CYW20721 [INFINEON]

The CYW20721 is a Bluetooth® 5.1-compliant, stand-alone baseband processor with an integrated 2.4 GHz transceiver with Bluetooth® LE, EDR and BR. The device is intended for use in audio, IoT, sensors (medical, home, security, and so forth) and human interface device (HID) applications. Manufactured using an advanced 40 nm CMOS low-power fabrication process, the CYW20721 employs high level of integration to reduce external components, thereby minimizing application footprint and costs.;
CYW20721
型号: CYW20721
厂家: Infineon    Infineon
描述:

The CYW20721 is a Bluetooth® 5.1-compliant, stand-alone baseband processor with an integrated 2.4 GHz transceiver with Bluetooth® LE, EDR and BR. The device is intended for use in audio, IoT, sensors (medical, home, security, and so forth) and human interface device (HID) applications. Manufactured using an advanced 40 nm CMOS low-power fabrication process, the CYW20721 employs high level of integration to reduce external components, thereby minimizing application footprint and costs.

文件: 总47页 (文件大小:975K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Please note that Cypress is an Infineon Technologies Company.  
The document following this cover page is marked as “Cypress” document as this is the  
company that originally developed the product. Please note that Infineon will continue  
to offer the product to new and existing customers as part of the Infineon product  
portfolio.  
Continuity of document content  
The fact that Infineon offers the following product as part of the Infineon product  
portfolio does not lead to any changes to this document. Future revisions will occur  
when appropriate, and any changes will be set out on the document history page.  
Continuity of ordering part numbers  
Infineon continues to support existing part numbers. Please continue to use the  
ordering part numbers listed in the datasheet for ordering.  
www.infineon.com  
CYW20721  
Enhanced Low Power, Bluetooth LE  
Bluetooth 5.1 SOC for Audio  
CYW20721, Single-Chip Bluetooth Transceiver for Wearables and Internet of Things (IoT) Devices  
The CYW20721 is a Bluetooth 5.1-compliant, stand-alone baseband processor with an integrated 2.4 GHz transceiver with  
Bluetooth LE, EDR and BR. The device is intended for use in audio, IoT, sensors (medical, home, security, and so forth) and human  
interface device (HID) applications. Manufactured using an advanced 40nm CMOS low-power fabrication process, the CYW20721  
employs high level of integration to reduce external components, thereby minimizing application footprint and costs.  
This datasheet provides details of the functional, operational, and electrical characteristics of the CYW20721 device. It is intended for  
hardware, design, application, and OEM engineers.  
Functional Block Diagram  
RF  
MODEM  
PKA  
SHA  
LCU  
RX/TX  
AES  
96 MHz  
ARM CM4  
w/FPU  
Patch RAM  
64 KB  
RAM  
448 KB  
ROM 2 MB  
Flash 1 MB  
Bluetooth 5.0  
MAC  
Security Engine  
Patch Control  
AHB Bus Matrix  
Random  
Number  
Generator  
PWM x6  
ADC  
Core Buck  
HP- LPO  
128 KHz  
XTALOSC  
32 KHz  
Key Scan  
Watchdog  
Peripheral  
UART  
GPIO  
x40  
Digital  
LDO  
LP- LPO  
32 KHz  
XTALOSC  
24 MHz  
SPIFFY X2  
(MIPI  
DBI-C, SPI,  
Quad SPI)  
1x I2C M/S  
1x I2C  
master  
HCI UART  
HID OFF  
Timer  
RF LDO  
Power Management  
Unit  
Clock Management  
Hardware Peripheral Block  
Cypress Semiconductor Corporation  
Document Number: 002-26642 Rev. *F  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised February 14, 2022  
CYW20721  
Features  
Bluetooth Subsystem  
Peripherals and Communication  
6x 16-bit PWMs  
Complies with Bluetooth Core Specification v5.1 with LE 2  
Mbps  
Programmable key-scan matrix interface, up to 8x20 key-  
scanning matrix1, 2  
Supports Basic Rate (BR), Enhanced Data Rate (EDR) 2&3  
Mbps, Bluetooth Low Energy  
Watchdog timer (WDT)  
Supports Adaptive Frequency Hopping (AFH)  
TX power 5 dBm  
1x peripheral UART, 1x UART for programming and HCI  
2x SPI (master or slave mode) Blocks (SPI, Quad SPI, and  
MIPI DBI-C)  
1x I2C master  
RX sensitivity -95.5 dBm (Bluetooth LE)  
Ultra-low-power radio  
RX current 5.9 mA (Bluetooth LE)  
TX current 5.6 mA @ 0 dBm (Bluetooth LE)  
1x 28-channel ADC (10-ENoB for DC measurement and 12-  
ENOB for Audio measurement)  
Hardware security engine  
Coexistence Support  
Support for Global Coexistence Interface for easy coexis-  
tence implementation with select Cypress Wi-Fi devices  
General Purpose Input Output (GPIO)  
16 GPIOs on QFN package  
40 GPIOs on WLCSP package  
Support up to 3.63 V operation  
MCU Subsystem  
96-MHz Arm® Cortex-M4 microcontroller unit MCU with float-  
ing point unit (FPU)  
Four GPIOs support 16 mA and 8 mA sink at 3.3 V and 1.8 V  
respectively  
Supports serial wire debug (SWD)  
Runs Bluetooth stack and application  
Option to execute from on-chip flash or RAM  
Operating Voltage and Low-power Support  
Wide operating voltage range: 1.76V to 3.63V  
5 power modes to implement ultra-low power application –  
Memory Subsystem  
1 MB flash  
managed by real time operating system  
0.4 μA current in HID-OFF2 mode (wake from GPIO).  
512 KB RAM  
Packages  
2 MB ROM that stores Bluetooth stack and driver and off-  
loads flash for user applications  
5 mm 5 mm 40-pin quad flat no-lead (QFN)  
3.2 mm 3.1 mm 134-ball Wafer Level Chip Scale Package  
(WLCSP)  
Audio Features and Interfaces  
1x I2S with master and slave modes  
Software Support  
1x PCM  
Modus Toolbox. Features are subject to support in the Blue-  
PDM2  
tooth SDK.  
Analog front end for analog microphone1  
Check the latest version of the Bluetooth SDK Technical brief  
for supported features.  
Clocks  
On-chip 32 kHz oscillator (LP-LPO)  
Applications  
On-chip 128 kHz oscillator (HP-LPO)  
Wearables and Fitness bands  
Headsets, earbuds, and other audio solutions  
Home automation  
32 kHz crystal oscillator (Optional if low power modes not  
required)  
24 MHz crystal oscillator  
Blood pressure monitors and other medical applications  
Proximity sensors  
48-bit real time clock (RTC)  
Key Fobs  
Thermostats and thermometers  
Toys  
1. Available only in WLCSP Package.  
2. Subjected to driver support in Bluetooth SDK.  
Document Number: 002-26642 Rev. *F  
Page 2 of 47  
CYW20721  
Contents  
1. Bluetooth Baseband Core ...........................................4  
1.1 BQB and Regulatory Testing Support ...................4  
2. MCU ...............................................................................5  
3. External Reset ...............................................................5  
4. Power Management Unit (PMU) ..................................5  
5. Integrated Radio Transceiver ......................................6  
5.1 Transmitter Path ....................................................6  
5.2 Receiver Path ........................................................6  
5.3 Local Oscillator (LO) ..............................................6  
6. Peripheral and Communication Interfaces ................7  
6.1 I2C Compatible Master ..........................................7  
6.2 HCI UART Interface ..............................................7  
6.3 Peripheral UART Interface ....................................7  
6.4 Crystal Oscillators .................................................7  
6.5 Low-Frequency Clock Sources .............................9  
6.6 GPIO Ports ..........................................................10  
6.7 Keyboard Scanner (Available only on  
8. Pin Assignments and GPIOs .....................................16  
8.1 40-Pin QFN and WLCSP Pin Assignments .........16  
8.2 40-Pin QFN and WLCSP GPIOs .........................18  
9. Pin/Ball Maps ..............................................................23  
9.1 40-Pin QFN Pin Map ...........................................23  
9.2 WLCSP Ball Map ...............................................................24  
10. Specifications ...........................................................28  
10.1 Electrical Characteristics ...................................28  
10.2 RF Specifications ..............................................32  
10.3 Timing and AC Characteristics ..........................35  
11. Mechanical Information ...........................................40  
11.1 40-Pin QFN Package ........................................40  
11.2 WLCSP Package ...............................................41  
11.3 WLCSP Package Keep-out ...............................42  
11.4 Tape Reel and Packaging Specifications ..........42  
12. Ordering Information ................................................43  
13. Acronyms ..................................................................44  
14. Document Conventions ...........................................45  
14.1 Units of Measure ...............................................45  
15. Document History Page ...........................................46  
15. Sales, Solutions, and Legal Information ................47  
Worldwide Sales and Design Support .......................47  
Products ....................................................................47  
PSoC® Solutions ......................................................47  
Cypress Developer Community .................................47  
Technical Support .....................................................47  
WLCSP Package) ...............................................10  
6.8 ADC .....................................................................10  
6.9 PWM ....................................................................11  
6.10 Serial Peripheral Interface Block .......................12  
6.11 Pulse Density Modulation (PDM) Microphone ...12  
6.12 I2S Interface ..................................................................... 12  
................................................................. 13  
6.13 PCM Interface  
6.14 Security Engine .................................................14  
6.15 Power Modes ................................................................... 14  
7. Firmware ......................................................................15  
Document Number: 002-26642 Rev. *F  
Page 3 of 47  
CYW20721  
1. Bluetooth Baseband Core  
The Bluetooth Baseband Core (BBC) implements all time-critical functions required for high-performance Bluetooth operation. The  
BBC manages the buffering, segmentation, and routing of data for all connections. It prioritizes and schedules all RX/TX activities  
including adv, paging, scanning, and servicing of connections. In addition to these functions, it independently handles the host  
controller interface (HCI) including all commands, events, and data flowing over HCI. The core also handles symbol timing, forward  
error correction (FEC), header error control (HEC), cyclic redundancy check (CRC), authentication, data encryption/decryption, and  
data whitening/dewhitening.  
Table 1. Bluetooth Features  
Bluetooth 1.0  
Bluetooth 1.2  
Interlaced Scans  
Bluetooth 2.0  
Basic Rate  
SCO  
EDR 2 Mbps and 3 Mbps  
Adaptive Frequency Hopping  
eSCO  
Paging and Inquiry  
Page and Inquiry Scan  
Sniff  
Bluetooth 2.1  
Bluetooth 3.0  
Bluetooth 4.0  
Bluetooth Low Energy  
Secure Simple Pairing  
Enhanced Inquiry Response  
Sniff Subrating  
Unicast Connectionless Data  
Enhanced Power Control  
eSCO  
Bluetooth 4.1  
Bluetooth 4.2  
Bluetooth 5.0  
LE 2 Mbps  
Low Duty Cycle Advertising  
Dual Mode  
Data Packet Length Extension  
LE Secure Connection  
Link Layer Privacy  
Slot Availability Mask  
High Duty Cycle Advertising  
LE Link Layer Topology  
1.1 BQB and Regulatory Testing Support  
The CYW20721 fully supports Bluetooth Test mode as described in Part 1:1 of the Specification of the Bluetooth System v3.0. This  
includes the transmitter tests, normal and delayed loop back tests, and reduced hopping sequence.  
In addition to the standard Bluetooth Test Mode, the CYW20721 also supports enhanced testing features to simplify RF debugging  
and qualification and type-approval testing. These features include:  
Fixed frequency carrier wave (unmodulated) transmission  
Simplifies some type-approval measurements (Japan)  
Aids in transmitter performance analysis  
