleep 75 MHz. IMO & PLL.  
Dhrystone.  
VDDD=1.8V, BuckON, Max  
at 60 °C  
SIDC1  
SIDC2  
SIDC3  
SIDC4  
IDD3  
IDD4  
IDD5  
IDD6  
mA  
mA  
mA  
mA  
VDDD = 1.8 to 3.3 V, LDO,  
max at 60 °C  
18  
VDDD=3.3V, BuckON, Max  
at 60 °C  
5.4  
6.8  
10  
Execute from Cache;CM4Active100 MHz,  
CM0+ Sleep 100 MHz. IMO & FLL.  
Dhrystone.  
VDDD=1.8V, BuckON, Max  
at 60 °C  
8.95  
13.8  
2.65  
4.25  
6.8  
VDDD = 1.8 to 3.3 V, LDO,  
max at 60 °C  
17  
VDDD=3.3V, BuckON, Max  
at 60 °C  
3.8  
5.3  
10  
Execute from Cache;CM4 Active 50 MHz,  
CM0+ Sleep 25 MHz. IMO & FLL.  
Dhrystone.  
VDDD=1.8V, BuckON, Max  
at 60 °C  
VDDD = 1.8 to 3.3 V, LDO,  
max at 60 °C  
VDDD=3.3V, BuckON, Max  
at 60 °C  
0.9  
2
Execute from Cache;CM4 Active 8 MHz,  
CM0+ Sleep 8 MHz. IMO. Dhrystone.  
VDDD=1.8V, BuckON, Max  
at 60 °C  
1.27  
2.3  
2.1  
5.5  
VDDD = 1.8 to 3.3 V, LDO,  
max at 60 °C  
Document Number: 002-28690 Rev. *I  
Page 49 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Table 14. CPU Current and Transition Times (continued)  
Spec ID# Parameter  
Description  
Min  
Typ  
Max Units  
Details / Conditions  
Cortex M0+. Active Mode  
Execute with Cache Disabled (Flash)  
VDDD=3.3V, BuckON, Max  
at 60 °C  
2.6  
3.9  
6.5  
0.8  
1.1  
2.2  
4
Execute from Flash;CM4Off, CM0+Active  
50 MHz. With IMO & FLL. While (1).  
VDDD=1.8V, BuckON, Max  
at 60 °C  
SIDF3  
SIDF4  
IDD7  
IDD8  
5
mA  
mA  
VDDD = 1.8 to 3.3 V, LDO,  
max at 60 °C  
10  
1.5  
2
VDDD=3.3V, BuckON, Max  
at 60 °C  
Execute from Flash;CM4Off, CM0+Active  
8 MHz. With IMO. While (1).  
VDDD=1.8V, BuckON, Max  
at 60 °C  
VDDD = 1.8 to 3.3 V, LDO,  
max at 60 °C  
5.5  
Execute with Cache Enabled  
VDDD=3.3V, BuckON, Max  
at 60 °C  
4.40  
7.35  
11.5  
0.8  
5.8  
8.5  
14.5  
2
Execute from Cache;CM4 Off, CM0+  
Active 100 MHz. With IMO & FLL.  
Dhrystone.  
VDDD=1.8V, BuckON, Max  
at 60 °C  
SIDC5  
SIDC6  
IDD9  
mA  
mA  
VDDD = 1.8 to 3.3 V, LDO,  
max at 60 °C  
VDDD=3.3V, BuckON, Max  
at 60 °C  
Execute from Cache;CM4 Off, CM0+  
Active 8 MHz. With IMO. Dhrystone.  
VDDD=1.8V, BuckON, Max  
at 60 °C  
IDD10  
1.2  
2
VDDD = 1.8 to 3.3 V, LDO,  
max at 60 °C  
2.2  
5.5  
Cortex M4. Sleep Mode  
VDDD=3.3V, BuckON, Max  
at 60 °C  
1.55  
2.4  
2.2  
3.5  
7.2  
2
CM4 Sleep 100 MHz, CM0+ Sleep 25  
MHz. With IMO & FLL.  
VDDD=1.8V, BuckON, Max  
at 60 °C  
SIDS1  
SIDS2  
SIDS3  
IDD11  
IDD12  
IDD13  
mA  
mA  
mA  
VDDD = 1.8 to 3.3 V, LDO,  
max at 60 °C  
4.2  
VDDD=3.3V, BuckON, Max  
at 60 °C  
1.2  
CM4 Sleep 50 MHz, CM0+ Sleep 25 MHz.  
With IMO & FLL.  
VDDD=1.8V, BuckON, Max  
at 60 °C  
1.75  
3.2  
2.7  
6.3  
1.3  
1.8  
5
VDDD = 1.8 to 3.3 V, LDO,  
max at 60 °C  
VDDD=3.3V, BuckON, Max  
at 60 °C  
0.7  
CM4 Sleep 8 MHz, CM0+ Sleep 8 MHz.  
With IMO.  
VDDD=1.8V, BuckON, Max  
at 60 °C  
0.96  
1.7  
VDDD = 1.8 to 3.3 V, LDO,  
max at 60 °C  
Document Number: 002-28690 Rev. *I  
Page 50 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Table 14. CPU Current and Transition Times (continued)  
Spec ID# Parameter  
Description  
Min  
Typ  
Max Units  
Details / Conditions  
Cortex M0+. Sleep Mode  
VDDD=3.3V, BuckON, Max  
at 60 °C  
1.3  
2.05  
3.6  
2
CM4 Off, CM0+ Sleep 50 MHz. With IMO  
& FLL.  
VDDD=1.8V, BuckON, Max  
at 60 °C  
SIDS4  
SIDS5  
IDD14  
IDD15  
3
mA  
mA  
VDDD = 1.8 to 3.3 V, LDO,  
max at 60 °C  
6.8  
1.3  
1.5  
5
VDDD=3.3V, BuckON, Max  
at 60 °C  
0.7  
VDDD=1.8V, BuckON, Max  
at 60 °C  
CM4 Off, CM0+ Sleep 8 MHz. With IMO.  
0.95  
1.7  
VDDD = 1.8 to 3.3 V, LDO,  
max at 60 °C  
Cortex M4. Minimum Regulator Current Mode  
VDDD=3.3V, BuckON, Max  
at 60 °C  
0.85  
1.18  
2.2  
1.8  
2
Execute from Flash; CM4 Active 8 MHz,  
CM0+ Sleep 8 MHz. With IMO. While (1).  
VDDD=1.8V, BuckON, Max  
at 60 °C  
SIDLPA1  
SIDLPA2  
IDD16  
IDD17  
mA  
mA  
VDDD = 1.8 to 3.3 V, LDO,  
max at 60 °C  
5.5  
1.5  
2
VDDD=3.3V, BuckON, Max  
at 60 °C  
0.9  
Execute from Cache; CM4 Active 8 MHz,  
CM0+ Sleep 8 MHz. With IMO. Dhrystone.  
VDDD=1.8V, BuckON, Max  
at 60 °C  
1.27  
2.2  
VDDD = 1.8 to 3.3 V, LDO,  
max at 60 °C  
5.5  
Cortex M0+. Minimum Regulator Current Mode  
VDDD=3.3V, BuckON, Max  
at 60 °C  
0.8  
1.14  
2.1  
1.5  
2
Execute from Flash; CM4 Off, CM0+  
Active 8 MHz. With IMO. While (1).  
VDDD=1.8V, BuckON, Max  
at 60 °C  
SIDLPA3  
SIDLPA4  
IDD18  
IDD19  
mA  
mA  
VDDD = 1.8 to 3.3 V, LDO,  
max at 60 °C  
5.5  
1.5  
2
VDDD = 3.3 V, Buck ON,  
Max at 60 °C  
0.8  
Execute from Cache; CM4 Off, CM0+  
Active 8 MHz. With IMO. Dhrystone.  
VDDD=1.8V, BuckON, Max  
at 60 °C  
1.15  
2.1  
VDDD = 1.8 to 3.3 V, LDO,  
max at 60 °C  
5.5  
Cortex M4. Minimum Regulator Current Mode  
VDDD=3.3V, BuckON, Max  
at 60 °C  
0.65  
0.95  
1.6  
1.2  
1.7  
5
CM4 Sleep 8 MHz, CM0+ Sleep 8 MHz.  
With IMO.  
VDDD=1.8V, BuckON, Max  
at 60 °C  
SIDLPS1  
IDD20  
mA  
VDDD = 1.8 to 3.3 V, LDO,  
max at 60 °C  
Document Number: 002-28690 Rev. *I  
Page 51 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Table 14. CPU Current and Transition Times (continued)  
Spec ID# Parameter Description  
Cortex M0+. Minimum Regulator Current Mode  
Min  
Typ  
Max Units  
Details / Conditions  
VDDD=3.3V, BuckON, Max  
at 60 °C  
0.64  
0.93  
1.6  
1.2  
VDDD=1.8V, BuckON, Max  
at 60 °C  
SIDLPS3  
IDD22  
CM4 Off, CM0+ Sleep 8 MHz. With IMO.  
1.7  
5
mA  
VDDD = 1.8 to 3.3 V, LDO,  
max at 60 °C  
ULP Range Power Specifications (for VCCD = 0.9 V using the Buck). ULP mode is valid from –20 to +85 °C.  
Cortex M4. Active Mode  
Execute with Cache Disabled (Flash)  
VDDD=3.3V, BuckON, Max  
at 60 °C  
2.15  
2.85  
0.65  
0.8  
2.9  
3.4  
1.2  
1.4  
Execute from Flash; CM4 Active 50 MHz,  
CM0+ Sleep 25 MHz. With IMO & FLL.  
While(1).  
SIDF5  
SIDF6  
IDD3  
IDD4  
mA  
mA  
VDDD=1.8V, BuckON, Max  
at 60 °C  
VDDD=3.3V, BuckON, Max  
at 60 °C  
Execute from Flash; CM4 Active 8 MHz,  
CM0+ Sleep 8 MHz. With IMO. While (1).  
VDDD=1.8V, BuckON, Max  
at 60 °C  
Execute with Cache Enabled  
Execute from Cache; CM4Active 50 MHz,  
VDDD=3.3V, BuckON, Max  
at 60 °C  
1.85  
2.9  
2.5  
3.5  
1.2  
1.3  
SIDC8  
IDD10  
CM0+ Sleep 25 MHz. With IMO & FLL.  
Dhrystone.  
mA  
mA  
VDDD=1.8V, BuckON, Max  
at 60 °C  
VDDD=3.3V, BuckON, Max  
at 60 °C  
0.65  
0.8  
Execute from Cache; CM4 Active 8 MHz,  
CM0+ Sleep 8 MHz. With IMO. Dhrystone.  
SIDC9  
IDD11  
VDDD=1.8V, BuckON, Max  
at 60 °C  
Cortex M0+. Active Mode  
Execute with Cache Disabled (Flash)  
VDDD=3.3V, BuckON, Max  
at 60 °C  
1.1  
1.5  
2.2  
1.2  
1.4  
Execute from Flash; CM4 Off, CM0+  
Active 25 MHz. With IMO & FLL. Write(1).  
SIDF7  
SIDF8  
IDD16  
IDD17  
mA  
mA  
VDDD=1.8V, BuckON, Max  
at 60 °C  
1.55  
0.55  
0.73  
VDDD=3.3V, BuckON, Max  
at 60 °C  
Execute from Flash; CM4 Off, CM0+  
Active 8 MHz. With IMO. While(1).  
VDDD=1.8V, BuckON, Max  
at 60 °C  
Execute with Cache Enabled  
Execute from Cache; CM4 Off, CM0+  
VDDD = 3.3 V, Buck ON,  
Max at 60 °C  
1
1.5  
2
SIDC10  
IDD18  
Active 25 MHz. With IMO & FLL.  
Dhrystone.  
mA  
VDDD = 1.8 V, Buck ON,  
Max at 60 °C  
1.5  
Document Number: 002-28690 Rev. *I  
Page 52 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Table 14. CPU Current and Transition Times (continued)  
Spec ID# Parameter  
Description  
Min  
Typ  
Max Units  
Details / Conditions  
VDDD = 3.3 V, Buck ON,  
Max at 60 °C  
0.55  
0.95  
mA  
1.3  
Execute from Cache; CM4 Off, CM0+  
Active 8 MHz. With IMO. Dhrystone.  
SIDC11  
IDD19  
VDDD = 1.8 V, Buck ON,  
Max at 60 °C  
0.73  
Cortex M4. Sleep Mode  
CM4 Sleep 50 MHz, CM0+ Sleep 25 MHz.  
With IMO & FLL.  
VDDD = 3.3 V, Buck ON,  
Max at 60 °C  
0.85  
1.2  
1.2  
mA  
1.8  
SIDS7  
SIDS8  
IDD21  
IDD22  
VDDD = 1.8 V, Buck ON,  
Max at 60 °C  
VDDD = 3.3 V, Buck ON,  
Max at 60 °C  
0.45  
0.59  
0.9  
mA  
1
CM4 Sleep 8 MHz, CM0+ Sleep 8 MHz.  
With IMO.  
VDDD = 1.8 V, Buck ON,  
Max at 60 °C  
Cortex M0+. Sleep Mode  
VDDD = 3.3 V, Buck ON,  
Max at 60 °C  
0.62  
0.88  
0.41  
0.58  
1.2  
mA  
1.5  
CM4 Off, CM0+ Sleep 25 MHz. With IMO  
& FLL.  
SIDS9  
IDD23  
IDD24  
VDDD = 1.8 V, Buck ON,  
Max at 60 °C  
VDDD = 3.3 V, Buck ON,  
Max at 60 °C  
0.72  
mA  
1.3  
SIDS10  
CM4 Off, CM0+ Sleep 8 MHz. With IMO.  
VDDD = 1.8 V, Buck ON,  
Max at 60 °C  
Cortex M4. Minimum Regulator Current Mode °  
VDDD = 3.3 V, Buck ON,  
Max at 60 °C  
0.65  
0.8  
1.2  
mA  
1.4  
Execute from Flash. CM4 Active 8 MHz,  
CM0+ Sleep 8 MHz. With IMO. While(1).  
SIDLPA5  
SIDLPA6  
IDD25  
IDD26  
VDDD = 1.8 V, Buck ON,  
Max at 60 °C  
VDDD = 3.3 V, Buck ON,  
Max at 60 °C  
0.6  
1
Execute from Cache. CM4 Active 8 MHz,  
CM0+ Sleep 8 MHz. With IMO. Dhrystone.  
mA  
1.4  
VDDD = 1.8 V, Buck ON,  
Max at 60 °C  
0.78  
Cortex M0+. Minimum Regulator Current Mode  
VDDD=3.3V, BuckON, Max  
at 60 °C  
0.55  
0.75  
0.5  
1
Execute from Flash. CM4 Off, CM0+  
Active 8 MHz. With IMO. While (1).  
SIDLPA7  
SIDLPA8  
IDD27  
IDD28  
mA  
1.4  
VDDD=1.8V, BuckON, Max  
at 60 °C  
VDDD=3.3V, BuckON, Max  
at 60 °C  
1
Execute from Cache. CM4 Off, CM0+  
Active 8 MHz. With IMO. Dhrystone.  
mA  
1.4  
VDDD=1.8V, BuckON, Max  
at 60 °C  
0.7  
Document Number: 002-28690 Rev. *I  
Page 53 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Table 14. CPU Current and Transition Times (continued)  
Spec ID# Parameter Description  
Cortex M4. Minimum Regulator Current Mode  
Min  
Typ  
Max Units  
Details / Conditions  
VDDD=3.3V, BuckON, Max  
at 60 °C  
0.45  
0.57  
1
CM4 Sleep 8 MHz, CM0 Sleep 8 MHz.  
With IMO.  
SIDLPS5  
IDD29  
mA  
1.1  
VDDD=1.8V, BuckON, Max  
at 60 °C  
Cortex M0+. Minimum Regulator Current Mode  
VDDD=3.3V, BuckON, Max  
at 60 °C  
0.4  
1
SIDLPS7  
IDD31  
CM4 Off, CM0+ Sleep 8 MHz. With IMO.  
mA  
1.1  
VDDD=1.8V, BuckON, Max  
at 60 °C  
0.56  
Deep Sleep Mode  
SIDDS2 IDD33B  
Hibernate Mode  
With internal Buck enabled and 256-KB  
SRAM retention.  
20  
µA  
SIDHIB1  
SIDHIB2  
IDD34  
IDD34A  
VDDD = 1.8 V  
VDDD = 3.3 V  
300  
nA No clocks running  
nA No clocks running  
2100  
Power Mode Transition Times  
Minimum Regulator Current to LP  
transition time.  
SID12  
TLPACT_ACT  
35  
µs  
Including PLL lock time  
SID13  
SID14  
TDS_LPACT Deep Sleep to LP transition time  
THIB_ACT Hibernate to LP transition time  
21  
µs  
µs  
Guaranteed by design  
Including PLL lock time  
1000  
XRES  
Table 15. XRES DC Specifications  
Spec ID#  
SID17  
Parameter  
TXRES_IDD  
TXRES_IDD_1  
VIH  
Description  
IDD when XRES asserted  
IDD when XRES asserted  
Input voltage HIGH threshold  
Input voltage LOW threshold  
Input capacitance  
Min  
Typ  
300  
2100  
Max  
Units  
Details / Conditions  
500  
nA VDDD = 1.8 V  
nA VDDD = 3.3 V  
SID17A  
SID77  
10500  
0.7 * VDD  
V
V
CMOS input  
SID78  
VIL  
0.3 * VDD  
CMOS input  
SID80  
CIN  
3
pF  
mV  
µA  
SID81  
VHYSXRES  
Input voltage hysteresis  
100  
Current through protection diode to  
VDD/VSS  
100  
SID82  
IDIODE  
Document Number: 002-28690 Rev. *I  
Page 54 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Table 16. XRES AC Specifications  
