HYB18T256400AF-25F [INFINEON]

DDR DRAM, 64MX4, 0.4ns, CMOS, PBGA60, GREEN, PLASTIC, TFBGA-60;
HYB18T256400AF-25F
型号: HYB18T256400AF-25F
厂家: Infineon    Infineon
描述:

DDR DRAM, 64MX4, 0.4ns, CMOS, PBGA60, GREEN, PLASTIC, TFBGA-60

时钟 动态存储器 双倍数据速率 内存集成电路
文件: 总120页 (文件大小:5164K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet, Rev. 1.4, Aug. 2005  
HYB18T256400AF(L)  
HYB18T256800AF(L)  
HYB18T256160AF(L)  
256-Mbit DDR2 SDRAM  
DDR2 SDRAM  
RoHS Compliant Products  
Memory Products  
N e v e r s t o p t h i n k i n g .  
Edition 2005-08  
Published by Infineon Technologies AG,  
St.-Martin-Strasse 53,  
81669 München, Germany  
© Infineon Technologies AG 2005.  
All Rights Reserved.  
Attention please!  
The information herein is given to describe certain components and shall not be considered as a guarantee of  
characteristics.  
Terms of delivery and rights to technical change reserved.  
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding  
circuits, descriptions and charts stated herein.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in  
question please contact your nearest Infineon Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or systems with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
HYB18T256400AF(L) HYB18T256800AF(L) HYB18T256160AF(L)  
Revision History: 2005-08, Rev. 1.4  
Page  
Subjects (major changes since last revision)  
Added low-power components HYB18T256[40/80/16]0AFL-3.7  
Added DDR2-800 5-5-5 components  
92  
Updated IDD Currents (IDD2P, IDD3P1, IDD6)  
chapter 2 Updated Pin Configuration - various editorial changes on notes  
Previous Version: 2005-07 Rev. 1.3  
Added DDR2-800 components  
Added DDR2-800 to speed grade dependant table-values  
We Listen to Your Comments  
Any information within this document that you feel is wrong, unclear or missing at all?  
Your feedback will help us to continuously improve the quality of this document.  
Please send us your proposal (including a reference to this document) to:  
techdoc.mp@infineon.com  
Template: mp_a4_s_rev314 / 3 / 2005-05-02  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Table of Contents  
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
1.1  
1.2  
1.3  
2
Pin Configuration and Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
TFBGA Ball Out Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
256 Mbit DDR2 Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
2.1  
2.2  
2.3  
3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Simplified State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Basic Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Power On and Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Programming the Mode Register and Extended Mode Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
DDR2 SDRAM Mode Register Set (MRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
DDR2 SDRAM Extended Mode Register Set EMR(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
DLL Enable/Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Output Disable (Qoff) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Single-ended and Differential Data Strobe Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Extended Mode Register EMR(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Extended Mode Register EMR(3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Off-Chip Driver (OCD) Impedance Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
On-Die Termination (ODT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Bank Activate Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Read and Write Commands and Access Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Posted CAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Burst Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Read Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Write Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Write Data Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Burst Interruption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Precharge Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Read Followed by a Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Write followed by Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Auto-Precharge Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Read with Auto-Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Write with Auto-Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Read or Write to Precharge Command Spacing Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Concurrent Auto-Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Auto-Refresh Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Self-Refresh Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Other Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
No Operation Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Deselect Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Input Clock Frequency Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Asynchronous CKE LOW Reset Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
3.10  
3.11  
3.12  
3.13  
3.14  
3.15  
3.16  
3.17  
3.18  
3.19  
3.20  
3.21  
3.22  
3.22.1  
3.22.2  
3.23  
3.23.1  
3.23.2  
3.23.3  
3.23.4  
3.24  
3.24.1  
3.24.2  
3.25  
3.26  
3.26.1  
3.26.2  
3.27  
3.28  
4
Truth tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
5
AC & DC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
5.1  
5.2  
Data Sheet  
4
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Table of Contents  
5.3  
5.4  
5.5  
5.5.1  
5.6  
5.7  
5.8  
5.9  
DC & AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Output Buffer Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Full Strength Output V-I Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Calibrated Output Driver V-I Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Reduced Output Drive Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Input / Output Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Power & Ground Clamp V-I Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Overshoot and Undershoot Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
6
IDD Measurement Specifications and Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
6.1  
6.1.1  
I
DD Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
On Die Termination (ODT) Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
7
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Speed Grade Defenitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
AC Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
ODT AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
7.1  
7.2  
7.3  
8
AC Timing Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Reference Load for Timing Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Slew Rate Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Output Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Input Slew Rate - Differential signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Input and Data Setup and Hold Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Definition for Input Setup (tIS) and Hold Time (tIH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Definition for Data Setup (tDS) and Hold Time (tDH), differential Data Strobes . . . . . . . . . . . . . . . 109  
Definition Data Setup (tDS1) and Hold Time (tDH1), Single-Ended Data Strobes . . . . . . . . . . . . . . 110  
Slew Rate Definition for Input and Data Setup and Hold Times . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Setup (tIS) and Hold (tIH) Time Derating Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
8.1  
8.2  
8.2.1  
8.2.2  
8.3  
8.3.1  
8.3.2  
8.3.3  
8.3.4  
8.3.5  
9
10  
Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Product Namenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Data Sheet  
5
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
List of Tables  
Table 1  
Performance for DDR2–800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Performance for DDR2–667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Performance for DDR2–400B and DDR2–533C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Ordering Information for RoHS compliant products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Pin Configuration of DDR2 SDRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Abbreviations for Pin Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Abbreviations for Buffer Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
256-Mbit DDR2 Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Mode Register Definition (BA[2:0] = 000B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Extended Mode Register Definition (BA[2:0] = 001B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Single-ended and Differential Data Strobe Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
EMRS(2) Programming Extended Mode register Definition (BA[2:0]=010B) . . . . . . . . . . . . . . . . . 33  
EMR(3) Programming Extended Mode Register Definition (BA[2:0]=010B) . . . . . . . . . . . . . . . . . 34  
Off Chip Driver Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Off-Chip-Driver Adjust Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
ODT Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Burst Length and Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Bank Selection for Precharge by Address Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Minimum Command Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Command Delay Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Command Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Clock Enable (CKE) Truth Table for Synchronous Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Data Mask (DM) Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
DRAM Component Operating Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Recommended DC Operating Conditions (SSTL_18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
ODT DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Input and Output Leakage Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
DC & AC Logic Input Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Single-ended AC Input Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Differential DC and AC Input and Output Logic Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
SSTL_18 Output DC Current Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
SSTL_18 Output AC Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
OCD Default Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Full Strength Default Pull-up Driver Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Full Strength Default Pull–down Driver Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Full Strength Calibrated Pull-down Driver Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Full Strength Calibrated Pull-up Driver Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Reduced Strength Default Pull-up Driver Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Reduced Strength Default Pull–down Driver Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Input / Output Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Power & Ground Clamp V-I Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
