GB25RF120K [INFINEON]

IGBT PIM MODULE; IGBT PIM模块
GB25RF120K
型号: GB25RF120K
厂家: Infineon    Infineon
描述:

IGBT PIM MODULE
IGBT PIM模块

双极性晶体管
文件: 总13页 (文件大小:781K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 94552  
GB25RF120K  
IGBT PIM MODULE  
VCES = 1200V  
Features  
• Low VCE (on) Non Punch Through IGBT Technology  
• Low Diode VF  
IC = 25A, TC=80°C  
tsc > 10µs, TJ=150°C  
VCE(on) typ. = 2.40V  
• 10µs Short Circuit Capability  
• Square RBSOA  
• HEXFRED Antiparallel Diode with Ultrasoft Diode  
Reverse Recovery Characteristics  
• Positive VCE (on) Temperature Coefficient  
• Ceramic DBC Substrate  
ECONO2 PIM  
• Low Stray Inductance Design  
Benefits  
• Benchmark Efficiency for Motor Control  
• Rugged Transient Performance  
• Low EMI, Requires Less Snubbing  
• Direct Mounting to Heatsink  
• PCB Solderable Terminals  
• Low Junction to Case Thermal Resistance  
• UL Listed   
Absolute Maximum Ratings (TJ =25°C, unless otherwise indicated)  
Parameter  
Symbol  
VCES  
VGES  
IC  
Test Conditions  
Ratings  
1200  
20  
Units  
Inverter Collector-to-Emitter Voltage  
V
Gate-to-Emitter Voltage  
Collector Current  
Continuous  
25°C / 80°C  
25°C  
40 / 25  
80  
ICM  
A
IFM  
Diode Maximum Forward Current  
Power Dissipation  
25°C  
80  
PD  
1 device  
25°C  
198  
W
V
Input  
Repetitive Peak Reverse Voltage  
VRRM  
IF(AV)  
IFSM  
I2t  
1600  
20  
Rectifier Average Output Current  
Surge Current (Non Repetitive)  
I2t (Non Repetitive)  
50/60Hz sine pulse  
80°C  
A
Rated VRRM applied, 10ms,  
sine pulse  
250  
A2s  
V
316  
Brake  
Collector-to-Emitter Voltage  
Gate-to-Emitter Voltage  
Collector Current  
VCES  
VGES  
IC  
1200  
20  
Continuous  
25°C / 80°C  
25°C  
25 / 15  
50  
A
ICM  
PD  
Power Dissipation  
1 device  
25°C  
104  
1200  
W
V
Repetitive Peak Reverse Voltage  
Maximum Operating Junction Temperature  
Storage Temperature Range  
VRRM  
TJ  
150  
°C  
TSTG  
-40 to +125  
Isolation Voltage  
VISOL  
AC(1min.)  
2500  
V
Thermal and Mechanical Characteristics  
Parameter  
Symbol  
Min  
Typical  
Maximum  
0.63  
1.0  
Units  
°C/W  
Junction-to-Case Inverter IGBT Thermal Resistance  
Junction-to-Case Inverter FRED Thermal Resistance  
Junction-to-Case Brake IGBT Thermal Resistance  
Junction-to-Case Brake Diode Thermal Resistance  
Junction-to-Case Input Rectifier Thermal Resistance  
Mounting Torque (M5)  
RTHJC  
1.2  
2.3  
0.85  
3.3  
2.7  
Nm  
1
www.irf.com  
10/17/02  
GB25RF120K  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
VGE = 0V, IC = 500µA  
BVCES  
Collector-to-Emitter Breakdown Voltage  
Temperature Coeff. of Breakdown Voltage  
Collector-to-Emitter Voltage  
Inverter  
IGBT  
1200  
4.0  
V
V/°C  
V
V(BR)CES/TJ  
VCE(on)  
VGE = 0V, IC = 1mA (25°C-125°C)  
IC = 25A, VGE = 15V  
1.0  
1,2  
4,5  
2.40 2.70  
2.95 3.30  
IC = 40A, VGE = 15V  
IC = 25A, VGE = 15V, TJ = 125°C  
IC = 40A, VGE = 15V, TJ = 125°C  
2.85  
3.55  
5.0  