Spec ID#  
SID15  
Parameter  
TXRES_ACT  
TXRES_PW  
Description  
Min  
Typ  
Max  
Units  
Details / Conditions  
POR or XRES release to Active  
transition time  
1000  
µs Normal mode, 50-MHz  
CM0+.  
SID16  
XRES pulse width  
5
µs  
GPIO  
Table 17. GPIO DC Specifications  
Spec ID# Parameter  
SID57 VIH  
Description  
Min  
Typ  
Max  
Units  
V
Details / Conditions  
Input voltage HIGH threshold  
0.7 * VDD  
CMOS Input  
Per I2C Spec  
Input current when Pad > VDDIO  
for OVT inputs  
10  
µA  
SID57A  
IIHS  
SID58  
VIL  
Input voltage LOW threshold  
LVTTL input, VDD < 2.7 V  
LVTTL input, VDD < 2.7 V  
LVTTL input, VDD ≥ 2.7 V  
LVTTL input, VDD ≥ 2.7 V  
Output voltage HIGH level  
Output voltage LOW level  
Pull-up resistor  
0.3 * VDD  
V
V
CMOS Input  
SID241  
SID242  
SID243  
SID244  
SID59  
VIH  
0.7 * VDD  
VIL  
0.3 * VDD  
V
VIH  
2.0  
V
VIL  
0.8  
V
VOH  
VDD – 0.5  
V
IOH = 8 mA  
SID62A  
SID63  
VOL  
0.4  
8.5  
8.5  
2
V
IOL = 8 mA  
RPULLUP  
RPULLDOWN  
3.5  
3.5  
5.6  
5.6  
kΩ  
kΩ  
nA  
SID64  
Pull-down resistor  
Input leakage current (absolute  
value)  
SID65  
SID66  
SID67  
SID68  
SID69  
IIL  
25 °C, VDD = 3.0 V  
CIN  
Input capacitance  
0
5
pF  
Input hysteresis LVTTL VDD  
2.7 V  
>
100  
mV  
VHYSTTL  
VHYSCMOS  
IDIODE  
Input hysteresis CMOS  
0.05 * VDD  
mV  
Current through protection diode  
to VDD/VSS  
100  
µA  
Maximum total source or sink  
chip current  
200  
mA  
SID69A  
ITOT_GPIO  
Table 18. GPIO AC Specifications  
Spec ID# Parameter  
Description  
Min  
Typ  
Max  
Units  
Details / Conditions  
Rise time in Fast Strong Mode.  
2.5  
ns Cload = 15 pF, 8-mA drive  
strength  
SID70  
TRISEF  
10% to 90% of VDD  
Fall time in Fast Strong Mode.  
10% to 90% of VDD  
Rise time in Slow Strong Mode.  
10% to 90% of VDD  
.
2.5  
142  
102  
ns Cload = 15 pF, 8-mA drive  
strength  
SID71  
SID72  
TFALLF  
.
52  
48  
ns Cload = 15 pF, 8-mA drive  
TRISES_1  
.
strength, VDD 2.7 V  
ns Cload = 15 pF, 8-mA drive  
Rise time in Slow Strong Mode.  
10% to 90% of VDD  
SID72A  
TRISES_2  
strength, 2.7 V < VDD  
3.6 V  
.
Document Number: 002-28690 Rev. *I  
Page 55 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Table 18. GPIO AC Specifications (continued)  
Spec ID#  
SID73  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details / Conditions  
Fall time in Slow Strong Mode.  
44  
211  
ns Cload = 15 pF, 8-mA drive  
TFALLS_1  
10% to 90% of VDD  
.
strength, VDD 2.7 V  
42  
93  
ns Cload = 15 pF, 8-mA drive  
Fall time in Slow Strong Mode.  
10% to 90% of VDD  
SID73A  
TFALLS_2  
strength, 2.7 V < VDD  
3.6 V  
.
Fall time (30% to 70% of VDD) in 20 *VDDIO  
/
250  
100  
1.5  
ns Cload = 10 pF to 400 pF,  
8-mA drive strength  
SID73G  
SID74  
TFALL_I2C  
FGPIOUT1  
FGPIOUT2  
FGPIOUT3  
FGPIOUT4  
FGPIOIN  
5.5  
Slow Strong mode.  
MHz 90/10%,15-pFload,60/40  
duty cycle  
GPIO Fout. Fast Strong mode.  
MHz 90/10%,15-pFload,60/40  
duty cycle  
SID75  
GPIO Fout; Slow Strong mode.  
GPIO Fout; Fast Strong mode.  
GPIO Fout; Slow Strong mode.  
100  
1.3  
MHz 90/10%,25-pFload,60/40  
duty cycle  
SID76  
MHz 90/10%,25-pFload,60/40  
duty cycle  
SID245  
SID246  
GPIO input operating frequency;  
100  
MHz  
90/10% VIO  
1.71 V VDD 3.6 V  
Analog Peripherals  
Low-Power (LP) Comparator  
Table 19. LP Comparator DC Specifications  
Spec ID#  
Parameter  
Description  
Min Typ  
–10  
Max  
Units  
Details/Conditions  
Input offset voltage. Normal power  
mode.  
SID84  
V
V
V
V
V
V
V
V
10  
25  
25  
60  
80  
mV  
mV  
mV  
mV  
mV  
V
OFFSET1  
Input offset voltage. Low-power  
mode.  
SID85A  
SID85B  
SID86  
–25 ±12  
–25 ±12  
OFFSET2  
OFFSET3  
HYST1  
HYST2  
ICM1  
Input offset voltage. Ultra  
low-power mode.  
Hysteresis when enabled in  
Normal mode  
Hysteresis when enabled in  
Low-power mode  
SID86A  
SID87  
Input common mode voltage in  
Normal mode  
0
VDDIO1 – 0.1  
VDDIO1 – 0.1  
VDDIO1 – 0.1  
InputcommonmodevoltageinLow  
power mode  
SID247  
SID247A  
SID88  
0
V
ICM2  
Input common mode voltage in  
Ultra low power mode  
0
V
ICM3  
Common mode rejection ratio in  
Normal power mode  
CMRR  
50  
dB  
SID89  
I
Block current, Normal mode  
150  
10  
µA  
µA  
CMP1  
SID248  
I
Block current, Low-power mode  
CMP2  
Block current in Ultra low-power  
mode  
SID259  
SID90  
I
0.3  
0.85  
µA  
CMP3  
ZCMP  
DC input impedance of comparator 35  
MΩ  
Document Number: 002-28690 Rev. *I  
Page 56 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Table 20. LP Comparator AC Specifications  
Spec ID#  
Parameter  
Description  
Min Typ  
Max  
Units  
Details/Conditions  
Response time, Normal mode, 100  
mV overdrive  
SID91  
T
T
T
100  
ns  
RESP1  
Response time, Low power mode,  
100 mV overdrive  
SID258  
SID92  
1000  
20  
ns  
µs  
RESP2  
RESP3  
Response time, Ultra-low power  
mode, 100 mV overdrive  
SID92E  
SID92F  
T_CMP_EN1  
T_CMP_EN2  
Time from Enabling to operation  
Time from Enabling to operation  
10  
50  
µs Normal and low-power modes  
µs Ultra-low-power mode  
Temperature Sensor  
Table 21. Temperature Sensor Specifications  
Spec ID  
SID93  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details/Conditions  
T
Temperature sensor accuracy  
–5  
±1  
5
°C –40 to +85 °C  
SENSACC  
Internal Reference  
Table 22. Internal Reference Specification  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details/Conditions  
SID93R  
V
1.188  
1.2  
1.212  
V
REFBG  
SAR ADC  
Table 23. 12-bit SAR ADC DC Specifications  
Spec ID  
SID94  
SID95  
SID96  
SID97  
SID98  
SID99  
Parameter  
Description  
SAR ADC resolution  
Min  
Typ  
Max Units  
Details/Conditions  
A_RES  
12  
16  
8
bits  
A_CHNLS_S Number of channels - single-ended  
8 full speed.  
A-CHNKS_D  
A-MONO  
Number of channels - differential  
Monotonicity  
Diff inputs use neighboring I/Os  
Yes.  
-
A_GAINERR  
A_OFFSET  
Gain error  
±0.2  
2
%
With external reference.  
Input offset voltage  
mV Measured with 1-V reference  
At 1 Msps. External reference  
mode  
1.05  
mA  
SID100  
A_ISAR_1  
Current consumption at 1 Msps  
Current consumption at 1 Msps  
Current consumption at 2 Msps  
SID100A A_ISAR_2  
1.3  
mA At 1 Msps. Internal reference mode  
At 2 Msps. External reference  
mode  
1.65  
mA  
SID1002  
A_ISAR_3  
SID1003  
SID101  
SID102  
SID103  
SID104  
A_ISAR_4  
A_VINS  
Current consumption at 2 Msps  
Input voltage range - single-ended  
Input voltage range - differential  
Input resistance  
VSS  
VSS  
1
5
2.15  
VDDA  
VDDA  
mA At 2 Msps. Internal reference mode  
V
V
A_VIND  
A_INRES  
A_INCAP  
KΩ  
pF  
Input capacitance  
Document Number: 002-28690 Rev. *I  
Page 57 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Table 24. 12-bit SAR ADC AC Specifications  
Spec ID  
SID106  
Parameter  
A_PSRR  
Description  
Min  
70  
Typ  
Max Units  
Details/Conditions  
Power supply rejection ratio  
dB  
dB Measured at 1 V  
SID107  
A_CMRR  
Common mode rejection ratio  
Sample rate with external reference  
With bypass cap  
66  
SID1081  
SID1082  
A_SAMP_1  
A_SAMP_1  
2
1
Msps  
Msps  
Msps  
Msps  
Msps  
ksps  
V
V
V
V
2.7–3.6  
1.7–3.6  
2.7–3.6  
1.7–3.6  
DDA  
DDA  
DDA  
DDA  
Sample rate with external reference  
With bypass cap  
Sample rate with V reference;  
DD  
SID108A1 A_SAMP_2  
SID108A2 A_SAMP_2  
SID108B A_SAMP_3  
SID108C A_SAMP_4  
2
No Bypass Cap  
Sample rate with V Reference;  
DD  
1
No Bypass Cap  
Sample rate with internal reference;  
With Bypass Cap.  
1
Sample rate with internal reference.  
No Bypass Cap  
200  
Signal-to-noise and distortion ratio  
(SINAD).  
SID109  
A_SINAD  
A_INL  
64  
–2  
dB Fin = 10 kHz  
Integral non-linearity.  
Up to 1 Msps  
SID111A  
2
LSB All reference modes  
External reference or V  
DDA  
Reference Mode, V  
≥ 2 V.  
SID111B  
A_INL  
Integral non-linearity. 2 Msps.  
–2.5  
–1  
2.5  
1.5  
LSB  
REF  
V
= 2.7 V to 3.6 V  
DDA  
SID112A A_DNL  
SID112B A_DNL  
Differential non-linearity. Up to 1 Msps  
LSB All reference modes  
External reference or V  
DDA  
≥ 2 V.  
Differential non-linearity. 2 Msps.  
Total harmonic distortion. 1 Msps.  
–1  
1.6  
-65  
LSB Reference Mode, V  
REF  
V
= 2.7 to 3.6V  
DDA  
SID113  
A_THD  
dB  
F
= 10 kHz. V  
= 2.7–3.6 V  
IN  
DDA  
CSD  
Table 25. CapSense Sigma-Delta (CSD) Specifications  
Spec ID#  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details / Conditions  
CSD V2 Specifications  
Max allowed ripple on power supply,  
DC to 10 MHz  
V
> 2 V (with ripple), 25 °C  
DDA  
SYS.PER#3  
V
±50  
mV  
DD_RIPPLE  
T , sensitivity = 0.1 pF  
A
V
> 1.75 V (with ripple),  
DDA  
25 °C T ,  
Max allowed ripple on power supply,  
DC to 10 MHz  
A
SYS.PER#16  
V
I
±25  
mV  
DD_RIPPLE_1.8  
Parasitic capacitance (C ) <  
20 pF, Sensitivity ≥ 0.4 pF  
P
SID.CSD.BLK  
SID.CSD#15  
Maximum block current  
4500  
µA  
V
CSD  
VDDA  
0.6  
Voltage reference for CSD and  
Comparator  
V
0.6  
1.2  
V
V
– V  
– V  
≥ 0.6 V  
≥ 0.6 V  
REF  
DDA  
REF  
REF  
External Voltage reference for CSD  
and Comparator  
VDDA  
0.6  
SID.CSD#15A  
V
I
0.6  
V
REF_EXT  
DDA  
SID.CSD#16  
SID.CSD#17  
SID308  
IDAC1 (7-bits) block current  
IDAC2 (7-bits) block current  
Voltage range of operation  
1900  
1900  
3.6  
µA  
µA  
V
DAC1IDD  
DAC2IDD  
I
V
1.7  
1.71–3.6 V  
CSD  
Document Number: 002-28690 Rev. *I  
Page 58 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Table 25. CapSense Sigma-Delta (CSD) Specifications (continued)  
Spec ID#  
SID308A  
Parameter  
Description  
Min  
0.6  
–1  
Typ  
Max  
Units  
V
Details / Conditions  
– V ≥ 0.6 V  
VDDA  
0.6  
V
I
Voltage compliance range of IDAC  
V
COMPIDAC  
DDA  
REF  
SID309  
SID310  
SID311  
SID312  
DNL  
INL  
1
3
1
3
LSB  
LSB  
LSB  
LSB  
DAC1DNL  
DAC1INL  
DAC2DNL  
DAC2INL  
If V  
< 2 V then for LSB of  
DDA  
I
I
I
–3  
2.4 µA or less  
DNL  
INL  
–1  
If V  
< 2 V then for LSB of  
DDA  
–3  
2.4 µA or less  
SNRC of the following is Ratio of counts of finger to noise. Measured typical devices at room temperature using Dual IDAC + PRS  
Clock Mode. Best performance is when using the PASS reference and the PLL.  
SRSS Reference. IMO + FLL Clock  
Source. 0.1-pF sensitivity.  
SID313_1A  
SID313_1B  
SID313_1C  
SID313_2A  
SID313_2B  
SID313_2C  
SID313_3A  
SID313_3B  
SID313_3C  
SID314  
SNRC_1  
SNRC_2  
SNRC_3  
SNRC_4  
SNRC_5  
SNRC_6  
SNRC_7  
SNRC_8  
SNRC_9  
IDAC  
5
5
Ratio 9.5-pF max. capacitance  
Ratio 31-pF max. capacitance  
Ratio 61-pF max. capacitance  
Ratio 12-pF max. capacitance  
Ratio 47-pF max. capacitance  
Ratio 86-pF max. capacitance  
Ratio 25-pF max. capacitance  
Ratio 86-pF max. capacitance  
Ratio 168-pF Max. capacitance  
µA LSB = 37.5-nA typ.  
SRSS Reference. IMO + FLL Clock  
Source. 0.3-pF sensitivity.  
SRSS Reference. IMO + FLL Clock  
Source. 0.6-pF sensitivity.  
5
PASS Reference. IMO + FLL Clock  
Source. 0.1-pF sensitivity.  
5
PASS Reference. IMO + FLL Clock  
Source. 0.3-pF sensitivity.  
5
PASS Reference. IMO + FLL Clock  
Source. 0.6-pF sensitivity.  
5