AC Overshoot / Undershoot Specification for Address and Control Pins . . . . . . . . . . . . . . . . . . . 89  
AC Overshoot / Undershoot Specification for Clock, Data, Strobe and Mask Pins . . . . . . . . . . . . 89  
Table 2  
Table 3  
Table 4  
Table 5  
Table 6  
Table 7  
Table 8  
Table 9  
Table 10  
Table 11  
Table 12  
Table 13  
Table 14  
Table 15  
Table 16  
Table 17  
Table 18  
Table 19  
Table 20  
Table 21  
Table 22  
Table 23  
Table 24  
Table 25  
Table 26  
Table 27  
Table 28  
Table 29  
Table 30  
Table 31  
Table 32  
Table 33  
Table 34  
Table 35  
Table 36  
Table 37  
Table 38  
Table 39  
Table 40  
Table 41  
Table 42  
Table 43  
Table 44  
Table 45  
Table 46  
Table 47  
Table 48  
Table 49  
Table 50  
Table 51  
Table 52  
Table 53  
I
DD Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Definition for IDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
I
I
I
DD Specification for HYB18T256xxxAF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
DD Measurement Test Condition for DDR2–800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
DD Measurement Test Conditions for DDR2–667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
IDD Measurement Test Condition for DDR2–533C and DDR2–400B . . . . . . . . . . . . . . . . . . . . . . 94  
ODT current per terminated input pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Speed Grade Definition Speed Bins DDR2-800. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Speed Grade Definition Speed Bins for DDR2–667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Data Sheet  
6
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
List of Tables  
Table 54  
Table 55  
Table 56  
Table 57  
Table 58  
Table 59  
Table 60  
Table 61  
Table 62  
Table 63  
Table 64  
Table 65  
Table 66  
Table 67  
Speed Grade Definition Speed Bins for DDR2-533C and DDR2-400B . . . . . . . . . . . . . . . . . . . . . 97  
Timing Parameter by Speed Grade - DDR2-800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Timing Parameter by Speed Grade - DDR2-667 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Timing Parameter by Speed Grade - DDR2-533 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Timing Parameter by Speed Grade - DDR2-400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
ODT AC Electrical Characteristics and Operating Conditions for DDR2-667 and DDR2-800 . . . 107  
ODT AC Electrical Characteristics and Operating Conditions for DDR2-533 and DDR2-400 . . . 107  
Derating Values for Input Setup and Hold Time (DDR2-667 & DDR2-800) . . . . . . . . . . . . . . . . 113  
Derating Values for Input Setup and Hold Time (DDR2-400 & DDR2-533) . . . . . . . . . . . . . . . . 114  
Derating Values for Data Setup and Hold Time of Differential DQS (DDR2-667 & DDR2-800) . 115  
Derating Values for Data Setup and Hold Time of Differential DQS (DDR2-400 & -533) . . . . . . 116  
Derating Values for Data Setup and Hold Time of Single-ended DQS (DDR2-400 & -533) . . . . 116  
Nomenclature Fields and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
DDR2 Memory Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Data Sheet  
7
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
List of Figures  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Figure 8  
Figure 9  
Pin Configuration for ×4 components, P-TFBGA-60 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Pin Configuration for ×8 components, P-TFBGA-60 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Pin Configuration for ×16 components, P-TFBGA-84 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Block Diagram 16 Mbit ×4 I/O ×4 Internal Memory Banks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Block Diagram 8 Mbit ×8 I/O ×4 Internal Memory Banks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Block Diagram 4 Mbit ×16 I/O ×4 Internal Memory Banks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Simplified State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Initialization Sequence after Power up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
OCD Impedance Adjustment Flow Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 10 Timing Diagram Adjust Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 11 Timing Diagram Drive Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 12 Functional Representation of ODT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 13 ODT Timing for Active and Standby (Idle) Modes (Synchronous ODT timings). . . . . . . . . . . . . . . 40  
Figure 14 ODT Timing for Precharge Power-Down and Active Power-Down Mode. . . . . . . . . . . . . . . . . . . . 40  
Figure 15 ODT Mode Entry Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 16 ODT Mode Exit Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 17 Bank Activate Command Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 18 Read Timing Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 19 Activate to Read Timing Example: Read followed by a write to the same bank. . . . . . . . . . . . . . . 45  
Figure 20 Read to Write Timing Example: Read followed by a write to the same bank . . . . . . . . . . . . . . . . . 45  
Figure 21 Read to Write Timing Example: Read followed by a write to the same bank . . . . . . . . . . . . . . . . . 46  
Figure 22 Read to Write Timing Example: Read followed by a write to the same bank . . . . . . . . . . . . . . . . . 46  
Figure 23 Write to Read Timing Example: Write followed by a read to the same bank . . . . . . . . . . . . . . . . . 46  
Figure 24 Basic Read Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 25 Read Operation Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 26 Read Operation Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 27 Read followed by Write Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 28 Seamless Read Operation Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 29 Seamless Read Operation Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 30 Basic Write Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 31 Write Operation Example 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 32 Write Operation Example 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 33 Write followed by Read Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 34 Seamless Write Operation Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 35 Seamless Write Operation Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 36 Write Data Mask Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 37 Write Operation with Data Mask Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 38 Read Interrupt Timing Example 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 39 Write Interrupt Timing Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 40 Read Operation Followed by Precharge Example 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Figure 41 Read Operation Followed by Precharge Example 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Figure 42 Read Operation Followed by Precharge Example 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Figure 43 Read Operation Followed by Precharge Example 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Figure 44 Read Operation Followed by Precharge Example 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Figure 45 Write followed by Precharge Example 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Figure 46 Write followed by Precharge Example 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Figure 47 Read with Auto-Precharge Example 1, followed by an Activation to the Same Bank (tRC Limit) . . 61  
Figure 48 Read with Auto-Precharge Example 2, followed by an Activation to the Same Bank (tRAS Limit) . 61  
Figure 49 Read with Auto-Precharge Example 3, followed by an Activation to the Same Bank . . . . . . . . . . 62  
Figure 50 Read with Auto-Precharge Example 4, followed by an Activation to the Same Bank, . . . . . . . . . . 62  
Figure 51 Write with Auto-Precharge Example 1 (tRC Limit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Figure 52 Write with Auto-Precharge Example 2 (WR + tRP Limit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Figure 53 Auto Refresh Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Data Sheet  
8
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
List of Figures  
Figure 54 Self Refresh Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Figure 55 Active Power-Down Mode Entry and Exit after an Activate Command . . . . . . . . . . . . . . . . . . . . . 68  
Figure 56 Active Power-Down Mode Entry and Exit Example after a Read Command . . . . . . . . . . . . . . . . . 69  
Figure 57 Active Power-Down Mode Entry and Exit Example after a Write Command . . . . . . . . . . . . . . . . . 69  
Figure 58 Active Power-Down Mode Entry and Exit Example after a Write Command with AP. . . . . . . . . . . 70  
Figure 59 Precharge Power Down Mode Entry and Exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Figure 60 Auto-Refresh command to Power-Down entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Figure 61 MRS, EMRS command to Power-Down entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Figure 62 Input Frequency Change Example during Precharge Power-Down mode. . . . . . . . . . . . . . . . . . . 72  
Figure 63 Asynchronous Low Reset Event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Figure 64 Single-ended AC Input Test Conditions Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Figure 65 Differential DC and AC Input and Output Logic Levels Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Figure 66 Full Strength Default Pull-up Driver Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Figure 67 Full Strength Default Pull–down Driver Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Figure 68 Reduced Strength Default Pull-up Driver Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Figure 69 Reduced Strength Default Pull–down Driver Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Figure 70 AC Overshoot / Undershoot Diagram for Address and Control Pins . . . . . . . . . . . . . . . . . . . . . . . 89  
Figure 71 AC Overshoot / Undershoot Diagram for Clock, Data, Strobe and Mask Pins. . . . . . . . . . . . . . . . 89  
Figure 72 Reference Load for Timing Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Figure 73 Input Setup and Hold Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Figure 74 Data Setup and Hold Time (Differential Data Strobes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Figure 75 Data Setup and Hold Time (Single Ended Data Strobes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Figure 76 Slew Rate Definition Nominal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Figure 77 Slew Rate Definition Tangent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Figure 78 Package Pinout PG-TFBGA-60 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Figure 79 Package Pinout PG-TFBGA-84 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Data Sheet  
9
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
256-Mbit DDR2 SDRAM  
DDR2 SDRAM  
HYB18T256400AF(L)  
HYB18T256800AF(L)  
HYB18T256160AF(L)  
1
Overview  
This chapter gives an overview of the 256-Mbit DDR2 SDRAM product family and describes its main  
characteristics.  
