GRM1885C1H271JA01D [INFINEON]

USER GUIDE FOR IR3899 EVALUATION BOARD; 用户指南IR3899评估板
GRM1885C1H271JA01D
型号: GRM1885C1H271JA01D
厂家: Infineon    Infineon
描述:

USER GUIDE FOR IR3899 EVALUATION BOARD
用户指南IR3899评估板

文件: 总17页 (文件大小:3135K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IRDC3899-P1V2  
TM  
SupIRBuck  
USER GUIDE FOR IR3899 EVALUATION BOARD  
1.2Vout  
DESCRIPTION  
Output over-current protection function is  
implemented by sensing the voltage developed  
across the on-resistance of the synchronous  
Mosfet for optimum cost and performance and  
the current limit is thermally compensated.  
The IR3899 is  
converter, providing  
performance and flexible solution in a small  
4mm X 5 mm Power QFN package.  
a
synchronous buck  
compact, high  
a
Key features offered by the IR3899 include  
internal Digital Soft Start/Soft Stop, precision  
This user guide contains the schematic and bill  
of materials for the IR3899 evaluation board.  
The guide describes operation and use of the  
evaluation board itself. Detailed application  
information for IR3899 is available in the  
IR3899 data sheet.  
0.5Vreference voltage, Power Good,  
thermal protection, programmable switching  
frequency, Enable input, input under-voltage  
lockout for proper start-up, enhanced line/  
load regulation with feed forward, external  
frequency synchronization with smooth  
clocking, internal LDO and pre-bias start-  
up.  
BOARD FEATURES  
Vin = +12V (+ 13.2V Max)  
•Vout = +1.2V @ 0- 9A  
Fs=600kHz  
L= 0.51uH  
Cin= 4x10uF (ceramic 1206) + 1X330uF (electrolytic)  
Cout=6x22uF (ceramic 0805)  
12/8/2011  
1
IRDC3899-P1V2  
CONNECTIONS and OPERATING INSTRUCTIONS  
A well regulated +12V input supply should be connected to VIN+ and VIN-. A maximum of 9A load should be  
connected to VOUT+ and VOUT-. The inputs and output connections of the board are listed in Table I.  
IR3899 has only one input supply and internal LDO generates Vcc from Vin. If operation with external Vcc  
is required, then R15 can be removed and external Vcc can be applied between Vcc+ and Vcc- pins. Vin pin  
and Vcc/LDO_Out pins should be shorted together for external Vcc operation.  
The output can track voltage at the Vp pin. For this purpose, Vref pin is to be connected to ground (use zero  
ohm resistor for R21). The value of R14 and R28 can be selected to provide the desired tracking ratio  
between output voltage and the tracking input.  
Table I. Connections  
Connection  
VIN+  
Signal Name  
Vin (+12V)  
VIN-  
Ground of Vin  
Vout(+1.2V)  
Vout+  
Vout-  
Vcc+  
Vcc-  
Ground for Vout  
Vcc/ LDO_Out Pin  
Ground for Vcc input  
Enable  
Enable  
PGood  
AGnd  
Power Good Signal  
Analog ground  
LAYOUT  
The PCB is a 4-layer board (2.23”x2”) using FR4 material. All layers use 2 Oz. copper. The PCB  
thickness is 0.062”. The IR3899 and other major power components are mounted on the top side of the  
board.  
Power supply decoupling capacitors, the bootstrap capacitor and feedback components are located  
close to IR3899. The feedback resistors are connected to the output at the point of regulation and are  
located close to the SupIRBuck IC. To improve efficiency, the circuit board is designed to minimize the  
length of the on-board power ground current path.  
12/8/2011  
2
IRDC3899-P1V2  
Connection Diagram  
Vin  
Gnd  
Gnd  
Vout  
Enable  
VDDQ  
Top View  
Vref  
Sync  
S-Ctrl  
AGnd  
Vsns  
Vcc-  
Vcc+  
PGood  
Bottom View  
Fig. 1: Connection Diagram of IR3899/98/97 Evaluation Boards  
12/8/2011  
3
IRDC3899-P1V2  
Fig. 2: Board Layout-Top Layer  
Single point connection  
between AGnd and PGnd  
Fig. 3: Board Layout-Bottom Layer  
12/8/2011  
4
IRDC3899-P1V2  
Fig. 4: Board Layout-Mid Layer 1  
Fig. 5: Board Layout-Mid Layer 2  
12/8/2011  
5
IRDC3899-P1V2  
12/8/2011  
6
IRDC3899-P1V2  
Bill of Materials  
Item  
1
Qty  
1
Part Reference  
C1  
Value  
Description  
Manufacturer  
Part Number  
SMD Electrolytic F size 25V 20%  
Panasonic  
330uF  
EEV-FK1E331P  
1206, 25V, X5R, 20%  
C3216X5R1E106M  
GRM188R71E104KA01B  
GRM188R71H222KA01B  
GRM1885C1H271JA01D  
2
3
4
5
4
4
1
1
C2 C3 C4 C5  
C7 C12 C14 C24  
C8  
10uF  
TDK  
0.1uF  
2200pF  
270pF  
0603, 25V, X7R, 10%  
0603,50V,X7R  
Murata  
Murata  
Murata  
0603, 50V, NP0, 5%  
C11  
C15 C16 C17 C18  
C19 C20  
0805, 6.3V, X5R, 20%  
6
6
1
1
1
1
1
2
2
1
1
1
22uF  
2.2uF  
10nF  
1.0uF  
0.51uH  
1.43K  
3.32K  
2.37K  
100  
TDK  
C2012X5R0J226M  
C1608X5R1C225M  
GRM188R71E103KA01J  
GRM188R61E105KA12D  
59PR9876N  
0603, 16V, X5R, 20%  
7
C23  
C26  
C32  
L1  
TDK  
0603, 25V, X7R, 10%  
8
Murata  
0603, 25V, X5R, 10%  
9
Murata  
10  
11  
12  
13  
14  
15  
16  
SMD 11.0x7.2x7.5mm,0.29m  
Thick Film, 0603,1/10W,1%  
Thick Film, 0603,1/10W,1%  
Thick Film, 0603,1/10W,1%  
Thick Film, 0603,1/10W,1%  
Thick Film, 0603,1/10W,1%  
Thick Film, 0603,1/10W,1%  
Vitec  
R1  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
ERJ-3EKF1431V  
ERJ-3EKF3321V  