-10  
11  
VGE(th)  
VGE(th)  
ICES  
VCE = VGE, IC = 250µA  
Gate Threshold Voltage  
6.0  
3,4,5  
VCE = VGE, IC = 1mA (25°C-125°C)  
Threshold Voltage temp. coefficient  
Zero Gate Voltage Collector Current  
mV/°C  
µA  
V
GE = 0V, VCE = 1200V  
VGE = 0V, VCE = 1200V, TJ = 125°C  
VGE 20V  
IC = 25A  
CC = 400V  
100  
750  
IGES  
Qg  
=
Gate-to-Emitter Leakage Current  
Total Gate Charge (turn-on)  
Gate-to-Emitter Charge (turn-on)  
Gate-to-Collector Charge (turn-on)  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
200  
nA  
nC  
7
175  
17.5  
81  
265  
30  
Qge  
Qgc  
Eon  
Eoff  
Etot  
Eon  
Eoff  
Etot  
td(on)  
tr  
V
CT1  
VGE = 15V  
125  
IC = 25A, VCC = 600V  
VGE = 15V, RG = 10, L = 400µH  
TJ = 25°C  
2450 4450  
2050 3200  
4500 7650  
3350 5650  
2850 3850  
6200 9500  
CT4  
µJ  
µJ  
ns  
IC = 25A, VCC = 600V  
9,11  
CT4  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
VGE = 15V, RG = 10 , L = 400µH  
TJ = 125°C  
WF1,2  
10,12  
CT4  
IC = 25A, VCC = 600V  
VGE = 15V, RG = 10, L = 400µH  
TJ = 125°C  
Turn-On delay time  
80  
50  
104  
70  
Rise time  
td(off)  
tf  
Turn-Off delay time  
510 1000  
WF1  
WF2  
Fall time  
230  
2370  
455  
60  
299  
Cies  
Coes  
Cres  
RBSOA  
VGE = 0V  
Input Capacitance  
VCC = 30V  
6
Output Capacitance  
pF  
µs  
Reverse Transfer Capacitance  
Reverse Bias Safe Operating Area  
f = 1.0Mhz  
TJ = 150°C, IC = 80A  
CT2  
FULL SQUARE  
RG = 10 , VGE = +15V to 0V  
TJ = 150°C  
CT3  
VCC = 900V, VP = 1200V  
SCSOA  
Irr  
Short Circuit Safe Operating Area  
Diode Peak Reverse Recovery Current  
Diode Forward Voltage Drop  
10  
35  
WF4  
RG = 10, VGE = +15V to 0V  
TJ = 125°C  
13,14,15  
CT4  
Inverter  
FRED  
VCC = 600V, IF = 25A, L = 400µH  
A
V
VGE = 15V, RG = 10  
IF = 25A  
1.90 2.35  
2.25 2.80  
VFM  
IF = 40A  
8
IF = 25A, TJ = 125°C  
IF = 40A, TJ = 125°C  
2.00  
2.45  
2
www.irf.com  
GB25RF120K  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
VFM  
IRM  
IF = 25A  
V
mA  
17  
Input  
Maximum Forward Voltage Drop  
1200  
4.0  
1.6  
1.5  
0.1  
1.0  
10.4  
0.85  
TJ = 25°C, VR = 1600V  
TJ = 150°C, VR = 1600V  
TJ = 150°C  
Rectifier  
Maximum Reverse Leakage Current  
m
rT  
Forward Slope Resistance  
VF(TO)  
Conduction Threshold Voltage  
Collector-to-Emitter Breakdown Voltage  
Temperature Coeff. of Breakdown Voltage  
Collector-to-Emitter Voltage  
V
BVCES  
V(BR)CES/TJ  
VCE(on)  
VGE = 0V, IC = 500µA  
Brake  
IGBT  
V
V/°C  
V
VGE = 0V, IC = 1mA (25°C-125°C)  
IC = 12.5A, VGE = 15V  
20,21  
23,24  
2.30 2.50  
3.00 3.25  
IC = 25A, VGE = 15V  
IC = 12.5A, VGE = 15V, TJ = 125°C  
IC = 25A, VGE = 15V, TJ = 125°C  
2.70  
3.70  
5.0  
-10  
8.0  
370  
VGE(th)  
VGE(th)  
ICES  
V
CE = VGE, IC = 250µA  
Gate Threshold Voltage  
6.0  
22,23,24  
VCE = VGE, IC = 1mA (25°C-125°C)  
Threshold Voltage temp. coefficient  
Zero Gate Voltage Collector Current  
mV/°C  
µA  
V
GE = 0V, VCE = 1200V  