1.1  
Features  
The 256-Mbit DDR2 SDRAM offers the following key features:  
1.8 V ± 0.1 V Power Supply  
Commands entered on each positive clock edge,  
data and data mask are referenced to both edges of  
DQS  
1.8 V ± 0.1 V (SSTL_18) compatible I/O  
DRAM organisations with 4, 8 and 16 data  
in/outputs  
Data masks (DM) for write data  
Double Data Rate architecture: two data transfers  
per clock cycle, four internal banks for concurrent  
operation  
CAS Latency: (2), 3, 4, 5 and 6  
Burst Length: 4 and 8  
All speed grades faster than DDR2400 comply  
with DDR2400 timing specifications  
Differential clock inputs (CK and CK)  
Bi-directional, differential data strobes (DQS and  
DQS) are transmitted / received with data. Edge  
aligned with read data and center-aligned with write  
data.  
DLL aligns DQ and DQS transitions with clock  
DQS can be disabled for single-ended data strobe  
operation  
Posted CAS by programmable additive latency for  
better command and data bus efficiency  
Off-Chip-Driver impedance adjustment (OCD) and  
On-Die-Termination (ODT) for better signal quality.  
Auto-Precharge operation for read and write bursts  
Auto-Refresh, Self-Refresh and power saving  
Power-Down modes  
Average Refresh Period 7.8 µs  
Full and reduced Strength Data-Output Drivers  
1KByte Page Size for ×4 & ×8, 2KByte Page Size  
for ×16  
Packages: P-TFBGA-60 for ×4 & ×8 components,  
P-TFBGA-84 for ×16 components  
RoHS Compliant Products1)  
Table 1  
Performance for DDR2–800  
Product Type Speed Code  
Speed Grade  
–25F  
DDR2–800 5–5–5  
–2.5  
Unit  
DDR2–800 6–6–6  
max. Clock Frequency @CL6 fCK6 400  
@CL5 fCK5 400  
400  
333  
266  
200  
15  
15  
45  
60  
MHz  
MHz  
MHz  
MHz  
ns  
ns  
ns  
ns  
@CL4 fCK4 266  
@CL3 fCK3 200  
min. RAS-CAS-Delay  
min. Row Precharge Time  
min. Row Active Time  
min. Row Cycle Time  
tRCD 12.5  
tRP 12.5  
tRAS 45  
tRC 57.5  
1) RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic  
equipment as defined in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January  
2003. These substances include mercury, lead, cadmium, hexavalent chromium, polybrominated biphenyls and  
polybrominated biphenyl ethers.  
Data Sheet  
10  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Overview  
Table 2  
Performance for DDR2–667  
Product Type Speed Code  
Speed Grade  
–3  
–3S  
Unit  
DDR2–667 4–4–4  
DDR2–667 5–5–5  
max. Clock Frequency @CL5 fCK5 333  
@CL4 fCK4 333  
333  
266  
200  
15  
15  
45  
MHz  
MHz  
MHz  
ns  
ns  
ns  
@CL3 fCK3 200  
min. RAS-CAS-Delay  
min. Row Precharge Time  
min. Row Active Time  
min. Row Cycle Time  
tRCD 12  
tRP 12  
tRAS 45  
tRC 57  
60  
ns  
Table 3  
Performance for DDR2–400B and DDR2–533C  
Product Type Speed Code  
Speed Grade  
–3.7  
–5  
Unit  
DDR2–533 4–4–4  
DDR2–400 3–3–3  
max. Clock Frequency @CL5 fCK5 266  
@CL4 fCK4 266  
200  
200  
200  
15  
15  
40  
MHz  
MHz  
MHz  
ns  
ns  
ns  
@CL3 fCK3 200  
min. RAS-CAS-Delay  
min. Row Precharge Time  
min. Row Active Time  
min. Row Cycle Time  
tRCD 15  
tRP 15  
tRAS 45  
tRC 60  
55  
ns  
1.2  
Description  
The 256-Mbit DDR2 DRAM is a high-speed Double- All of the control and address inputs are synchronized  
Data-Rate-Two CMOS Synchronous DRAM device with a pair of externally supplied differential clocks.  
containing 268,435,456 bits and internally configured Inputs are latched at the cross point of differential  
as a quad-bank DRAM. The 256-Mbit device is clocks (CK rising and CK falling). All I/Os are  
organized as either 16 Mbit × 4 I/O × 4 banks, 8 Mbit × 8 synchronized with a single ended DQS or differential  
I/O × 4 banks or 4 Mbit × 16 I/O × 4 banks chip. These DQS-DQS pair in a source synchronous fashion.  
synchronous devices achieve high speed transfer rates  
starting at 400 Mbit/sec/pin for general applications.  
See Table 1, Table 2 and Table 3 for performance  
figures.  
The device is designed to comply with all DDR2 DRAM  
key features:  
A 15 bit address bus is used to convey row, column and  
bank address information in a RAS-CAS multiplexing  
style.  
The DDR2 device operates with a 1.8 V ± 0.1 V power  
supply. An Auto-Refresh and Self-Refresh mode is  
provided along with various power-saving power-down  
modes.  
1. posted CAS with additive latency,  
The functionality described and the timing  
specifications included in this data sheet are for the  
DLL Enabled mode of operation.  
The DDR2 SDRAM is available in P-TFBGA-60 and P-  
TFBGA-84 package.  
2. write latency = read latency - 1,  
3. normal and weak strength data-output driver,  
4. Off-Chip Driver (OCD) impedance adjustment  
5. On-Die Termination (ODT) function.  
Data Sheet  
11  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Overview  
1.3  
Ordering Information  
Table 4  
Part Number  
Ordering Information for RoHS compliant products  
Org Speed  
CAS1)RCD2)RP3) Clock CAS1)RCD2)RP3) Clock Package  
.
Latencies  
(MHz) Latencies  
(MHz)  
HYB18T256400AF–2.5 ×4 DDR2–800 6–6–6  
HYB18T256800AF–2.5 ×8  
HYB18T256160AF–2.5 ×16  
400  
400  
333  
333  
266  
266  
200  
5–5–5  
4–4–4  
3–3–3  
4–4–4  
3–3–3  
3–3–3  
333  
P-TFBGA-60  
P-TFBGA-84  
P-TFBGA-60  
HYB18T256400AF–25F ×4  
HYB18T256800AF–25F ×8  
HYB18T256160AF–25F ×16  
5–5–5  
333  
200  
266  
200  
200  
P-TFBGA-84  
P-TFBGA-60  
HYB18T256400AF–3  
HYB18T256800AF–3  
HYB18T256160AF–3  
×4 DDR2–667 4–4–4  
×8  
×16  
P-TFBGA-84  
P-TFBGA-60  
HYB18T256400AF–3S ×4  
HYB18T256800AF–3S ×8  
HYB18T256160AF–3S ×16  
5–5–5  
P-TFBGA-84  
P-TFBGA-60  
HYB18T256400AF–3.7 ×4 DDR2–533 4–4–4  
HYB18T256800AF–3.7 ×8  
HYB18T256160AF–3.7 ×16  
P-TFBGA-84  
P-TFBGA-60  
HYB18T256400AFL–3.7 ×4  
HYB18T256800AFL–3.7 ×8  
HYB18T256160AFL–3.7 ×16  
4–4–4  
P-TFBGA-84  
P-TFBGA-60  
HYB18T256400AF–5  
HYB18T256800AF–5  
HYB18T256160AF–5  
×4 DDR2–400 3–3–3  
×8  
×16  
P-TFBGA-84  
1) CAS: Column Adress Strobe  
2) RCD: Row Column Delay  
3) RP: Row Precharge  
Note:For product nomenclature see Chapter 10 of this data sheet  
Data Sheet  
12  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Pin Configuration and Block Diagrams  
2
Pin Configuration and Block Diagrams  
The pin configuration of a DDR2 SDRAM is listed by function in Table 5. The abbreviations used in the Pin# and  
Buffer Type columns are explained in Table 6 and Table 7 respectively. The pin numbering for the FBGA package  
is depicted in Figure 1 for ×4, Figure 2 for ×8 and Figure 3 for ×16.  