Fixed frequency constant receiver mode  
Receiver output directed to I/O pin  
Allows for direct BER measurements using standard RF test equipment  
Facilitates spurious emissions testing for receive mode  
Fixed frequency constant transmission  
8-bit fixed pattern or PRBS-9  
Enables modulated signal measurements with standard RF test equipment  
Document Number: 002-26642 Rev. *F  
Page 4 of 47  
CYW20721  
2. MCU  
The CYW20721 includes a Cortex M4 processor with 2 MB of ROM, 448 KB of data RAM, 64 KB of patch RAM, and 1 MB of on-chip  
flash. The CM4 has a maximum speed of 96 MHz. CYW20721 supports execution from on-chip flash (OCF).  
The CM4 also includes a single precision IEEE 754 compliant floating point unit (FPU).  
The CM4 runs all the Bluetooth layers as well as application code. The ROM includes LM, HCI, L2CAP, GATT, as well as other stack  
layers freeing up the flash for application usage. A standard SWD Interface provides debugging support.  
3. External Reset  
An external active-low reset signal, RESET_N, can be used to put the CYW20721 in the reset state. The RESET_N should be released  
only after the VDDO supply voltage level has been stabilized for at least 35 ms.  
4. Power Management Unit (PMU)  
Figure 1 shows the CYW20721 PMU block diagram. The CYW20721 includes an integrated buck regulator, a bypass LDO, a capless  
LDO for digital circuits and a separate LDO for RF. The bypass LDO automatically takes over from the buck once Vbat supply falls  
below 2.1 V.  
The voltage levels shown in this figure are the default settings; the firmware may change voltage levels based on operating conditions.  
Figure 1. Default Usage Mode  
PMU  
VBAT: 1.76V to 3.63V  
SR_VDDBAT3V  
DIGLDO_  
VDDOUT  
DIGLDO_VDDIN  
SR_VLX  
Digital LDO  
VBAT  
Core Buck  
Regulator  
Bluetooth Digital  
SR_  
PVSS  
Internal LDO (capless)  
CBUCK  
Bluetooth Retention  
Memory  
Maximum 50 mA  
RFLDO_  
VDDOUT  
BYPLDO  
50 mA  
RF LDO  
Bluetooth RF  
RFLDO_VDDIN  
Denotes board pin  
Denotes chip pin  
Denotes power switch  
Document Number: 002-26642 Rev. *F  
Page 5 of 47  
CYW20721  
5. Integrated Radio Transceiver  
The CYW20721 has an integrated radio transceiver that has been designed to provide low power operation in the globally available  
2.4 GHz unlicensed ISM band. It is fully compliant with the Bluetooth Radio Specification and exceeds the requirements to provide  
the highest communication link quality of service.  
5.1 Transmitter Path  
The CYW20721 features a fully integrated transmitter. The baseband transmit data is GFSK modulated in the 2.4 GHz ISM band.  
Digital Modulator  
The digital modulator performs the data modulation and filtering required for the GFSK signal. The fully digital modulator minimizes  
any frequency drift or anomalies in the modulation characteristics of the transmitted signal.  
Power Amplifier  
The CYW20721 has an integrated power amplifier (PA) that can transmit up to +5 dBm.  
5.2 Receiver Path  
The receiver path uses a low IF scheme to down-convert the received signal for demodulation in the digital demodulator and bit  
synchronizer. The receiver path provides a high degree of linearity, and an extended dynamic range to ensure reliable operation in  
the noisy 2.4 GHz ISM band. The front-end topology, which has built-in out-of-band attenuation, enables the CYW20721 to be used  
in most applications without off-chip filtering.  
Digital Demodulator and Bit Synchronizer  
The digital demodulator and bit synchronizer take the low-IF received signal and perform an optimal frequency tracking and bit  
synchronization algorithm.  
Receiver Signal Strength Indicator  
The radio portion of the CYW20721 provides a receiver signal strength indicator (RSSI) to the baseband. This enables the controller  
to take part in a Bluetooth power-controlled link by providing a metric of its own receiver signal strength to determine whether the  
transmitter should increase or decrease its output power.  
5.3 Local Oscillator (LO)  
LO provides fast frequency hopping (1600 hops/second) across the 79 maximum available channels for BR/EDR functionality. The  
CYW20721 uses an internal loop filter.  
Document Number: 002-26642 Rev. *F  
Page 6 of 47  
CYW20721  
6. Peripheral and Communication Interfaces  
2
6.1 I C Compatible Master  
The CYW20721 provides a 2-pin I2C compatible Master interface to communicate with I2C compatible peripherals. The I2C compatible  
master supports the following clock speeds:  
100 kHz  
400 kHz  
800 kHz (Not a standard I2C-compatible speed.)  
1 MHz (Compatibility with high-speed I2C-compatible devices is not guaranteed.)  
SCL and SDA lines can be routed to any of the P0-P39 GPIOs allowing for flexible system configuration. When used as SCL/SDA  
the GPIOs go into open drain mode and require an external pull-up for proper operation. I2C block does not support multi master  
capability by either master/slave devices.  
6.2 HCI UART Interface  
The CYW20721 includes a UART interface for factory programming as well as when operating as a Bluetooth HCI device in a system  
with an external host. The UART physical interface is a standard, 4-wire interface (RX, TX, RTS, and CTS) with adjustable baud rates  
from 115200 bps to 1.5 Mbps. Typical rates are 115200, 921600, 1500000 bps although intermediate speeds are also available.  
Support for changing the baud rate during normal HCI UART operation is included through a vendor-specific command. The  
CYW20721 UART operates correctly with the host UART as long as the combined baud rate error of the two devices is within ±5%.  
The UART interface has a 1040-byte receive FIFO and a 1040-byte transmit FIFO to support enhanced data rates. The interface  
supports the Bluetooth UART HCI (H4) specification. The default baud rate for H4 is 115.2 kbaud.  
During HCI mode the DEV_WAKE signal can be programmed to wake up the CYW20721 or allow the CYW20721 to sleep when radio  
activities permit. The CYW20721 can also wake up the host as needed or allow the host to sleep via the HOST_WAKE signal. The  
combined two signals allow the host and the CYW20721 to optimize system power consumption by allowing independent control of  
low power modes. DEV_WAKE and HOST_WAKE signals can be enabled via a vendor specific command.  
6.3 Peripheral UART Interface  
The CYW20721 has a second UART that may be used to interface to peripherals. This peripheral UART is accessed through the  
optional I/O ports, which can be configured individually and separately for each functional pin. The CYW20721 can map the peripheral  
UART to any GPIO (P0-P39). The Peripheral UART is functionally the same as HCI UART but with a 256 byte transmit and receive  
FIFO.  
6.4 Crystal Oscillators  
6.4.1 24-MHz Crystal Oscillator  
The CYW20721 uses a 24 MHz crystal oscillator (XTAL). The XTAL must have an accuracy of ±20 ppm as defined by the Bluetooth  
specification. Two external load capacitors are required to work with the crystal oscillator. The selection of the load capacitors is XTAL-  
dependent (see Figure 2).  
Figure 2. Recommended 24 MHz Oscillator Configuration  
CL1  
XIN  
Crystal  
XOUT  
CL2  
Document Number: 002-26642 Rev. *F  
Page 7 of 47  
CYW20721  
Table 2. Reference Crystal Electrical Specifications  
Parameter Conditions  
Nominal frequency  
Min.  
Typ.  
Max.  
Unit  
MHz  
24.000  
Oscillation mode  
Fundamental  
Includes operating temperature  
range and aging  
Frequency accuracy  
± 20  
ppm  
Equivalent series resistance  
Load capacitance  
Drive level  
8
60  
pF  
μW  
pF  
200  
2
Shunt capacitance  
6.4.2 32 kHz Crystal Oscillator  
The CYW20721includes a 32 kHz oscillator to provide accurate timing during low power operations. Figure 3 shows the 32 kHz XTAL  
oscillator with external components and Table 3 lists the oscillator’s characteristics. This oscillator can be operated with 32.768 kHz  
crystal oscillator or be driven with a clock input at similar frequency. The default component values are: R1 = 10 MΩ and C1 = C2 =  
~6 pF. The values of C1 and C2 are used to fine-tune the oscillator.  
Figure 3. Recommended 32 kHz Oscillator Electrical Specification  
C2  
32.768 kHz  
R1  
XTAL  
C1  
Table 3. Reference 32 kHz Oscillator Electrical Specification  
Parameter  
Output frequency  
Symbol  
Foscout  
Conditions  
Min.  
Typ.  
32.768  
100  
500  
Max.  
Unit  
kHz  
ppm  
ms  
Frequency tolerance  
Start-up time  
Crystal-dependent  
Tstartup  
Pdrv  
XTAL drive level  
For crystal selection  
For crystal selection  
For crystal selection  
0.5  
70  
2.2  
μW  
kΩ  
XTAL series resistance  
XTAL shunt capacitance  
Rseries  
Cshunt  
pF  
C
R
couple = 100 pF;  
bias= 10 MΩ  
External AC input amplitude  
VIN (AC)  
400  
mVpp  
Document Number: 002-26642 Rev. *F  
Page 8 of 47  
CYW20721  
6.5 Low-Frequency Clock Sources  
The 32-kHz low-frequency clock (lhl_lpo_32-kHz on the following figure) can be obtained from multiple sources. There are two internal  
low-power oscillators (LPOs) called the LP-LPO and HP-LPO and external crystal (OSC32K). The firmware determines the clock  
source to use among the available LPOs depending on the accuracy and power requirements. The preferred source is the external  
LPO (OSC32K) because it has good accuracy with the lowest current consumption. Internal LP-LPO has low current consumption  
and low accuracy whereas HP-LPO has higher accuracy and higher current consumption. The firmware assumes the external LPO  
has less than 250 PPM error with little or no jitter.  
Figure 4. Simplified Clock Source  
Variable  
Frequency  
48/96  
M
DIV  
HCLK  
CPU  
DIV  
Fixed  
Frequency  
Block  
1 M  
Timers  
XTAL 24M  
ADPLL  
96 M  
SPI2  
SPI1  
PUART  
HCI UART  
I2C  
48 M  
24 M  
DIV  
PTU  
ADC  
(12 M)  
24 M  
DIV  
1 M  
24 M  
ACLK0  
24 M  
ACLK1  
PWM(0‐5)  
OSC32K  
HP‐LPO  
LP‐LPO  
LPO  
lhl_lpo  
32 K  
LHL  
RTC  
LPO  
LPO  
Document Number: 002-26642 Rev. *F  
Page 9 of 47  
CYW20721  
6.6 GPIO Ports  
The CYW20721 has 40 GPIOs labeled P0-P39 on WLCSP package and 16 GPIOs on QFN package.  
All GPIOs support the following:  
programmable pull-up/down of approx 45 k.  
input disable, allowing pins to be left floating or analog signals connected without risk of leakage.  
source/sink 8 mA at 3.3 V and 4 mA at 1.8 V.  
P15 is Bonded to the same pin as XTALI_32K on the QFN package (Pin 32). If External 32.768kHz crystal is not used, then this  
pin can be used as GPIO P15.  
P26/P27/P28/P29 (some of these pins are not available on QFN package) sink/source 16 mA at 3.3 V and 8 mA at 1.8 V.  
Most peripheral functions can be assigned to any GPIO. For details, refer to Table 4 and Table 5.  
6.7 Keyboard Scanner (Available only on WLCSP Package)  
The CYW20721 includes a HW keyscanner that supports a maximum matrix size of 20x8. The scanner has 8 inputs (also referred to  
as rows) and 20 outputs (also referred to as columns). Keys are detected by driving the columns down sequentially and sampling the  
rows. The HW scanner includes support for ghost key detection and debouncing. The scanner can also operate in sleep and PDS  
mode allowing low power operation while continuing to detect/store all key strokes, up or down. In other low power modes, the scanner  
can continue to monitor the matrix and initiate exit to active mode upon detecting a change of state.  
Note Subject to the driver support in Bluetooth SDK.  
6.8 ADC  
CYW20721includes is a Σ-Δ ADC designed for audio (13 bits) and DC (10 bits) measurements. The ADC can measure the voltage  
on 28 GPIO. When used for analog inputs, the GPIOs must be placed in digital input disable mode to disconnect the digital circuit  
from the pin and avoid leakage. The internal band gap reference has ±5% accuracy without calibration. Calibration and digital  
correction schemes can be applied to reduce ADC absolute error and improve measurement accuracy in DC mode.  
P0, P1, P8-P18, P21-23, P28-P38 can be used as ADC inputs.  
Document Number: 002-26642 Rev. *F  
Page 10 of 47  
CYW20721  
6.9 PWM  
The CYW20721 has six internal PWMs, labeled PWM0-5  
Each of the six PWM channels contains the following registers:  
16-bit initial value register (read/write)  
16-bit toggle register (read/write)  
16-bit PWM counter value register (read)  
