ERJ-3EKF2001V [INFINEON]

USER GUIDE FOR IR3898 EVALUATION BOARD; 用户指南IR3898评估板
ERJ-3EKF2001V
型号: ERJ-3EKF2001V
厂家: Infineon    Infineon
描述:

USER GUIDE FOR IR3898 EVALUATION BOARD
用户指南IR3898评估板

文件: 总17页 (文件大小:2992K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IRDC3898-P1V2  
TM  
SupIRBuck  
USER GUIDE FOR IR3898 EVALUATION BOARD  
1.2Vout  
DESCRIPTION  
Output over-current protection function is  
implemented by sensing the voltage developed  
across the on-resistance of the synchronous  
Mosfet for optimum cost and performance and  
the current limit is thermally compensated.  
The IR3898 is  
converter, providing  
performance and flexible solution in a small  
4mm X 5 mm Power QFN package.  
a
synchronous buck  
compact, high  
a
Key features offered by the IR3898 include  
internal Digital Soft Start/Soft Stop, precision  
This user guide contains the schematic and bill  
of materials for the IR3898 evaluation board.  
The guide describes operation and use of the  
evaluation board itself. Detailed application  
information for IR3898 is available in the  
IR3898 data sheet.  
0.5Vreference voltage, Power Good,  
thermal protection, programmable switching  
frequency, Enable input, input under-voltage  
lockout for proper start-up, enhanced line/  
load regulation with feed forward, external  
frequency synchronization with smooth  
clocking, internal LDO and pre-bias start-  
up.  
BOARD FEATURES  
Vin = +12V (+ 13.2V Max)  
•Vout = +1.2V @ 0- 6A  
Fs=600kHz  
L= 1.0uH  
Cin= 3x10uF (ceramic 1206) + 1X330uF (electrolytic)  
Cout=4x22uF (ceramic 0805)  
12/8/2011  
1
IRDC3898-P1V2  
CONNECTIONS and OPERATING INSTRUCTIONS  
A well regulated +12V input supply should be connected to VIN+ and VIN-. A maximum of 6A load should be  
connected to VOUT+ and VOUT-. The inputs and output connections of the board are listed in Table I.  
IR3898 has only one input supply and internal LDO generates Vcc from Vin. If operation with external Vcc  
is required, then R15 can be removed and external Vcc can be applied between Vcc+ and Vcc- pins. Vin pin  
and Vcc/LDO_Out pins should be shorted together for external Vcc operation.  
The output can track voltage at the Vp pin. For this purpose, Vref pin is to be connected to ground (use zero  
ohm resistor for R21). The value of R14 and R28 can be selected to provide the desired tracking ratio  
between output voltage and the tracking input.  
Table I. Connections  
Connection  
VIN+  
Signal Name  
Vin (+12V)  
VIN-  
Ground of Vin  
Vout(+1.2V)  
Vout+  
Vout-  
Vcc+  
Vcc-  
Ground for Vout  
Vcc/ LDO_Out Pin  
Ground for Vcc input  
Enable  
Enable  
PGood  
AGnd  
Power Good Signal  
Analog ground  
LAYOUT  
The PCB is a 4-layer board (2.23”x2”) using FR4 material. All layers use 2 Oz. copper. The PCB  
thickness is 0.062”. The IR3898 and other major power components are mounted on the top side of the  
board.  
Power supply decoupling capacitors, the bootstrap capacitor and feedback components are located  
close to IR3898. The feedback resistors are connected to the output at the point of regulation and are  
located close to the SupIRBuck IC. To improve efficiency, the circuit board is designed to minimize the  
length of the on-board power ground current path.  
12/8/2011  
2
IRDC3898-P1V2  
Connection Diagram  
Vin  
Gnd  
Gnd  
Vout  
Enable  
VDDQ  
Top View  
Vref  
Sync  
S-Ctrl  
AGnd  
Vsns  
Vcc-  
Vcc+  
PGood  
Bottom View  
Fig. 1: Connection Diagram of IR3899/98/97 Evaluation Boards  
12/8/2011  
3
IRDC3898-P1V2  
Fig. 2: Board Layout-Top Layer  
Single point connection  
between AGnd and PGnd  
Fig. 3: Board Layout-Bottom Layer  
12/8/2011  
4
IRDC3898-P1V2  
Fig. 4: Board Layout-Mid Layer 1  
Fig. 5: Board Layout-Mid Layer 2  
12/8/2011  
5
IRDC3898-P1V2  
12/8/2011  
6
IRDC3898-P1V2  
Bill of Materials  
Item Qty  
Part Reference  
Value  
330uF  
10uF  
0.1uF  
2200pF  
180pF  
22uF  
2.2uF  
10nF  
1.0uF  
1.0uH  
2K  
Description  
Manufacturer  
Part Number  
EEV-FK1E331P  
SMD Electrolytic F size 25V  
20%  
Panasonic  
1
2
1
3
4
1
1
4
1
1
1
1
1
2
2
1
1
1
5
2
1
1
C1  
1206, 25V, X5R, 20%  
C3 C4 C5  
TDK  
C3216X5R1E106M  
GRM188R71E104KA01B  
3
C7 C12 C14 C24  
0603, 25V, X7R, 10%  
Murata  
4
C8  
0603,50V,X7R  
Murata  
Murata  
GRM188R71H222KA01B  
GRM1885C1H181JA01D  
0603, 50V, NP0, 5%  
5
C11  
0805, 6.3V, X5R, 20%  
0603, 16V, X5R, 20%  
0603, 25V, X7R, 10%  
0603, 25V, X5R, 10%  
6
C15 C16 C17 C18  
TDK  
C2012X5R0J226M  
C1608X5R1C225M  
GRM188R71E103KA01J  
GRM188R61E105KA12D  
SPM6550T-1R0  
7
C23  
TDK  
8
C26  
Murata  
9
C32  
Murata  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
L1  
SMD 7.1x6.5x5mm,4.7m  
TDK  
Thick Film, 0603,1/10W,1%  
R1  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
IR  
ERJ-3EKF2001V  
ERJ-3EKF3321V  
ERJ-3EKF2371V  
ERJ-3EKF1000V  
ERJ-3EKF20R0V  
ERJ-3EKF3922V  
ERJ-3GEY0R00V  
ERJ-3EKF4992V  
ERJ-3EKF7501V  
IR3898MPBF  