Table 5  
Pin Configuration of DDR2 SDRAM  
Ball#/Pin#  
Name  
Pin  
Type  
Buffer  
Type  
Function  
Clock Signals ×4/×8 organizations  
E8  
CK  
I
SSTL  
Clock Signal CK, Complementary Clock Signal CK  
F8  
CK  
I
SSTL  
Note: CK and CK are differential system clock inputs. All address  
and control inputs are sampled on the crossing of the  
positive edge of CK and negative edge of CK. Output (read)  
data is referenced to the crossing of CK and CK (both  
direction of crossing)  
F2  
CKE  
I
SSTL  
Clock Enable  
Note: CKE HIGH activates and CKE LOW deactivates internal  
clock signals and device input buffers and output drivers.  
Taking CKE LOW provides Precharge Power-Down and  
Self-Refresh operation (all banks idle), or Active Power-  
Down (row Active in any bank). CKE is synchronous for  
power down entry and exit and for self-refresh entry. Input  
buffers excluding CKE are disabled during self-refresh.  
CKE is used asynchronously to detect self-refresh exit  
condition. Self-refresh termination itself is synchronous.  
After VREF has become stable during power-on and  
initialisation sequence, it must be maintained for proper  
operation of the CKE receiver. For proper self-refresh entry  
and exit, VREF must be maintained to this input. CKE must  
be maintained HIGH throughout read and write accesses.  
Input buffers, excluding CK, CK, ODT and CKE are disabled  
during power-down  
Clock Signals ×16 organization  
J8  
K8  
K2  
CK  
CK  
CKE  
I
I
I
SSTL  
SSTL  
SSTL  
Clock Signal CK, Complementary Clock Signal CK  
Note: See functional description in x4/x8 organization  
Clock Enable  
Note: See functional description in x4/x8 organization  
Control Signals ×4/×8 organizations  
F7  
G7  
F3  
RAS  
CAS  
WE  
I
I
I
SSTL  
SSTL  
SSTL  
Row Address Strobe (RAS), Column Address Strobe (CAS),  
Write Enable (WE)  
Note: RAS, CAS and WE (along with CS) define the command  
being entered.  
Data Sheet  
13  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Pin Configuration and Block Diagrams  
Table 5  
Pin Configuration of DDR2 SDRAM  
Ball#/Pin#  
Name  
Pin  
Type  
Buffer  
Type  
Function  
G8  
CS  
I
SSTL  
Chip Select  
Note: All command are masked when CS is registered HIGH. CS  
provides for external rank selection on systems with  
multiple memory ranks. CS is considered part of the  
command.  
Control Signals ×16 organization  
K7  
L7  
K3  
L8  
RAS  
CAS  
WE  
I
I
I
I
SSTL  
SSTL  
SSTL  
SSTL  
Row Address Strobe (RAS), Column Address Strobe (CAS),  
Write Enable (WE)  
CS  
Chip Select  
Address Signals ×4/×8 organizations  
G2  
BA0  
I
SSTL  
Bank Address Bus 1:0  
G3  
BA1  
I
SSTL  
Note: BA[1:0] define to which bank an Activate, Read, Write or  
Precharge command is being applied. BA[1:0] also  
determines which (extended) mode register is to be  
accessed during a (E)MRS cycle  
H8  
H3  
H7  
J2  
J8  
J3  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
Address Signal 12:0, Address Signal 10/Autoprecharge  
Note: Address Signal 10/Autoprecharge provides the row address  
for Activate commands and the column address and Auto-  
Precharge bit A10 (=AP) for Read/Write commands to  
select one location out of the memory array in the respective  
bank. A10 (=AP) is sampled during a Precharge command  
to determine whether the Precharge applies to one bank  
(A10=LOW) or all banks (A10=HIGH). If only one bank is to  
be precharged, the bank is selected by BA[1:0]. The  
address inputs also provide the register value during Mode  
Register Set commands.  
J7  
K2  
K8  
K3  
H2  
A8  
A9  
A10  
AP  
A11  
A12  
A13  
K7  
L2  
L8  
Address Signal 13  
Note: x4/x8 512 Mbit components  
NC  
Note: 256 Mbit components and x16 512 Mbit components  
Address Signals ×16 organization  
L2  
L3  
L1  
BA0  
BA1  
NC  
I
I
SSTL  
SSTL  
Bank Address Bus 1:0  
Data Sheet  
14  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Pin Configuration and Block Diagrams  
Table 5  
Pin Configuration of DDR2 SDRAM  
Ball#/Pin#  
Name  
Pin  
Type  
Buffer  
Type  
Function  
M8  
M3  
M7  
N2  
N8  
N3  
N7  
P2  
P8  
P3  
M2  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
AP  
A11  
A12  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
Address Signal 12:0, Address Signal 10/Autoprecharge  
P7  
R2  
Data Signals ×4/×8 organizations  
C8  
C2  
D7  
D3  
DQ0  
DQ1  
DQ2  
DQ3  
I/O  
I/O  
I/O  
I/O  
SSTL  
SSTL  
SSTL  
SSTL  
Data Signal 3:0  
Note: Bi-directional data bus. DQ[3:0] for ×4 components, DQ[7:0]  
for ×8 components  
Data Signals ×8 organization  
D1  
D9  
B1  
B9  
DQ4  
DQ5  
DQ6  
DQ7  
I/O  
I/O  
I/O  
I/O  
SSTL  
SSTL  
SSTL  
SSTL  
Data Signal 7:4  
Data Signals ×16 organization  
Data Sheet  
15  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Pin Configuration and Block Diagrams  
Table 5  
Pin Configuration of DDR2 SDRAM  
Ball#/Pin#  
Name  
Pin  
Type  
Buffer  
Type  
Function  
G8  
G2  
H7  
H3  
H1  
H9  
F1  
F9  
C8  
C2  
D7  
D3  
D1  
D9  
B1  
B9  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
SSTL  
Data Signal 15:0  
Note: Bi-directional data bus. DQ[15:0] for ×16 components  
DQ8  
DQ9  
DQ10  
DQ11  
DQ12  
DQ13  
DQ14  
DQ15  
Data Strobe ×48 organisations  
B7  
A8  
DQS  
DQS  
I/O  
I/O  
SSTL  
SSTL  
Data Strobe  
Note: Output with read data, input with write data. Edge aligned  
with read data, centered with write data. LDQS corresponds  
to the data on DQ[7:0]; UDQS corresponds to the data on  
DQ[15:8]. The datastrobes DQS, LDQS, UDQS may be  
used in single ended mode or paired with the optional  
complementary signals DQS, LDQS, UDQS to provide  
differential pair signaling to the system during both reads  
and writes. An EMRS(1) control bit enables or disables the  
complementary data strobe signals. For x8 components to  
switch from bidirectional to unidirectional is supported and  
selected by EMRS(1) control bit.  
Data Strobe ×8 organisations  
B3  
A2  
RDQS  
RDQS  
O
O
SSTL  
SSTL  
Read Data Strobe  
Note: RDQS and RDQS are optional to be enabled by EMRS(1)  
control bits. see functional description of DM and DQS pins.  
Although RDQS/RDQS pins are output only the loading  
matches the DQ and DQS loading.  