ERJ-3EKF2371V  
ERJ-3EKF1000V  
ERJ-3EKF20R0V  
ERJ-3EKF3922V  
R2 R11  
R3 R12  
R4  
R6  
20  
R9  
39.2K  
R10 R13 R14 R15  
R50  
Thick Film, 0603,1/10W  
17  
18  
19  
20  
5
2
1
1
0
Panasonic  
Panasonic  
Panasonic  
IR  
ERJ-3GEY0R00V  
ERJ-3EKF4992V  
ERJ-3EKF7501V  
IR3899MPBF  
Thick Film, 0603,1/10W,1%  
Thick Film, 0603,1/10W,1%  
PQFN 4x5mm  
R17 R18  
R19  
49.9K  
7.5K  
IR3899  
U1  
12/8/2011  
7
IRDC3899-P1V2  
TYPICAL OPERATING WAVEFORMS  
Vin=12.0V, Vo=1.2V, Io=0-9A, Room Temperature, no airflow  
Fig. 8: Start up at 9A Load,  
Fig. 7: Start up at 9A Load  
Ch1:Vin, Ch2:Vo, Ch3:Vcc, Ch4:PGood  
Ch1:Vin, Ch2:Vo, Ch3:PGood Ch4:Enable  
Fig. 10: Output Voltage Ripple, 9A load  
Ch2: Vout ,  
Fig. 9: Start up with 1V Pre Bias , 0A Load,  
Ch2:Vo  
Fig. 12: Short circuit (Hiccup) Recovery  
Ch2:Vout , Ch4:Iout  
Fig. 11: Inductor node at 9A load  
Ch3:LX  
12/8/2011  
8
IRDC3899-P1V2  
TYPICAL OPERATING WAVEFORMS  
Vin=12.0V, Vo=1.2V, Io=0-9A, Room Temperature, no air flow  
Fig. 13: Transient Response, 4.5A to 9A step  
Ch2:Vout Ch4-Iout  
12/8/2011  
9
IRDC3899-P1V2  
TYPICAL OPERATING WAVEFORMS  
Vin=12.0V, Vo=1.2V, Io=0-9A, Room Temperature, no air flow  
Fig. 14: Bode Plot at 9A load shows a bandwidth of 115.6KHz and phase margin of 50.3 degrees  
12/8/2011  
10  
IRDC3899-P1V2  
TYPICAL OPERATING WAVEFORMS  
Vin=12.0V, Vo=1.2V, Io=0-9A, Room Temperature, no air flow  
Fig (15) Soft start and soft stop using S_Ctrl pin  
Fig (16) Feed Forward for Vin change from 7 to 16V and back to 7V  
Ch2-Vout Ch3-Vin  
12/8/2011  
11  
IRDC3899-P1V2  
TYPICAL OPERATING WAVEFORMS  
Vin=12.0V, Vo=1.2V, Io=0-9A, Room Temperature, no air flow  
90  
88  
86  
84  
82  
80  
78  
76  
0.9  
1.8  
2.7  
3.6  
4.5  
5.4  
6.3  
7.2  
8.1  
9
Iout(A)  
Fig.17: Efficiency versus load current  
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0.9  
1.8  
2.7  
3.6  
4.5  
5.4  
6.3  
7.2  
8.1  
9
Iout(A)  
Fig.18: Power loss versus load current  
12/8/2011  
12  
IRDC3899-P1V2  
THERMAL IMAGES  
Vin=12.0V, Vo=1.2V, Io=0-9A, Room Temperature, No Air flow  
Fig. 19: Thermal Image of the board at 9A load  
Test point 1 is IR3899  
Test point 2 is inductor  
12/8/2011  
13  
IRDC3899-P1V2  
PCB METAL AND COMPONENT PLACEMENT  
Evaluations have shown that the best overall performance is achieved using the substrate/PCB layout  
as shown in following figures. PQFN devices should be placed to an accuracy of 0.050mm on both X  
and Y axes. Self-centering behavior is highly dependent on solders and processes, and experiments  
should be run to confirm the limits of self-centering on specific processes. For further information, please  
refer to “SupIRBuck™ Multi-Chip Module (MCM) Power Quad Flat No-Lead (PQFN) Board Mounting  
Application Note.” (AN1132)  
Figure 20: PCB Metal Pad Spacing (all dimensions in mm)  
12/8/2011  
14  
IRDC3899-P1V2  
SOLDER RESIST  
IR recommends that the larger Power or Land Area pads are Solder Mask Defined (SMD.)  
This allows the underlying Copper traces to be as large as possible, which helps in terms of current  
carrying capability and device cooling capability. When using SMD pads, the underlying copper  
traces should be at least 0.05mm larger (on each edge) than the Solder Mask window,  
in order to accommodate any layer to layer misalignment. (i.e. 0.1mm in X & Y.)  
However, for the smaller Signal type leads around the edge of the device, IR recommends that  
these are Non Solder Mask Defined or Copper Defined. When using NSMD pads,  
the Solder Resist Window should be larger than the Copper Pad by at least 0.025mm on  
each edge, (i.e. 0.05mm in X&Y,) in order to accommodate any layer to  
layer misalignment. Ensure that the solder resist in-between the smaller signal lead areas are at  
least 0.15mm wide, due to the high x/y aspect ratio of the solder mask strip.  
Figure 21: Solder resist  
12/8/2011  
15  
IRDC3899-P1V2  
STENCIL DESIGN  
Stencils for PQFN can be used with thicknesses of 0.100-0.250mm (0.004-0.010"). Stencils thinner than  
0.100mm are unsuitable because they deposit insufficient solder paste to make good solder joints with the  
ground pad; high reductions sometimes create similar problems. Stencils in the range of 0.125mm-0.200mm  
(0.005-0.008"), with suitable reductions, give the best results. Evaluations have shown that the best overall  
performance is achieved using the stencil design shown in following figure. This design is for  
a stencil thickness of 0.127mm (0.005").The reduction should be adjusted for stencils of other thicknesses.  
Figure 22: Stencil Pad Spacing (all dimensions in mm)  
12/8/2011  
16  
IRDC3899-P1V2  
PACKAGE INFORMATION  
Figure 23: Package Dimensions  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
This product has been designed and qualified for the Industrial market  
Visit us at www.irf.com for sales contact information  
Data and specifications subject to change without notice. 12/11  
12/8/2011  
17  

