GA75TS60U [INFINEON]

HALF-BRIDGE IGBT INT-A-PAK; 半桥IGBT INT -A- PAK
GA75TS60U
型号: GA75TS60U
厂家: Infineon    Infineon
描述:

HALF-BRIDGE IGBT INT-A-PAK
半桥IGBT INT -A- PAK

晶体 晶体管 功率控制 瞄准线 双极性晶体管 栅 局域网
文件: 总10页 (文件大小:216K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD -50050D  
GA75TS60U  
TM  
Ultra-Fast Speed IGBT  
"HALF-BRIDGE" IGBT INT-A-PAK  
Features  
VCES = 600V  
• Generation 4 IGBT technology  
• UltraFast: Optimized for high operating  
frequencies 8-40 kHz in hard switching, >200  
kHz in resonant mode  
VCE(on) typ. = 1.7V  
• Very low conduction and switching losses  
• HEXFREDantiparallel diodes with ultra- soft  
recovery  
@V = 15V, IC = 75A  
GE  
• Industry standard package  
• UL approved  
Benefits  
• Increased operating efficiency  
• Direct mounting to heatsink  
• Performance optimized for power conversion: UPS,  
SMPS, Welding  
• Lower EMI, requires less snubbing  
Absolute Maximum Ratings  
Parameter  
Collector-to-Emitter Voltage  
Max.  
600  
75  
Units  
V
VCES  
IC @ TC = 25°C  
Continuous Collector Current  
Pulsed Collector Current•  
ICM  
150  
150  
150  
±20  
2500  
285  
150  
A
ILM  
Peak Switching Current‚  
IFM  
Peak Diode Forward Current  
Gate-to-Emitter Voltage  
VGE  
V
VISOL  
RMS Isolation Voltage, Any Terminal To Case, t = 1 min  
Maximum Power Dissipation  
Maximum Power Dissipation  
Operating Junction Temperature Range  
Storage Temperature Range  
PD @ TC = 25°C  
W
PD @ TC = 85°C  
TJ  
-40 to +150  
-40 to +125  
°C  
TSTG  
Thermal / Mechanical Characteristics  
Parameter  
Thermal Resistance, Junction-to-Case - IGBT  
Typ.  
Max.  
0.44  
0.70  
Units  
RθJC  
RθJC  
RθCS  
Thermal Resistance, Junction-to-Case - Diode  
Thermal Resistance, Case-to-Sink - Module  
Mounting Torque, Case-to-Heatsink ƒ  
Mounting Torque, Case-to-Terminal 1, 2 & 3 „  
Weight of Module  
°C/W  
0.1  
.
6.0  
N m  
5.0  
200  
g
www.irf.com  
1
05/20/02  
GA75TS60U  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
VGE = 0V, IC = 1mA  
V(BR)CES  
VCE(on)  
Collector-to-Emitter Breakdown Voltage 600  
Collector-to-Emitter Voltage  
Gate Threshold Voltage  
3.0  
1.7 2.2  
VGE = 15V, IC = 75A  
VGE = 15V, IC = 75A, TJ = 125°C  
IC = 0.5mA  
1.76  
6.0  
V
VGE(th)  
VGE(th)/TJ Temperature Coeff. of Threshold Voltage  
-11  
83  
mV/°C VCE = VGE, IC = 500µA  
gfe  
Forward Transconductance „  
S
VCE = 25V, IC = 75A  
ICES  
Collector-to-Emitter Leaking Current  
1.0  
10  
mA  
VGE = 0V, VCE = 600V  
VGE = 0V, VCE = 600V, TJ = 125°C  
IF = 75A, VGE = 0V  
VFM  
IGES  
Diode Forward Voltage - Maximum  
Gate-to-Emitter Leakage Current  
3.3  
3.1  
V
IF = 75A, VGE = 0V, TJ = 125°C  
VGE = ±20V  
250  
nA  
Dynamic Characteristics - TJ = 125°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
340 510  
48 72  
120 170  
Conditions  
Qg  
Total Gate Charge (turn-on)  
Gate - Emitter Charge (turn-on)  