PWM configuration register is shared among PWM0–5 (read/write). This 6-bit register is used:  
To enable/disable each PWM channel  
To select the clock of each PWM channel  
To invert the output phase of each PWM channel  
The application can access the PWM module through the FW driver.  
Figure 5 shows the structure of one PWM channel.  
Figure 5. PWM Block Diagram  
pwm_cfg_adr register  
pwm#_init_val_adr register  
pwm#_togg_val_adr register  
16  
16  
pwm#_cntr_adr  
16  
cntr value is ARM readable  
pwm_out  
Example: PWM cntr w/ pwm#_init_val = 0 (dashed line)  
PWM cntr w/ pwm#_init_val = x (solid line)  
16'HFFFF  
pwm_togg_val_adr  
16'Hx  
16'H000  
pwm#_init  
_value is x  
Document Number: 002-26642 Rev. *F  
Page 11 of 47  
CYW20721  
6.10 Serial Peripheral Interface Block  
The CYW20721 has two independent SPI interfaces. Both interfaces support Single, Dual, and Quad mode SPI operations as well  
as MIPI DBI-C Interface. Either of the interface can be a master/slave. SPI2 can support only one slave. SPI1 has a 1024 byte transmit  
and receive buffers which is shared with the host UART interface. SPI2 has a dedicated 256 byte transmit and receive buffers. To  
support more flexibility for user applications, the CYW20721 has optional I/O ports that can be configured individually and separately  
for each functional pin. SPI I/O voltage depends on VDDO.  
6.10.1 MIPI interface  
There are three options in DBI type-C corresponding to 9-bit, 16-bit, and 8-bit modes. The CYW20721 plays the role of host, and only  
the 9-bit and 8-bit modes (option 1 and option 3 in DBI-C spec) are supported. In the 9-bit mode, the SCL, CS, MOSI, and MISO pins  
are used. In the 8-bit mode, an additional pin DCX, indicating whether the current outgoing bit stream is a command or data byte is  
required.  
6.11 Pulse Density Modulation (PDM) Microphone  
The CYW20721 accepts a ΣΔ-based one-bit PDM input stream and outputs filtered samples at either 8 kHz or 16 kHz sampling rates.  
The PDM signal derives from an external kit that can process analog microphone signals and generate digital signals. The PDM input  
shares the filter path with the aux ADC. Two types of data rates can be supported:  
8 kHz  
16 kHz  
The external digital microphone takes in a 2.4 MHz clock generated by the CYW20721 and outputs a PDM signal which is registered  
by the PDM interface with either the rising or falling edge of the 2.4 MHz clock selectable through a programmable control bit. The  
design can accommodate two simultaneous PDM input channels, so stereo voice is possible.  
Note Subject to the driver support in Bluetooth SDK.  
2
6.12 I S Interface  
The CYW20721 supports a single I2S digital audio port in both master and slave modes. The I2S signals are:  
I2S Clock: I2S SCK  
I2S Word Select: I2S WS  
I2S Data Out: I2S DO  
I2S Data In: I2S DI  
I2S SCK and I2S WS become outputs in master mode and inputs in slave mode, while I2S DO always stays as an output and I2S DI  
stays as input. The channel word length is fixed to 16 bits (frame length of 32 bits) and the data is justified so that the MSB of the left-  
channel data is aligned with the MSB of the I2S bus, as per I2S Specifications. The MSB of each data word is transmitted one bit clock  
cycle after the I2S WS transition, synchronous with the falling edge of bit clock. Left Channel data is transmitted when I2S WS is low,  
and right-channel data is transmitted when I2S WS is high. Data bits sent by the CYW20721 are synchronized with the falling edge  
of I2S SCK and should be sampled by the receiver on the rising edge of the I2S SCK.  
The I2S port is primarily used to transfer audio samples while using the A2DP profile[1]. The A2DP controller is half duplex and the  
direction of the audio samples depend on the A2DP role (sink/source). The I2S clock in the master mode can either be  
44.1 kHz x 32 bits per frame = 1411.2 kHz  
48 kHz x 32 bits per frame = 1536 kHz  
In the slave mode, any clock rate is supported up to a maximum of 3.072 MHz.  
Note PCM interface shares HW with the I2S interface which means that both voice and audio cannot be routed at the same time.  
Note  
2
1. The I S port cannot be used at the application level for purposes other than routing A2DP audio samples.  
Document Number: 002-26642 Rev. *F  
Page 12 of 47  
CYW20721  
6.13 PCM Interface  
The CYW20721 includes a PCM interface that can connect to linear PCM codec devices in master or slave mode. In master mode,  
the CYW20721 generates the PCM_CLK and PCM_SYNC signals. In slave mode, these signals are provided by another device on  
the PCM interface and are inputs to the CYW20721. Some of the parameters of the PCM interface may be configured by the host.  
The PCM interface is used for full-duplex bi-directional transfer of 8K or 16K voice samples from and to a SCO or eSCO connection[2]  
.
By default, the PCM interface runs in an I2S compatible mode, which allows the CYW20721 to transfer voice samples to I2S devices.  
Note PCM interface shares HW with the I2S interface which means that both voice and audio cannot be routed simultaneously.  
6.13.1 Slot Mapping  
The CYW20721 supports up to three simultaneous full-duplex SCO or eSCO channels through the PCM Interface, when operating  
in HCI mode. These three channels are time-multiplexed onto the single PCM interface by using a time-slotting scheme where the 8  
kHz or 16 kHz voice sample interval is divided into as many as 16 slots. The number of slots is dependent on the selected interface  
rate (128 kHz, 256kHz, 512 kHz, 1024 kHz or 2048 kHz). The corresponding number of slots for these interface rate is 1, 2, 4, 8, and  
16, respectively. Transmit and receive PCM data from an SCO channel is always mapped to the same slot. The PCM data output  
driver tristates its output on unused slots to allow other devices to share the same PCM interface signals. The data output driver  
tristates its output after the falling edge of the PCM clock during the last bit of the slot.  
6.13.2 Frame Synchronization  
The CYW20721 supports both short and long-frame synchronization in both master and slave modes and can be configured from the  
host. In short frame synchronization mode, the frame synchronization signal is an active-high pulse at the audio frame rate that is a  
single-bit period in width and is synchronized to the rising edge of the bit clock. The PCM slave looks for a high on the falling edge of  
the bit clock and expects the first bit of the first slot to start at the next rising edge of the clock. In long-frame synchronization mode,  
the frame synchronization signal is again an active-high pulse at the audio frame rate; however, the duration is three bit periods and  
the pulse starts coincident with the first bit of the first slot.  
6.13.3 Data Formatting  
The CYW20721 may be configured to generate or accept several different data formats. For conventional narrow band speech mode,  
the CYW20721 always uses 13 of the 16 bits in each PCM frame. The location and order of these 13 bits can be configured to support  
various data formats on the PCM interface. The remaining three bits are ignored on the input and may be filled with 0s, 1s, a sign bit,  
or a programmed value on the output. The default format is 13-bit 2's complement data, left justified, filled with 0's and clocked MSB  
first.  
6.13.4 Burst PCM Mode  
In this mode of operation, the PCM bus runs at a significantly higher rate of operation to allow the host to duty cycle its operation and  
save current. In this mode of operation, the PCM bus can operate at a rate of up to 24 MHz. This mode of operation is initiated with  
an HCI command from the host.  
Note  
2. The PCM interface cannot be used as a generic serial interface at the application level. It can only be used for routing SCO or eSCO voice samples.  
Document Number: 002-26642 Rev. *F  
Page 13 of 47  
CYW20721  
6.14 Security Engine  
The CYW20721 includes a hardware security accelerator which greatly decreases the time required to perform typical security  
operations.This security engine includes:  
Public key acceleration (PKA) cryptography  
AES-CTR/CBC-MAC/CCM acceleration  
SHA2 message hash and HMAC acceleration  
RSA encryption and decryption of modulus sizes up to 2048 bits  
Elliptic curve Diffie-Hellman in prime field GF(p)  
Note Security engine is used only by Bluetooth stack to reduce CPU overhead. It is not available for application use  
6.14.1 Random Number Generator  
This hardware block is used for key generation for Bluetooth.  
Note Availability for use by the application is subject to the support in Bluetooth SDK.  
6.15 Power Modes  
The CYW20721 supports the following HW power modes:  
Active mode - Normal operating mode in which all peripherals are available and the CPU is active.  
Idle mode- In this mode, the CPU is in “Wait for Interrupt” (WFI) and the HCLK, which is the high frequency clock derived from the  
main crystal oscillator is running at a lower clock speed. Other clocks are active and the state of the entire chip is retained.  
Sleep mode - In this mode, CPU is in WFI and the HCLK is not running. The PMU determines if the other clocks can be turned off  
and does accordingly. State of the entire chip is retained, the internal LDOs run at a lower voltage (voltage is managed by the PMU),  
and SRAM is retained.  
Power Down Sleep (PDS) mode -This mode is an extension of the PMU Sleep wherein most of the peripherals such as UART and  
SPI are turned off. The entire memory is retained, and on wakeup the execution resumes from where it paused.  
Shut Down Sleep (SDS) mode -Everything is turned off except I/O Power Domain, RTC, and LPO. The device can come out of  
this mode either due to Bluetooth activity or by an external interrupt. Before going into this mode, the application can store some  
bytes of data into “Always On RAM” (AON). When the device comes out of this mode, the data from AON is restored. After waking  
from SDS, the application will start from the beginning (warmboot) and has to restore its state based on information stored in AON.  
In the SDS mode, a single Bluetooth task with no data activity, such as an ACL connection, Bluetooth LE connection, or Bluetooth  
LE advertisement can be performed.  
HID-OFF[3] (Timed-Wake) mode -The device can enter this mode asynchronously, that is, the application can force the device into  
this mode at any time. I/O Power Domain, RTC, and LPO are the only active blocks. A timer that runs off the LPO is used to wake  
the device up after a predetermined fixed time.  
HID-OFF[3] (External Interrupt-Waked) mode - This mode is similar to Timed-Wake, but in HID-OFF mode even the LPO and RTC  
are turned off. Therefore, the only wakeup source is an external interrupt.  
Transition between power modes is handled by the on-chip firmware with host/application involvement. Please see Firmware Section  
for details.  
Note  
3. Subject to driver support in Bluetooth SDK.  
Document Number: 002-26642 Rev. *F  
Page 14 of 47  
CYW20721  
7. Firmware  
The CYW20721 ROM firmware runs on a real time operating system and handles the programming and configuration of all on-chip  
hardware functions as well as the Bluetooth/LE baseband, Link Manager (LM), HCI, Generic Attribute Profile (GATT), Attribute  
Protocol (ATT), Logical Link Control and Adaptation Protocol (L2CAP) and Service Discovery Protocol (SDP) layers. The ROM also  
includes drivers for on-chip peripherals as well as handling on-chip power management functions including transitions between  
different power modes.  
The CYW20721 is fully supported by the Cypress Modus Toolbox platform. Bluetooth SDK releases provide latest ROM patches,  
drivers, and sample applications allowing customized applications using the CYW20721 to be built quickly and efficiently.  
Refer to CYW20721 Product Guide for details on the firmware architecture, driver documentation, power modes and how to write  
applications/profiles using the CYW20721.  
Document Number: 002-26642 Rev. *F  
Page 15 of 47  
CYW20721  
8. Pin Assignments and GPIOs  
This section addresses both QFN and WLCSP pin assignments and GPIOs for the CYW20721 device.  
8.1 40-Pin QFN and WLCSP Pin Assignments  
Table 4. 40-Pin QFN and WLCSP Pin Assignments  