VGE = 0V, VCE = 1200V, TJ = 125°C  
VGE 20V  
IC = 12.5A  
CC = 400V  
50  
IGES  
Qg  
=
Gate-to-Emitter Leakage Current  
Total Gate Charge (turn-on)  
Gate-to-Emitter Charge (turn-on)  
Gate-to-Collector Charge (turn-on)  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
200  
145  
70  
nA  
nC  
26  
96  
Qge  
Qgc  
Eon  
Eoff  
Etot  
Eon  
Eoff  
Etot  
td(on)  
tr  
V
46  
CT1  
VGE = 15V  
10  
15  
IC = 12.5A, VCC = 600V  
VGE = 15V, RG = 22, L = 400µH  
TJ = 25°C  
1050 1200  
750 1000  
1800 2200  
1350 1500  
1100 1250  
2450 2750  
CT4  
µJ  
µJ  
ns  
IC = 12.5A, VCC = 600V  
28,30  
CT4  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
GE = 15V, RG = 22 , L = 400µH  
V
TJ = 125°C  
WF3,4  
29,31  
CT4  
IC = 12.5A, VCC = 600V  
VGE = 15V, RG = 22, L = 400µH  
TJ = 125°C  
Turn-On delay time  
50  
36  
65  
50  
Rise time  
td(off)  
tf  
Turn-Off delay time  
350  
210  
2370  
460  
60  
400  
275  
WF3  
WF4  
Fall time  
Cies  
Coes  
Cres  
RBSOA  
VGE = 0V  
Input Capacitance  
VCC = 30V  
25  
Output Capacitance  
pF  
Reverse Transfer Capacitance  
Reverse Bias Safe Operating Area  
f = 1.0Mhz  
TJ = 150°C, IC = 50A  
CT2  
CT3  
FULL SQUARE  
RG = 22 , VGE = +15V to 0V  
TJ = 150°C  
V
CC = 900V, VP = 1200V  
RG = 22, VGE = +15V to 0V  
CC = 600V, IF = 12.5A, L = 400µH  
SCSOA  
Irr  
Short Circuit Safe Operating Area  
10  
µs  
A
V
32,33,34  
CT4  
Brake  
Diode  
Diode Peak Reverse Recovery Current  
24  
VGE = 15V, RG = 22Ω, TJ = 125°C  
IF = 8.0A  
1.90 2.10  
2.40 2.65  
V
VFM  
IF = 16A  
27  
16  
Diode Forward Voltage Drop  
IF = 8.0A, TJ = 125°C  
IF = 16A, TJ = 125°C  
TJ = 25°C  
2.00  
2.65  
NTC  
R
B
Resistance  
B Value  
4538 5000 5495  
468.6 493.3 518.0  
3307 3375 3443  
TJ = 100°C  
TJ = 25 / 50 °C  
K
Note:  
 For UL Applications, TJ is limited to +125°C. (See File E78996).  
‚ Power dependent on temperature. TJ not to exceed TJ max.  
ƒ Energy losses include "tail" and diode reverse recovery.  
www.irf.com  
3
GB25RF120K  
Inverter  
50  
45  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
= 18V  
GE  
V
= 18V  
GE  
40  
35  
30  
25  
20  
15  
10  
5
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
0
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
V
(V)  
V
(V)  
CE  
CE  
Fig. 2 - Typ. IGBT Output Characteristics  
Fig. 1 - Typ. IGBT Output Characteristics  
TJ = 125°C; tp = 80µs  
TJ = 25°C; tp = 80µs  
20  
18  
16  
14  
12  
350  
300  
250  
200  
150  
100  
50  
T
= 25°C  
J
T
= 125°C  
J
I
I
I
= 12.5A  
= 25A  
CE  
CE  
CE  
10  
8
= 50A  
6
T
= 125°C  
J
4
T
= 25°C  
15  
2
J
0
0
5
10  
15  
20  
0
5
10  
20  
V
(V)  
V
(V)  
GE  
GE  
Fig. 4 - Typical VCE vs. VGE  
Fig. 3 - Typ. Transfer Characteristics  
TJ = 25°C  
VCE = 50V; tp = 10µs  
20  
18  
16  
14  
12  
10  
8
10000  
1000  
100  
Cies  
Coes  
I
I
I
= 12.5A  
= 25A  
CE  
CE  
CE  
= 50A  
Cres  
6
4
2
0
10  
0
20  
40  
60  
(V)  
80  
100  
5
10  
15  
20  
