EL7516IY-T13 [INFINEON]

600kHz/1.2MHz PWM Step-Up Regulator; 600kHz的/ 1.2MHz的PWM升压调节器
EL7516IY-T13
型号: EL7516IY-T13
厂家: Infineon    Infineon
描述:

600kHz/1.2MHz PWM Step-Up Regulator
600kHz的/ 1.2MHz的PWM升压调节器

调节器 开关 光电二极管
文件: 总11页 (文件大小:303K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EL7516  
®
Data Sheet  
October 27, 2004  
FN7333.3  
600kHz/1.2MHz PWM Step-Up Regulator  
Features  
The EL7516 is a high frequency, high efficiency step-up  
voltage regulator operated at constant frequency PWM  
mode. With an internal 1.5A, 200mMOSFET, it can deliver  
up to 600mA output current at over 90% efficiency. The  
selectable 600kHz and 1.2MHz allows smaller inductors and  
faster transient response. An external compensation pin  
gives the user greater flexibility in setting frequency  
compensation allowing the use of low ESR Ceramic output  
capacitors.  
• > 90% efficiency  
• 1.6A, 200mpower MOSFET  
• V > 2.5V  
IN  
• 600kHz/1.2MHz switching frequency selection  
• Adjustable soft-start  
• Internal thermal protection  
• 1.1mm max height 8-pin MSOP package  
• Pb-free available (RoHS compliant)  
When shut down, it draws < 10µA of current and can operate  
down to 2.5V input supply. These features along with  
1.2MHz switching frequency makes it an ideal device for  
portable equipment and TFT-LCD displays.  
Applications  
• TFT-LCD displays  
• DSL modems  
The EL7516 is available in an 8-pin MSOP package with a  
maximum height of 1.1mm. The device is specified for  
operation over the full -40°C to +85°C temperature range.  
• PCMCIA cards  
• Digital cameras  
• GSM/CDMA phones  
• Portable equipment  
• Handheld devices  
Pinout  
EL7516  
(8-PIN MSOP)  
TOP VIEW  
COMP  
FB  
SS  
1
2
3
4
8
7
6
5
Ordering Information  
FSEL  
VDD  
LX  
TAPE &  
SHDN  
GND  
PART NUMBER  
EL7516IY  
PACKAGE  
8-Pin MSOP  
8-Pin MSOP  
8-Pin MSOP  
REEL  
PKG. DWG. #  
MDP0043  
MDP0043  
MDP0043  
MDP0043  
-
7”  
13”  
-
EL7516IY-T7  
EL7516IY-T13  
EL7516IYZ  
(See Note)  
8-Pin MSOP  
(Pb-Free)  
EL7516IYZ-T7  
(See Note)  
8-Pin MSOP  
(Pb-Free)  
7”  
MDP0043  
MDP0043  
EL7516IYZ-T13  
(See Note)  
8-Pin MSOP  
(Pb-Free)  
13”  
NOTE: Intersil Pb-free products employ special Pb-free material sets;  
molding compounds/die attach materials and 100% matte tin plate  
termination finish, which are RoHS compliant and compatible with  
both SnPb and Pb-free soldering operations. Intersil Pb-free products  
are MSL classified at Pb-free peak reflow temperatures that meet or  
exceed the Pb-free requirements of IPC/JEDEC J STD-020C.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
1
Copyright © Intersil Americas Inc. 2002-2004. All Rights Reserved. Elantec is a registered trademark of Elantec Semiconductor, Inc.  
All other trademarks mentioned are the property of their respective owners.  
EL7516  
Absolute Maximum Ratings (T = 25°C)  
A
LX to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18V  
to GND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6V  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Operating Ambient Temperature . . . . . . . . . . . . . . . .-40°C to +85°C  
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . . +135°C  
V
DD  
COMP, FB, SHDN, SS, FSEL to GND . . . . . . -0.3V to (V  
+0.3V)  
DD  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
J
C
A
Electrical Specifications  
V
= 3.3V, V  
= 12V, I  
= 0mA, FSEL = GND, T = 25°C unless otherwise specified.  
IN  
OUT  
OUT A  
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