Data Strobe ×16 organization  
B7  
A8  
F7  
E8  
UDQS  
UDQS  
LDQS  
LDQS  
I/O  
I/O  
I/O  
I/O  
SSTL  
SSTL  
SSTL  
SSTL  
Data Strobe Upper Byte  
Note: UDQS corresponds to the data on DQ[15:8]  
Data Strobe Lower Byte  
Note: LDQS corresponds to the data on DQ[7:0]  
Data Mask ×48 organizations  
Data Sheet  
16  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Pin Configuration and Block Diagrams  
Table 5  
Pin Configuration of DDR2 SDRAM  
Ball#/Pin#  
Name  
Pin  
Type  
Buffer  
Type  
Function  
B3  
DM  
I
SSTL  
Data Mask  
Note: DM is an input mask signal for write data. Input data is  
masked when DM is sampled HIGH coincident with that  
input data during a write access. DM is sampled on both  
edges of DQS. Although DM pins are input only, the DM  
loading matches the DQ and DQS loading. For ×8  
components the data mask function is disabled, if  
RDQS/RDQS are enabled by EMRS(1) command.  
Data Mask ×16 organization  
B3  
F3  
UDM  
LDM  
I
I
SSTL  
SSTL  
Data Mask Upper/Lower Byte  
Note: LDM and UDM are the input mask signals for ×16  
components and control the lower or upper bytes.  
Power Supplies ×4/×816 organizations  
A9,C1,C3,C7, VDDQ  
C9  
PWR  
I/O Driver Power Supply  
A1  
VDD  
PWR  
PWR  
Power Supply  
I/O Driver Power Supply  
A7,B2,B8,D2, VSSQ  
D8  
A3,E3  
VSS  
PWR  
Power Supply  
Power Supplies ×4/×8 organizations  
E2  
E1  
E9,H9,L1  
E7  
J1,K9  
VREF  
VDDL  
VDD  
VSSDL  
VSS  
AI  
I/O Reference Voltage  
Power Supply  
Power Supply  
Power Supply  
Power Supply  
PWR  
PWR  
PWR  
PWR  
Power Supplies ×16 organization  
J2  
VREF  
VDDQ  
AI  
PWR  
I/O Reference Voltage  
I/O Driver Power Supply  
E9, G1, G3,  
G7, G9  
J1  
VDDL  
PWR  
PWR  
PWR  
Power Supply  
Power Supply  
I/O Driver Power Supply  
E1, J9, M9, R1 VDD  
E7, F2, F8, H2, VSSQ  
H8  
J7  
J3,N1,P9  
VSSDL  
VSS  
PWR  
PWR  
Power Supply  
Power Supply  
Not Connected ×4/×8 organizations  
G1, L3,L7, L8 NC  
NC  
Not Connected  
Note: No internal electrical connection is present  
Not Connected ×4 organization  
A2, B1, B9,  
D1, D9  
NC  
NC  
Not Connected  
Not Connected ×16 organization  
Data Sheet  
17  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Pin Configuration and Block Diagrams  
Table 5  
Pin Configuration of DDR2 SDRAM  
Ball#/Pin#  
Name  
Pin  
Type  
Buffer  
Type  
Function  
A2, E2, L1, R3, NC  
R7, R8  
NC  
Not Connected  
Other Pins ×4/×8 organizations  
F9 ODT  
I
SSTL  
On-Die Termination Control  
Note: ODT (registered HIGH) enables termination resistance  
internal to the DDR2 SDRAM. When enabled, ODT is  
applied to each DQ, DQS, DQS and DM signal for ×4 and  
DQ, DQS, DQS, RDQS, RDQS and DM for ×8  
configurations. For ×16 configuration ODT is applied to  
each DQ, UDQS, UDQS, LDQS, LDQS, UDM and LDM  
signal. An EMRS(1) control bit enables or disables the ODT  
functionality.  
Other Pins ×16 organization  
K9  
ODT  
I
SSTL  
On-Die Termination Control  
Table 6  
Abbreviations for Pin Type  
Abbreviation  
Description  
I
O
Standard input-only pin. Digital levels.  
Output. Digital levels.  
I/O is a bidirectional input/output signal.  
Input. Analog levels.  
Power  
I/O  
AI  
PWR  
GND  
NC  
Ground  
Not Connected  
Table 7  
Abbreviation  
SSTL  
LV-CMOS  
CMOS  
Abbreviations for Buffer Type  
Description  
Serial Stub Terminated Logic (SSTL_18)  
Low Voltage CMOS  
CMOS Levels  
OD  
Open Drain. The corresponding pin has 2 operational states, active low and tristate,  
and allows multiple devices to share as a wire-OR.  
Data Sheet  
18  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Pin Configuration and Block Diagrams  
2.1  
TFBGA Ball Out Diagrams  
!
"
#
$
%
&
'
(
*
6$$  
633  
6331  
6$$1  
.#  
$13  
6331  
6331  
.#  
$-  
$13  
.#  
6$$1  
6$$1  
6$$1  
6$$1  
$1ꢂ  
6331  
62%&  
$1ꢀ  
6331  
.#  
$1ꢄ  
$1ꢁ  
633$,  
2!3  
#!3  
!ꢁ  
.#  
6$$,  
633  
6$$  
#+  
#+  
#3  
!ꢀ  
!ꢉ  
!ꢊ  
#+%  
"!ꢀ  
7%  
/$4  
6$$  
633  
.#  
633  
6$$  
"!ꢂ  
!ꢂꢀꢃ!0 !ꢂ  
!ꢄ  
!ꢅ  
!ꢆ  
!ꢇ  
.#  
!ꢈ  
+
,
!ꢂꢂ  
!ꢂꢁ  
.# .#ꢋ!ꢂꢄ  
-004ꢀꢀꢁꢀ  
Figure 1  
Notes  
Pin Configuration for ×4 components, P-TFBGA-60 (top view)  
2. Ball position L8 is A13 for 512-Mbit and is Not  
Connected on 256-Mbit  
1. VDDL and VSSDL are power and ground for the  
DLL.They are isolated on the device fromVDD,  
V
DDQ, VSS, and VSSQ  
Data Sheet  
19  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Pin Configuration and Block Diagrams  
!
"
#
$
%
&
'
(
*
.#ꢄ  
2$13  
6$$  
633  
6331  
6$$1  
$13  
$-ꢆ  
2$13  
6331  
6331  
$1ꢂ  
$13  
$1ꢉ  
6$$1  
6$$1  
6$$1  
6$$1  
$1ꢅ  
6331  
62%&  
$1ꢀ  
6331  
$1ꢃ  
$1ꢇ  
$1ꢈ  
633$,  
2!3  
#!3  
!ꢈ  
$1ꢊ  
6$$,  
633  
6$$  
#+  
#+  
#3  
!ꢀ  
!ꢃ  
!ꢋ  
#+%  
"!ꢀ  
7%  
/$4  
.#  
633  
6$$  
"!ꢅ  
6$$  
!ꢅꢀꢆ!0 !ꢅ  
!ꢇ  
!ꢉ  
!ꢊ  
!ꢁ  
.#  
!ꢂ  
633  
+
,
!ꢅꢅ  
!ꢅꢈ  
.# .#ꢄ!ꢅꢇ  
-004ꢀꢀꢁꢀ  
Figure 2  
Notes  
Pin Configuration for ×8 components, P-TFBGA-60 (top view)  
4. VDDL and VSSDL are power and ground for the DLL.  
They are isolated on the device from VDD, VDDQ  
,
1. RDQS / RDQS are enabled by EMRS(1) command.  
2. If RDQS / RDQS is enabled, the DM function is  
disabled  
3. When enabled, RDQS & RDQS are used as strobe  
signals during reads.  