Pin Number  
Pin Name  
I/O  
Power Domain  
Description  
QFN-40  
WLCSP  
Microphone  
ADC_avddBAT  
ADC_AVDDC  
Mic_avdd  
5
I
I
I
I
I
I
I
I
I
I
VDDIO  
VDDIO  
3
No Connect  
19  
32  
4
MIC_AVDD  
MIC_AVDD  
MIC_AVDD  
MIC_AVDD  
AVSS  
Microphone supply  
Micbias  
Microphone Bias Supply  
Microphone negative input  
Microphone positive input  
Analog ground  
Micn  
Micp  
18  
34  
17  
33  
47  
ADC_AVSS  
ADC_AVSSC  
ADC_REFGND  
Mic_avss  
AVSS  
Analog ground  
AVSS  
Analog reference ground  
Microphone analog ground  
AVSS  
Baseband Supply  
1,8,9,11,14,26,29,4  
2,56,66,91  
BT_VDDO  
BT_VDDC  
VDDO  
25  
I
I/O  
I
VDDO  
VDDC  
VDDO  
I/O Pad Power supply  
2,43,58,74,  
99  
Baseband core power supply  
LHL PAD power supply. Can be tied to  
BT_VDDO.  
39  
-
RF Power Supply  
BT_PAVDD  
17  
21  
20  
19  
116  
106  
125  
110  
I
I
I
I
PAVDD  
PA supply  
BT_PLLVDD1p2  
BT_VCOVDD1p2  
BT_IFVDD1P2  
Onboard LDO’s  
DIGLDO_VDDIN  
DIGLDO_VDDOUT  
RFLDO_VDDIN  
RFLDO_VDDOUT  
SR_VDDBAT3V  
VDDBAT3V  
PLLVDD1P2 RFPLL and crystal oscillator supply  
VCOVDD1P2 VCO supply  
IFVDD1P2  
IFPLL Power Supply  
16  
127  
126  
111  
128  
129  
120  
I
O
I
Internal Digital LDO input  
Internal Digital LDO output  
RF LDO Input  
15  
14  
13  
O
I
RF LDO Output  
Core Buck Input  
I
Core Buck Input  
Core Buck Output  
SR_VLX  
12  
121  
O
Ground Pins  
BT_PAVSS  
BT_PLLVSS  
BT_VCOVSS  
BT_IFVSS  
123  
107  
119  
115  
I
I
I
I
VSS  
VSS  
VSS  
VSS  
Ground  
Ground  
Ground  
Ground  
30, 57, 75, 87, 117,  
118, 124, 133, 134  
BT_VSSC  
I
VSS  
Ground  
Document Number: 002-26642 Rev. *F  
Page 16 of 47  
CYW20721  
Table 4. 40-Pin QFN and WLCSP Pin Assignments (Cont.)  
Pin Number  
Pin Name  
I/O  
Power Domain  
Description  
QFN-40  
WLCSP  
VSSC  
112  
I
I
VSS  
VSS  
VSS  
Ground  
Ground  
Ground  
10,13, 25, 28,72,  
96,101  
VSSO_0  
SR_PVSS  
xtal_avss  
PMU_AVSS  
VSS  
130  
35  
I
I
I
I
XTAL_AVSS Crystal ground  
PMU_AVSS PMU ground  
113,114  
H
VSS  
Exposed center pad, connect to ground.  
UART  
Clear to send (CTS) for HCI UART  
interface. Leave unconnected if not  
used.  
BT_UART_CTS_N  
30  
29  
15  
31  
I, PU  
VDDO  
VDDO  
Request to send (RTS) for HCI UART  
interface. Leave unconnected if not  
used.  
BT_UART_RTS_N  
BT_UART_RXD  
O, PU  
UART serial input. Serial data input for  
the HCI UART interface.  
27  
28  
45  
46  
I
VDDO  
VDDO  
UART serial output. Serial data output  
for the HCI UART interface.  
BT_UART_TXD  
O, PU  
Crystal  
Crystal oscillator input. See “The XTAL  
must have an accuracy of ±20 ppm as  
defined by the Bluetooth specification.  
Two external load capacitors are  
required to work with the crystal oscil-  
lator. The selection of the load capac-  
itors is XTAL-dependent (see Figure 2)”  
for options.  
BT_XTALI  
22  
105  
I
PLLVDD1P2  
BT_XTALO  
XTALI_32K  
XTALO_32K  
BT_RF  
23  
32  
31  
18  
104  
6
O
I
PLLVDD1P2 Crystal oscillator output.  
VDDO  
VDDO  
Low-power oscillator input.  
Low-power oscillator output.  
RF Antenna Port  
20  
O
132  
68  
BT_CLK_REQ  
O
N/A  
Used for shared-clock application.  
Reserved Arm® JTAG debug mode  
control. Connect to GND for all applica-  
tions.  
JTAG_SEL  
11  
10  
102  
103  
I
Active-low system reset with internal  
pull-up resistor.  
RST_N  
VDDO  
Reserved Pins  
Reserved  
21, 36, 49, 61, 77,  
84, 85, 108  
26  
N/A  
N/A  
N/A  
N/A  
Reserved. Leave unconnected.  
Reserved, connect to GND  
Reserved, Connect to  
GND  
16, 92  
Document Number: 002-26642 Rev. *F  
Page 17 of 47  
CYW20721  
8.2 40-Pin QFN and WLCSP GPIOs  
Table 5. 40-Pin QFN and WLCSP GPIOs  
Pin Number  
Pin Name  
Power  
Domain  
I/O  
Description  
QFN-40  
WLCSP  
A signal from the host to the CYW20721 indicating that  
the host requires attention.  
BT_DEV_WAKE  
BT_HOST_WAKE  
86  
76  
I
VDDO  
VDDO  
A signal from the CYW20721 device to the host  
indicating that the Bluetooth device requires attention.  
24  
O
BT_GPIO_2  
BT_GPIO_3  
BT_GPIO_4  
BT_GPIO_5  
44  
59  
79  
78  
I/O  
I/O  
I/O  
I/O  
VDDO  
VDDO  
VDDO  
VDDO  
GPIO: Can also be configured as a GCI Pin  
GPIO: Can also be configured as a GCI Pin  
GPIO: Can also be configured as a GCI Pin  
GPIO: Can also be configured as a GCI Pin  
GPIO: P0  
Keyboard scan input (row): KSI0  
A/D converter input 29  
Supermux I/O functions as defined in Table 6.  
P0  
P1  
3
4
93  
54  
I/O  
I/O  
VDDO  
VDDO  
GPIO: P1  
Keyboard scan input (row): KSI1  
A/D converter input 28  
Supermux I/O functions as defined in Table 6  
GPIO: P2  
P2  
P3  
P4  
P5  
P6  
P7  
P8  
34  
60  
22  
23  
37  
50  
62  
69  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
Keyboard scan input (row): KSI2  
Supermux I/O functions as defined in Table 6  
GPIO: P3  
Keyboard scan input (row): KSI3  
Supermux I/O functions as defined in Table 6  
GPIO: P4  
Keyboard scan input (row): KSI4  
Supermux I/O functions as defined in Table 6  
35  
GPIO: P5  
Keyboard scan input (row): KSI5  
Supermux I/O functions as defined in Table 6  
GPIO: P6  
Keyboard scan input (row): KSI6  
Supermux I/O functions as defined in Table 6  
36  
37  
GPIO: P7  
Keyboard scan input (row): KSI7  
Supermux I/O functions as defined in Table 6  
GPIO: P8  
A/D converter input 27  
Supermux I/O functions as defined in Table 6  
GPIO: P9  
A/D converter input 26  
External T/R switch control: tx_pd  
Supermux I/O functions as defined in Table 6  
P9  
52  
63  
I/O  
I/O  
VDDO  
VDDO  
GPIO: P10  
Keyboard scan output (column): KSO2  
A/D converter input 25  
P10  
40  
Supermux I/O functions as defined in Table 6  
Notes  
4. All GPIOs are super mux. All GPIOs can be programmed for any alternative functions as listed in Table 6 and Table 7.  
5. During power-on reset, all inputs are disabled.  
6. P15 and P37 should not be driven high externally while the part is held in reset (they can be floating or driven low). Failure to do so may cause some current to flow  
through these pins until the part comes out of reset.  
Document Number: 002-26642 Rev. *F  
Page 18 of 47  
CYW20721  
Table 5. 40-Pin QFN and WLCSP GPIOs (Cont.)  
Pin Number  
Pin Name  
Power  
Domain  
I/O  
Description  
QFN-40  
WLCSP  
GPIO: P11  
A/D converter input 24  
Supermux I/O functions as defined in Table 6  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
70  
I/O  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
GPIO: P12  
A/D converter input 23  
Supermux I/O functions as defined in Table 6  
40  
71  
24  
7
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GPIO: P13  
A/D converter input 22  
Supermux I/O functions as defined in Table 6  
GPIO: P14  
A/D converter input 21  
Supermux I/O functions as defined in Table 6  
GPIO: P15  
A/D converter input 20  
Supermux I/O functions as defined in Table 6  
c
32  
33  
38  
GPIO: P16  
A/D converter input 19  
Supermux I/O functions as defined in Table 6  
48  
38  
51  
GPIO: P17  
A/D converter input 18  
Supermux I/O functions as defined in Table 6  
GPIO: P18  
A/D converter input 17  
Supermux I/O functions as defined in Table 6  
P19  
P20  
39  
12  
I/O  
I/O  
VDDO  
VDDO  
Reserved for system use. Leave unconnected.  
Reserved for system use. Leave unconnected.  
GPIO: P21  
P21  
P22  
P23  
53  
27  
64  
I/O  
I/O  
I/O  
VDDO  
VDDO  
VDDO  
A/D converter input 14  
Supermux I/O functions as defined in Table 6  
GPIO: P22  
A/D converter input 13  
Supermux I/O functions as defined in Table 6  
GPIO: P23  
A/D converter input 12  
Supermux I/O functions as defined in Table 6  
GPIO: P24  
Supermux I/O functions as defined in Table 6  
P24  
P25  
8
90  
97  
I/O  
I/O  
VDDO  
VDDO  
GPIO: P25  
Supermux I/O functions as defined in Table 6  
GPIO: P26  
P26  
P27  
7
83  
94  
I/O  
I/O  
VDDO  
VDDO  
Current: 16 mA sink  
Supermux I/O functions as defined in Table 6  
GPIO: P27  
Current: 16 mA sink  
Supermux I/O functions as defined in Table 6  
GPIO: P28  
A/D converter input 11  
Current: 16 mA sink  
P28  
1
41  
I/O  
VDDO  
Supermux I/O functions as defined in Table 6  
Notes  
4. All GPIOs are super mux. All GPIOs can be programmed for any alternative functions as listed in Table 6 and Table 7.  
5. During power-on reset, all inputs are disabled.  
6. P15 and P37 should not be driven high externally while the part is held in reset (they can be floating or driven low). Failure to do so may cause some current to flow  
through these pins until the part comes out of reset.  
Document Number: 002-26642 Rev. *F  
Page 19 of 47  
CYW20721  
Table 5. 40-Pin QFN and WLCSP GPIOs (Cont.)  
Pin Number  
Pin Name  
Power  
Domain  
I/O  
Description  
QFN-40  
WLCSP  
GPIO: P29  
A/D converter input 10  
Current: 16 mA sink  
2
P29  
80  
I/O  
VDDO  
Supermux I/O functions as defined in Table 6  
GPIO: P30  
P30  
P31  
P32  
P33  
P34  
P35  
P36  
P37  
9
5
95  
73  
98  
100  
81  
65  
55  
88  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
VDDO  
A/D converter input 9  
Supermux I/O functions as defined in Table 6  
GPIO: P31  
A/D converter input 8  
Supermux I/O functions as defined in Table 6  
GPIO: P32  
A/D converter input 7  
Supermux I/O functions as defined in Table 6  
GPIO: P33  
A/D converter input 6  
Supermux I/O functions as defined in Table 6  
GPIO: P34  
A/D converter input 5  
Supermux I/O functions as defined in Table 6  
GPIO: P35  
A/D converter input 4  
Supermux I/O functions as defined in Table 6  
GPIO: P36  
A/D converter input 3  
Supermux I/O functions as defined in Table 6  
GPIO: P37  
A/D converter input 2  
[6]  
Supermux I/O functions as defined in Table 6  
GPIO: P38  
P38  
P39  
6
89  
82  
I/O  
I/O  
VDDO  
VDDO  
A/D converter input 1  
Supermux I/O functions as defined in Table 6  
Reserved for system use. Leave unconnected.  
Strapping Pins  
Device test mode control. Connect to GND for all appli-  
cations.  
BT_TM1  
67  
I
I
PMU_DISABLE  
109  
VDDO  
PMU Enable/Disable. Connected to ground.  
Notes  
4. All GPIOs are super mux. All GPIOs can be programmed for any alternative functions as listed in Table 6 and Table 7.  
5. During power-on reset, all inputs are disabled.  
6. P15 and P37 should not be driven high externally while the part is held in reset (they can be floating or driven low). Failure to do so may cause some current to flow  
through these pins until the part comes out of reset.  
Document Number: 002-26642 Rev. *F  
Page 20 of 47  
CYW20721  
Table 6. GPIO Supermux Input Functions  
Input Description  
SWDCK  
Table 7. GPIO Supermux Output Functions  
Output  
Description  
Serial Wire Debugger Clock  
Serial Wire Debugger I/O  
SPIFFY 1 Clock (Slave)  
do_P# (data out of GPIO. For example: 0)  
SWDIO  
kso0  
Key Scan output 0  
Key Scan output 1  
spiffy1_clk[s]  
spiffy1_cs[s]  
kso1  
SPIFFY 1 Chip Select (Slave)  
kso2  
Key Scan output 2  
Key Scan output 3  
Key Scan output 4  
Key Scan output 5  
Key Scan output 6  
Key Scan output 7  
Key Scan output 8  
Key Scan output 9  
Key Scan output 10  
Key Scan output 11  
Key Scan output 12  
Key Scan output 13  
Key Scan output 14  
Key Scan output 15  
Key Scan output 16  
Key Scan output 17  
Key Scan output 18  
Key Scan output 19  
PWM Channel 0  
spiffy1_mosi[s] SPIFFY 1 MOSI (Slave)  
spiffy1_miso[m] SPIFFY 1 MISO (Master)  
kso3  
kso4  
spiffy1_io2  
SPIFFY 1 I/O 2 (Quad SPI)  
SPIFFY 1 I/O 3 (Quad SPI)  
SPIFFY 1 Interrupt (Slave)  
SPIFFY 2 Clock (Slave)  
kso5  
spiffy1_io3  
kso6  
spiffy1_int[s]  
spiffy2_clk[s]  
spiffy2_cs[s]  
kso7  
kso8  
SPIFFY 2 Chip Select (Slave)  
kso9  
spiffy2_mosi[s] SPIFFY 2 MOSI (Slave)  
spiffy2_miso[m] SPIFFY 2 MISO (Master)  
kso10  
kso11  
spiffy2_io2  
spiffy2_io3  
spiffy2_int[s]  
puart_rx  
SPIFFY 2 I/O 2  
SPIFFY 2 I/O 3  
SPIFFY 2 Interrupt (Slave)  
Peripheral UART RX  
Peripheral UART CTS  
I2C Clock  
kso12  
kso13  
kso14  
kso15  
puart_cts_n  
SCL  
kso16  
kso17  
SDA  
I2C Data  
kso18  
PCM_IN  
PCM_CLK  
PCM_SYNC  
I2S_DI  
PCM Input  
kso19  
PCM Clock  
do_P# ^ pwm0  
do_P# ^ pwm1  
do_P# ^ pwm2  
do_P# ^ pwm3  
do_P# ^ pwm4  
do_P# ^ pwm5  
aclk0  
PCM Sync  
PWM Channel 1  
I2S Data Input  
I2S Word Select  
I2S Clock  
PWM Channel 2  
I2S_WS  
PWM Channel 3  
I2S_CLK  
PWM Channel 4  
PDM_IN_Ch_1 PDM Input Channel 1  
PDM_IN_Ch 2 PDM Input Channel 2  