0.6  
MAX  
UNIT  
µA  
mA  
mA  
V
IQ1  
IQ2  
IQ3  
Quiescent Current - Shut-down  
Quiescent Current - Not Switching  
Quiescent Current - Switching  
Feedback Voltage  
SHDN = 0V  
SHDN = V , FB = 1.3V  
10  
0.7  
DD  
SHDN = V , FB = 1.0V  
DD  
1.3  
2
V
1.272  
1.294  
0.01  
1.309  
0.5  
FB  
I
Feedback Input Bias Current  
Start-Up Input Voltage Range  
Maximum Duty Cycle  
µA  
V
B-FB  
V
2.6  
84  
5.5  
DD  
D
-600kHz  
FSEL = 0V  
90  
90  
%
MAX  
MAX  
D
-1.2MHz Maximum Duty Cycle  
Current Limit - Max Peak Input Current  
FSEL = V  
84  
%
DD  
I
I
1.3  
1.5  
A
LIM  
SHDN  
Shut-down Input Bias Current  
Switch ON Resistance  
Switch Leakage Current  
Line Regulation  
SHDN = 0V  
= 2.7V, I = 1A  
0.01  
0.2  
0.1  
3
µA  
R
V
DS-ON  
DD  
VSW = 18V  
3V < V < 5.5V, V  
LX  
I
0.01  
0.1  
µA  
%
LX-LEAK  
V  
V  
/V  
OUT IN  
= 12V  
IN  
= 3.3V, V  
OUT  
/I  
OUT OUT  
Load Regulation  
V
= 12V, I = 30mA to 200mA  
6.7  
mV/A  
kHz  
kHz  
V
IN  
OUT  
O
F
F
Switching Frequency Accuracy  
Switching Frequency Accuracy  
SHDN, FSEL Input Low Level  
SHDN, FSEL Input High Level  
Error Amp Tranconductance  
Voltage Gain  
FSEL = 0V  
500  
620  
1250  
740  
1500  
0.5  
OSC1  
OSC2  
FSEL = V  
1000  
DD  
V
IL  
V
2.7  
90  
V
IH  
G
I = 5µA  
130  
350  
2.51  
2.30  
6
170  
1µ/Ω  
V/V  
V
M
A
V
V
V
V
V
UVLO On Threshold  
UVLO Off Threshold  
2.40  
2.20  
4
2.60  
2.40  
8
DD-ON  
DD  
DD  
V
DD-OFF  
I
Soft-start Charge Current  
µA  
V/A  
°C  
SS  
R
Current Sense Transresistance  
Over Temperature Protection  
0.08  
130  
CS  
OTP  
FN7333.3  
2
EL7516  
Block Diagram  
FSEL  
SHDN  
SS  
SHUTDOWN &  
START-UP  
CONTROL  
REFERENCE  
GENERATOR  
VDD  
OSCILLATOR  
LX  
PWM LOGIC  
CONTROLLER  
FET  
DRIVER  
COMPARATOR  
CURRENT  
SENSE  
GND  
FB  
GM  
AMPLIFIER  
COMP  
Pin Descriptions  
PIN NUMBER  
PIN NAME  
DESCRIPTION  
1
2
COMP  
FB  
Compensation pin. Output of the internal error amplifier. Capacitor and resistor from COMP pin to ground.  
Voltage feedback pin. Internal reference is 1.294V nominal. Connect a resistor divider from V  
1.294V (1 + R / R ). See Typical Application Circuit.  
. V  
OUT OUT  
=
1
2
3
4
5
6
7
SHDN  
GND  
LX  
Shutdown control pin. Pull SHDN low to turn off the device.  
Analog and power ground.  
Power switch pin. Connected to the drain of the internal power MOSFET.  
Analog power supply input pin.  
VDD  
FSEL  
Frequency select pin. When FSEL is set low, switching frequency is set to 620kHz. When connected to  
high or V , switching frequency is set to 1.25MHz.  
DD  
8
SS  
Soft-start control pin. Connect a capacitor to control the converter start-up.  
Typical Application Circuit  
1
2
3
4
COMP  
FB  
SS  
FSEL  
VDD  
LX  
8
7
6
5
R
3
C
3
R
85.2k  
1
3.9kΩ  
27nF  
C
R
5
2
4.7nF  
10kΩ  
SHDN  
GND  
2.7V TO 5.5V  
C
+
C
1
4
0.1µF 22µF  
10µH  
12V  
+
C
2
D
1
22µF  
FN7333.3  
3
EL7516  
Typical Performance Curves  
95  
90  
85  
80  
75  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
100  
200  
(mA)  
300  
400  
0
50  
100  
150  
200  
250  
300  
350  
I
I
(mA)  
OUT  
OUT  
FIGURE 1. EFFICIENCY - 3.3V V TO 12V V  
IN  
@ 1.3MHz  
FIGURE 2. LOAD REGULATION - 3.3V V TO 12V V  
IN  
OUT  
OUT  
OUT  
OUT  
@ 1.3MHz  
90  
85  
80  
75  
1
0.5  
0
-0.5  
-1  
0
100  
200  
(mA)  
300  
400  
0
50  
100  
150  
200  
250  
300  
350  
I
I
(mA)  
OUT  
OUT  
FIGURE 3. EFFICIENCY - 3.3V V TO 12V V  
IN  
@ 620kHz  
FIGURE 4. LOAD REGULATION - 3.3V V TO 12V V  
IN  
OUT  
@ 620kHz  
95  