Gate - Collector Charge (turn-on)  
Turn-On Delay Time  
VCC = 400V, VGE = 15V  
Qge  
Qgc  
td(on)  
tr  
nC IC = 75A  
TJ = 25°C  
110  
94  
RG1 = 27, RG2 = 0,  
IC = 75A  
Rise Time  
ns  
td(off)  
tf  
Turn-Off Delay Time  
250  
180  
1.95  
4.4  
VCC = 360V  
Fall Time  
VGE = ±15V  
Eon  
Turn-On Switching Energy  
Turn-Off Switching Energy  
Total Switching Energy  
Input Capacitance  
mJ  
Eoff (1)  
Ets (1)  
Cies  
Coes  
Cres  
trr  
6.35 12.6  
7880  
770  
98  
VGE = 0V  
VCC = 30V  
ƒ = 1 MHz  
IC = 75A  
Output Capacitance  
pF  
Reverse Transfer Capacitance  
Diode Reverse Recovery Time  
Diode Peak ReverseCurrent  
Diode Recovery Charge  
Diode Peak Rate of Fall of Recovery  
During tb  
133  
94  
ns  
A
Irr  
RG1 = 27Ω  
Qrr  
6274  
2061  
nC RG2 = 0Ω  
di(rec)M/dt  
A/µs VCC = 360V  
di/dt =1300A/µs  
2
www.irf.com  
GA75TS60U  
70  
60  
50  
40  
30  
20  
10  
0
Duty cycle: 50%  
T
T
= 125°C  
J
= 90°C  
sink  
Power Dissipation = 65 W  
0.1  
1
10  
100  
f, Frequency (KHz)  
Fig. 1 - Typical Load Current vs. Frequency  
(Load Current = IRMS of fundamental)  
1000  
1000  
100  
T = 125oC  
J
100  
T = 25oC  
J
25o  
T = 1C  
J
10  
T = 25oC  
J
V
= 25V  
V
= 15V  
GE  
20µs PULSE WIDTH  
CE
80µs PULSE WIDTH  
10  
1.0  
1
5.0  
1.5  
2.0 2.5  
6.0  
7.0  
8.0 9.0  
V
, Collector-to-Emitter Voltage (V)  
V
, Gate-to-Emitter Voltage (V)  
GE  
CE  
Fig. 2 - Typical Output Characteristics  
Fig. 3 - Typical Transfer Characteristics  
www.irf.com  
3
GA75TS60U  
80  
3.0  
2.0  
1.0  
V
= 15V  
GE  
80 us PULSE WIDTH  
60  
40  
20  
0
I
=150A  
= 75 A  
C
I
I
C
C
37.5A  
=
25  
50  
75  
100  
125  
150  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
°
T , Case Temperature ( C)  
T , Junction Temperature (°C)  
C
J
Fig. 4 - Maximum Collector Current vs. Case  
Fig. 5 - Typical Collector-to-Emitter Voltage  
Temperature  
vs. Junction Temperature  
1
D = 0.5 0  
0.2 0  
0.10  
0.05  
0.0 2  
0.01  
P
DM  
0.1  
t
S ingle P ulse  
1
t
(Th erm al Resistance)  
2
Notes:  
1. Duty factor D = t / t  
1
2
2. Peak T = P  
x Z  
DM  
+ T  
thJC  
J
C
0.01  
0. 0001  
0. 001  
0. 01  
0.1  
1
1 0  
1 0 0  
1 0 0 0  
t 1  
, Rectangular Pulse Duration (Seconds)  
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case  
4
www.irf.com  
GA75TS60U  
14000  
12000  
10000  
8000  
6000  
4000  
2000  
0
20  
16  
12  
8
V
= 0V,  
f = 1MHz  
C SHORTED  
ce  
GE  
V
I
= 400V  
= 75A  
CC  
C
C
= C + C  
ies  
ge  
gc  
gc ,  
C
= C  
res  
C
= C + C  
oes  
ce  
gc  
C
ies  
C
C
oes  
res  
4
0
1
10  
100  
0
100  
200  
300  
400  
V
, Collector-to-Emitter Voltage (V)  
Q
, Total Gate Charge (nC)  
CE  
G
Fig. 7 - Typical Capacitance vs.  
Fig. 8 - Typical Gate Charge vs.  
Collector-to-Emitter Voltage  
Gate-to-Emitter Voltage  
10  
9
100  
10  
1
V
V
= 360V  
R
=27;R = 0 Ω  
= 15V  
= 360V  
CC  
GE  
G1 G2  
= 15V  
V
GE  