Thick Film, 0603,1/10W,1%  
Thick Film, 0603,1/10W,1%  
Thick Film, 0603,1/10W,1%  
Thick Film, 0603,1/10W,1%  
Thick Film, 0603,1/10W,1%  
Thick Film, 0603,1/10W  
R2 R11  
3.32K  
2.37K  
100  
R3 R12  
R4  
R6  
20  
R9  
39.2K  
0
R10 R13 R14 R15 R50  
Thick Film, 0603,1/10W,1%  
Thick Film, 0603,1/10W,1%  
R17 R18  
R19  
49.9K  
7.5K  
U1  
IR3898  
PQFN 4x5mm  
12/8/2011  
7
IRDC3898-P1V2  
TYPICAL OPERATING WAVEFORMS  
Vin=12.0V, Vo=1.2V, Io=0-6A, Room Temperature, no airflow  
Fig. 8: Start up at 6A Load,  
Fig. 7: Start up at 6A Load  
Ch1:Vin, Ch2:Vo, Ch3:Vcc, Ch4:PGood  
Ch1:Vin, Ch2:Vo, Ch3:PGood Ch4:Enable  
Fig. 10: Output Voltage Ripple, 6A load  
Ch2: Vout  
Fig. 9: Start up with 1V Pre Bias , 0A Load,  
Ch2:Vo  
Fig. 12: Short circuit (Hiccup) Recovery  
Ch2:Vout , Ch4:Iout  
Fig. 11: Inductor node at 6A load  
Ch3:LX  
12/8/2011  
8
IRDC3898-P1V2  
TYPICAL OPERATING WAVEFORMS  
Vin=12.0V, Vo=1.2V, Io=0-6A, Room Temperature, no air flow  
Fig. 13: Transient Response, 3A to 6A step  
Ch2:Vout Ch4-Iout  
12/8/2011  
9
IRDC3898-P1V2  
TYPICAL OPERATING WAVEFORMS  
Vin=12.0V, Vo=1.2V, Io=0-6A, Room Temperature, no air flow  
Fig. 14: Bode Plot at 6A load shows a bandwidth of 110.8KHz and phase margin of 50.5 degrees  
12/8/2011  
10  
IRDC3898-P1V2  
TYPICAL OPERATING WAVEFORMS  
Vin=12.0V, Vo=1.2V, Io=0-6A, Room Temperature, no air flow  
Fig (15) Soft start and soft stop using S_Ctrl pin  
Fig (16) Feed Forward for Vin change from 7 to 16V and back to 7V  
Ch2-Vout Ch4-Vin  
12/8/2011  
11  
IRDC3898-P1V2  
TYPICAL OPERATING WAVEFORMS  
Vin=12.0V, Vo=1.2V, Io=0-6A, Room Temperature, no air flow  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
0.6  
1.2  
1.8  
2.4  
3
3.6  
4.2  
4.8  
5.4  
6
Iout(A)  
Fig.17: Efficiency versus load current  
1.2  
1.1  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.6  
1.2  
1.8  
2.4  
3
3.6  
4.2  
4.8  
5.4  
6
Iout(A)  
Fig.18: Power loss versus load current  
12/8/2011  
12  
IRDC3898-P1V2  
THERMAL IMAGES  
Vin=12.0V, Vo=1.2V, Io=0-6A, Room Temperature, No Air flow  
Fig. 19: Thermal Image of the board at 6A load  
Test point 1 is IR3898  
Test point 2 is inductor  
12/8/2011  
13  
IRDC3898-P1V2  
PCB METAL AND COMPONENT PLACEMENT  
Evaluations have shown that the best overall performance is achieved using the substrate/PCB layout  
as shown in following figures. PQFN devices should be placed to an accuracy of 0.050mm on both X  
and Y axes. Self-centering behavior is highly dependent on solders and processes, and experiments  
should be run to confirm the limits of self-centering on specific processes. For further information, please  
refer to “SupIRBuck™ Multi-Chip Module (MCM) Power Quad Flat No-Lead (PQFN) Board Mounting  
Application Note.” (AN1132)  
Figure 20: PCB Metal Pad Spacing (all dimensions in mm)  
12/8/2011  
14  
IRDC3898-P1V2  
SOLDER RESIST  
IR recommends that the larger Power or Land Area pads are Solder Mask Defined (SMD.)  
This allows the underlying Copper traces to be as large as possible, which helps in terms of current  
carrying capability and device cooling capability. When using SMD pads, the underlying copper  
traces should be at least 0.05mm larger (on each edge) than the Solder Mask window,  
in order to accommodate any layer to layer misalignment. (i.e. 0.1mm in X & Y.)  
However, for the smaller Signal type leads around the edge of the device, IR recommends that  
these are Non Solder Mask Defined or Copper Defined. When using NSMD pads,  
the Solder Resist Window should be larger than the Copper Pad by at least 0.025mm on  
each edge, (i.e. 0.05mm in X&Y,) in order to accommodate any layer to  
layer misalignment. Ensure that the solder resist in-between the smaller signal lead areas are at  
least 0.15mm wide, due to the high x/y aspect ratio of the solder mask strip.  
Figure 21: Solder resist  
12/8/2011  
15  
IRDC3898-P1V2  
STENCIL DESIGN  
Stencils for PQFN can be used with thicknesses of 0.100-0.250mm (0.004-0.010"). Stencils thinner than  
0.100mm are unsuitable because they deposit insufficient solder paste to make good solder joints with the  
ground pad; high reductions sometimes create similar problems. Stencils in the range of 0.125mm-0.200mm  
(0.005-0.008"), with suitable reductions, give the best results. Evaluations have shown that the best overall  
performance is achieved using the stencil design shown in following figure. This design is for  
a stencil thickness of 0.127mm (0.005").The reduction should be adjusted for stencils of other thicknesses.  
Figure 22: Stencil Pad Spacing (all dimensions in mm)  
12/8/2011  
16  
IRDC3898-P1V2  
PACKAGE INFORMATION  
Figure 23: Package Dimensions  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
This product has been designed and qualified for the Industrial market  
Visit us at www.irf.com for sales contact information  
Data and specifications subject to change without notice.12/11  
12/8/2011  
17  