90  
85  
80  
75  
70  
1
0.5  
0
-0.5  
-1  
0
100  
200  
300  
(mA)  
400  
500  
0
100  
200  
300  
(mA)  
400  
500  
I
I
OUT  
OUT  
FIGURE 5. EFFICIENCY - 3.3V V TO 9V V  
IN  
@ 1.2MHz  
FIGURE 6. LOAD REGULATION - 3.3V V TO 9V V  
IN  
OUT  
@ 1.2MHz  
FN7333.3  
4
EL7516  
Typical Performance Curves (Continued)  
90  
85  
80  
75  
1
0.6  
0.2  
-0.2  
-0.6  
-1  
0
100  
200  
300  
(mA)  
400  
500  
0
100  
200  
300  
(mA)  
400  
500  
I
I
OUT  
OUT  
FIGURE 7. EFFICIENCY - 3.3V V TO 9V V  
IN  
@ 600kHz  
FIGURE 8. LOAD REGULATION - 3.3V V TO 9V V  
IN  
OUT  
OUT  
@ 600kHz  
95  
90  
85  
80  
75  
0.8  
0.6  
0.4  
0.2  
1
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
100  
200  
300  
(mA)  
400  
500  
600  
0
100  
200  
300  
(mA)  
400  
500  
600  
I
I
OUT  
OUT  
FIGURE 9. EFFICIENCY - 5V V TO 12V V  
IN  
@ 1.2MHz  
FIGURE 10. LOAD REGULATION - 5V V TO 12V V  
IN  
OUT  
OUT  
@ 1.2MHz  
92  
90  
88  
86  
84  
0.8  
0.6  
0.4  
0.2  
1
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
100  
200  
300  
(mA)  
400  
500  
600  
0
100  
200  
300  
(mA)  
400  
500  
600  
I
I
OUT  
OUT  
FIGURE 11. EFFICIENCY - 5V V TO 12V V  
IN  
@ 600kHz  
FIGURE 12. LOAD REGULATION - 5V V TO 12V V  
IN  
OUT  
OUT  
@ 600kHz  
FN7333.3  
5
EL7516  
Typical Performance Curves (Continued)  
95  
90  
85  
80  
75  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
200  
400  
600  
(mA)  
800  
1K  
0
200  
400  
600  
(mA)  
800  
1K  
I
I
OUT  
OUT  
FIGURE 13. EFFICIENCY - 5V V TO 9V V  
IN  
@ 1.2MHz  
FIGURE 14. LOAD REGULATION - 5V V TO 9V V  
IN  
OUT  
OUT  
@ 1.2MHz  
0.2  
0.1  
V
=12V  
=80mA  
V
=8V  
OUT  
OUT  
I
I
=80mA  
OUT  
OUT  
0.1  
0
0.05  
0
1.2MHz  
1.2MHz  
600kHz  
600kHz  
-0.1  
-0.2  
-0.05  
-0.1  
2
3
4
5
6
2.5  
3.5  
4.5  
(V)  
5.5  
6.5  
V
(V)  
V
IN  
IN  
FIGURE 15. LINE REGULATION  
FIGURE 16. LINE REGULATION  
95  
90  
85  
80  
75  
70  
0.5  
0.3  
1.2MHz  
600kHz  
1.2MHz  
0.1  
-0.1  
-0.3  
-0.5  
600kHz  
10  
110  
210  
310  
(mA)  
410  
510  
610  
0
100  
200  
300  
(mA)  
400  
500  
600  
I
I
OUT  
OUT  
FIGURE 17. EFFICIENCY vs I  
- 3.3V TO 8V  
FIGURE 18. LOAD REGULATION - 3.3V TO 8V  
OUT  
FN7333.3  
6
EL7516  
Typical Performance Curves (Continued)  
94  
92  
90  
88  
1.29  
1.28  
1.27  
1.26  
1.25  
1.24  
1.23  
1.22  
1.21  
1.2  
1.2MHz  
86  
84  
82  
80  
78  
76  
600kHz  
800  
0
200  
400  
600  
1K  
1.2K  
2.5  
3
3.5  
4
4.5  
5
5.5  
I
(mA)  
V
(V)  
OUT  
IN  
FIGURE 19. EFFICIENCY vs I  
FIGURE 20. FREQUENCY (1.2MHz) vs V  
IN  
OUT  
670  
660  
650  
640  
630  
620  
610  
600  
93  
91  
89  
87  
85  
83  
81  
2.5  
3
3.5  
4
4.5  
5
5.5  
0
200  
400  
600  
(mA)  
800  
1K  
V
(V)  
I
OUT  
IN  
FIGURE 21. FREQUENCY (600kHz) vs V  
FIGURE 22. EFFICIENCY - 5V V TO 9V V  
IN  
@ 600kHz  
OUT  
IN  
0.4  
V
V
= 3.3V  
= 12V  
IN  
OUT  
= 50mA TO 300mA  
I
OUT  
0.2  
0
200mV/DIV  
-0.2  
-0.4  
0
200  
400  
600  
(mA)  
800  
1K  
0.1ms/DIV  
I
OUT  
FIGURE 23. LOAD REGULATION - 5V V TO 9V V  
IN  
FIGURE 24. TRANSIENT REPONSE - 600kHz  
OUT  
@ 600kHz  
FN7333.3  
7
EL7516  
Typical Performance Curves (Continued)  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
V
= 3.3V  
= 12V  
IN  
OUT  
= 50mA TO 300mA  
870mW  
I
OUT  
200mV/DIV  
0
25  
50  
75 85 100  
125  
0.1ms/DIV  
AMBIENT TEMPERATURE (°C)  
FIGURE 25. TRANSIENT RESPONSE - 1.2MHz  
FIGURE 26. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
486mW  
0
25  
50  
75 85 100  
125  