PASS Reference. IMO + PLL Clock  
Source. 0.1-pF sensitivity.  
5
PASS Reference. IMO + PLL Clock  
Source. 0.3-pF sensitivity.  
5
PASS Reference. IMO + PLL Clock  
Source. 0.6-pF sensitivity.  
5
Output current of IDAC1 (7 bits) in  
low range  
4.2  
33.7  
270  
8
5.7  
45.6  
365  
11.4  
91  
730  
5.7  
45.6  
365  
1CRT1  
Output current of IDAC1 (7 bits) in  
medium range  
SID314A  
IDAC  
IDAC  
IDAC  
IDAC  
IDAC  
IDAC  
IDAC  
IDAC  
µA LSB = 300-nA typ.  
1CRT2  
1CRT3  
1CRT12  
1CRT22  
1CRT32  
2CRT1  
2CRT2  
2CRT3  
Output current of IDAC1 (7 bits) in  
high range  
SID314B  
µA LSB = 2.4-µA typ.  
Output current of IDAC1 (7 bits) in  
low range, 2X mode  
LSB = 37.5-nA typ. 2X output  
stage  
SID314C  
µA  
Output current of IDAC1 (7 bits) in  
medium range, 2X mode  
LSB = 300-nA typ. 2X output  
stage  
SID314D  
67  
540  
4.2  
33.7  
270  
µA  
Output current of IDAC1 (7 bits) in  
LSB = 2.4-µA typ. 2X output  
stage  
SID314E  
µA  
high range, 2X mode. V  
> 2 V  
DDA  
Output current of IDAC2 (7 bits) in  
low range  
SID315  
µA LSB = 37.5-nA typ.  
µA LSB = 300-nA typ.  
µA LSB = 2.4-µA typ.  
Output current of IDAC2 (7 bits) in  
medium range  
SID315A  
Output current of IDAC2 (7 bits) in  
high range  
SID315B  
Document Number: 002-28690 Rev. *I  
Page 59 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Table 25. CapSense Sigma-Delta (CSD) Specifications (continued)  
Spec ID#  
SID315C  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details / Conditions  
Output current of IDAC2 (7 bits) in  
low range, 2X mode  
LSB = 37.5-nA typ. 2X output  
stage  
IDAC  
8
11.4  
µA  
2CRT12  
2CRT22  
2CRT32  
3CRT13  
3CRT23  
3CRT33  
Output current of IDAC2 (7 bits) in  
medium range, 2X mode  
LSB = 300-nA typ. 2X output  
stage  
SID315D  
SID315E  
SID315F  
SID315G  
SID315H  
IDAC  
IDAC  
IDAC  
IDAC  
IDAC  
67  
540  
8
91  
730  
11.4  
91  
µA  
µA  
Output current of IDAC2 (7 bits) in  
LSB = 2.4-µA typ. 2X output  
stage  
high range, 2X mode. V  
> 2V  
DDA  
Output current of IDAC in 8-bit mode  
in low range  
µA LSB = 37.5-nA typ.  
µA LSB = 300-nA typ.  
Output current of IDAC in 8-bit mode  
in medium range  
67  
Output current of IDAC in 8-bit mode  
540  
730  
µA LSB = 2.4-µA typ.  
in high range. V  
> 2V  
DDA  
SID320  
SID321  
IDAC  
IDAC  
IDAC  
All zeroes input  
1
LSB Polarity set by source or sink  
OFFSET  
GAIN  
Full-scale error less offset  
±15  
%
LSB = 2.4-µA typ.  
Mismatch between IDAC1 and  
IDAC2 in Low mode  
MIS-  
SID322  
9.2  
6
LSB LSB = 37.5-nA typ.  
LSB LSB = 300-nA typ.  
LSB LSB = 2.4-µA typ.  
MATCH1  
IDAC  
Mismatch between IDAC1 and  
IDAC2 in Medium mode  
MIS-  
MATCH2  
SID322A  
SID322B  
SID323  
IDAC  
Mismatch between IDAC1 and  
IDAC2 in High mode  
MIS-  
5.8  
10  
MATCH3  
Settling time to 0.5 LSB for 8-bit  
IDAC  
Full-scale transition. No  
external load.  
IDAC  
µs  
SET8  
Settling time to 0.5 LSB for 7-bit  
IDAC  
Full-scale transition. No  
external load.  
SID324  
SID325  
IDAC  
10  
µs  
SET7  
CMOD  
External modulator capacitor.  
2.2  
nF 5-V rating, X7R or NP0 cap.  
Table 26. CSD ADC Specifications  
Spec ID# Parameter  
CSDv2 ADC Specifications  
Description  
Min Typ Max Units  
Details / Conditions  
Auto-zeroing is required every milli-  
second  
SIDA94  
A_RES  
Resolution  
10  
bits  
SID95  
A_CHNLS_S  
A-MONO  
Number of channels - single ended  
Monotonicity  
16  
SIDA97  
Yes  
V
mode  
REF  
Reference source: SRSS  
(V  
(V  
= 1.20 V, V  
= 1.6 V, 2.2 V < V  
< 2.2 V),  
DDA  
REF  
SIDA98  
A_GAINERR_VREF Gain error  
0.6  
0.2  
%
%
<
REF  
DDA  
2.7 V), (V  
2.7 V)  
= 2.13 V, V  
>
REF  
DDA  
Reference source: SRSS  
(V  
(V  
=1.20 V, V  
=1.6 V,  
< 2.2V),  
DDA  
REF  
SIDA98A A_GAINERR_VDDA Gain error  
REF  
2.2 V < V  
< 2.7 V),  
DDA  
(V  
= 2.13 V, V  
> 2.7 V)  
REF  
DDA  
Document Number: 002-28690 Rev. *I  
Page 60 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Table 26. CSD ADC Specifications (continued)  
Spec ID#  
Parameter  
Description  
Min Typ Max Units  
Details / Conditions  
After ADC calibration, Ref. Src =  
SRSS, (V  
2.2 V),  
= 1.20 V, V  
<
REF  
DDA  
SIDA99  
A_OFFSET_VREF  
Input offset voltage  
0.5  
0.5  
LSB  
LSB  
(V  
= 1.6 V, 2.2 V < V  
<
DDA  
REF  
2.7 V), (V  
2.7 V)  
= 2.13 V, V  
>
REF  
DDA  
After ADC calibration, Ref. Src =  
SRSS, (V  
2.2 V),  
= 1.20 V, V  
<
REF  
DDA  
SIDA99A A_OFFSET_VDDA  
Input offset voltage  
(V  
= 1.6 V, 2.2 V < V  
<
DDA  
REF  
2.7 V),  
(V = 2.13 V, V  
> 2.7 V)  
DDA  
REF  
SIDA100 A_ISAR_VREF  
SIDA100A A_ISAR_VDDA  
Current consumption  
Current consumption  
0.3  
0.3  
mA CSD ADC Block current  
mA CSD ADC Block current  
(V  
(V  
2.7 V),  
= 1.20 V, V  
< 2.2 V),  
DDA  
REF  
= 1.6 V, 2.2 V < V  
<
REF  
DDA  
SIDA101 A_VINS_VREF  
SIDA101A A_VINS_VDDA  
Input voltage range - single ended  
Input voltage range - single ended  
VSSA  
VREF  
V
V
(V  
= 2.13 V, V  
> 2.7 V)  
< 2.2 V),  
REF  
DDA  
DDA  
(V  
(V  
= 1.20 V, V  
REF  
= 1.6 V, 2.2 V < V  
<
DDA  
RE F  
VSSA  
VDDA  
2.7 V),  
(V  
= 2.13 V, V  
> 2.7 V)  
DDA  
REF  
SIDA103 A_INRES  
SIDA104 A_INCAP  
SIDA106 A_PSRR  
Input charging resistance  
Input capacitance  
15  
41  
60  
kΩ  
pF  
dB  
Power supply rejection ratio (DC)  
Measured with 50-Ω source  
impedance. 10 µs is default  
software driver acquisition time  
setting. Settling to within 0.05%.  
SIDA107 A_TACQ  
Sample acquisition time  
10  
µs  
Conversion time for 8-bit resolution at  
conversion rate = Fhclk / (2"(N + 2)).  
Clock frequency = 50 MHz.  
SIDA108 A_CONV8  
SIDA108A A_CONV10  
25  
60  
µs Does not include acquisition time.  
µs Does not include acquisition time.  
Conversion time for 10-bit resolution at  
conversion rate = Fhclk / (2"(N + 2)).  
Clock frequency = 50 MHz.  
Signal-to-noise and Distortion ratio  
(SINAD)  
Measured with 50-Ω source  
impedance  
SIDA109 A_SND_VRE  
SIDA109A A_SND_VDDA  
57  
52  
2
2
1
1
dB  
Signal-to-noise and Distortion ratio  
(SINAD)  
Measured with 50-Ω source  
impedance  
dB  
Measured with 50-Ω source  
impedance  
SIDA111  
SIDA111A A_INL_VDDA  
SIDA112 A_DNL_VREF  
SIDA112A A_DNL_VDDA  
A_INL_VREF  
Integral non-linearity. 11.6 ksps  
Integral non-linearity. 11.6 ksps  
Differential non-linearity. 11.6 ksps  
Differential non-linearity. 11.6 ksps  
LSB  
Measured with 50-Ω source  
impedance  
LSB  
Measured with 50-Ω source  
impedance  
LSB  
Measured with 50-Ω source  
impedance  
LSB  
Document Number: 002-28690 Rev. *I  
Page 61 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Digital Peripherals  
Timer/Counter/PWM  
Table 27. Timer/Counter/PWM (TCPWM) Specifications  
Spec ID#  
SID.TCPWM.1  
SID.TCPWM.2  
SID.TCPWM.2A  
Parameter  
Description  
Min Typ Max Units  
Details/Conditions  
I
I
I
Block current consumption at 8 MHz  
Block current consumption at 24 MHz  
Block current consumption at 50 MHz  
70  
µA All modes (TCPWM)  
µA All modes (TCPWM)  
µA All modes (TCPWM)  
TCPWM1  
TCPWM2  
TCPWM3  
180  
270  
SID.TCPWM.2B  
SID.TCPWM.3  
I
Block current consumption at 100 MHz  
Operating frequency  
540  
µA All modes (TCPWM)  
TCPWM4  
TCPWM  
100 MHz Maximum = 100 MHz  
FREQ  
Trigger events can be Stop,  
Start, Reload, Count, Capture,  
or Kill depending on which  
mode of operation is selected.  
Fc is counter operating  
frequency.  
Input trigger pulse width for all trigger  
events  
SID.TCPWM.4  
SID.TCPWM.5  
TPWM  
2/Fc  
ns  
ENEXT  
Minimum possible width of  
Overflow, Underflow, and CC  
ns (Counter equals Compare  
value) trigger outputs. Fc is  
counter operating frequency.  
TPWM  
Output trigger pulse widths  
1.5/Fc  
EXT  
Minimum time between  
ns successive counts. Fc is  
counter operating frequency.  
SID.TCPWM.5A TC  
Resolution of counter  
PWM resolution  
1/Fc  
1/Fc  
RES  
Minimum pulse width of PWM  
ns output. Fc is counter operating  
frequency.  
SID.TCPWM.5B PWM  
RES  
Minimum pulse width between  
Quadrature phase inputs.  
ns Delays from pins should be  
similar. Fc is counter operating  
frequency.  
SID.TCPWM.5C  
Q
Quadrature inputs resolution  
2/Fc  
RES  
Serial Communication Block (SCB)  
Table 28. Serial Communication Block (SCB) Specifications  
Spec ID#  
Parameter  
Description  
Min Typ  
Max Units  
Details / Conditions  
2
Fixed I C DC Specifications  
SID149  
SID150  
SID151  
SID152  
I
I
I
I
Block current consumption at 100 kHz  
Block current consumption at 400 kHz  
Block current consumption at 1 Mbps  
30  
80  
µA  
µA  
µA  
I2C1  
I2C2  
I2C3  
I2C4  
180  
1.7  
2
I C enabled in Deep Sleep mode  
µA At 60 °C.  
2
Fixed I C AC Specifications  
SID153  
Fixed UART DC Specifications  
F
Bit rate  
1
Mbps –  
I2C1  
SID160  
SID161  
I
I
Block current consumption at 100 kbps  
Block current consumption at 1000 kbps  
30  
µA  
µA  
UART1  
UART2  
180  
Fixed UART AC Specifications  
SID162A  
SID162B  
F
3
8
Mbps ULP Mode  
LP Mode  
UART1  
UART2  
Bit Rate  
F
Document Number: 002-28690 Rev. *I  
Page 62 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Table 28. Serial Communication Block (SCB) Specifications (continued)  
Spec ID#  
Parameter  
Description  
Min Typ  
Max Units  
Details / Conditions  
Fixed SPI DC Specifications  
SID163  
SID164  
SID165  
SID165A  
I
I
I
I
Block current consumption at 1 Mbps  
Block current consumption at 4 Mbps  
Block current consumption at 8 Mbps  
Block current consumption at 25 Mbps  
220  
340  
360  
800  
µA  
µA  
µA  
µA  
SPI1  
SPI2  
SPI3  
SP14  
Fixed SPI AC Specifications for LP Mode (1.1 V) unless noted otherwise.  
SPIOperatingfrequencyexternallyclocked  
slave  
12-MHz max for ULP (0.9 V)  
mode  
SID166  
F
F
F
25  
MHz  
SPI  
F
max is 100 MHz in LP  
scb  
SPI operating frequency master (F  
SPI clock).  
is  
scb  
SID166B  
Fscb/4 MHz (1.1 V) mode, 25 MHz in ULP  
mode.  
SPI_EXT  
SPI_IC  
5 MHz max for ULP (0.9 V)  
mode  
SID166A  
SPI slave internally clocked  
15  
MHz  
Fixed SPI Master mode AC Specifications for LP Mode (1.1 V) unless noted otherwise.  
20-ns max for ULP (0.9 V)  
mode  
SID167  
SID168  
SID169  
T
T
T
MOSI valid after SClock driving edge  
MISO valid before SClock capturing edge  
MOSI data hold time  
5
0
12  
ns  
ns  
ns  
DMO  
Full clock, late MISO  
sampling  
DSI  
Referred to Slave capturing  
edge  
HMO  
Fixed SPI Slave mode AC Specifications for LP Mode (1.1 V) unless noted otherwise.  
SID170  
T
MOSI valid before Sclock capturing edge  
5
ns  
ns  
DMI  
MISO valid after Sclock driving edge in Ext.  
Clk. mode  
35-ns max. for ULP (0.9 V)  
mode  
SID171A  
T
20  
DSO_EXT  
TDSO_  
EXT + 3 * ns  
TSCB  
MISO valid after Sclock driving edge in  
Internally Clk. mode  
SID171  
T
T
T
is SCB clock period.  
is SCB clock period.  
DSO  
SCB  
SCB  
TDSO_E  
XT + 4 * ns  
TSCB  
MISO Valid after Sclock driving edge in  
Internally Clk. Mode with median filter  
enabled.  
SID171B  
T
T
DSO  
SID172  
Previous MISO data hold time  
5
ns  
ns  
ns  
HSO  
SID172A  
SID172B  
TSSEL  
TSSEL  
SSEL Valid to first SCK valid edge  