相关型号:

ERJ-3EKF2002V

ADS1131REF and ADS1231REF
TI

ERJ-3EKF2002V

Gigabit Ethernet Switch Evaluation Board
MICROCHIP

ERJ-3EKF2003V

Precision Thick Film Chip Resistors
PANASONIC

ERJ-3EKF2050V

RES SMD 205 OHM 1% 1/10W 0603
PANASONIC

ERJ-3EKF2053V

RES SMD 205K OHM 1% 1/10W 0603
PANASONIC

ERJ-3EKF20R0V

USER GUIDE FOR IR3895 EVALUATION BOARD
INFINEON

ERJ-3EKF20R5V

RES SMD 20.5 OHM 1% 1/10W 0603
PANASONIC

ERJ-3EKF2100V

Dual output, 6A/Phase, Highly Integrated SupIRBuck
INFINEON

ERJ-3EKF2101V

RES SMD 2.1K OHM 1% 1/10W 0603
PANASONIC

ERJ-3EKF2102V

Single-Input Voltage, Synchronous Buck Regulator
INFINEON

ERJ-3EKF2103V

RES SMD 210K OHM 1% 1/10W 0603
PANASONIC

ERJ-3EKF2152V

RES SMD 21.5K OHM 1% 1/10W 0603
PANASONIC