AMBIENT TEMPERATURE (°C)  
FIGURE 27. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE  
the boost converter operates in two cycles. During the first  
Applications Information  
cycle, as shown in Figure 29, the internal power FET turns  
on and the Schottky diode is reverse biased and cuts off the  
current flow to the output. The output current is supplied  
from the output capacitor. The voltage across the inductor is  
The EL7516 is a high frequency, high efficiency boost  
regulator operated at constant frequency PWM mode. The  
boost converter stores energy from an input voltage source  
and deliver it to a higher output voltage. The input voltage  
range is 2.5V to 5.5V and output voltage range is 5V to 18V.  
The switching frequency is selectable between 600KHz and  
1.2MHz allowing smaller inductors and faster transient  
response. An external compensation pin gives the user  
greater flexibility in setting output transient response and  
tighter load regulation. The converter soft-start characteristic  
V
and the inductor current ramps up in a rate of V / L, L  
IN  
IN  
is the inductance. The inductance is magnetized and energy  
is stored in the inductor. The change in inductor current is:  
V
IN  
---------  
I  
= T1 ×  
L1  
L
D
------------  
T1 =  
F
can also be controlled by external C capacitor. The SHDN  
SW  
SS  
pin allows the user to completely shut-down the device.  
D = Duty Cycle  
Boost Converter Operations  
I
OUT  
---------------  
V  
=
× ∆T  
Figure 28 shows a boost converter with all the key  
components. In steady state operating and continuous  
conduction mode where the inductor current is continuous,  
O
1
C
OUT  
FN7333.3  
8
EL7516  
During the second cycle, the power FET turns off and the  
Schottky diode is forward biased, Figure 30. The energy  
stored in the inductor is pumped to the output supplying  
output current and charging the output capacitor. The  
Schottky diode side of the inductor is clamp to a Schottky  
diode above the output voltage. So the voltage drop across  
L
D
V
V
OUT  
IN  
C
C
OUT  
IN  
EL7516  
the inductor is V - V  
. The change in inductor current  
IN  
OUT  
during the second cycle is:  
I
L
I  
L2  
V
V  
OUT  
L
T  
IN  
2
-------------------------------  
I = T2 ×  
L
V  
O
1 D  
-------------  
T2 =  
F
SW  
FIGURE 30. BOOST CONVERTER - CYCLE 2, POWER  
SWITCH OPEN  
For stable operation, the same amount of energy stored in  
the inductor must be taken out. The change in inductor  
current during the two cycles must be the same.  
Output Voltage  
An external feedback resistor divider is required to divide the  
output voltage down to the nominal 1.294V reference  
voltage. The current drawn by the resistor network should be  
limited to maintain the overall converter efficiency. The  
maximum value of the resistor network is limited by the  
feedback input bias current and the potential for noise being  
coupled into the feedback pin. A resistor network less than  
100K is recommended. The boost converter output voltage  
is determined by the relationship:  
I1 + I2 = 0  
V
V
V  
IN OUT  
D
1 D  
F
IN  
------------ --------- ------------- -------------------------------  
×
+
×
= 0  
F
L
L
SW  
SW  
V
1
OUT  
---------------  
-------------  
=
V
1 D  
IN  
R
L
D
1
------  
V
= V × 1 +  
OUT  
FB  
R
2
V
V
OUT  
IN  
C
C
OUT  
IN  
The nominal VFB voltage is 1.294V.  
EL7516  
Inductor Selection  
The inductor selection determines the output ripple voltage,  
transient response, output current capability, and efficiency.  