V
SS and VSSQ.  
5. Ball position L8 is A13 for 512-Mbit and is Not  
Connected on 256-Mbit.  
Data Sheet  
20  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Pin Configuration and Block Diagrams  
!
"
#
$
%
&
6$$  
.#  
633  
6331  
6$$1  
5$13  
6331  
6331  
$1ꢁꢈ  
5$-  
5$13  
$1ꢁꢉ  
6$$1  
6$$1  
6$$1  
6$$1  
$1ꢇ  
$1ꢆ  
6331  
6331  
$1ꢁꢂ  
$1ꢁꢁ  
$1ꢁꢀ  
$1ꢁꢄ  
6$$  
633  
6331  
6$$1  
.#  
,$13  
6331  
6331  
$1ꢃ  
,$-  
,$13  
$1ꢅ  
6$$1  
6$$1  
6$$1  
6$$1  
'
(
*
$1ꢁ  
$1ꢀ  
6331  
6331  
$1ꢈ  
$1ꢄ  
$1ꢂ  
633$,  
2!3  
#!3  
!ꢂ  
$1ꢉ  
6$$,  
62%&  
633  
6$$  
#+  
#+  
#3  
!ꢀ  
!ꢈ  
!ꢆ  
.#  
+
,
#+%  
"!ꢀ  
!ꢁꢀꢊ!0  
!ꢄ  
7%  
"!ꢁ  
!ꢁ  
/$4  
.#  
6$$  
-
.
0
2
633  
!ꢉ  
!ꢃ  
633  
!ꢅ  
!ꢇ  
!ꢁꢁ  
.#  
6$$  
!ꢁꢂ  
.#  
-004ꢀꢁꢂꢀ  
Figure 3  
Notes  
Pin Configuration for ×16 components, P-TFBGA-84 (top view)  
2. LDM is the data mask signal for DQ[7:0], UDM is the  
data mask signal for DQ[15:8]  
1. UDQS/UDQS is data strobe for DQ[15:8],  
LDQS/LDQS is data strobe for DQ[7:0]  
3. VDDL and VDDSL are power and ground for the DLL.  
They are isolated on the device from VDD, VDDQ  
,
V
SS and VSSQ.  
Data Sheet  
21  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Pin Configuration and Block Diagrams  
2.2  
256 Mbit DDR2 Addressing  
Table 8  
256-Mbit DDR2 Addressing  
Configuration  
Bank Address  
Number of Banks  
Auto-Precharge  
Row Address  
Column Address  
Number of Column  
Address Bits  
64-Mbit x 4  
BA[1:0]  
4
A10 / AP  
A[12:0]  
A11, A[9:0]  
11  
32-Mbit x 8  
BA[1:0]  
4
A10 / AP  
A[12:0]  
A[9:0]  
16-Mbit x 16  
BA[1:0]  
4
A10 / AP  
A[12:0]  
A[8:0]  
Notes  
1)  
10  
9
2)  
3)  
Number of I/Os  
Page Size [Bytes]  
4
8
16  
1024 (1K)  
1024 (1K)  
1024 (1K)  
1) Refered to as ’colbits’  
2) Refered to as ’org’  
3) PageSize = 2colbits× org/8 [Bytes]  
Data Sheet  
22  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Pin Configuration and Block Diagrams  
2.3  
Block Diagrams  
/$4 #ONTROL  
2ECEIVERS  
$RIVERS  
2EAD ,ATCH  
2OWꢃ!DDRESS -58  
2EFRESH #OUNTER  
!DDRESS 2EGISTER  
-0"4ꢀꢁꢂꢀ  
Figure 4  
Notes  
Block Diagram 16 Mbit ×4 I/O ×4 Internal Memory Banks  
device; it does not represent an actual circuit  
implementation.  
3. LDM, UDM is a unidirectional signal (input only), but  
is internally loaded to match the load of the  
bidirectional LDQS and UDQS signals.  
1. 64Mb × 4 Organisation with 13 Row, 2 Bank and 11  
Column External Adresses  
2. This Functional Block Diagram is intended to  
facilitate user understanding of the operation of the  
Data Sheet  
23  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Pin Configuration and Block Diagrams  
/$4 #ONTROL  
2ECEIVERS  
$RIVERS  
2EAD ,ATCH  
2OWꢃ!DDRESS -58  
2EFRESH #OUNTER  
!DDRESS 2EGISTER  
-0"4ꢀꢁꢂꢀ  
Figure 5  
Notes  
Block Diagram 8 Mbit ×8 I/O ×4 Internal Memory Banks  
device; it does not represent an actual circuit  
implementation.  
3. LDM, UDM is a unidirectional signal (input only), but  
is internally loaded to match the load of the  
bidirectional LDQS and UDQS signals.  
1. 32Mb × 8 Organisation with 13 Row, 2 Bank and 10  
Column External Adresses  
2. This Functional Block Diagram is intended to  
facilitate user understanding of the operation of the  
Data Sheet  
24  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Pin Configuration and Block Diagrams  
/$4 #ONTROL  
2ECEIVERS  
$RIVERS  
2EAD ,ATCH  
2OWꢃ!DDRESS -58  
2EFRESH #OUNTER  
!DDRESS 2EGISTER  
-0"4ꢀꢁꢂꢀ  
Figure 6  
Notes  
Block Diagram 4 Mbit ×16 I/O ×4 Internal Memory Banks  
device; it does not represent an actual circuit  
implementation.  
3. LDM, UDM is a unidirectional signal (input only), but  
is internally loaded to match the load of the  
bidirectional LDQS and UDQS signals.  
1. 16Mb × 16 Organisation with 13 Row, 2 Bank and 9  
Column External Adresses  
2. This Functional Block Diagram is intended to  
facilitate user understanding of the operation of the  
Data Sheet  
25  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
3
Functional Description  
3.1  
Simplified State Diagram  
#+%,  
)NITIALIZATION  
3EQUENCE  
3ELF  
2EFRESH  
/#$  
CALIBRATION  
32&  
#+%(  
02  
3ETTING  
-23 OR  
%-23  
)DLE  
!LL BANKS  
PRECHARGED  
ꢃ%ꢄ-23  
2%&  
2EFRESHING  
#+%,  
#+%,  
#+%(  
!#4  
0RECHARGE  
0OWER  
$OWN  
!CTIVATING  
#+%,  
#+%,  
#+%,  
!CTIVE 0OWER  
$OWN  
#+%(  
#+%,  
!UTOMATIC 3EQUENCE  
#OMMAND 3EQUENCE  
"ANK  
!CTIVE  
7RITE  
2EAD  
7RITE  
2EAD  
72!  
2$!  
2EAD  
7RITING  
2EADING  
7RITE  
72!  
2$!  
72!  
2$!  
02ꢂ02!  
7RITING  
WITH !0  
2EADING WITH  
!0  
02ꢂ02!  
02ꢂ02!  
0RECHARGING  
-0&4ꢀꢀꢁꢀ  
Figure 7  
Simplified State Diagram  
Note:This Simplified State Diagram is intended to  
provide a floorplan of the possible state  
bank, enabling / disabling on-die termination,  
Power-Down entry / exit, timing restrictions  
during state transitions - among other things - are  
not captured in full detail.  
transitions and the commands to control them. In  
particular situations involving more than one  
Data Sheet  
26  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
3.2  
Basic Functionality  
Read and write accesses to the DDR2 SDRAM are address bits registered coincident with the Read or  
burst oriented; accesses start at a selected location Write command are used to select the starting column  
and continue for the burst length of four or eight in a location for the burst access and to determine if the  
programmed sequence. Accesses begin with the Auto-Precharge command is to be issued. Prior to  
registration of an Activate command, which is followed normal operation, the DDR2 SDRAM must be  
by a Read or Write command. The address bits initialized. The following sections provide detailed  
registered coincident with the activate command are information covering device initialization, register  
used to select the bank and row to be accessed.The definition, command description and device operation.  