PWM Channel 5  
Auxiliary clock Output 0  
Auxiliary clock Output 1  
HID-OFF Indicator  
External PA ramp  
aclk1  
HID_OFF  
pa_ramp  
tx_pu  
External PA Control Signal  
External PA Control Signal  
rx_pu  
Serial Wire Debugger Input/  
Output  
SWDIO  
puart_tx (uart2_tx)  
puart_rts_n (uart2_rts_n)  
spiffy1_CLK  
Peripheral UART TX  
Peripheral UART RTS  
SPIFFY 1 Clock  
Document Number: 002-26642 Rev. *F  
Page 21 of 47  
CYW20721  
Table 7. GPIO Supermux Output Functions (Cont.)  
Output  
spiffy1_CS  
Description  
SPIFFY 1 Chip Select  
SPIFFY 1 MOSI  
SPIFFY 1 MISO  
SPIFFY I/O 2  
spiffy1_MOSI  
spiffy1_MISO  
spiffy1_IO2  
spiffy1_IO3  
spiffy1_INT  
SPIFFY I/O 3  
SPIFFY Interrupt  
MIPI-DBI Data/Command  
Indicator  
spiffy1_DCX  
spiffy2_CLK  
spiffy2_CS  
SPIFFY 2 Clock  
SPIFFY 2 Chip Select  
SPIFFY 2 MOSI  
SPIFFY 2 MISO  
SPIFFY 2 I/O 2  
spiffy2_MOSI  
spiffy2_MISO  
spiffy2_IO2  
spiffy2_IO3  
spiffy2_INT  
SPIFFY 2 I/O 3  
SPIFFY 2 Interrupt  
MIPI-DBI Data/Command  
Indicator  
spiffy2_DCX  
pcm_in_o  
pcm_out_o  
pcm_bclk_o  
pcm_sync_o  
i2s_ssd  
PCM IN  
PCM Out  
PCM Bit Clock  
PCM Sync Output  
I2S Slave Serial Data  
I2S Slave Word Select  
I2S Slave Clock  
I2S Master Serial Data  
I2S Master Word Select  
I2S Master Clock  
i2s_sws  
i2s_sck  
i2s_msd  
i2s_mws  
i2s_mck  
Document Number: 002-26642 Rev. *F  
Page 22 of 47  
CYW20721  
9. Pin/Ball Maps  
9.1 40-Pin QFN Pin Map  
The CYW20721 40-pin QFN package is shown in Figure 6.  
Figure 6. 40-Pin QFN Pin Map  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
xtali_32k/  
P15  
P10  
P17  
LHL_VDDO  
P7  
P6  
P4  
P2  
P16  
xtalo_32K  
UART_  
CTS_N  
P28  
P29  
P0  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
UART_  
RTS_N  
3
UART_TXD  
UART_RXD  
P1  
4
CYW20721 5x5 QFN-40  
P34  
P38  
P26  
5
RSVD  
6
BT_VDDO  
HOST_  
WAKE  
7
P25  
8
XTALO  
P33  
9
XTAL1  
RST_N  
10  
PLLVDD1p2  
SR_  
VDDBAT3V  
RFLDO_  
VDDOOUT  
RFLDO_  
VDDIN  
DIGLDO_  
VDDIN  
BT_RF  
18  
IFVDD1p2 VCOVDD1p2  
SR_VLX  
12  
PAVDD  
17  
JTAG_SEL  
11  
13  
14  
15  
16  
19  
20  
Document Number: 002-26642 Rev. *F  
Page 23 of 47  
CYW20721  
9.2 WLCSP Ball Map  
The CYW20721 WLCSP package is shown in Figure 7.  
Figure 7. WLCSP Ball Map  
14  
28  
42  
55  
66  
73  
83  
91  
98  
103  
13  
27  
41  
54  
65  
72  
82  
90  
97  
102  
12  
26  
40  
53  
64  
71  
81  
89  
96  
101  
11  
25  
39  
52  
63  
70  
80  
88  
95  
100  
10  
24  
38  
51  
9
8
7
6
5
4
3
2
1
23  
37  
50  
62  
69  
22  
36  
49  
61  
21  
35  
48  
60  
20  
34  
19  
33  
47  
18  
32  
46  
59  
17  
31  
45  
58  
16  
30  
44  
57  
68  
77  
86  
15  
29  
43  
56  
67  
76  
85  
74  
79  
78  
87  
75  
84  
92  
94  
93  
99  
105  
104  
106  
107  
109  
108  
113  
120  
129  
110  
114  
122  
131  
112  
128  
111  
127  
115  
116  
118  
117  
123  
119  
125  
121  
130  
124  
126  
132  
134  
133  
Notes  
7. Figure 7 shows the bottom view of the WLCSP package (Bumps facing up).  
8. See Table 4 and Table 8 and for additional WLCSP information.  
9. Table 8 shows the package view from the bottom (bumps facing up).  
10. Coordinate origin (0, 0) is at the center of the WLCSP package with the bumps facing up.  
Document Number: 002-26642 Rev. *F  
Page 24 of 47  
CYW20721  
Table 8. CYW20721 WLCSP Bump Coordinates  
Bump#  
1
NET_NAME  
X-COORD (μm)  
1232.28  
1032.28  
832.28  
632.28  
432.28  
232.29  
32.29  
Y-COORD (μm)  
BT_VDDO  
BT_VDDC  
1356.88  
1356.88  
1356.88  
1356.88  
1356.88  
1356.88  
1356.88  
1356.88  
1356.88  
1356.88  
1356.88  
1356.88  
1356.88  
1356.88  
1156.88  
1156.88  
1156.88  
1156.88  
1156.88  
1156.88  
1156.88  
1156.88  
1156.88  
1156.88  
1156.88  
1156.88  
1156.88  
1156.88  
956.88  
2
3
Reserved - Do not connect  
Micn  
4
5
ADC_avddBAT  
xtali_32K  
P15  
6
7
8
VDDO_0  
VDDO_0  
VSSO_0  
-167.7  
9
-367.7  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
-567.7  
VDDO_0  
P20  
-767.7  
-967.69  
-1167.69  
-1367.69  
1232.28  
1032.28  
832.28  
632.28  
432.28  
232.29  
32.29  
VSSO_0  
VDDO_0  
BT_UART_CTS_N  
Reserved, Connect to GND  
ADC_AVSSC  
Micp  
Mic_avdd  
xtalo_32K  
Reserved  
P3  
-167.7  
P4  
-367.7  
P14  
-567.7  
VSSO_0  
-767.7  
VDDO_0  
P22  
-967.69  
-1167.69  
-1367.69  
1232.28  
1032.28  
832.28  
632.28  
432.28  
232.29  
32.29  
VSSO_0  
BT_VDDO  
BT_VSSC  
BT_UART_RTS_N  
Micbias  
956.88  
956.88  
956.88  
ADC_REFGND  
ADC_AVSS  
xtal_avss  
Reserved  
P5  
956.88  
956.88  
956.88  
-167.7  
956.88  
-367.7  
956.88  
P17  
-567.7  
956.88  
P19  
-767.7  
956.88  
P12  
-967.69  
-1167.69  
-1367.69  
1232.28  
1032.28  
832.28  
632.28  
956.88  
P28  
956.88  
VDDO_0  
BT_VDDC  
BT_GPIO_2  
BT_UART_RXD  
BT_UART_TXD  
956.88  
756.89  
756.89  
756.89  
756.89  
Document Number: 002-26642 Rev. *F  
Page 25 of 47  
CYW20721  
Table 8. CYW20721 WLCSP Bump Coordinates (Cont.)  
Bump#  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
NET_NAME  
X-COORD (μm)  
432.28  
Y-COORD (μm)  
Mic_avss  
P16  
756.89  
756.89  
756.89  
756.89  
756.89  
756.89  
756.89  
756.89  
756.89  
556.89  
556.89  
556.89  
556.89  
556.89  
556.89  
556.89  
556.89  
556.89  
556.89  
556.89  
356.89  
356.89  
356.89  
356.89  
356.89  
356.89  
356.89  
322.94  
156.89  
156.89  
156.89  
156.89  
156.89  
156.89  
156.89  
156.89  
156.89  
-43.1  
32.29  
Reserved  
P6  
-167.7  
-367.7  
P18  
-567.7  
P9  
-767.7  
P21  
-967.69  
-1167.69  
-1367.69  
1232.28  
1032.28  
832.28  
P1  
P36  
BT_VDDO  
BT_VSSC  
BT_VDDC  
BT_GPIO_3  
P2  
632.28  
32.29  
Reserved  
P7  
-167.7  
-367.7  
P10  
-767.7  
P23  
-967.69  
-1167.69  
-1367.69  
1232.28  
1032.28  
-367.7  
P35  
VDDO_0  
BT_TM1  
BT_CLK_REQ  
P8  
P11  
-767.7  
P13  
-967.69  
-1167.69  
-1367.69  
401.88  
VSSO_0  
P31  
BT_VDDC  
BT_VSSC  
BT_HOST_WAKE  
Reserved  
BT_GPIO_5  
BT_GPIO_4  
P29  
1432.27  
1232.28  
1032.28  
832.28  
632.28  
-767.7  
P34  
-967.69  
-1167.69  
-1367.69  
1432.27  
1232.28  
1032.28  
832.28  
P39  
P26  
Reserved  
Reserved  
BT_DEV_WAKE  
BT_VSSC  
P37  
-43.1  
-43.1  
-43.1  
-767.7  
-43.1  
P38  
-967.69  
-1167.69  
-1367.69  
1432.27  
-43.1  
P24  
-43.1  
VDDO_0  
-43.1  
Reserved, Connect to GND  
-243.09  
Document Number: 002-26642 Rev. *F  
Page 26 of 47  
CYW20721  
Table 8. CYW20721 WLCSP Bump Coordinates (Cont.)  
Bump#  
93  
NET_NAME  
X-COORD (μm)  
-367.7  
Y-COORD (μm)  
P0  
-243.09  
-243.09  
-243.09  
-243.09  
-243.09  
-243.09  
-435.87  
-443.09  
-443.09  
-443.09  
-443.09  
-597.97  
-597.97  
-797.97  
-814.63  
-819  
94  
P27  
-567.7  
95  
P30  
-767.7  
96  
VSSO_0  
P25  
-967.69  
-1167.69  
-1367.69  
56.23  
97  
98  
P32  
99  
BT_VDDC  
P33  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
-767.7  
VSSO_0  
JTAG_SEL  
RST_N  
-967.69  
-1167.69  
-1367.69  
1462.79  
1262.79  
1262.79  
1462.79  
-1059.5  
-1259.5  
1062.79  
-659.5  
BT_XTALO  
BT_XTALI  
BT_PLLVDD1p2  
BT_PLLVSS  
Reserved  
PMU_DISABLE  
BT_IFVDD1p2  
-819  
-849.66  
-1018.99  
-1018.99  
-1018.99  
-1018.99  
-1035.5  
-1087.29  
-1128.6  
-1128.6  
-1212.28  
-1218.99  
-1218.99  
-1218.99  
-1153.5  
-1328.59  
-1412.28  
-1418.99  
-1418.99  
-1418.99  
-1418.99  
-1418.99  
-1418.99  
-1475  
RFLDO_VDDIN1P5  
VSSC  
-859.5  
PMU_AVSS  
PMU_AVSS  
BT_IFVSS  
-1059.5  
-1459.49  
1159.51  
756.99  
-234  
BT_PAVDD  
BT_VSSC  
BT_VSSC  
-433.99  
1472.59  
-1059.5  
-1259.5  
-1459.49  
994.94  
-34  
BT_VCOVSS  
VDDBAT3V  
SR_VLX  
Reserved  
BT_PAVSS  
BT_VSSC  
BT_VCOVDD1p2  
DIGLDO_VDDOUT  
DIGLDO_VDDIN1P5  
RFLDO_VDDOUT  
SR_VDDBAT3V  
SR_PVSS  
1472.59  
-459.5  
-659.5  
-859.5  
-1059.5  
-1259.5  
-1459.49  
988.31  
365.99  
165.99  
Reserved  
BT_RF  
BT_VSSC  
-1479.96  
-1479.96  
BT_VSSC  
Document Number: 002-26642 Rev. *F  
Page 27 of 47  
CYW20721  
10. Specifications  
10.1 Electrical Characteristics  
Caution! The absolute maximum ratings in the following table indicate levels where permanent damage to the device can occur, even  
if these limits are exceeded for only a brief duration. Functional operation is not guaranteed under these conditions. Operation at  
absolute maximum conditions for extended periods can adversely affect long-term reliability of the device.  
Table 9. Absolute Maximum Ratings  
Requirement Parameter  
Maximum Junction Temperature  
Specifications  
Unit  
Min.  
Nom.  
Max.  
125  
°C  
V
VDD IO (BT_VDDO, VDDO_0)  
–0.5  
3.795  
VDD RF (BT_IFVDD1p2, BT_PLLVDD1p2,  
BT_VCOVDD1p2, BT_PAVDD)  
–0.5  
1.38  
V
VDDBAT3V/SR_VDDBAT3V  
DIGLDO_VDDIN1P5  
RFLDO_VDDIN1P5  
MIC_AVDD  
–0.5  
–0.5  
–0.5  
–0.5  
3.795  
1.65  
1.50  
3.795  
0
V
V
V
V
BT_RF  
dBm  
Table 10. ESD/Latch up  
Requirement Parameter  
Specifications  
Unit  
Min.  
–2000  
–500  
Nom.  
Max.  
2000  
500  
ESD Tolerance HBM  
ESD Tolerance CDM  
Latch up  
V
V
200  
mA  
Table 11. Environmental Ratings  
Characteristics  
Value  
Unit  
°C  
Operating Temperature  
Storage Temperature  
–30 to +85  
–40 to +150  
°C  
Note  
11. Lowest operating temperature for the 32 kHz xtal is -10°C.  
Table 12. Recommended Operating Conditions  
Parameter  
Specifications  
Unit  
Min.  
1.76  
1.76  
1.76  
Typ.  
3.0  
Max.  
3.63  
3.63  
3.63  
VDDIO (BT_VDDO, VDDO_0)  
VDDBAT3V/SR_VDDBAT3V  
MIC_AVDD  
V
V
V
3.0  
3.0  
Document Number: 002-26642 Rev. *F  
Page 28 of 47  
CYW20721  
10.1.1 Core Buck Regulator  
Table 13. Core Buck Regulator  
Parameter  
Input supply voltage DC, VBAT  
CBUCK output current  
Conditions  
Min.  
1.76  
Typ.  
3.0  
Max.  
3.63  
65  
Unit  
V
DC voltage range inclusive of disturbances  
Low Power Operation Mode (LPOM) only  
mA  
Programmable, 30mV/step  
default = 1.2 V (bits = 0000)  
Output voltage range  
1.2  
1.26  
1.5  
V
Output voltage DC accuracy  
Includes load and line regulation  
–4  
+4  
%
LPOM efficiency (high load)  
LPOM efficiency (low load)  
85  
80  
%
%
Input supply voltage ramp-up time  
0 to 3.3 V  
40  
μs  
Minimum capacitor value refers to residual capacitor value after taking into account part-to-part tolerance, DC-bias, temperature,  
and aging.  
Maximum capacitor value refers to the total capacitance seen at a node where the capacitor is connected. This also includes any  
decoupling capacitors connected at the load side, if any.  
10.1.2 Recommended External Component for Core Buck Regulator  
Table 14. Recommended External Component for Core Buck Regulator  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
2.2 μH ±25%, DCR=114 mΩ ±20%, ACR<1Ω  
(for frequency<1 MHz)  
External output inductor L  
2.2  
μH  
4.7μF±10%, 6.3V, 0402, X5R, MLCCcapacitor  
+board total-ESR < 20 mΩ  
External output capacitor, Cout  
External input capacitor, Cin  
4.7  
10  
μF  
μF  
For SR_VDDBAT pin  
Ceramic, X5R, 0402, ESR<30 mΩ at  
4 MHz, +/-20%, 6.3V, 10 μF  
10.1.3 Recommended External Components for RFLDO  
Table 15. Recommended External Components for RFLDO  
Parameter  
Conditions  
Total ESR (trace/cap): 5 m–240 mΩ  
Min.  
Typ.  
Max.  
Unit  
External output capacitor, Co  
0.5  
2.2  
4.7  
μF  
Document Number: 002-26642 Rev. *F  
Page 29 of 47  
CYW20721  
10.1.4 Digital I/O Characteristics  
Table 16. Digital I/O Characteristics  
Characteristics  
Input low voltage (VDDO = 3 V)  
Input high voltage (VDDO = 3 V)  
Input low voltage (VDDO = 1.8 V)  
Input high voltage (VDDO = 1.8 V)  
Output low voltage  
Symbol  
VIL  
Min.  
Typ.  
Max.  
Unit  
V
0.8  
VIH  
VIL  
2.4  
V
0.4  
V
VIH  
VOL  
VOH  
IIL  
1.4  
V
0.45  
V
Output high voltage  
VDDO – 0.45 V  
V
Input low current  
1.0  
1.0  
0.4  
8.0  
4.0  
8.0  
4.0  
μA  
μA  
pF  
mA  
mA  
mA  
mA  
Input high current  
IIH  
Input capacitance  
CIN  
IOL  
Output low current (VDDO = 3 V, VOL = 0.5 V)  
Output low current (VDDO = 1.8 V, VOL = 0.5 V)  
Output high current (VDDO = 3 V, VOH = 2.55 V)  
Output high current (VDDO = 1.8 V, VOH = 1.35 V)  
IOL  
IOH  
IOH  
10.1.5 ADC Electrical Characteristics  
Table 17. Electrical Characteristics  
Parameter  
Current consumption  
Power down current  
ADC Core Specification  
ADC reference voltage  
ADC sampling clock  
Absolute error  
Symbol  
ITOT  
Conditions/Comments  
Min.  
Typ.  
Max.  
Unit  
mA  
μA  
2
1
3
At room temperature  
VREF  
From BG with ±3% accuracy  