Its selection depends on the input voltage, output voltage,  
switching frequency, and maximum output current. For most  
applications, the inductance should be in the range of 2µH to  
33µH. The inductor maximum DC current specification must  
be greater than the peak inductor current required by the  
regulator. The peak inductor current can be calculated:  
FIGURE 28. BOOST CONVERTER  
L
V
V
OUT  
IN  
C
C
OUT  
IN  
EL7516  
I
× V  
V
× (V  
V  
)
IN  
OUT  
OUT  
IN  
OUT  
-----------------------------------  
----------------------------------------------------  
I
=
+ 1 2 ×  
L(PEAK)  
V
L × V  
× FREQ  
OUT  
IN  
I
L
I  
L1  
Output Capacitor  
T  
1
Low ESR capacitors should be used to minimized the output  
voltage ripple. Multilayer ceramic capacitors (X5R and X7R)  
are preferred for the output capacitors because of their lower  
ESR and small packages. Tantalum capacitors with higher  
ESR can also be used. The output ripple can be calculated  
as:  
V  
O
FIGURE 29. BOOST CONVERTER - CYCLE 1, POWER  
SWITCH CLOSED  
I
× D  
OUT  
---------------------------  
V  
=
+ I  
× ESR  
OUT  
O
F
× C  
O
SW  
FN7333.3  
9
EL7516  
For noise sensitive application, a 0.1µF placed in parallel  
with the larger output capacitor is recommended to reduce  
the switching noise coupled from the LX switching node.  
Shut-Down Control  
When shut-down in is pulled low, the EL7516 is shut-down  
reducing the supply current to <3µA.  
Schottky Diode  
Maximum Output Current  
In selecting the Schottky diode, the reverse break down  
voltage, forward current and forward voltage drop must be  
considered for optimum converter performance. The diode  
must be rated to handle 1.5A, the current limit of the  
EL7516. The breakdown voltage must exceed the maximum  
output voltage. Low forward voltage drop, low leakage  
current, and fast reverse recovery will help the converter to  
achieve the maximum efficiency.  
The MOSFET current limit is nominally 1.5A and guaranteed  
1.3A. This restricts the maximum output current I  
based on the following formula:  
OMAX  
I
= I  
+ (1 2 × ∆I )  
L-AVG L  
L
where:  
I = MOSFET current limit  
L
Input Capacitor  
I
= average inductor current  
L-AVG  
The value of the input capacitor depends the input and  
output voltages, the maximum output current, the inductor  
value and the noise allowed to put back on the input line. For  
most applications, a minimum 10µF is required. For  
applications that run close to the maximum output current  
limit, input capacitor in the range of 22µF to 47µF is  
recommended.  
I = inductor ripple current  
L
V
× [(V + V  
) V  
]
IN  
IN  
O
DIODE  
------------------------------------------------------------------------------  
=
I  
L
L × (V + V  
) × F  
S
O
DIODE  
V
= Schottky diode forward voltage, typically, 0.6V  
DIODE  
F
= switching frequency, 600KHz or 1.2MHz  
S
The EL7516 is powered from the V . To. High frequency  
IN  
0.1µF by-pass cap is recommended to be close to the V  
pin to reduce supply line noise and ensure stable operation.  
I
IN  
OUT  
-------------  
I
=
L-AVG  
1 D  
Loop Compensation  
D = MOSFET turn-on ratio:  
The EL7516 incorporates an transconductance amplifier in  
its feedback path to allow the user some adjustment on the  
transient response and better regulation. The EL7516 uses  
current mode control architecture which has a fast current  
sense loop and a slow voltage feedback loop. The fast  
current feedback loop does not require any compensation.  