SSEL Hold after Last SCK valid edge  
65  
65  
SCK1  
SCK2  
Document Number: 002-28690 Rev. *I  
Page 63 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
LCD Specifications  
Table 29. LCD Direct Drive DC Specifications  
Spec ID#  
SID155  
Parameter  
Description  
Min  
Typ Max Units  
Details / Conditions  
LCD capacitance per segment/common  
driver  
C
500 5000 pF  
LCDCAP  
SID156  
SID157  
LCD  
I
Long-term segment offset  
20  
mV  
mA  
OFFSET  
PWM Mode current.  
32 × 4 segments  
50 Hz  
0.6  
LCDOP1  
LCDOP2  
3.3 V bias. 8 MHz IMO. 25 °C.  
PWM Mode current.  
32 × 4 segments  
50 Hz  
SID158  
I
0.5  
mA  
3.3 V bias. 8 MHz IMO. 25 °C.  
Table 30. LCD Direct Drive AC Specifications  
Spec ID Parameter Description  
SID159 LCD frame rate  
Min  
Typ Max Units  
50 150 Hz  
Details/Conditions  
F
10  
LCD  
Document Number: 002-28690 Rev. *I  
Page 64 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Memory  
Table 31. Flash Specifications[5]  
Spec ID  
Flash DC Specifications  
SID173A IPE  
Flash AC Specifications  
Parameter  
Description  
Min Typ Max  
Units  
Details/Conditions  
Erase and program current  
6
mA  
SID174  
SID175  
SID176  
SID178  
SID179  
SID178S  
TROWWRITE  
TROWERASE  
Row write time (erase and program)  
Row erase time  
16  
11  
5
ms  
ms  
ms  
ms  
ms  
ms  
Row = 512 bytes  
TROWPROGRAM Row program time after erase  
TBULKERASE Bulk erase time (2048 KB)  
TSECTORERASE Sector erase time (256 KB)  
11  
11  
11  
512 rows per sector  
8 rows per subsector  
TSSERIAE  
Subsector erase time  
Subsector write time; 1 erase plus 8  
program times  
SID179S  
SID180S  
TSSWRITE  
51  
ms  
Sector write time; 1 erase plus 512  
program times  
TSWRITE  
2.6 seconds –  
SID180  
SID181  
TDEVPROG  
FEND  
Total device write time  
Flash endurance  
30  
seconds –  
100K  
cycles  
Flash retention. TA 25 °C, 100K P/E  
cycles  
SID182  
FRET1  
FRET2  
FRET3  
10  
10  
20  
years  
Flash retention. TA 85 °C, 10K P/E  
cycles  
SID182A  
SID182B  
years  
years  
Flash retention. TA 55 °C, 20K P/E  
cycles  
SID256  
SID257  
TWS100  
TWS50  
Number of Wait states at 100 MHz  
Number of Wait states at 50 MHz  
3
2
LP mode. VCCD = 1.1 V  
ULP mode. VCCD = 0.9 V  
Note  
5. It can take as much as 16 milliseconds to write to flash. During this time, the device should not be reset, or flash operations will be interrupted and cannot be relied  
on to have completed. Reset sources include the XRES pin, software resets, CPU lockup states and privilege violations, improper power supply levels, and watchdogs.  
Make certain that these are not inadvertently activated.  
Document Number: 002-28690 Rev. *I  
Page 65 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
System Resources  
Table 32. System Resources  
Spec ID  
Parameter  
Description  
Min Typ Max Units  
Details/Conditions  
Power-On-Reset with Brown-out DC Specifications  
Precise POR (PPOR)  
BOD trip voltage in Active and Sleep  
modes. VDDD  
BOD reset guaranteed for  
levels below 1.54 V  
SID190  
SID192  
SID192A  
VFALLPPOR  
VFALLDPSLP  
VDDRAMP  
1.54  
1.54  
V
V
.
BOD trip voltage in Deep Sleep. VDDD  
.
Maximum power supply ramp rate (any  
supply)  
100 mV/µs Active mode  
POR with Brown-out AC Specification  
Maximum power supply ramp rate (any  
supply) in Deep Sleep  
SID194A  
VDDRAMP_DS  
10  
mV/µs BOD operation guaranteed  
Voltage Monitors DC Specifications  
SID195  
SID196  
SID197  
SID198  
SID199  
SID200  
SID201  
SID202  
SID203  
SID204  
SID205  
SID206  
SID207  
SID208  
SID209  
SID211  
VHVDI1  
VHVDI2  
VHVDI3  
VHVDI4  
VHVDI5  
VHVDI6  
VHVDI7  
VHVDI8  
VHVDI9  
VHVDI10  
VHVDI11  
VHVDI12  
VHVDI13  
VHVDI14  
VHVDI15  
LVI_IDD  
1.38 1.43 1.47  
1.57 1.63 1.68  
1.76 1.83 1.89  
1.95 2.03 2.1  
2.05 2.13 2.2  
2.15 2.23 2.3  
2.24 2.33 2.41  
2.34 2.43 2.51  
2.44 2.53 2.61  
2.53 2.63 2.72  
2.63 2.73 2.82  
2.73 2.83 2.92  
2.82 2.93 3.03  
2.92 3.03 3.13  
3.02 3.13 3.23  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
µA  
Block current  
5
15  
Voltage Monitors AC Specification  
SID212 TMONTRIP Voltage monitor trip time  
170  
ns  
Document Number: 002-28690 Rev. *I  
Page 66 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
SWD Interface  
Table 33. SWD and Trace Specifications  
Spec ID#  
Parameter  
Description  
Min  
Typ  
Max  
Units Details / Conditions  
SWD and Trace Interface  
LP Mode.  
MHz  
SID214  
F_SWDCLK2  
F_SWDCLK2L  
1.7 V V  
1.7 VV  
3.6 V  
25  
12  
DDD  
V
= 1.1 V.  
CCD  
ULP Mode.  
SID214L  
3.6 V  
MHz  
DDD  
V
= 0.9 V.  
CCD  
SID215  
SID216  
SID217  
SID217A  
T_SWDI_SETUP T = 1/f SWDCLK  
T_SWDI_HOLD T = 1/f SWDCLK  
T_SWDO_VALID T = 1/f SWDCLK  
T_SWDO_HOLD T = 1/f SWDCLK  
0.25 * T  
ns  
ns  
ns  
ns  
0.25 * T  
0.5 * T  
1
With Trace Data setup/hold times of  
2/1 ns respectively  
SID214T  
SID215T  
SID216T  
F_TRCLK_LP1  
F_TRCLK_LP2  
F_TRCLK_ULP  
50  
50  
20  
MHz LP Mode. V = 1.1 V.  
DD  
With Trace Data setup/hold times of  
3/2 ns respectively  
MHz LP Mode. V = 1.1 V.  
DD  
With Trace Data setup/hold times of  
3/2 ns respectively  
MHz ULP Mode. V = 0.9 V.  
DD  
Internal Main Oscillator  
Table 34. IMO DC Specifications  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details/Conditions  
SID218  
I
IMO operating current at 8 MHz  
9
15  
µA  
IMO1  
Table 35. IMO AC Specifications  
Spec ID  
SID223  
Parameter  
Description  
Min  
Typ  
Max  
±2  
Units  
%
Details/Conditions  
Frequency variation centered on  
8 MHz  
F
T
IMOTOL1  
JITR  
SID227  
Cycle-to-cycle and period jitter  
250  
ps  
Internal Low-Speed Oscillator  
Table 36. ILO DC Specification  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details/Conditions  
SID231  
I
ILO operating current at 32 kHz  
0.3  
0.7  
µA  
ILO2  
Table 37. ILO AC Specifications  
Spec ID  
Parameter  
Description  
ILO startup time  
Min  
Typ  
Max  
Units  
Details/Conditions  
Startup time to 95% of  
final frequency  
SID234  
T
7
µs  
STARTILO1  
SID236  
SID237  
TLIODUTY  
ILO duty cycle  
ILO frequency  
45  
50  
32  
55  
%
F
28.8  
36.1  
kHz  
Factory trimmed  
ILOTRIM1  
Document Number: 002-28690 Rev. *I  
Page 67 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Crystal Oscillator Specifications  
Table 38. ECO Specifications  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details/Conditions  
MHz ECO DC Specifications  
Max = 35 MHz,  
Typ = 16 MHz  
Block operating current with Cload up to  
18 pF  
SID316  
MHz ECO AC Specifications  
SID317 F_MHz  
I
800  
1600  
µA  
DD_MHz  
Some restrictions apply.  
Refer to the device TRM.  
Crystal frequency range  
16  
35  
MHz  
kHz ECO DC Specifications  
SID318  
I
Block operating current with 32-kHz crystal  
Equivalent series resistance  
Drive level  
0.38  
80  
1
1
µA  
kΩ  
DD_kHz  
SID321E ESR32K  
SID322E PD32K  
µW  
kHz ECO AC Specifications  
SID319  
SID320  
SID320E  
F_kHz  
32 kHz frequency  
Startup time  
32.768  
kHz  
ms  
Ton_kHz  
500  
250  
F
Frequency tolerance  
50  
ppm  
TOL32K  
External Clock Specifications  
Table 39. External Clock Specifications  
Spec ID  
SID305  
SID306  
Parameter  
Description  
Min  
0
Typ  
Max  
100  
55  
Units  
MHz  
%
Details/Conditions  
EXTCLK  
External clock input frequency  
FREQ  
DUTY  
EXTCLK  
Duty cycle; measured at V  
45  
DD/2  
PLL Specifications  
Table 40. PLL Specifications  
Spec ID Parameter  
Description  
Input frequency to PLL block  
Time to achieve PLL lock  
Output frequency from PLL block  
PLL current  
Min  
Typ  
Max  
64  
Units  
MHz  
µs  
Details/Conditions  
SID304P PLL_IN  
SID305P PLL_LOCK  
SID306P PLL_OUT  
SID307P PLL_IDD  
4
10.625  
16  
35  
150  
1.1  
MHz  
0.55  
mA Typ. at 100 MHz out.  
100 MHz output  
frequency  
SID308P PLL_JTR  
Period jitter  
150  
ps  
Table 41. Clock Source Switching Time  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Units  
periods –  
Details/Conditions  
Clock switching from clk1 to clk2 in clock  
periods; for example, from IMO (clk1) to FLL  
4 clk1 +  
3 clk2  
SID262  
TCLK  
SWITCH  
[6]  
(clk2).  
Note  
6. As an example, if the clk_path[1] source is changed from the IMO to the FLL (see Figure 3) then clk1 is the IMO and clk2 is the FLL.  
Document Number: 002-28690 Rev. *I  
Page 68 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
FLL Specifications  
Table 42. Frequency Locked Loop (FLL) Specifications  
Spec ID  
Parameter  
Description  
Input frequency range.  
Output frequency range.  
Min  
Typ  
Max  
Units  
Details / Conditions  
Lower limit allows lock to  
USB SOF signal (1 kHz).  
Upper limit is for External  
input.  
SID450  
FLL_RANGE  
0.001  
100  
MHz  
Output range of FLL  
divided-by-2 output  
SID451  
FLL_OUT_DIV2  
24.00  
100.00  
MHz  
V
= 1.1 V  
CCD  
Output frequency range.  
= 0.9 V  
Output range of FLL  
divided-by-2 output  
SID451A  
SID452  
FLL_OUT_DIV2  
FLL_DUTY_DIV2  
24.00  
47.00  
50.00  
53.00  
MHz  
%
V
CCD  
Divided-by-2 output; High or Low  
With IMO input, less than  
10 °C change in  
temperature while in Deep  
Sleep, and Fout ≥ 50 MHz.  
Time from stable input clock to 1% of  
final value on Deep Sleep wakeup  
SID454  
FLL_WAKEUP  
7.50  
µs  
50 ps at 48 MHz, 35 ps at  
100 MHz  
SID455  
SID456  
FLL_JITTER  
Period jitter (1 sigma) at 100 MHz  
CCO + Logic current  
35.00  
5.50  
ps  
FLL_CURRENT  
µA/MHz –  
USB  
Table 43. USB Specifications (USB requires LP Mode 1.1-V internal supply)  
Spec ID  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details/Conditions  
USB Block Specifications  
SID322U  
SID323U  
SID325U  
SID328  
Vusb_3.3  
Device supply for USB operation  
3.15  
2.85  
3.6  
3.6  
V
V
USB Configured  
USB Configured  
Device supply for USB operation  
(functional operation only)  
Vusb_3  
Iusb_config  
Iusb_suspend  
Block supply current in Active mode  
8
mA  
mA  
V
V
= 3.3 V  
DDD  
= 3.3 V, Device  
DDD  
Block supply current in suspend mode  
0.5  
connected  
V
= 3.3 V, Device  
DDD  
SID329  
Iusb_suspend  
Block supply current in suspend mode  
USB driver impedance  
0.3  
mA  
disconnected  
Series resistors are on  
chip  
SID330U  
USB_Drive_Res  
28  
44  
SID331U  
SID332U  
USB_Pulldown  
USB pull-down resistors in Host mode  
Idle mode range  
14.25  
900  
24.8  
kΩ  
USB_Pullup_Idle  
1575  
Bus idle  
Upstream device trans-  
mitting  
SID333U  
USB_Pullup  
Active mode  
1425  
3090  
Document Number: 002-28690 Rev. *I  
Page 69 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
QSPI  
Table 44. QSPI Specifications  
Spec ID#  
Parameter  
Description  
Min  
Typ  
Max  
Units Details / Conditions  
SMIF QSPI Specifications. All specs with 15-pF load. Measured from 50% to 50% waveform transitions.  
SID390Q  
Fsmifclock  
SMIF QSPI output clock frequency  
SMIF QSPI output clock frequency  
80  
50  
MHz LP mode (1.1 V)  
ULP mode (0.9 V).  
MHz  
SID390QU  
Fsmifclocku  
Guaranteed by Char.  
SID397Q  
SID398Q  
Idd_qspi  
Block current in LP mode (1.1 V)  
Block current in ULP mode (0.9 V)  
1900  
590  