125°C  
=
T
J
V
CC  
I
= 75A  
C
I
=
=
A
A
150  
75  
C
8
I
I
C
7
=37.5A  
C
6
5
0
10  
20  
30  
40  
50  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
RG1 , Gate Resistance ( Ω )  
°
T , Junction Temperature ( C )  
J
Fig. 9 - Typical Switching Losses vs. Gate  
Fig. 10 - Typical Switching Losses vs.  
Resistance  
Junction Temperature  
www.irf.com  
5
GA75TS60U  
25  
200  
160  
120  
80  
R
= 27;RG2 = 0 Ω  
G1  
V G E = 20V  
°
T
= 125 C  
J
T J = 125°C  
V
V
= 360V  
= 15V  
GE  
CC  
V C E measured at terminal (Peak Voltage)  
20  
15  
10  
5
SAFE OPERATING AREA  
40  
0
A
0
0
40  
80  
120  
160  
200  
240  
0
100  
200  
300  
400  
500  
600  
700  
I
, Collector-to-emitter Current (A)  
C
VCE , Collector-to-Emitter Voltage (V)  
Fig. 11 - Typical Switching Losses vs.  
Fig. 12 - Reverse Bias SOA  
Collector-to-Emitter Current  
1000  
12000  
10000  
8000  
6000  
4000  
2000  
0
I
I
I
= 150A  
= 75A  
= 38A  
F
F
F
100  
T
T
= 125°C  
= 25°C  
J
J
VR = 360V  
TJ = 125°C  
TJ = 25°C  
10  
1.0  
2.0  
3.0  
4.0  
5.0  
500  
1000  
1500  
2000  
Forward Voltage D rop - V  
(V)  
di /dt - (A/µs)  
FM  
f
Fig. 14 - Typical Stored Charge vs. dif/dt  
Fig. 13 - Typical Forward Voltage Drop vs.  
Instantaneous Forward Current  
6
www.irf.com  
GA75TS60U  
200  
160  
120  
80  
140  
120  
100  
80  
I
I
= 150A  
= 75A  
= 38A  
F
F
F
I
= 150A  
F
F
F
I
I
I
= 75A  
= 38A  
60  
40  
20  
VR = 360V  
TJ = 125°C  
TJ = 25°C  
VR = 360V  
TJ = 125°C  
TJ = 25°C  
40  
500  
0
1000  
1500  
2000  
500  
1000  
1500  
2000  
di /dt - (A/µs)  
f
di /dt - (A/µs)  
f
Fig. 15 - Typical Reverse Recovery vs. dif/dt  
Fig. 16 - Typical Recovery Current vs. dif/dt  
www.irf.com  
7
GA75TS60U  
90% Vge  
+Vge  
Vce  
90% Ic  
10% Vce  
Ic  
Ic  
5% Ic  
td(off)  
tf  
t1+5µS  
Eoff =  
Vce Ic dt  
t1  
Fig. 17 - Test Circuit for Measurement of  
I
LM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf  
t1  
t2  
Fig. 18 - Test Waveforms for Circuit of Fig. 17, Defining Eoff,  
d(off), tf  
t
trr  
trr  
G ATE VO LTA G E D .U .T.  
Q rr =  
Ic dt  
Ic  
tx  
10% +Vg  
+Vg  
tx  
10% Irr  
10% Vcc  
Vcc  
D UT VO LTAG E  
AN D CU RRE NT  
Vce  
V pk  
Irr  
10% Ic  
Vcc  
Ipk  
90% Ic  
Ic  
DIO DE RE CO V ERY  
W AVEFO RMS  
5% Vce  
tr  
td(on)  
t2  
VceIcdt  
t1  
E on =  
t4  
Erec = 
Vd Ic dt  
t3  
DIO DE REVE RSE  
REC O VERY ENER G Y  
t1  
t2  
t3  
t4  
Fig. 20 - Test Waveforms for Circuit of Fig. 17,  
Fig. 19 - Test Waveforms for Circuit of Fig. 17,  
Defining Erec, trr, Qrr, Irr  
Defining Eon, td(on), tr  
8
www.irf.com  
GA75TS60U  
Vg  
G ATE SIG NAL  
DEVICE U NDE R TEST  
CUR REN T D .U .T.  
VO LTAG E IN D.U.T.  
CUR REN T IN D1  
t0  
t1  
t2  
Figure21. MacroWaveformsforFigure17'sTestCircuit  
480V  
RL=  
4 X IC @25°C  
0 - 480V  
Figure22.PulsedCollectorCurrent  
TestCircuit  
www.irf.com  
9
GA75TS60U  
Notes:  