相关型号:

GRM1885C1H271JA01J

Chip Multilayer Ceramic Capacitors for General Purpose
MURATA

GRM1885C1H272J

Chip Monolithic Ceramic Capacitor 0603 C0G 2700pF 50V
MURATA

GRM1885C1H272JA01

Chip Multilayer Ceramic Capacitors for General Purpose
MURATA

GRM1885C1H272JA01#

民用设备,工业设备,移动设备,植入式以外的医疗器械设备 [GHTF A/B/C],汽车[信息娱乐 / 舒适设备]
MURATA

GRM1885C1H272JA01J

Capacitor, Ceramic, Chip, General Purpose, 2700pF, 50V, ±5%, C0G/NP0, 0603 (1608 mm), 0.031"T, -55º ~ +125ºC, 13" Reel/Paper Tape
MURATA

GRM1885C1H2R0BA01

Chip Multilayer Ceramic Capacitors for General Purpose
MURATA

GRM1885C1H2R0BA01#

民用设备,工业设备,移动设备,植入式以外的医疗器械设备 [GHTF A/B/C],汽车[信息娱乐 / 舒适设备]
MURATA

GRM1885C1H2R0BA01D

Chip Multilayer Ceramic Capacitors for General Purpose
MURATA

GRM1885C1H2R0BA01J

Chip Multilayer Ceramic Capacitors for General Purpose
MURATA

GRM1885C1H2R0CA01

Chip Multilayer Ceramic Capacitors for General Purpose
MURATA

GRM1885C1H2R0CA01#

民用设备,工业设备,移动设备,植入式以外的医疗器械设备 [GHTF A/B/C],汽车[信息娱乐 / 舒适设备]
MURATA

GRM1885C1H2R0CA01D

Chip Multilayer Ceramic Capacitors for General Purpose
MURATA