µA  
µA  
LP mode (1.1 V)  
ULP mode (0.9 V)  
Idd_qspi_u  
Input data set-up time with respect to  
clock capturing falling edge  
Guaranteed by charac-  
terization  
SID391Q  
SID392Q  
SID393Q  
SID394Q  
SID395Q  
SID396Q  
Tsetup  
4.5  
ns  
ns  
ns  
ns  
ns  
ns  
Input data hold time with respect to clock  
capturing falling edge  
Tdatahold  
Tdataoutvalid  
Tholdtime  
Tseloutvalid  
Tselouthold  
1
Output data valid time with respect to  
clock falling edge  
7.5-ns max for ULP  
mode (0.9 V)  
3.7  
Output data hold time with respect to  
clock rising edge  
3
Output Select valid time with respect to  
clock rising edge  
15-ns max for ULP  
mode (0.9 V)  
7.5  
Output Select hold time with respect to  
clock rising edge  
Tsclk = Fsmifclk cycle  
time  
Tsclk/2  
Audio Subsystem  
Table 45. Audio Subsystem Specifications  
Spec ID#  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details / Conditions  
PDM Specifications  
PDM Active current, stereo  
operation, 1-MHz clock  
SID400P PDM_IDD1  
175  
600  
µA  
µA  
16-bit audio at 16 ksps  
24-bit audio at 48 ksps  
PDM Active current, stereo  
operation, 3-MHz clock  
SID401  
PDM_IDD2  
[6]  
[6]  
SID402  
SID403  
PDM_JITTER  
PDM_CLK  
RMS jitter in PDM clock  
PDM clock speed  
–200  
0.384  
1.024  
200  
ps  
3.072  
49.152  
MHz  
MHz  
[6]  
SID403A PDM_BLK_CLK PDM block input clock  
Data input set-up time to  
PDM_CLK edge  
[6]  
SID403B PDM_SETUP  
10  
10  
ns  
ns  
Data input hold time to PDM_CLK  
edge  
[6]  
SID403C PDM_HOLD  
[6]  
SID404  
SID405  
PDM_OUT  
PDM_WL  
Audio sample rate  
Word length  
8
48  
24  
ksps  
bits  
[6]  
[6]  
16  
Signal-to-Noise Ratio  
(A-weighted)  
PDM input, 20 Hz to 20 kHz  
BW  
SID406  
SID407  
SID408  
PDM_SNR  
PDM_DR  
100  
100  
dB  
dB  
20 Hz to 20 kHz BW, -60 dB  
FS  
[6]  
Dynamic range (A-weighted)  
DC to 0.45f, DC Blocking  
filter off.  
[6]  
[6]  
PDM_FR  
PDM_SB  
Frequency response  
Stop band  
–0.2  
0.2  
dB  
f
SID409  
0.566  
Note  
6. Guaranteed by design, not production tested.  
Document Number: 002-28690 Rev. *I  
Page 70 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Table 45. Audio Subsystem Specifications (continued)  
Spec ID#  
Parameter  
PDM_SBA  
Description  
Stop band attenuation  
Adjustable gain  
Min  
Typ  
60  
Max  
Units  
dB  
Details / Conditions  
[6]  
SID410  
[6]  
SID411  
PDM_GAIN  
PDM_ST  
–12  
10.5  
dB  
PDM to PCM, 1.5 dB/step  
Word Select (WS) cycles  
[6]  
SID412  
Startup time  
48  
I2S Specifications. The same for LP and ULP modes unless stated otherwise.  
SID415  
SID413  
I2S_IDD  
Block current  
8
400  
µA  
I2S_WORD  
Length of I2S Word  
32  
bits  
12.288-MHz bit clock with  
32-bit word  
SID414  
I2S_WS  
Word clock frequency in LP mode  
192  
48  
kHz  
Word clock frequency in ULP  
mode  
3.072-MHz bit clock with  
32-bit word  
SID414M I2S_WS_U  
kHz  
Word clock frequency in TDM  
mode for LP  
SID414A I2S_WS_TDM  
48  
kHz Eight 32-bit channels  
kHz Eight 32-bit channels  
Word clock frequency in TDM  
mode for ULP  
SID414X I2S_WS_TDM_U  
12  
I2S Slave Mode  
WS setup time to the following  
rising edge of SCK for LP mode  
SID430  
TS_WS  
5
ns  
ns  
ns  
WS setup time to the following  
rising edge of SCK for ULP mode  
SID430U TS_WS_U  
SID430A TH_WS  
11  
[7]  
TMCLK_SOC  
WS hold time to the following edge  
of SCK  
+5  
Associated clock edge  
depends on selected  
polarity  
-(TMCLK_SOC  
+25)  
Delay time of TX_SDO transition  
from edge of TX_SCK for LP mode  
TMCLK_S  
OC+25  
SID432  
TD_SDO  
ns  
ns  
ns  
ns  
Delay time of TX_SDO transition  
from edge of TX_SCK for ULP  
mode  
Associated clock edge  
depends on selected  
polarity  
-(TMCLK_SOC  
+70)  
TMCLK_S  
OC+70  
SID432U TD_SDO_U  
RX_SDI setup time to the  
following edge of RX_SCK in LP  
mode  
SID433  
TS_SDI  
5
RX_SDI setup time to the  
following edge of RX_SCK in ULP  
mode  
SID433U TS_SDI_U  
11  
TMCLK_SOC  
+
RX_SDI hold time to the rising  
edge of RX_SCK  
SID434  
SID435  
TH_SDI  
ns  
%
5
TSCKCY  
TX/RX_SCK bit clock duty cycle  
45  
55  
I2S Master Mode  
WS transition delay from falling  
edge of SCK in LP mode  
SID437  
TD_WS  
–10  
–10  
–10  
–10  
20  
40  
20  
40  
ns  
ns  
ns  
ns  
WS transition delay from falling  
edge of SCK in ULP mode  
SID437U TD_WS_U  
SDO transition delay from falling  
edge of SCK in LP mode  
SID438  
TD_SDO  
SDO transition delay from falling  
edge of SCK in ULP mode  
SID438U TD_SDO  
Note  
7. TMCLK_SOC is the internal I2S master clock period.  
Document Number: 002-28690 Rev. *I  
Page 71 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Table 45. Audio Subsystem Specifications (continued)  
Spec ID#  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details / Conditions  
Associated clock edge  
depends on selected  
polarity  
SDI setup time to the associated  
edge of SCK  
SID439  
TS_SDI  
5
ns  
T is TX/RX_SCK Bit Clock  
period. Associated clock  
edge depends on selected  
polarity.  
SDI hold time to the associated  
edge of SCK  
TMCLK_SOC  
+
SID440  
TH_SDI  
ns  
%
5
SID443  
SID445  
TSCKCY  
SCK bit clock duty cycle  
45  
55  
MCLK_SOC frequency in LP  
mode  
FMCLK_SOC  
1.024  
98.304  
MHz FMCLK_SOC = 8*Bit-clock  
MCLK_SOC frequency in ULP  
mode  
FMCLK_SOC_U = 8 *  
Bit-clock  
SID445U FMCLK_SOC_U  
1.024  
24.576  
MHz  
SID446  
SID447  
TMCLKCY  
TJITTER  
MCLK_SOC duty cycle  
MCLK_SOC input jitter  
45  
55  
%
–100  
100  
ps  
Smart I/O  
Table 46. Smart I/O Specifications  
Spec ID#  
SID420  
Parameter  
SMIO_BYP  
SMIO_LUT  
Description  
Smart I/O bypass delay  
Smart I/O LUT prop delay  
Min  
Typ  
Max  
2
Units  
ns  
Details/Conditions  
Details / Conditions  
8
SID421  
ns  
SD Host Controller and eMMC  
Table 47. SD Host Controller and eMMC Specifications  
Spec ID# Parameter Description  
Min  
Typ  
Max  
Units  
SD Host Controller and eMMC Specifications (SD Host clock (see the Clocking Diagram) must be divided by 2 or more  
when used as source in DDR modes. Specifications are Guaranteed by Design.  
SID_SD390  
SID_SD391  
SD:DS Timing  
SID_SD392  
SID_SD393  
SID_SD394  
SID_SD395  
SD_DS  
SD_TR  
I/O drive select  
4
4
3
mA  
ns  
drive_sel = '01' for all modes  
Input transition time  
0.7  
SD_CLK  
SD_CLK  
Interface clock period (LP mode)  
Interface clock period (ULP mode)  
25  
8
MHz (40-ns period)  
MHz (125-ns period)  
SD_DCMD_CL I/O loading at DATA/CMD pins  
30  
30  
pF  
pF  
SD_CLK_CL  
SD_TS_OUT  
I/O loading at CLK pins  
Output:Setup time ofCMD/DATprior  
to CLK  
SID_SD396  
SID_SD397  
SID_SD398  
SID_SD399  
SID_SD400  
5.1  
5.1  
24  
ns  
ns  
ns  
ns  
ns  
Output: Hold time of CMD/DAT after  
CLK  
SD_HLD_OUT  
SD_TS_IN  
Input: Setup time of CMD/DAT prior  
to CLK (LP mode)  
Input: Setup time of CMD/DAT prior  
to CLK (ULP mode)  
SD_TS_IN  
109  
2.1  
Input: Hold time of CMD/DAT after  
CLK  
SD_HLD_IN  
SD:HS Timing  
SID_SD401  
SID_SD402  
SD_CLK  
SD_CLK  
Interface clock period (LP mode)  
Interface clock period (ULP mode)  
45  
16  
MHz (20-ns period)  
MHz (62.5-ns period)  
Document Number: 002-28690 Rev. *I  
Page 72 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Table 47. SD Host Controller and eMMC Specifications (continued)  
Spec ID#  
SID_SD403  
SID_SD404  
Parameter  
Description  
Min  
Typ  
30  
Max  
Units  
pF  
Details / Conditions  
SD_DCMD_CL I/O loading at DATA/CMD pins  
SD_CLK_CL  
SD_TS_OUT  
I/O loading at CLK pins  
30  
pF  
Output:Setup time ofCMD/DATprior  
to CLK  
SID_SD405  
SID_SD406  
SID_SD407  
SID_SD408  
SID_SD409  
6.1  
2.1  
8
ns  
ns  
ns  
ns  
ns  
Output: Hold time of CMD/DAT after  
CLK  
SD_HLD_OUT  
SD_TS_IN  
Input: Setup time of CMD/DAT prior  
to CLK (LP mode)  
Input: Setup time of CMD/DAT prior  
to CLK (ULP mode)  
SD_TS_IN  
48  
2.5  
Input: Hold time of CMD/DAT after  
CLK  
SD_HLD_IN  
SD:SDR-12 Timing  
SID_SD410  
SID_SD411  
SID_SD412  
SID_SD413  
SID_SD414  
SD_CLK  
Interface clock period (LP mode)  
Interface clock period (ULP mode)  
Duty cycle of output CLK  
25  
8
MHz (40-ns period)  
MHz (125-ns period)  
SD_CLK  
SD_CLK_DC  
30  
70  
%
pF  
pF  
SD_DCMD_CL I/O loading at DATA/CMD pins  
30  
30  
SD_CLK_CL  
SD_TS_OUT  
I/O loading at CLK pins  
Output:Setup time ofCMD/DATprior  
to CLK  
SID_SD415  
SID_SD416  
SID_SD417  
SID_SD418  
SID_SD419  
3.1  
0.9  
ns  
ns  
ns  
ns  
ns  
Output: Hold time of CMD/DAT after  
CLK  
SD_HLD_OUT  
SD_TS_IN  
Input: Setup time of CMD/DAT prior  
to CLK (LP mode)  
24  
Input: Setup time of CMD/DAT prior  
to CLK (ULP mode)  
SD_TS_IN  
109  
1.85  
Input: Hold time of CMD/DAT after  
CLK  
SD_HLD_IN  
SD:SDR-25 Timing  
SID_SD420  
SID_SD421  
SID_SD422  
SID_SD423  
SID_SD424  
SD_CLK  
Interface clock period (LP mode)  
Interface clock period (ULP mode)  
Duty cycle of output CLK  
50  
16  
70  
MHz (20-ns period)  
MHz (62.5-ns period)  
SD_CLK  
SD_CLK_DC  
30  
%
pF  
pF  
SD_DCMD_CL I/O loading at DATA/CMD pins  
30  
30  
SD_CLK_CL  
I/O loading at CLK pins  
Output:Setup time ofCMD/DATprior  
to CLK  
SID_SD425  
SID_SD426  
SID_SD427  
SID_SD428  
SID_SD429  
SD_TS_OUT  
3.1  
0.9  
5.8  
48  
ns  
ns  
ns  
ns  
ns  
Output: Hold time of CMD/DAT after  
CLK  
SD_HLD_OUT  
SD_TS_IN  
Input: Setup time of CMD/DAT prior  
to CLK (LP mode)  
Input: Setup time of CMD/DAT prior  
to CLK (ULP mode)  
SD_TS_IN  
Input: Hold time of CMD/DAT after  
CLK  
SD_HLD_IN  
1.8  
SD:SDR-50 Timing  
SID_SD430 SD_CLK  
Interface clock period (LP mode)  
80  
MHz (12.5-ns period)  
Document Number: 002-28690 Rev. *I  
Page 73 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Table 47. SD Host Controller and eMMC Specifications (continued)  
Spec ID#  
SID_SD431  
SID_SD432  
SID_SD433  
SID_SD434  
Parameter  
SD_CLK  
Description  
Min  
Typ  
Max  
32  
70  
Units  
Details / Conditions  
Interface clock period (ULP mode)  
Duty cycle of output CLK  
MHz (31.25-ns period)  
SD_CLK_DC  
30  
%
pF  
pF  
SD_DCMD_CL I/O loading at DATA/CMD pins  
20  
20  
SD_CLK_CL  
SD_TS_OUT  
I/O loading at CLK pins  
Output:Setup time ofCMD/DATprior  
to CLK  
SID_SD435  
SID_SD436  
SID_SD437  
SID_SD438  
SID_SD439  
3.1  
0.9  
5
ns  
ns  
ns  
ns  
ns  
Output: Hold time of CMD/DAT after  
CLK  
SD_HLD_OUT  
SD_TS_IN  
Input: Setup time of CMD/DAT prior  
to CLK (LP mode)  
Input: Setup time of CMD/DAT prior  
to CLK (ULP mode)  
SD_TS_IN  
23  
1.8  
Input: Hold time of CMD/DAT after  
CLK  
SD_HLD_IN  
SD:DDR-50 Timing  
SID_SD440  
SID_SD441  
SID_SD442  
SID_SD443  
SID_SD444  
SD_CLK  
Interface clock period (LP mode)  
Interface clock period (ULP mode)  
Duty cycle of output CLK  
40  
16  
55  
MHz (25-ns period).  
MHz (62.5-ns period)  
SD_CLK  
SD_CLK_DC  
45  
%
pF  
pF  
SD_DCMD_CL I/O loading at DATA/CMD pins  
30  
30  
SD_CLK_CL  
SD_TS_OUT  
I/O loading at CLK pins  
Output:Setup time ofCMD/DATprior  
to CLK  
SID_SD445  
SID_SD446  
SID_SD447  
SID_SD448  
SID_SD449  
3.1  
0.9  
5.75  
24  
ns  
ns  
ns  
ns  
ns  
Output: Hold time of CMD/DAT after  