Repetitive rating; VGE = 20V, pulse width limited by  
max. junction temperature.  
‚
ƒ
„
See fig. 17  
For screws M6.  
For screws M5.  
Pulse width 50µs; single shot.  
Case Outline — INT-A-PAK  
94.70 3.728  
93.70 3.689  
NOTES :  
[
]
1. ALL DIMENS IONS ARE S HOWN IN MILLIMET ERS [INCHES ].  
2. CONTROLLING DIMENSION: MILLIMETER.  
80.30 3.161  
79.70 3.138  
[ ]  
23.50 .925  
2X  
4.50 .177  
3.50 .138  
22.50  
[ ]  
.886  
[
]
11  
10  
6
7
34.70 1.366  
17.50 .689  
16.50 .650  
33.70 1.327  
[ ]  
[ ]  
1
2
3
8
9
5
4
6.80  
2X Ø 6.20  
.267  
.244  
[
]
3X M5  
[.314]  
MAX.  
4X FAST ON TAB (110)  
2.8 x 0.5 [.110 x .020]  
8.00 .315  
8
42.00 1.654  
6.60 .260  
[ ]  
41.00 1.614  
[ ]  
30.50 1.201  
29.00 1.142  
[ ]  
24.00 .945  
23.00 .906  
[ ]  
13.30 .524  
8.65 .341  
7.65 .301  
2X  
0.15 [.0059] CONVEX  
92.10 3.626  
12.70  
[ ]  
.500  
[ ]  
32.00 1.260  
31.00 1.220  
[ ]  
91.10 3.587  
[ ]  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.05/02  
10  
www.irf.com  

相关型号:

GA8-6B02

GA8 Series
CRYDOM

GA8-6D05R

GA8 Series
CRYDOM

GA81032Q-133

x32 Fast Synchronous SRAM
ETC

GA81032Q-133I

x32 Fast Synchronous SRAM
ETC

GA81032Q-133IT

x32 Fast Synchronous SRAM
ETC

GA81032Q-133T

x32 Fast Synchronous SRAM
ETC

GA81032Q-138

x32 Fast Synchronous SRAM
ETC

GA81032Q-138I

x32 Fast Synchronous SRAM
ETC

GA81032Q-138IT

x32 Fast Synchronous SRAM
ETC

GA81032Q-138T

x32 Fast Synchronous SRAM
ETC

GA81032Q-150

x32 Fast Synchronous SRAM
ETC

GA81032Q-150T

x32 Fast Synchronous SRAM
ETC