V
V
(V)  
CE  
GE  
Fig.5 - Typical VCE vs. VGE  
Fig. 6- Typ. Capacitance vs. VCE  
TJ = 125°C  
VGE= 0V; f = 1MHz  
4
www.irf.com  
GB25RF120K  
Inverter  
16  
14  
12  
10  
8
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
25°C  
125°C  
400V  
600V  
6
4
2
0
0
50  
100  
150  
200  
0.0  
1.0  
2.0  
(V)  
3.0  
4.0  
Q
, Total Gate Charge (nC)  
V
G
F
Fig. 7 - Typical Gate Charge vs. VGE  
Fig. 8 - Typ. Diode Forward Characteristics  
ICE = 25A; L = 1mH  
tp = 80µs  
10000  
9000  
8000  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
1000  
td  
OFF  
t
F
E
ON  
100  
td  
ON  
E
OFF  
t
R
10  
0
10  
20  
30  
(A)  
40  
50  
60  
0
10  
20  
30  
(A)  
40  
50  
60  
I
I
C
C
Fig. 10 - Typ. Switching Time vs. IC  
Fig. 9 - Typ. Energy Loss vs. IC  
TJ = 125°C; L = 400µH; VCE = 600V,RG = 10;VGE = 15V  
TJ = 125°C; L=400µH; VCE= 600V,RG= 10; VGE= 15V  
6000  
10000  
5000  
E
ON  
td  
4000  
1000  
100  
10  
OFF  
E
OFF  
3000  
2000  
1000  
0
t
F
td  
ON  
t
R
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
R
( )  
R
( )  
G
G
Fig. 12 - Typ. Switching Time vs. RG  
Fig. 11 - Typ. Energy Loss vs. RG  
TJ = 125°C; L=400µH; VCE= 600V, ICE= 25A; VGE= 15V  
5
TJ = 125°C; L=400µH; VCE= 600V, ICE= 25A; VGE= 15V  
www.irf.com  
GB25RF120K  
Inverter  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
R
4.7 Ω  
G =  
R
10  
22  
G =  
G =  
R
R
47  
G =  
0
0
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
60  
R
(
Ω)  
I
(A)  
G
F
Fig. 13 - Typical Diode IRR vs. IF  
Fig. 14 - Typical Diode IRR vs. RG  
TJ = 125°C  
TJ = 125°C; IF = 25A  
Thermistor  
40  
35  
30  
25  
20  
15  
10  
5
14  
12  
10  
8
6
4
2
0
0
0
500  
1000  
1500  
0
20 40 60 80 100 120 140 160 180  
, Junction Temperature (°C)  
di /dt (A/µs)  
T
F
J
Fig. 15 - Typical Diode IRR vs. diF / dt  
VCC = 600V; VGE = 15V; IF = 25A; TJ = 125°C  
Fig. 16 - Thermistor Resistance vs. Temperature  
Input Rectifier  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
25°C  
125°C  
0.0  
1.0  
2.0  
3.0  
V
(V)  
F
Fig. 17 - Typ. Diode Forward Characteristics  
tp = 80µs  
6
www.irf.com  
GB25RF120K  
Inverter  
1
0.1  
D = 0.50  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
Ri (°C/W) τi (sec)  
0.02  
0.01  
τ
J τJ  
τ
τ
Cτ  
0.01  
0.120  
0.201  
0.309  
0.000439  
0.009470  
0.018320  
τ
1τ1  
τ
2 τ2  
3τ3  
Ci= τi/Ri  
/
0.001  
0.0001  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig 18. Maximum Transient Thermal Impedance, Junction-to-Case (Inverter IGBT)  
10  
1
0.1  
D = 0.50  
0.20  
0.10  
R1  
R1  
R2  
R2  
R3  
R3  
Ri (°C/W) τi (sec)  
0.05  
0.02  
0.01  
τ
J τJ  
τ
τ
Cτ  
0.140  
0.257  
0.602  
0.000230  
0.002752  
0.036788  
τ
1τ1  
τ
2 τ2  
3τ3  
0.01  
Ci= τi/Ri  
/
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.001  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.0001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig 19. Maximum Transient Thermal Impedance, Junction-to-Case (Inverter FRED)  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