The slow voltage loop must be compensated for stable  
operation. The compensation network is a series RC  
network from COMP pin to ground. The resistor sets the high  
frequency integrator gain for fast transient response and the  
capacitor sets the integrator zero to ensure loop stability. For  
most applications, the compensation resistor in the range of  
2K to 7.5K and the compensation capacitor in the range of  
3nF to 10nF.  
V
IN  
--------------------------------------------  
OUT  
D = 1 –  
V
+ V  
DIODE  
The following table gives typical maximum Iout values for  
1.2MHz switching frequency and 22µH inductor:  
TABLE 1.  
V
(V)  
V
(V)  
I
(mA)  
IN  
OUT  
OMAX  
2.5  
5
570  
2.5  
2.5  
3.3  
3.3  
3.3  
5
9
12  
5
325  
250  
750  
435  
330  
650  
490  
Soft-Start  
The soft-start is provided by an internal 6µA current source  
9
charges the external C , the peak MOSFET current is  
SS  
12  
9
limited by the voltage on the capacitor. This in turn controls  
the rising rate of the output voltage. The regulator goes  
through the start-up sequence as well after the SHDN pin is  
pulled to HI.  
5
12  
Thermal Performance  
The EL7516 uses a fused-lead package, which has a  
Frequency Selection  
The EL7516 switching frequency can be user selected to  
operate at either at constant 620kHz or 1.25MHz.  
reduced θ of 100°C/W on a four-layer board and 115°C/W  
JA  
on a two-layer board. Maximizing copper around the ground  
pins will improve the thermal performance.  
Connecting F  
pin to ground sets the PWM switching  
SEL  
frequency to 620kHz. When connect F  
high or V ,  
DD  
SEL  
This device also has internal thermal shut-down set at  
around 130°C to protect the component.  
switching frequency is set to 1.25MHz.  
FN7333.3  
10  
EL7516  
Layout Considerations  
To achieve highest efficiency, best regulation and most  
stable operation, a good printed circuit board layout is  
essential. It is strongly recommended that the demoboard  
layout to be followed as closely as possible. Use the  
following general guidelines when laying out the print circuit  
board:  
1. Place C as close to the V  
DD  
pin as possible. C is the  
4
4
supply bypass capacitor of the device.  
2. Keep the C ground, GND pin and C ground as close as  
1
2
possible.  
3. Keep the two high current paths a) from C through L , to  
1
1
the LX pin and GND and b) from C through L , D , and  
1
1
1
C as short as possible.  
2
4. High current traces should be short and as wide as  
possible.  
5. Place feedback resistor close to the FB pin to avoid noise  
pickup.  
6. Place the compensation network close to the COMP pin.  
The demo board is a good example of layout based on these  
principles; it is available upon request.  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7333.3  
11  

相关型号:

EL7516IY-T7

600kHz/1.2MHz PWM Step-Up Regulator
INFINEON

EL7516IY-T7

600kHz/1.2MHz PWM Step-Up Regulator
INTERSIL

EL7516IYZ

600kHz/1.2MHz PWM Step-Up Regulator
INFINEON

EL7516IYZ

600kHz/1.2MHz PWM Step-Up Regulator
INTERSIL

EL7516IYZ-T13

600kHz/1.2MHz PWM Step-Up Regulator
INFINEON

EL7516IYZ-T13

600kHz/1.2MHz PWM Step-Up Regulator
INTERSIL

EL7516IYZ-T7

600kHz/1.2MHz PWM Step-Up Regulator
INFINEON

EL7516IYZ-T7

600kHz/1.2MHz PWM Step-Up Regulator
INTERSIL

EL7516_06

600kHz/1.2MHz PWM Step-Up Regulator
INTERSIL

EL7520

4-Channel DC/DC Controller
INTERSIL

EL7520A

4-Channel DC/DC Controller
INTERSIL

EL7520AEL7520ILZ

4-Channel DC/DC Controller
INTERSIL