3.3  
Power On and Initialization  
DDR2 SDRAM’s must be powered up and initialized in a predefined manner. Operational procedures other than  
those specified may result in undefined operation.  
Power-up and Initialization Sequence  
The following sequence is required for POWER UP and Initialization.  
1. Apply power and attempt to maintain CKE below  
0.2 × VDDQ and ODT at a low state (all other inputs  
may be undefined). To guarantee ODT off, VREF  
must be valid and a low-level must be applied to the  
ODT pin. Maximum power up interval for VDD / V  
DDQ is specified as 20.0 ms. The power interval is  
defined as the amount of time it takes for VDD / V  
DDQ to power-up from 0 V to 1.8 V ± 100 mV. At least  
one of these two sets of conditions must be met:  
VDD, VDDL and VDDQ are driven from a single  
power converter output, AND  
3. Apply NOP or Deselect commands and take CKE  
high.  
4. Continue NOP or Deselect Commands for 400 ns,  
then issue a Precharge All command.  
5. Issue EMRS(2) command.  
6. Issue EMRS(3) command.  
7. Issue EMRS(1) command to enable DLL.  
8. Issue a MRS command for “DLL reset”.  
9. Issue Precharge-all command.  
10. Issue 2 or more Auto-refresh commands.  
11. Issue the final MRS command to turn the DLL on  
and to set the necessary operating parameter.  
12. At least 200 clocks after step 8, issue EMRS(1)  
commands to either execute the OCD calibration or  
select the OCD default. Issue the final EMRS(1)  
command to exit OCD calibration mode and set the  
necessary operating parameters.  
VTT is limited to 0.95 V max, AND  
VREF tracks VDDQ/2  
or  
– Apply VDD before or at the same time as VDDL.  
Apply VDDL before or at the same time as VDDQ.  
Apply VDDQ before or at the same time as VTT & V  
.
13. The DDR2 SDRAM is now ready for normal  
operation.  
REF  
2. Start clock (CK, CK) and maintain stable power and  
clock condition for a minimum of 200 µs.  
tCHtCL  
CK  
/CK  
tIS  
tIS  
CKE  
ODT  
ANY  
PRE  
ALL  
PRE  
ALL  
NOP  
EMRS  
MRS  
REF  
MRS  
EMRS  
REF  
Command  
EMRS  
CMD  
tRFC  
tRP  
tMRD  
tRFC  
tMRD  
tMRD  
400ns  
tRP  
Follow OCD  
Flowchart  
tOIT  
min 200 Cycle  
DLL  
RESET  
DLL  
OCD  
OCD  
CAL. MODE  
EXIT  
ENABLE  
Default  
Figure 8  
Initialization Sequence after Power up  
Data Sheet  
27  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
3.4  
Programming the Mode Register and Extended Mode Registers  
For application flexibility, burst length, burst type, CAS may begin. All banks must be in a precharged state and  
latency, DLL reset function, write recovery time (WR) CKE must be high at least one cycle before the Mode  
are user defined variables and must be programmed Register Set Command can be issued. Either MRS or  
with  
a
Mode Register Set (MRS) command. EMRS Commands are activated by the low signals of  
Additionally, DLL disable function, additive CAS CS, RAS, CAS and WE at the positive edge of the  
latency, driver impedance, On Die Termination (ODT), clock.When bothbank addresses BA[1:0] are 0, the  
single-ended strobe and Off Chip Driver impedance DDR2 SDRAM enables the MRS command. When the  
adjustment (OCD) are also user defined variables and bank addresses BA0 is 1 and BA1 is 0, the DDR2  
must be programmed with an Extended Mode Register SDRAM enables the EMRS(1) command. The address  
Set (EMRS) command. Contents of the Mode Register input data during this cycle defines the parameters to  
(MR) or Extended Mode Registers (EMR(1, 2, 3)) can be set as shown in the MRS and EMRS tables. A new  
be altered by re-executing the MRS and EMRS command may be issued after the mode register set  
Commands. If the user chooses to modify only a subset command cycle time (tMRD). MRS, EMRS and DLL  
of the MR or EMR variables, all variables must be Reset do not affect array contents, which means  
redefined when the MRS or EMRS commands are reinitialization including those can be executed any  
issued. After initial power up, all MRS and EMRS time after power-up without affecting array contents.  
Commands must be issued before read or write cycles  
Data Sheet  
28  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
3.5  
DDR2 SDRAM Mode Register Set (MRS)  
The mode register stores the data for controlling the command and clock cycle requirements during normal  
various operating modes of DDR2 SDRAM. It programs operation as long as all banks are in the precharged  
CAS latency, burst length, burst sequence, test mode, state. The mode register is divided into various fields  
DLL reset, Write Recovery (WR) and various vendor depending on functionality. Burst length is defined by  
specific options to make DDR2 SDRAM useful for A[2:0] with options of 4 and 8 bit burst length. Burst  
various applications. The default value of the mode address sequence type is defined by A3 and CAS  
register is not defined, therefore the mode register must latency is defined by A[6:4]. A7 is used for test mode  
be written after power-up for proper operation. The and must be set to 0 for normal DRAM operation. A8 is  
mode register is written by asserting low on CS, RAS, used for DLL reset. A[11:9] are used for write recovery  
CAS, WE, BA[1:0], while controlling the state of time (WR) definition for Auto-Precharge mode. With  
address pins A[12:0]. The DDR2 SDRAM should be in address bit A12 two Power-Down modes can be  
all bank precharged (idle) mode with CKE already high selected, a “standard mode” and a “low-power” Power-  
prior to writing into the mode register. The mode Down mode, where the DLL is disabled. Address bit  
register set command cycle time (tMRD) is required to A13 and all “higher” address bits have to be set to 0 for  
complete the write operation to the mode register. The compatibility with other DDR2 memory products with  
mode register contents can be changed using the same higher memory densities.  
"!ꢃ "!ꢂ "!ꢀ !ꢂꢄ !ꢂꢃ !ꢂꢂ !ꢂꢀ !ꢅ  
!ꢆ  
!ꢇ  
4-  
!ꢈ  
!ꢉ  
#,  
!ꢁ  
!ꢄ  
"4  
!ꢃ  
!ꢂ  
",  
!ꢀ  
72  
W
$,,  
0$  
W
REGꢊ ADDR  
W
W
W
W
W
-0"4ꢀꢁꢂꢀ  
Table 9  
Field  
BA2  
Mode Register Definition (BA[2:0] = 000B)  
Bits Type1)  
16  
Description  
reg. addr. Bank Address [2]  
Note:BA2 not available on 256 Mbit and 512 Mbit components  
0B BA2, Bank Address  
BA1  
BA0  
A13  
15  
14  
13  
Bank Address [1]  
0B  
BA1, Bank Address  
Bank Address [0]  
0B  
BA0, Bank Address  
Address Bus[13]  
Note:A13 is not available for 256 Mbit and x16 512 Mbit configuration  
0B A13, Address bit 13  
PD  
12  
w
Active Power-Down Mode Select  
0B  
1B  
PD, Fast exit  
PD, Slow exit  
Data Sheet  
29  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
Table 9  
Field  
WR  
Mode Register Definition (BA[2:0] = 000B) (cont’d)  
Bits Type1)  
Description  
[11:9] w  
Write Recovery2)  
Note:All other bit combinations are illegal.  