0.85  
12  
5
V
MHz  
%
Includes gain error, offset and  
distortion. Without factory calibration.  
Includes gain error, offset and  
distortion. After factory calibration.  
2
%
ENOB  
For audio application  
For static measurement  
For audio application  
For static measurement  
For audio application  
For audio application  
For static measurement  
For audio application  
For static measurement  
For audio application  
For static measurement  
12  
10  
13  
Bit  
ADC input full scale  
FS  
1.6  
1.8  
8
3.6  
Conversion rate  
Signal bandwidth  
16  
kHz  
Hz  
20  
8K  
DC  
Input impedance  
Startup time  
RIN  
10  
500  
KΩ  
10  
20  
ms  
μs  
MIC PGA Specifications  
MIC PGA gain range  
0
1
42  
dB  
dB  
MIC PGA gain step  
Note  
12. Conditional requirement for the measurement time of 10 μs. Relaxed with longer measurement time for each GPIO input channel.  
Document Number: 002-26642 Rev. *F  
Page 30 of 47  
CYW20721  
Table 17. Electrical Characteristics (Cont.)  
Parameter  
Symbol  
Conditions/Comments  
At 42 dB PGA gain A-weighted  
Includes part-to-part gain variation  
At 42 dB PGA gain A-weighted  
PGA and ADC, 100 Hz–4 kHz  
Min.  
Typ.  
Max.  
Unit  
μV  
PGA input referred noise  
MIC PGA gain error  
4
1
–1  
dB  
PGA input referred noise  
Passband gain flatness  
MIC Bias Specifications  
MIC bias output voltage  
MIC bias loading current  
MIC bias noise  
4
μV  
–0.5  
0.5  
dB  
At 3 V supply, 25°C, default settings  
2.4  
3
3
V
mA  
μV  
Refers to PGA input 20 Hz to  
8 kHz, A-weighted  
MIC bias PSRR  
ADC SNR  
at 1 kHz  
40  
dB  
dB  
A-weighted 0 dB PGA gain,  
Temperature= 25°C  
78  
ADC THD + N  
–3 dBFS input 0 dB PGA gain,  
Temperature= 25°C  
70  
dB  
GPIO input voltage  
GPIO source impedance[12]  
Always lower than avddBAT  
Resistance  
3.6  
1
V
kΩ  
pF  
Capacitance  
10  
Note  
12. Conditional requirement for the measurement time of 10 μs. Relaxed with longer measurement time for each GPIO input channel.  
10.1.6 Current Consumption  
In Table 18, current consumption measurements are taken at input of VBAT and VDDIO combined (LDOIN = VDDIO = 3.0V).  
Table 18. Current Consumption Bluetooth/LE  
Operational Mode  
Conditions  
Typ.  
1.1  
2.2  
5.9  
5.6  
61  
Unit  
mA  
mA  
mA  
mA  
μA  
HCI  
48 MHz with Pause  
48 MHz Without Pause  
Continuous RX  
RX  
TX  
Continuous TX - 0 dBm  
PDS  
HID-Off  
32 kHz XTAL and 16 KB Retention RAM on  
Unconnectable - 1 sec  
1.6  
14  
μA  
Advertising  
μA  
Connectable undirected - 1 sec  
Master - 1 sec  
17  
μA  
LE Connection - SDS  
16  
μA  
Slave - 1 sec  
17  
μA  
Page Scan - PDS  
Sniff - PDS  
Interlaced - R1  
122  
132  
138  
6.9  
μA  
500 ms Sniff, 1 attempt, 0 timeout - Master  
500 ms Sniff, 1 attempt, 0 timeout - Slave  
μA  
μA  
Bi-Directional Data Exchange Continuous DM5 or DH5 packets - Master/Slave  
mA  
Document Number: 002-26642 Rev. *F  
Page 31 of 47  
CYW20721  
10.2 RF Specifications  
Note Table 19 and Table 20 apply to single-ended industrial temperatures. Unused inputs are left open.  
Table 19. Receiver RF Specifications  
Parameter  
Frequency range  
Mode and Conditions  
Min.  
Typ.  
Max.  
Unit  
MHz  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
2402  
2480  
GFSK, 0.1% BER, 1 Mbps  
π/4-DQPSK, 0.01% BER, 2 Mbps  
8-DPSK, 0.01% BER, 3 Mbps  
GFSK, 0.1% BER, 1 Mbps  
π/4-DQPSK, 0.01% BER, 2 Mbps  
8-DPSK, 0.01% BER, 3 Mbps  
All data rates  
–92.0[13]  
–94.0[14]  
–88.0[14]  
–91.5[14]  
–93.5[14]  
–87.5[14]  
RX sensitivity (QFN)[13]  
RX sensitivity (WLCSP)[13]  
Maximum input  
–20  
GFSK Modulation  
C/I cochannel  
GFSK, 0.1% BER[13]  
GFSK, 0.1% BER[14]  
GFSK, 0.1% BER[15]  
GFSK, 0.1% BER[13]  
GFSK, 0.1% BER[15]  
11.0  
0
dB  
dB  
dB  
dB  
dB  
dB  
C/I 1 MHz adjacent channel  
C/I 2 MHz adjacent channel  
C/I 3 MHz adjacent channel  
C/I image channel  
–30.0  
–40.0  
–9.0  
–20.0  
C/I 1 MHz adjacent to image channel GFSK, 0.1% BER[15]  
QPSK Modulation  
C/I cochannel  
p/4-DQPSK, 0.1% BER[15]  
p/4-DQPSK, 0.1% BER[16]  
p/4-DQPSK, 0.1% BER[15]  
p/4-DQPSK, 0.1% BER[17]  
p/4-DQPSK, 0.1% BER[15]  
13.0  
0
dB  
dB  
dB  
dB  
dB  
dB  
C/I 1 MHz adjacent channel  
C/I 2 MHz adjacent channel  
C/I 3 MHz adjacent channel  
C/I image channel  
–30.0  
–40.0  
–9.0  
–20.0  
C/I 1 MHz adjacent to image channel p/4-DQPSK, 0.1% BER[15]  
8PSK Modulation  
C/I cochannel  
8-DPSK, 0.1% BER[15]  
8-DPSK, 0.1% BER[15]  
8-DPSK, 0.1% BER[15]  
8-DPSK, 0.1% BER[17]  
8-DPSK, 0.1% BER[15]  
21.0  
5.0  
dB  
dB  
dB  
dB  
dB  
dB  
C/I 1 MHz adjacent channel  
C/I 2 MHz adjacent channel  
C/I 3 MHz adjacent channel  
C/I image channel  
–25.0  
–33.0  
0
C/I 1 MHz adjacent to image channel 8-DPSK, 0.1% BER[15]  
13  
Out-of-Band Blocking Performance (CW)[16]  
30 MHz to 2000 MHz  
BDR GFSK 0.1% BER  
BDR GFSK 0.1% BER  
BDR GFSK 0.1% BER  
BDR GFSK 0.1% BER  
–10.0  
–27.0  
–27.0  
–10.0  
dBm  
dBm  
dBm  
dBm  
2000 MHz to 2399 MHz  
2498 MHz to 3000 MHz  
3000 MHz to 12.75 GHz  
Inter-modulation Performance[13]  
Notes  
13. Dirty TX is off.  
14. Up to 1dB of variation may potentially be seen from typical sensitivity specs due to the chip, board and associated variations.  
15. The receiver sensitivity is measured at BER of 0.1% on the device interface.  
16. Desired signal is 10 dB above the reference sensitivity level (defined as –70 dBm).  
17. Desired signal is 3 dB above the reference sensitivity level (defined as –70 dBm).  
18. Desired signal is -64 dBm Bluetooth-modulated signal, interferer 1 is –39 dBm sine wave at frequency f1, interferer 2 is –39 dBm Bluetooth modulated signal at  
frequency f2, f0 = 2*f1 – f2, and |f2 – f1| = n*1 MHz, where n is 3, 4, or 5. For the typical case, n = 4.  
Document Number: 002-26642 Rev. *F  
Page 32 of 47  
CYW20721  
Table 19. Receiver RF Specifications (Cont.)  
Parameter  
Mode and Conditions  
Min.  
Typ.  
Max.  
Unit  
Bluetooth, interferer signal level  
Spurious Emissions  
30 MHz to 1 GHz  
BDR GFSK 0.1% BER  
–39.0  
dBm  
–57.0  
–55.0  
dBm  
dBm  
1 GHz to 12.75 GHz  
Notes  
13. Dirty TX is off.  
14. Up to 1dB of variation may potentially be seen from typical sensitivity specs due to the chip, board and associated variations.  
15. The receiver sensitivity is measured at BER of 0.1% on the device interface.  
16. Desired signal is 10 dB above the reference sensitivity level (defined as –70 dBm).  
17. Desired signal is 3 dB above the reference sensitivity level (defined as –70 dBm).  
18. Desired signal is -64 dBm Bluetooth-modulated signal, interferer 1 is –39 dBm sine wave at frequency f1, interferer 2 is –39 dBm Bluetooth modulated signal at  
frequency f2, f0 = 2*f1 – f2, and |f2 – f1| = n*1 MHz, where n is 3, 4, or 5. For the typical case, n = 4.  
Table 20. Transmitter RF Specifications  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Transmitter Section  
Frequency range  
GFSK TX power  
EDR TX power  
2402  
5
2480  
MHz  
dBm  
dBm  
kHz  
0
20 dB bandwidth  
Adjacent Channel Power  
|M – N| = 2  
930  
1000  
–20  
–40  
dBm  
dBm  
|M – N| 3  
Out-of-Band Spurious Emission  
30 MHz to 1 GHz  
–36.0  
–30.0  
–47.0  
–47.0  
dBm  
dBm  
dBm  
dBm  
1 GHz to 12.75 GHz  
1.8 GHz to 1.9 GHz  
5.15 GHz to 5.3 GHz  
LO Performance  
Initial carrier frequency tolerance  
Frequency Drift  
–75  
+75  
kHz  
DH1 packet  
–25  
–40  
–40  
–20  
+25  
+40  
+40  
20  
kHz  
kHz  
DH3 packet  
DH5 packet  
kHz  
Drift rate  
kHz/50 µs  
Frequency Deviation  
Average deviation in payload (sequence used is 00001111)  
Maximum deviation in payload (sequence used is 10101010)  
Channel spacing  
140  
115  
1
175  
kHz  
kHz  
MHz  
Modulation Accuracy  
p/4-DQPSK frequency stability  
p/4-DQPSK RMS DEVM  
p/4-QPSK Peak DEVM  
p/4-DQPSK 99% DEVM  
–10  
10  
20  
35  
30  
kHz  
%
%
%
Document Number: 002-26642 Rev. *F  
Page 33 of 47  
CYW20721  
Table 20. Transmitter RF Specifications (Cont.)  
Parameter  
8-DPSK frequency stability  
8-DPSK RMS DEVM  
Min.  
–10  
Typ.  
Max.  
Unit  
kHz  
%
10  
13  
25  
20  
8-DPSK Peak DEVM  
%
8-DPSK 99% DEVM  
%
In-Band Spurious Emissions  
1.0 MHz < |M – N| < 1.5 MHz  
1.5 MHz < |M – N| < 2.5 MHz  
|M – N| > 2.5 MHz  
–26  
–20  
–40  
dBc  
dBm  
dBm  
Table 21. Bluetooth LE RF Specifications  
Parameter  
Frequency range  
RX sensitivity (QFN)[19]  
Conditions  
Min.  
Typ.  
Max.  
Unit  
MHz  
dBm  
dBm  
dBm  
kHz  
%
N/A  
2402  
–95.5[20]  
–94.5[20]  
5.5  
2480  
LE GFSK, 0.1% BER, 1 Mbps  
RX sensitivity (WLCSP)[19] LE GFSK, 0.1% BER, 1 Mbps  
TX power N/A  
Mod Char: Delta F1 average N/A  
Mod Char: Delta F2 max[20] N/A  
225  
99.9  
0.8  
255  
275  
Mod Char: Ratio  
N/A  
0.95  
%
Notes  
19. Dirty Tx is Off.  
20. Up to 1dB of variation may potentially be seen from typical sensitivity specs due to the chip, board and associated variations.  
21. At least 99.9% of all delta F2 max frequency values recorded over 10 packets must be greater than 185 kHz.  
Table 22. BLE2M RF Specifications  
Parameter  
Frequency range  
RX sensitivity[22]  
Conditions  
Min.  
2402  
Typ.  
Max.  
2480  
Unit  
MHz  
dBm  
dBm  
kHz  
N/A  
255 Packets  
N/A  
–90.5  
5.5  
500  
TX power  
Mod char: Delta F1 average  
Mod char: Delta F2 max  
Mod char: Ratio  
Frequency drift  
N/A  
450  
370  
0.8  
–50  
–20  
550  
N/A  
kHz  
N/A  
%
N/A  
50  
20  
kHz  
Drift rate  
N/A  
kHz/50μs  
Note  
22. Dirty Tx is Off.  
Table 23. CYW20721 GPS and GLONASS Band Spurious Emission  
Parameter Conditions  
1570-1580 MHz  
1592-1610 MHz  
Min.  
Typ.  
–160  
–159  
Max.  
Unit  
GPS  
dBm/Hz  
dBm/Hz  
GLONASS  
Document Number: 002-26642 Rev. *F  
Page 34 of 47  
CYW20721  
10.3 Timing and AC Characteristics  
In this section, use the numbers listed in the Reference column of each table to interpret the following timing diagrams.  
10.3.1 UART Timing  
Table 24. UART Timing Specifications  
Reference  
Characteristics  
Min.  
Typ.  
Max.  
1.50  
0.67  
1.33  
Unit  
1
2
3
Delay time, UART_CTS_N low to UART_TXD valid  
Setup time, UART_CTS_N high before midpoint of stop bit  
Delay time, midpoint of stop bit to UART_RTS_N HIGH  
Bit periods  
Bit periods  
Bit periods  
Figure 8. UART Timing  
UART_CTS_N  
2
1
UART_TXD  
Midpoint of STO P bit  
Midpoint of STO P bit  
UART_RXD  
3
UART_RTS_N  
Document Number: 002-26642 Rev. *F  
Page 35 of 47  
CYW20721  
10.3.2 SPI Timing  
The SPI interface can be clocked from 1 to 12 MHz and 24 MHz.  
Table 25 and Figure 9 show the timing requirements when operating in SPI Mode 0 and 2.  
Table 25. SPI Mode 0 and 2  
Reference  
Characteristics  
Time from master assert SPI_CSN to first clock edge  
Hold time for MOSI data lines  
Min.  
45  
Max.  
Unit  
ns  
1
2
3
4
5
½ SCK  
100  
12  
ns  
Time from last sample on MOSI/MISO to slave deassert SPI_INT  
Time from slave deassert SPI_INT to master deassert SPI_CSN  
Idle time between subsequent SPI transactions  
0
ns  
0
ns  
1 SCK  
ns  
Figure 9. SPI Timing, Mode 0 and 2  
5
SPI_CSN  
SPI_INT  
(DirectWrite)  
SPI_INT  
(DirectRead)  
1
SPI_CLK  
(Mode 0)  
SPI_CLK  
(Mode 2)  
2
First Bit  
Second Bit  
Second Bit  
Last bit  
Last bit  
SPI_MOSI  
SPI_MISO  
First Bit  
Not Driven  
Not Driven  
Table 26 and Figure 10 show the timing requirements when operating in SPI Mode 0 and 2.  
Table 26. SPI Mode 1 and 3  
Reference  
Characteristics  
Time from master assert SPI_CSN to first clock edge  
Hold time for MOSI data lines  
Min.  
45  
Max.  
Unit  
ns  
1
2
3
4
5
½ SCK  
100  
12  
ns  
Time from last sample on MOSI/MISO to slave deassert SPI_INT  
Time from slave deassert SPI_INT to master deassert SPI_CSN  
Idle time between subsequent SPI transactions  
0
ns  
0
ns  
1 SCK  
ns  
Document Number: 002-26642 Rev. *F  
Page 36 of 47  
CYW20721  
Figure 10. SPI Timing, Mode 1 and 3  
SPI_CSN  
5
SPI_INT  
(DirectWrite)  
3
4
SPI_INT  
(DirectRead)  
SPI_CLK  
(Mode 1)  
1
SPI_CLK  
(Mode 3)  
2
Invalid bit  
Invalid bit  
First bit  
Last bit  
Last bit  
SPI_MOSI  
SPI_MISO  
Not Driven  
Not Driven  
First bit  
10.3.3 I2C Compatible Interface Timing  
The specifications in Table 27 references Figure 11.  
Table 27. I2C Compatible Interface Timing Specifications (up to 1 MHz)  
Reference  
Characteristics  
Min.  
Max.  
Unit  
1
Clock frequency  
100  
400  
800  