CLK  
SD_HLD_OUT  
SD_TS_IN  
Input: Setup time of CMD/DAT prior  
to CLK (LP mode)  
Input: Setup time of CMD/DAT prior  
to CLK (ULP mode)  
SD_TS_IN  
Input: Hold time of CMD/DAT after  
CLK  
SD_HLD_IN  
1.8  
eMMC:BWC Timing  
SID_SD450  
SID_SD451  
SID_SD452  
SID_SD453  
SD_CLK  
SD_CLK  
Interface clock period (LP mode)  
Interface clock period (ULP mode)  
26  
8
MHz (38.4-ns period)  
MHz (125-ns period)  
SD_DCMD_CL I/O loading at DATA/CMD pins  
30  
30  
pF  
pF  
SD_CLK_CL  
SD_TS_OUT  
I/O loading at CLK pins  
Output:Setup time ofCMD/DATprior  
to CLK  
SID_SD454  
SID_SD455  
SID_SD456  
SID_SD457  
SID_SD458  
3.1  
3.1  
9.7  
96  
ns  
ns  
ns  
ns  
ns  
Output: Hold time of CMD/DAT after  
CLK  
SD_HLD_OUT  
SD_TS_IN  
Input: Setup time of CMD/DAT prior  
to CLK (LP mode)  
Input: Setup time of CMD/DAT prior  
to CLK (ULP mode)  
SD_TS_IN  
Input: Hold time of CMD/DAT after  
CLK  
SD_HLD_IN  
8.3  
Document Number: 002-28690 Rev. *I  
Page 74 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Table 47. SD Host Controller and eMMC Specifications (continued)  
Spec ID#  
Parameter  
Description  
Min  
Typ  
Max  
Units  
Details / Conditions  
eMMC:SDR Timing  
SID_SD459  
SID_SD460  
SID_SD461  
SID_SD462  
SD_CLK  
SD_CLK  
Interface clock period (LP mode)  
Interface clock period (ULP mode)  
52  
16  
MHz (19.2-ns period)  
MHz (62.5-ns period)  
SD_DCMD_CL I/O loading at DATA/CMD pins  
30  
30  
pF  
pF  
SD_CLK_CL  
SD_TS_OUT  
I/O loading at CLK pins  
Output:Setup time ofCMD/DATprior  
to CLK  
SID_SD463  
SID_SD464  
SID_SD465  
SID_SD466  
SID_SD467  
3.1  
3.1  
5.3  
48  
ns  
ns  
ns  
ns  
ns  
Output: Hold time of CMD/DAT after  
CLK  
SD_HLD_OUT  
SD_TS_IN  
Input: Setup time of CMD/DAT prior  
to CLK (LP mode)  
Input: Setup time of CMD/DAT prior  
to CLK (ULP mode)  
SD_TS_IN  
Input: Hold time of CMD/DAT after  
CLK  
SD_HLD_IN  
2.5  
SD Host Block Current Specs  
SD Host block current consumption  
at 100 MHz  
SID_SD400SD IDD_SD_1  
4.65  
3.75  
5
mA  
mA  
SD Host block current consumption  
at 50 MHz  
SID_SD401SD IDD_SD_2  
4.3  
JTAG Boundary Scan  
Table 48. JTAG Boundary Scan  
Spec ID#  
Parameter  
Description Min Typ Max  
Units  
JTAG Boundary Scan Parameters  
JTAG Boundary Scan Parameters for 1.1 V (LP) Mode Operation:  
SID468  
SID469  
SID470  
SID471  
SID472  
TCKLOW  
TCKHIGH  
TCK_TDO  
TSU_TCK  
TCk_THD  
TCK LOW  
52  
10  
ns  
ns  
ns  
ns  
ns  
TCK HIGH  
TCK falling edge to output valid  
Input valid to TCK rising edge  
Input hold time to TCK rising edge  
40  
12  
10  
TCK falling edge to output valid  
(High-Z to Active).  
SID473  
SID474  
TCK_TDOV  
TCK_TDOZ  
40  
40  
ns  
ns  
TCK falling edge to output valid  
(Active to High-Z).  
JTAG Boundary Scan Parameters for 0.9 V (ULP) Mode Operation:  
SID468A  
SID469A  
SID470A  
SID471A  
SID472A  
TCKLOW  
TCKHIGH  
TCK_TDO  
TSU_TCK  
TCk_THD  
TCK low  
102  
20  
ns  
ns  
ns  
ns  
ns  
TCK high  
TCK falling edge to output valid  
Input valid to TCK rising edge  
Input hold time to TCK rising edge  
80  
22  
20  
TCK falling edge to output valid  
(high-Z to active).  
SID473A  
SID474A  
TCK_TDOV  
TCK_TDOZ  
80  
80  
ns  
ns  
TCK falling edge to output valid  
(active to high-Z).  
Document Number: 002-28690 Rev. *I  
Page 75 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Ordering Information  
Table 49 lists the part numbers and features of this product line. See also the product selector guide.  
Table 49. Ordering Information  
Arm CM4/CM0+,  
DC-DC converter,  
12-bit SAR ADC,  
2 LPCOMPs,  
CYS0644ABZI-S2D44  
CYS0644AFNI-S2D43T  
150/50  
150/50  
100/25  
100/25  
FLEX  
FLEX  
2048  
2048  
1024  
1024  
Y
Y
Y
Y
100 124  
BGA  
82 100 WLCSP  
64  
13 SCBs, 32  
TCPWMs, 2 I2S,  
2 PDM, 2 SD Host  
Controllers,  
USB-FS  
Document Number: 002-28690 Rev. *I  
Page 76 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
PSoC 6 MPN Decoder  
CY XX 6 A B C DD E - FF G H I JJ K L  
Field  
Description Values  
Meaning  
Cypress  
Field  
Description  
Values  
Meaning  
Consumer  
CY  
Cypress  
CY  
8C  
B0  
S0  
6
C
I
Standard  
E
Temperature Range  
Industrial  
XX  
6
Firmware  
“Secure Boot” v1  
“Standard Secure” - AWS  
PSoC 6  
Q
Extended Industrial  
Cypress internal  
Architecture  
FF  
Feature Code  
S2-S6  
0
Value  
BL  
F
Integrated Bluetooth LE  
Single Core  
Dual Core  
Feature set  
31-50  
1
Programmable  
Performance  
Connectivity  
Secured  
G
H
CPU Core  
A
B
Line  
2
D
3
Attributes Code  
0–9  
1
4
2
100 MHz  
2
51-70  
I
GPIO count  
Speed  
3
150 MHz  
3
71-90  
4
150/50 MHz  
4
91-110  
Engineering samples or  
not  
Engineering sample  
(optional)  
0-3  
Reserved  
JJ  
K
ES  
4
5
256K/128K  
512K/256K  
Base  
Die Revision  
(optional)  
A1-A9 Die revision  
Tape and Reel shipment  
Tape/ReelShipment  
(optional)  
Memory Size  
(Flash/SRAM)  
6
512K/128K  
L
T
C
7
8
9
A
1024K/288K  
1024K/512K  
Reserved  
2048K/1024K  
AZ, AX TQFP  
LQ  
BZ  
FM  
QFN  
BGA  
DD  
Package  
M-CSP  
FN, FD,  
FT  
WLCSP  
Document Number: 002-28690 Rev. *I  
Page 77 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Packaging  
This product line is offered in 124-BGA and 100-WLCSP packages.  
Table 50. Package Dimensions  
Spec ID#  
PKG_1  
Package  
Description  
124 BGA, 9 mm × 9 mm × 1 mm height with 0.65-mm pitch  
Package Dwg #  
001-97718  
124-BGA  
PKG_2  
100-WLCSP 100 WLCSP, 4.1 mm × 3.9 mm × 0.5 mm height with 0.5-mm pitch  
002-23991  
Table 51. Package Characteristics  
Parameter Description  
Conditions  
Min  
–40  
–40  
Typ  
25  
Max  
85  
100  
Units  
°C  
T
T
T
T
T
T
Operating ambient temperature  
Operating junction temperature  
A
°C  
J
Package (124-BGA)  
31.9  
11  
°C/watt  
°C/watt  
°C/watt  
°C/watt  
JA  
JC  
JA  
JC  
JA  
Package (124-BGA)  
JC  
Package (100-WLCSP)  
19.1  
0.12  
JA  
Package (100-WLCSP)  
JC  
Table 52. Solder Reflow Peak Temperature  
Package  
Maximum Peak Temperature  
Maximum Time at Peak Temperature  
All packages  
260 °C  
30 seconds  
Table 53. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2  
Package  
124-BGA  
MSL  
MSL 3  
MSL 1  
100-WLCSP  
Document Number: 002-28690 Rev. *I  
Page 78 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Figure 20. 124-BGA 9.0 × 9.0 ×1.0 mm  
001-97718 *B  
Document Number: 002-28690 Rev. *I  
Page 79 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Figure 21. 100-WLCSP 4.1068 × 3.9025 × 0.467mm  
002-23991 *A  
Document Number: 002-28690 Rev. *I  
Page 80 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Acronyms  
Acronym  
Description  
electrostatic discharge  
Acronym  
Description  
ESD  
ETM  
FIFO  
FLL  
3DES  
ADC  
triple DES (data encryption standard)  
analog-to-digital converter  
embedded trace macrocell  
first-in, first-out  
advanced DMA version 3, a Secure Digital data  
transfer mode  
ADMA3  
AES  
frequency locked loop  
FPU  
floating-point unit  
advanced encryption standard  
FS  
full-speed  
AMBA (advanced microcontroller bus architecture)  
high-performance bus, an Arm data transfer bus  
AHB  
GND  
GPIO  
HMAC  
HSIOM  
Ground  
general-purpose input/output, applies to a PSoC pin  
Hash-based message authentication code  
high-speed I/O matrix  
AMUX  
analog multiplexer  
AMUXBUS analog multiplexer bus  
API  
application programming interface  
®
I/O  
2
input/output, see also GPIO, DIO, SIO, USBIO  
Arm  
advanced RISC machine, a CPU architecture  
ball grid array  
I C, or IIC Inter-Integrated Circuit, a communications protocol  
BGA  
2
I S  
inter-IC sound  
BOD  
brown-out detect  
IC  
integrated circuit  
BREG  
BWC  
CAD  
backup registers  
IDAC  
IDE  
ILO  
current DAC, see also DAC, VDAC  
integrated development environment  
internal low-speed oscillator, see also IMO  
internal main oscillator, see also ILO  
integral nonlinearity, see also DNL  
input output subsystem  
backward compatibility (eMMC data transfer mode)  
computer aided design  
CCO  
current controlled oscillator  
a stream cipher  
IMO  
INL  
ChaCha  
CM0+  
CM4  
Cortex-M0+, an Arm CPU  
Cortex-M4, an Arm CPU  
IOSS  
IoT  
internet of things  
CMAC  
cypher-based message authentication code  
IPC  
IRQ  
ISR  
ITM  
JTAG  
LCD  
inter-processor communication  
interrupt request  
complementary metal-oxide-semiconductor, a  
process technology for IC fabrication  
CMOS  
CMRR  
CPU  
CRC  
CSD  
CSV  
common-mode rejection ratio  
central processing unit  
interrupt service routine  
instrumentation trace macrocell  
Joint Test Action Group  
cyclic redundancy check, an error-checking protocol  
CapSense Sigma-Delta  
liquid crystal display  
clock supervisor  
Local Interconnect Network, a communications  
protocol  
LIN  
Cypress mutual capacitance sensing method. See  
also CSD  
CSX  
LP  
low power  
CTI  
cross trigger interface  
LS  
low-speed  
DAC  
DAP  
DDR  
DES  
DFT  
DMA  
DNL  
DSI  
digital-to-analog converter, see also IDAC, VDAC  
debug access port  
LUT  
lookup table  
LVD  
low-voltage detect, see also LVI  
low-voltage interrupt  
low-voltage transistor-transistor logic  
multiply-accumulate  
microcontroller unit  
double data rate  
LVI  
data encryption standard  
design for test  
LVTTL  
MAC  
MCU  
MCWDT  
MISO  
MMIO  
MOSI  
MPU  
MSL  
Msps  
MTB  
MUL  
direct memory access, see also TD  
differential nonlinearity, see also INL  
digital system interconnect  
data unit  
multi-counter watchdog timer  
master-in slave-out  
memory-mapped input output  
master-out slave-in  
memory protection unit  
moisture sensitivity level  
million samples per second  
micro trace buffer  
DU  
ECC  
ECC  
ECO  
error correcting code  
elliptic curve cryptography  
external crystal oscillator  
electrically erasable programmable read-only  
memory  
EEPROM  
EMI  
electromagnetic interference  
embedded MultiMediaCard  
multiplier  
eMMC  
Document Number: 002-28690 Rev. *I  
Page 81 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Acronym  
NC  
Description  
Acronym  
Description  
silicon-oxide-nitride-oxide-silicon, a flash memory  
technology  
no connect  
SONOS  
SPI  
NMI  
nonmaskable interrupt  
Serial Peripheral Interface, a communications  
protocol  
NVIC  
NVL  
nested vectored interrupt controller  
nonvolatile latch, see also WOL  
one-time programmable  
over voltage protection  
overvoltage tolerant  
SRAM  
SROM  
SRSS  
SWD  
SWJ  
static random access memory  
supervisory read-only memory  
system resources subsystem  
serial wire debug, a test protocol  
serial wire JTAG  
OTP  
OVP  
OVT  
PASS  
PCB  
PCM  
PDM  
PHY  
PICU  
PLL  
programmable analog subsystem  
printed circuit board  
SWO  
SWV  
TCPWM  
TDM  
single wire output  
pulse code modulation  
single-wire viewer  
pulse density modulation  
physical layer  
timer, counter, pulse-width modulator  
time division multiplexed  
total harmonic distortion  
thin quad flat package  
port interrupt control unit  
phase-locked loop  
THD  
TQFP  
TRM  
PMIC  
POR  
PPU  
PRNG  
power management integrated circuit  