45  
40  
35  
30  
25  
20  
15  
10  
5
tf  
tr  
TEST CURRENT  
90% test current  
90% ICE  
5% VCE  
5% ICE  
10% test current  
5% VCE  
0
Eon Loss  
Eoff Loss  
-100  
-5  
-100  
-10  
-0.60 -0.10 0.40  
0.90 1.40  
9.40 9.60 9.80 10.00 10.20 10.40  
Time(µs)  
Time (µs)  
Fig. WF1- Typ. Turn-off Loss Waveform  
@ TJ = 125°C using Fig. CT.4  
Fig. WF2- Typ. Turn-on Loss Waveform  
@ TJ = 125°C using Fig. CT.4  
www.irf.com  
7
GB25RF120K  
Brake  
50  
45  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
= 18V  
V
= 18V  
GE  
GE  
40  
35  
30  
25  
20  
15  
10  
5
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
0
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
V
(V)  
V
(V)  
CE  
CE  
Fig. 21 - Typ. IGBT Output Characteristics  
Fig. 20 - Typ. IGBT Output Characteristics  
TJ = 125°C; tp = 80µs  
TJ = 25°C; tp = 80µs  
180  
20  
18  
16  
14  
12  
160  
140  
120  
100  
80  
T
= 25°C  
J
T
= 125°C  
J
I
I
I
= 6.25A  
= 12.5A  
= 25A  
CE  
CE  
CE  
10  
8
60  
6
T
= 125°C  
40  
J
4
20  
T
= 25°C  
15  
2
J
0
0
0
5
10  
20  
5
10  
15  
20  
V
(V)  
V
(V)  
GE  
GE  
Fig. 23 - Typical VCE vs. VGE  
Fig. 22 - Typ. Transfer Characteristics  
TJ = 25°C  
VCE = 50V; tp = 10µs  
20  
18  
16  
14  
12  
10  
8
10000  
1000  
100  
Cies  
I
I
I
= 6.25A  
= 12.5A  
= 25A  
CE  
CE  
CE  
Coes  
Cres  
6
4
2
0
10  
5
10  
15  
20  
0
20  
40  
60  
(V)  
80  
100  
V
(V)  
V
GE  
CE  
Fig.24 - Typical VCE vs. VGE  
Fig. 25- Typ. Capacitance vs. VCE  
TJ = 125°C  
VGE= 0V; f = 1MHz  
8
www.irf.com  
GB25RF120K  
Brake  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
16  
14  
12  
10  
8
25°C  
125°C  
400V  
600V  
6
4
2
0
0
0.0  
1.0  
2.0  
3.0  
(V)  
4.0  
5.0  
0
25  
Q
50  
75  
100  
125  
V
F
, Total Gate Charge (nC)  
G
Fig. 26 - Typical Gate Charge vs. VGE  
Fig. 27 - Typ. Diode Forward Characteristics  
ICE = 12.5A; L = 1mH  
tp = 80µs  
3000  
2500  
2000  
1500  
1000  
500  
1000  
td  
OFF  
E
ON  
t
F
100  
td  
ON  
E
OFF  
t
R
0
10  
0
10  
20  
(A)  
30  
40  
0
10  
20  
(A)  
30  
40  
I
I
C
C
Fig. 28 - Typ. Energy Loss vs. IC  
Fig. 29 - Typ. Switching Time vs. IC  
TJ = 125°C; L=400µH; VCE= 600V,RG= 22; VGE= 15V  
TJ = 125°C; L=400µH; VCE= 600V,RG= 22;VGE= 15V  
2000  
10000  
E
ON  
1500  
1000  
100  
10  
td  
OFF  
t
E
OFF  
1000  
500  
0
F
td  
t
ON  
R
0
50  
100  
150  
0
25  
50  
75  
(
100  
125  
150  
R
(
)
R
)
G
G
Fig. 31 - Typ. Switching Time vs. RG  
Fig. 30 - Typ. Energy Loss vs. RG  
TJ = 125°C; L=400µH; VCE= 600V, ICE= 12.5A; VGE= 15V  
9
TJ = 125°C; L=400µH; VCE= 600V, ICE= 12.5A; VGE= 15V  
www.irf.com  
GB25RF120K  
Brake  
45  
40  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
R
4.7 Ω  
G =  
R
10  
G =  
R
22  
G =  
G =  
R
47  
0
0
0
5
10  
15  
(A)  
20  
25  
30  
0
10  
20  
30  
40  
50  
I
R
(
Ω)  
F
G
Fig. 33- Typical Diode IRR vs. RG  