1000  
kHz  
2
3
START condition setup time  
START condition hold time  
Clock low time  
650  
280  
650  
280  
0
ns  
4
5
Clock high time  
6
Data input hold time[23]  
Data input setup time  
STOP condition setup time  
Output valid from clock  
Bus free time[24]  
7
100  
280  
8
9
400  
10  
650  
Notes  
23. As a transmitter, 125 ns of delay is provided to bridge the undefined region of the falling edge of SCL to avoid unintended generation of START or STOP conditions.  
24. Time that the CBUS must be free before a new transaction can start.  
Document Number: 002-26642 Rev. *F  
Page 37 of 47  
CYW20721  
Figure 11. I2C Interface Timing Diagram  
1
5
SCL  
2
8
6
4
3
7
SDA  
IN  
10  
9
SDA  
OUT  
Table 28. Timing for I2S Transmitters and Receivers  
Transmitter  
Lower Limit Upper Limit  
Min. Max. Min. Max.  
Ttr  
Master Mode: Clock generated by transmitter or receiver  
Receiver  
Lower Limit  
Min. Max.  
Tr  
Upper Limit  
Notes  
Min.  
Max.  
[25]  
Clock Period T  
[26]  
[26]  
HIGH tHC  
LOWtLC  
0.35Ttr  
0.35Ttr  
0.35Ttr  
0.35Ttr  
Slave Mode: Clock accepted by transmitter or receiver  
[27]  
[27]  
[28]  
HIGH tHC  
0.35Ttr  
0.35Ttr  
0.35Ttr  
0.35Ttr  
LOW tLC  
Rise time tRC  
0.15Ttr  
Transmitter  
Delay tdtr  
[29]  
[28]  
0
0.8T  
Hold time thtr  
Receiver  
[30]  
[30]  
Setup time tsr  
0.2Ttr  
0.2Ttr  
Hold time thr  
Notes  
25. The system clock period T must be greater than T and T because both the transmitter and receiver have to be able to handle the data transfer rate.  
tr  
r
26. At all data rates in master mode, the transmitter or receiver generates a clock signal with a fixed mark/space ratio. For this reason, t and t are specified with  
HC  
LC  
respect to T.  
27. In slave mode, the transmitter and receiver need a clock signal with minimum HIGH and LOW periods so that they can detect the signal. So long as the minimum  
periods are greater than 0.35T , any clock that meets the requirements can be used.  
r
28. Because the delay (t ) and the maximum transmitter speed (defined by T ) are related, a fast transmitter driven by a slow clock edge can result in t not exceeding  
dtr  
tr  
dtr  
t
which means t becomes zero or negative. Therefore, the transmitter has to guarantee that t zero, so long as the clock rise-time t is not more than t  
,
RC  
htr  
htr  
RC  
RCmax  
where t  
is not less than 0.15T  
RCmax  
tr  
29. To allow data to be clocked out on a falling edge, the delay is specified with respect to the rising edge of the clock signal and T, always giving the receiver sufficient  
setup time.  
30. The data setup and hold time must not be less than the specified receiver setup and hold time.  
Document Number: 002-26642 Rev. *F  
Page 38 of 47  
CYW20721  
Figure 12. I2S Transmitter Timing  
T
tRC  
*
tLC > 0.35T  
tHC > 0.35T  
VH = 2.0V  
VL = 0.8V  
SCK  
thtr > 0  
totr < 0.8T  
SD and WS  
T = Clock period  
Ttr = Minimum allowed clock period for transmitter  
T = Ttr  
* tRC is only relevant for transmitters in slave mode.  
Figure 13. I2S Receiver Timing  
T
tLC > 0.35T  
tHC > 0.35  
VH = 2.0V  
VL = 0.8V  
SCK  
tsr > 0.2T  
thr > 0  
SD and WS  
T = Clock period  
Tr = Minimum allowed clock period for transmitter  
T > Tr  
Document Number: 002-26642 Rev. *F  
Page 39 of 47  
CYW20721  
11. Mechanical Information  
11.1 40-Pin QFN Package  
Figure 14. CYW20721 5.0 mm x 5.0 mm 40-Pin QFN Package  
002-13583 *A  
Document Number: 002-26642 Rev. *F  
Page 40 of 47  
CYW20721  
11.2 WLCSP Package  
Figure 15. CYW20721 WLCSP Package  
6
5
NOTES:  
DIMENSIONS  
NOM.  
SYMBOL  
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
MAX.  
MIN.  
2. SOLDER BALL POSITION DESIGNATION PER JEP95, SECTION 3, SPP-020.  
A
0.33  
-
-
-
3. "e" REPRESENTS THE SOLDER BALL GRID PITCH.  
A1  
D
0.075  
-
N IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS.  
4.  
5.  
3.22 BSC  
E
3.31 BSC  
2.84 BSC  
2.84 BSC  
134  
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A  
PLANE PARALLEL TO DATUM C.  
D1  
E1  
N
BUMP #1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK,  
METALIZED MARK, INDENTATION OR OTHER MEANS.  
6.  
0.100  
0.115  
0.130  
b
7. JEDEC SPECIFICATION NO. REF. : N/A.  
002-16658 *A  
Document Number: 002-26642 Rev. *F  
Page 41 of 47  
CYW20721  
11.3 WLCSP Package Keep-out  
Figure 16 shows the top view of the WLCSP package (Bumps facing down).  
Figure 16. CYW20721YB2 WLCSP Keep-out Model  
3310.0000  
1
2
3
4
5
6
7
8
9 10 11 12 13 14  
15 16 17 18 19 20 21 22 23 24 25 26 27 28  
29 30 31 32 33 34 35 36 37 38 39 40 41 42  
43 44 45 46 47  
56 57 58 59  
48 49 50 51 52 53 54 55  
60 61 62  
69  
63 64 65 66  
70 71 72 73  
80 81 82 83  
88 89 90 91  
67 68  
75 76 77 78 79  
84 85 86 87  
92  
74  
3220.0000  
93 94 95 96 97 98  
100101102103  
99  
104105  
106  
107  
108109  
110  
115  
Bump Origin  
111112113  
114  
120121122  
126127128129130131  
116  
117118  
123  
119  
125  
124  
132  
133134  
Routing Keep-Out  
11.4 Tape Reel and Packaging Specifications  
Table 29. CYW20721 Tape Reel Specifications  
Parameter  
Quantity per reel  
Reel diameter  
Value  
5000  
13 inches  
4 inches  
12 mm  
Hub diameter  
Tape width  
Tape pitch  
8 mm  
The top-left corner of the CYW20721 package is situated near the sprocket holes, as shown in Figure 17.  
Figure 17. Pin 1 Orientation  
Pin 1: Top left corner of package toward sprocket holes  
Document Number: 002-26642 Rev. *F  
Page 42 of 47  
CYW20721  
12. Ordering Information  
Table 30. Ordering Information  
Part Number  
CYW20721B2KWB9G  
CYW20721B2KUMLG  
Package  
Ambient Operating Temperature  
3.2 3.1 134-Ball WLCSP  
5 5 40-pin QFN  
–30°C to 85°C  
–30°C to 85°C  
13. Acronyms  
Table 31. Acronyms Used in this Document (Cont.)  
Term Description  
PLL phase locked loop  
Table 31. Acronyms Used in this Document  
Term  
AFH  
Description  
adaptive frequency hopping  
Attribute Protocol  
PMU  
POR  
PRBS  
PWM  
QFN  
QoS  
power management unit  
power-on reset  
ATT  
BBC  
BDR  
BR  
Bluetooth Baseband Core  
basic data rate  
Pseudo Random Binary Sequence  
pulse width modulation  
quad flat no-lead  
basic data rate  
BQS  
CRC  
ED  
Bluetooth Qualification Body  
cyclic redundancy check  
erroneous data  
quality of service  
RAM  
random access memory  
A resistor-capacitor oscillator is a circuit  
composed of an amplifier, which provides the  
output signal, and a resistor-capacitor network,  
which controls the frequency of the signal.  
EIR  
extended inquiry response  
encryption pause resume  
forward error correction  
floating point unit  
RC oscillator  
EPR  
FEC  
FPU  
GATT  
GAP  
GFSK  
GPIO  
HCI  
RF  
radio frequency  
ROM  
RX/TX  
SCO  
SDP  
read-only memory  
Generic Attribute Profile  
generic access profile  
Gaussian Frequency Shift Keying  
general-purpose I/O  
host control interface  
intermediate frequency  
Joint Test Action Group  
Logical Link Control and Adaptation Protocol  
link control unit  
receive/transmit  
synchronous connection-oriented  
Service Discovery Protocol  
Shut Down Sleep  
SDS  
SPI  
serial peripheral interface  
serial peripheral interface fully functional  
secure simple pairing  
IF  
SPIFFY  
SSP  
JTAG  
L2CAP  
LCU  
LDO  
LE  
SSR  
sniff subrating  
SWD  
TSSI  
UART  
WLCSP  
serial wire debug  
low drop-out  
transmit signal strength indicator  
universal asynchronous receiver/transmitter  
wafer level chip scale package  
low energy  
LM  
Link Manager  
LO  
local oscillator  
LPO  
LSTO  
PA  
low power oscillator  
link supervision time out  
power amplifier  
PBF  
PDM  
PDS  
packet boundary flag  
pulse density modulation  
Power down sleep  
Document Number: 002-26642 Rev. *F  
Page 43 of 47  
CYW20721  
14. Document Conventions  
14.1 Units of Measure  
Table 32. Units of Measure  
Symbol  
°C  
Unit of Measure  
degrees Celsius  
decibel  
dB  
dBi  
dBm  
GHz  
Hz  
decibels relative to isotropic  
decibel-milliwatts  
gigahertz  
hertz  
KB  
kHz  
k  
1024 bytes  
kilohertz  
kilo ohm  
kV  
kilovolt  
mA  
Mbps  
MHz  
M  
mm  
Msps  
mV  
µA  
milliamperes  
megabits per second  
megahertz  
mega-ohm  
millimeters  
megasamples per second  
millivolt  
microampere  
microfarad  
micrometers  
microsecond  
microvolt  
µF  
µm  
µs  
µV  
µW  
mA  
m  
ms  
mV  
nA  
microwatt  
milliampere  
milliohm  
millisecond  
millivolt  
nanoampere  
nanosecond  
ohm  
ns  
pF  
picofarad  
ppm  
ps  
parts per million  
picosecond  
second  
s
sps  
V
samples per second  
volt  
Document Number: 002-26642 Rev. *F  
Page 44 of 47  
CYW20721  
15. Document History Page  
Document Title: CYW20721, Enhanced Low Power, Bluetooth LE Bluetooth 5.1 SOC for Audio  
Document Number: 002-26642  
Submission  
Revision  
ECN  
Description of Change  
Date  
Removed “Preliminary” status.  
Updated Table 4.  
*F  
7655810  
02/14/2022  
Document Number: 002-26642 Rev. *F  
Page 46 of 47  
CYW20721  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
Arm® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU  
Automotive  
Cypress Developer Community  
Clocks & Buffers  
Interface  
Community | Code Examples | Projects | Video | Blogs |  
Training | Components  
Internet of Things  
Memory  
Technical Support  
cypress.com/memory  
cypress.com/mcu  
cypress.com/support  
Microcontrollers  
PSoC  
cypress.com/psoc  
cypress.com/pmic  
cypress.com/touch  
cypress.com/usb  
Power Management ICs  
Touch Sensing  
USB Controllers  
Wireless Connectivity  
cypress.com/wireless  
47m  
© Cypress Semiconductor Corporation, 2019-2022. This document is the property of Cypress Semiconductor Corporation, an Infineon Technologies company, and its affiliates (“Cypress”). This  
document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and  
other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights,  
trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the  
Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in  
source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form  
externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are  
infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction,  
modification, translation, or compilation of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing  
device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such  
as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING  
CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively,  
“Security Breach”). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security  
Breach. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the  
extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of  
any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes.  
It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. “High-Risk  
Device” means any device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and  
other medical devices. “Critical Component” means any component of a High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the  
High-Risk Device, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from  
any use of a Cypress product as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, including its affiliates, and its directors, officers, employees, agents, distributors,  
and assigns harmless from and against all claims, costs, damages, and expenses, arising out of any claim, including claims for product liability, personal injury or death, or property damage arising  
from any use of a Cypress product as a Critical Component in a High-Risk Device. Cypress products are not intended or authorized for use as a Critical Component in any High-Risk Device except to  
the limited extent that (i) Cypress’s published data sheet for the product explicitly states Cypress has qualified the product for use in a specific High-Risk Device, or (ii) Cypress has given you advance  
written authorization to use the product as a Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement.  
Cypress, the Cypress logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, Traveo, WICED, and ModusToolbox are trademarks or registered trademarks of Cypress or a subsidiary of  
Cypress in the United States or in other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 002-26642 Rev. *F  
Revised February 14, 2022  
Page 47 of 47  