power-on reset  
technical reference manual  
true random number generator  
transmit  
TRNG  
TX  
peripheral protection unit  
pseudo random number generator  
Programmable System-on-Chip™  
power supply rejection ratio  
pulse-width modulator  
Universal Asynchronous Transmitter Receiver, a  
communications protocol  
®
UART  
PSoC  
PSRR  
PWM  
QD  
UDB  
ULP  
universal digital block  
ultra-low power  
quadrature decoder  
USB  
Universal Serial Bus  
watch crystal oscillator  
watchdog timer  
QSPI  
RAM  
RISC  
RMS  
ROM  
quad serial peripheral interface  
random-access memory  
reduced-instruction-set computing  
root-mean-square  
WCO  
WDT  
WIC  
wakeup interrupt controller  
wafer level chip scale package  
execute-in-place  
WLCSP  
XIP  
read-only memory  
Rivest–Shamir–Adleman, a public-key cryptography  
algorithm  
XRES  
external reset input pin  
RSA  
RTC  
real-time clock  
RWW  
RX  
read-while-write  
receive  
S/H  
sample and hold  
SAR  
successive approximation register  
SAR ADC multiplexer bus  
switched capacitor/continuous time  
serial communication block  
SARMUX  
SC/CT  
SCB  
2
SCL  
I C serial clock  
SD  
Secure Digital  
2
SDA  
I C serial data  
SDR  
Sflash  
SHA  
single data rate  
supervisory flash  
secure hash algorithm  
signal to noise and distortion ratio  
shared memory protection unit  
signal-to-noise ratio  
start of frame  
SINAD  
SMPU  
SNR  
SOF  
Document Number: 002-28690 Rev. *I  
Page 82 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Document Conventions  
Table 54. Units of Measure (continued)  
Units of Measure  
Table 54. Units of Measure  
Symbol  
µH  
Unit of Measure  
microhenry  
microsecond  
microvolt  
Symbol  
°C  
Unit of Measure  
µs  
degrees Celsius  
decibel  
µV  
µW  
mA  
ms  
mV  
nA  
ns  
dB  
microwatt  
milliampere  
millisecond  
millivolt  
fF  
femto farad  
Hz  
hertz  
KB  
1024 bytes  
kbps  
khr  
kilobits per second  
kilohour  
nanoampere  
nanosecond  
nanovolt  
kHz  
k  
kilohertz  
nV  
W
kilo ohm  
ohm  
ksps  
LSB  
Mbps  
MHz  
M  
Msps  
µA  
kilosamples per second  
least significant bit  
megabits per second  
megahertz  
pF  
picofarad  
ppm  
ps  
parts per million  
picosecond  
second  
s
mega-ohm  
sps  
sqrtHz  
V
samples per second  
square root of hertz  
volt  
megasamples per second  
microampere  
microfarad  
µF  
Document Number: 002-28690 Rev. *I  
Page 83 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Errata  
This section describes the errata for the CYS0644xxxI-S2D4x product line. Details include errata trigger conditions, scope of impact,  
available workarounds, and silicon revision applicability. Compare this document to the device's datasheet for a complete functional  
description.  
Contact your local Cypress Sales Representative if you have questions.  
Part Numbers Affected  
Part Number  
Device Characteristics  
CYS0644xxxI-S2D4x  
CYS0644xxxI-S2D4x Product Line  
Qualification Status  
Engineering Samples  
Errata Summary  
This table defines the errata applicability to available PSoC 6 CYS0644xxxI-S2D4x devices.  
PSoC  
CYS0644xxxI-S2D4x  
Items  
Silicon Revision  
Fix Status  
[1.]DMA controllers are not available  
All  
Production silicon Resolution planned by Q4 '22  
1. DMA controllers are not available  
The two 29-channel DMA controllers are not available. Register access to these controllers is not  
available. The 4-channel controller is available; there are no USB or audio connections to it.  
Problem Definition  
Parameters Affected  
Trigger Condition(s)  
Scope of Impact  
Workaround  
The two 29-channel DMA controllers  
Attempt to use either of the 29-channel DMA controllers, by accessing their registers  
CPU exceptions are generated  
Use the 4-channel controller for DMA operations  
Investigation underway. Fix planned by Q3’21.  
Fix Status  
Document Number: 002-28690 Rev. *I  
Page 84 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Revision History  
Description Title: PSoC 6 MCU: CYS0644xxxI-S2D4x Datasheet  
Document Number: 002-28690  
Submission  
Revision  
ECN  
Description of Change  
Date  
**  
6710233  
01/13/2020 New datasheet  
Updated Features.  
Updated Functional Description.  
Updated SAR ADC 1 Msps references to 2 Msps.  
Removed reference to e.MMC DDR mode  
Updated Pinouts.  
Updated Electrical Specifications.  
*A  
*B  
6854009  
6891487  
04/16/2020  
06/11/2020  
Edited SAR Specs to split VDDA dependent specs into separate specs instead of having  
qualifying comments. Also moved Supply Range specs from Description column to  
Details/Conditions column.  
Added SAR ADC 2 Msps supply current specs. Updated SAR ADC input impedance RC  
values to support 9RC 2 Msps sampling.  
Updated PSoC 6 MPN Decoder.  
Updated Development Ecosystem, GPIO, and LCD sections.  
Added External Crystal Oscillators.  
Updated Flexible Clocking Options and Block Diagram.  
Updated list of application notes and links in PSoC 6 MCU Resources.  
Updated ModusToolbox Software.  
Update amount of available SRAM in Features, Blocks and Functionality, Memory, Table 4,  
and Ordering Information.  
Updated Clocking Diagram.  
Update the PSoC 64 Security section.  
Updated Amazon FreeRTOS PSA.  
Deleted the "Ports 9 and 10" row from Table 6. Change the # of GPIOs from 102 to 100 and  
updated the block diagram to reflect this.  
*C  
6973720  
10/09/2020 Updated Power Supply Considerations.  
Updated CPUs and added InterProcessor Communication (IPC).  
Updated Analog Subsystem diagram.  
Update the XRES bullet in Reset, SID15 Description and Conditions, and System  
Resources (Power-On-Reset specifications).  
Updated SD Host Controllers and SD Host Controller and eMMC Specifications.  
Updated SID7A conditions, SID7C description, and SID8 conditions.  
Integrated ECO erratum into External Crystal Oscillators. Added ECO Usage Guidelines  
table.  
Added footnote to TMCLK_SOC specs.  
Added four Errata items.  
*D  
*E  
7052508  
7147463  
12/23/2020 Added Arm PSA Certification Level 2 section.  
Updated Security terminology to Infineon standards.  
Changed BLE references to Bluetooth LE.  
Added Table 12 and Figure 19 in Electrical Specifications.  
Removed SIDDS1 and SIDDS1_B and updated Typ values for SIDDS2 and SIDDS2_B.  
05/28/2021  
Corrected typo in Ordering Information.  
Errata: Added "DMA controllers are not available" and deleted erratum "Cryptographic  
SysCall API version". Deleted "Specify the FreeRTOS Version that works with this product  
line" and integrated it into Amazon FreeRTOS PSA.  
Updated SIDDS2 - Corrected Deep Sleep current values  
08/18/2021  
*F  
7231613  
Removed "System Deep Sleep power higher than specification" errata item.  
Document Number: 002-28690 Rev. *I  
Page 85 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Description Title: PSoC 6 MCU: CYS0644xxxI-S2D4x Datasheet  
Document Number: 002-28690  
Removed Preliminary tag from the datasheet.  
Updated SIDC1 description.  
11/24/2021 Updated details/conditions for SID7A.  
Updated SID325U, SID328, and SID329 description.  
*G  
7469751  
Updated Errata.  
Updated MPN from CYS0644xxZI-S2D44 to CYS0644xxxI-S2D4x.  
03/15/2022 Added CYS0644AFNI-S2D43T in Ordering Information.  
Added 100-WLCSP package information.  
*H  
*I  
7727645  
7787179  
Added device identification and revision information in Features.  
Added spec SID415 and SID304P.  
10/26/2022 Added footnote "Guaranteed by design, not production tested" for specs SID402 - SID412.  
Updated Clock System and PLL Specifications.  
Updated Protection Units.  
Document Number: 002-28690 Rev. *I  
Page 86 of 87  
PSoC 6 MCU: CYS0644xxxI-S2D4x  
Datasheet  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
Arm® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU  
Automotive  
Cypress Developer Community  
Clocks & Buffers  
Interface  
Community | Code Examples | Projects | Video | Blogs | Training  
| Components  
Internet of Things  
Memory  
Technical Support  
cypress.com/memory  
cypress.com/mcu  
cypress.com/support  
Microcontrollers  
PSoC  
cypress.com/psoc  
cypress.com/pmic  
cypress.com/touch  
cypress.com/usb  
Power Management ICs  
Touch Sensing  
USB Controllers  
Wireless Connectivity  
cypress.com/wireless  
© Cypress Semiconductor Corporation, 2020-2022. This document is the property of Cypress Semiconductor Corporation, an Infineon Technologies company, and its affiliates ("Cypress"). This  
document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other  
countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks,  
or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software,  
then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source  
code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally  
to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the  
Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation,  
or compilation of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing  
device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such  
as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING  
CYPRESS PRODUCTS, WILLBE FREE FROM CORRUPTION,ATTACK, VIRUSES, INTERFERENCE, HACKING, DATALOSS OR THEFT, OR OTHER SECURITYINTRUSION (collectively, "Security  
Breach"). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In  
addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted  
by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or  
circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the  
responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device"  
means any device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other  
medical devices. "Critical Component" means any component of a High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk  
Device, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any use of  
a Cypress product as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, including its affiliates, and its directors, officers, employees, agents, distributors, and assigns  
harmless from and against all claims, costs, damages, and expenses, arising out of any claim, including claims for product liability, personal injury or death, or property damage arising from any use  
of a Cypress product as a Critical Component in a High-Risk Device. Cypress products are not intended or authorized for use as a Critical Component in any High-Risk Device except to the limited  
extent that (i) Cypress's published data sheet for the product explicitly states Cypress has qualified the product for use in a specific High-Risk Device, or (ii) Cypress has given you advance written  
authorization to use the product as a Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement.  
Cypress, the Cypress logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, Traveo, WICED, and ModusToolbox are trademarks or registered trademarks of Cypress or a subsidiary of  
Cypress in the United States or in other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 002-28690 Rev. *I  
Revised October 26, 2022  
Page 87 of 87  