Fig. 32 - Typical Diode IRR vs. IF  
TJ = 125°C; IF = 12.5A  
TJ = 125°C  
35  
30  
25  
20  
15  
10  
5
0
0
500  
1000  
1500  
di /dt (A/µs)  
F
Fig. 34 - Typical Diode IRR vs. diF / dt  
VCC = 600V; VGE = 15V; IF = 12.5A; TJ = 125°C  
10  
www.irf.com  
GB25RF120K  
Brake  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
0.1  
R1  
R1  
R2  
R2  
R3  
R3  
Ri (°C/W) τi (sec)  
0.02  
0.01  
τ
J τJ  
τ
τ
Cτ  
0.268  
0.642  
0.290  
0.000469  
0.018501  
0.056904  
τ
1τ1  
τ
0.01  
0.001  
0.0001  
2 τ2  
3τ3  
Ci= τi/Ri  
/
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig 35. Maximum Transient Thermal Impedance, Junction-to-Case (Brake IGBT)  
10  
1
D = 0.50  
0.20  
0.10  
R1  
R1  
R2  
R2  
R3  
R3  
Ri (°C/W) τi (sec)  
0.05  
τ
0.1  
J τJ  
τ
τ
0.714  
1.193  
0.394  
0.000489  
0.020644  
0.154110  
Cτ  
0.02  
0.01  
τ
1τ1  
τ
2 τ2  
3τ3  
Ci= τi/Ri  
/
0.01  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig 36. Maximum Transient Thermal Impedance, Junction-to-Case (Brake Diode)  
900  
45  
40  
35  
30  
25  
20  
15  
10  
5
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
45  
40  
35  
30  
25  
20  
15  
10  
5
800  
700  
600  
500  
400  
300  
200  
100  
0
tf  
tr  
TEST CURRENT  
90% test current  
90% ICE  
5% VCE  
5% ICE  
10% test current  
5% VCE  
Eon Loss  
Eoff Loss  
0
0
-100  
-5  
-100  
-5  
-0.60 -0.10 0.40  
0.90  
1.40  
9.80 10.00 10.20 10.40 10.60 10.80  
Time(µs)  
Time (µs)  
Fig. WF3- Typ. Turn-off Loss Waveform  
@ TJ = 125°C using Fig. CT.4  
Fig. WF4- Typ. Turn-on Loss Waveform  
@ TJ = 125°C using Fig. CT.4  
www.irf.com  
11  
GB25RF120K  
L
L
VCC  
80 V  
+
-
DUT  
DUT  
480V  
0
Rg  
1K  
Fig.C.T.2 - RBSOA Circuit  
Fig.C.T.1 - Gate Charge Circuit (turn-off)  
diode clamp /  
DUT  
L
Driver  
- 5V  
DC  
360V  
DUT /  
VCC  
DRIVER  
DUT  
Rg  
Fig.C.T.3 - S.C.SOA Circuit  
Fig.C.T.4 - Switching Loss Circuit  
V
CC  
R =  
ICM  
DUT  
VCC  
Rg  
Fig.C.T.5 - Resistive Load Circuit  
12  
www.irf.com  
GB25RF120K  
Econo2 PIM Package Outline  
Dimensions are shown in millimeters (inches)  
0.25 [.0098] CONVEX  
Econo2 PIM Part Marking Information  
Data and specifications subject to change without notice.  
This product has been designed and qualified for Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.10/02  
www.irf.com  
13  

相关型号:

GB25XF120K

IGBT 6PACK MODULE
INFINEON

GB2X100MPS12-227

Silicon Carbide Schottky Diode
GENESIC

GB2X100MPS12-227_18

Silicon Carbide Schottky Diode
GENESIC

GB2X100MPS12-227_V01

Silicon Carbide Schottky Diode
GENESIC

GB2X50MPS12-227

Silicon Carbide Schottky Diode
GENESIC

GB2X50MPS12-227_18

Silicon Carbide Schottky Diode
GENESIC

GB2X50MPS12-227_V01

Silicon Carbide Schottky Diode
GENESIC

GB30-170-3P208

Programmable Power Supplies
TDK

GB30-170-3P400

Programmable Power Supplies
TDK

GB30-170-3P480

Programmable Power Supplies
TDK

GB30-250-3P208

可编程电源
TDK

GB30-250-3P480

可编程电源
TDK