相关型号:

CYW20730

Single-Chip Bluetooth Transceiver for Wireless Input Devices
CYPRESS

CYW20730A1KFBG

Single-Chip Bluetooth Transceiver for Wireless Input Devices
CYPRESS

CYW20730A1KFBGT

Single-Chip Bluetooth Transceiver for Wireless Input Devices
CYPRESS

CYW20730A1KML2G

Single-Chip Bluetooth Transceiver for Wireless Input Devices
CYPRESS

CYW20730A1KML2GT

Single-Chip Bluetooth Transceiver for Wireless Input Devices
CYPRESS

CYW20730A1KMLG

Single-Chip Bluetooth Transceiver for Wireless Input Devices
CYPRESS

CYW20730A1KMLGT

Single-Chip Bluetooth Transceiver for Wireless Input Devices
CYPRESS

CYW20730A2KFBG

Single-Chip Bluetooth Transceiver for Wireless Input Devices
CYPRESS

CYW20730A2KFBGT

Single-Chip Bluetooth Transceiver for Wireless Input Devices
CYPRESS

CYW20730A2KML2G

Single-Chip Bluetooth Transceiver for Wireless Input Devices
CYPRESS

CYW20730A2KML2GT

Single-Chip Bluetooth Transceiver for Wireless Input Devices
CYPRESS

CYW20732

Bluetooth Low-Energy (BLE)-compliant
CYPRESS