相关型号:

CYS1A11A-20.000

Quartz Crystal Low Profile HC49S Leaded Crystal
CRYSTEKMICROW

CYS1A11A-FREQ

Quartz Crystal Low Profile HC49S Leaded Crystal
CRYSTEKMICROW

CYS1A11AS-20.000

Quartz Crystal Low Profile HC49S Leaded Crystal
CRYSTEKMICROW

CYS1A11AS-FREQ

Quartz Crystal Low Profile HC49S Leaded Crystal
CRYSTEKMICROW

CYS1A11B-20.000

Quartz Crystal Low Profile HC49S Leaded Crystal
CRYSTEKMICROW

CYS1A11B-FREQ

Quartz Crystal Low Profile HC49S Leaded Crystal
CRYSTEKMICROW

CYS1A11BS-20.000

Quartz Crystal Low Profile HC49S Leaded Crystal
CRYSTEKMICROW

CYS1A11BS-FREQ

Quartz Crystal Low Profile HC49S Leaded Crystal
CRYSTEKMICROW

CYS1A11C-20.000

Quartz Crystal Low Profile HC49S Leaded Crystal
CRYSTEKMICROW

CYS1A11C-FREQ

Quartz Crystal Low Profile HC49S Leaded Crystal
CRYSTEKMICROW

CYS1A11CS-20.000

Quartz Crystal Low Profile HC49S Leaded Crystal
CRYSTEKMICROW

CYS1A11CS-FREQ

Quartz Crystal Low Profile HC49S Leaded Crystal
CRYSTEKMICROW