001B WR, 2  
010B WR, 3  
011B WR, 4  
100B WR, 5  
101B WR, 6  
DLL  
TM  
CL  
8
w
w
w
DLL Reset  
0B  
1B  
DLL, No  
DLL, Yes  
Test Mode  
7
0B  
1B  
TM, Normal Mode  
TM, Vendor specific test mode  
[6:4]  
CAS Latency  
Note:All other bit combinations are illegal.  
010B CL, 23)  
011B CL, 3  
100B CL, 4  
101B CL, 5  
110B CL, 6  
BT  
BL  
3
w
w
Burst Type  
0B  
1B  
BT, Sequential  
BT, Interleaved  
Burst Length  
[2:0]  
Note:All other bit combinations are illegal.  
010B BL, 4  
011B BL, 8  
1) w = write only register bits  
2) Number of clock cycles for write recovery during auto-precharge. WR in clock cycles is calculated by dividing tWR (in ns)  
by tCK (in ns) and rounding up to the next integer: WR [cycles] tWR (ns) / tCK (ns). The mode register must be programmed  
to fulfill the minimum requirement for the analogue tWR timing WRMIN is determined by tCK.MAX and WRMAX is determined by  
tCK.MIN  
.
3) Implemented but not tested  
Data Sheet  
30  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
3.6  
DDR2 SDRAM Extended Mode Register Set EMR(1)  
The Extended Mode Register EMR(1) stores the data EMR(1) is not defined, therefore the extended mode  
for enabling or disabling the DLL, output driver register must be written after power-up for proper  
strength, additive latency, OCD program, ODT, DQS operation. The extended mode register is written by  
and output buffers disable, RQDS and RDQS enable. asserting low on CS, RAS, CAS, WE, BA1 and high on  
The default value of the extended mode register BA0, while controlling the state of the address pins  
"!ꢃ "!ꢄ "!ꢀ !ꢄꢁ !ꢄꢃ !ꢄꢄ !ꢄꢀ !ꢅ  
!ꢂ  
!ꢆ  
!ꢇ  
2TT  
!ꢈ  
!ꢉ  
!,  
!ꢁ  
!ꢃ  
2TT  
!ꢄ  
!ꢀ  
/#$ 0ROGRAM  
W
1OFF 2$13 $13  
$)# $,,  
REGꢊ ADDR  
W
W
W
W
W
W
W
-0"4ꢀꢁꢂꢀ  
Table 10  
Field  
BA2  
Extended Mode Register Definition (BA[2:0] = 001B)  
Bits Type1)  
Description  
reg. addr. Bank Address [2]  
Note: BA2 not available on 256 Mbit and 512 Mbit components  
0B BA2, Bank Address  
16  
BA1  
BA0  
A13  
15  
14  
13  
Bank Address [1]  
0B  
BA1, Bank Address  
Bank Address [0]  
0B  
BA0, Bank Address  
w
Address Bus[13]  
Note: A13 is not available for 256 Mbit and x16 512 Mbit configuration  
0B A13, Address bit 13  
Qoff  
12  
Output Disable  
0B  
1B  
QOff, Output buffers enabled  
QOff, Output buffers disabled  
RDQS  
DQS  
11  
Read Data Strobe Output (RDQS, RDQS)  
0B  
1B  
RDQS, Disable  
RDQS, Enable  
10  
Complement Data Strobe (DQS Output)  
0B  
1B  
DQS, Enable  
DQS, Disable  
OCD  
Program  
[9:7]  
Off-Chip Driver Calibration Program  
000B OCD, OCD calibration mode exit, maintain setting  
001B OCD, Drive (1)  
010B OCD, Drive (0)  
100B OCD, Adjust mode  
111B OCD, OCD calibration default  
Data Sheet  
31  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
Table 10  
Field  
AL  
Extended Mode Register Definition (BA[2:0] = 001B) (cont’d)  
Bits Type1)  
Description  
[5:3]  
Additive Latency  
Note: All other bit combinations are illegal.  
000B AL, 0  
001B AL, 1  
010B AL, 2  
011B AL, 3  
100B AL, 4  
101B AL, 5  
RTT  
6,2  
Nominal Termination Resistance of ODT  
Note: See Table 27 “ODT DC Electrical Characteristics” on Page 77  
00B RTT, (ODT disabled)  
01B RTT, 75 Ohm  
10B RTT, 150 Ohm  
11B RTT, 50 Ohm  
DIC  
DLL  
1
0
Off-chip Driver Impedance Control  
0B  
1B  
DIC, Full (Driver Size = 100%)  
DIC, Reduced  
DLL Enable  
0B  
1B  
DLL, Enable  
DLL, Disable  
1) w = write only register bits  
A0 is used for DLL enable or disable. A1 is used for Address bit A12 have to be set to 0 for normal  
enabling half-strength data-output driver. A2 and A6 operation. With A12 set to 1 the SDRAM outputs are  
enables On-Die termination (ODT) and sets the Rtt disabled and in Hi-Z. 1 on BA0 and 0 for BA1 have to  
value. A[5:3] are used for additive latency settings and be set to access the EMRS(1). A13 and all “higher”  
A[9:7] enables the OCD impedance adjustment mode. address bits have to be set to 0 for compatibility with  
A10 enables or disables the differential DQS and other DDR2 memory products with higher memory  
RDQS signals, A11 disables or enables RDQS. densities. Refer to Extended Mode Register Definition.  
3.7  
DLL Enable/Disable  
The DLL must be enabled for normal operation. DLL Any time the DLL is reset, 200 clock cycles must occur  
enable is required during power up initialization, and before a Read command can be issued to allow time for  
upon returning to normal operation after having the DLL the internal clock to be synchronized with the external  
disabled. The DLL is automatically disabled when clock. Failing to wait for synchronization to occur may  
entering Self-Refresh operation and is automatically re- result in a violation of the tAC or tDQSCK parameters.  
enabled and reset upon exit of Self-Refresh operation.  
3.8  
Output Disable (Qoff)  
Under normal operation, the DRAM outputs are DRAM outputs allows users to measure IDD currents  
enabled during Read operation for driving data (Qoff bit during Read operations, without including the output  
in the EMR(1) is set to 0). When the Qoff bit is set to 1, buffer current and external load currents.  
the DRAM outputs will be disabled. Disabling the  
Data Sheet  
32  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
3.9  
Single-ended and Differential Data Strobe Signals  
Table 11 lists all possible combinations for DQS, DQS, in ×8 components only. If RDQS is enabled in ×8  
RDQS, RQDS which can be programmed by A[11:10] components, the DM function is disabled. RDQS is  
address bits in EMRS. RDQS and RDQS are available active for reads and don’t care for writes.  
Table 11  
EMRS(1)  
A11  
Single-ended and Differential Data Strobe Signals  
Strobe Function Matrix  
Signaling  
A10  
RDQS/DM  
RDQS  
DQS  
DQS  
(RDQS Enable) (DQS Enable)  
0 (Disable)  
0 (Disable)  
1 (Enable)  
1 (Enable)  
0 (Enable)  
1 (Disable)  
0 (Enable)  
1 (Disable)  
DM  
DM  
RDQS  
RDQS  
Hi-Z  
Hi-Z  
RDQS  
Hi-Z  
DQS  
DQS  
DQS  
DQS  
DQS  
Hi-Z  
DQS  
Hi-Z  
differential DQS signals  
single-ended DQS signals  
differential DQS signals  
single-ended DQS signals  
3.10  
Extended Mode Register EMR(2)  
The Extended Mode Registers EMR(2) and EMR(3) CKE already high prior to writing into the extended  
are reserved for future use and must be programmed mode register. The mode register set command cycle  
when setting the mode register during initialization.The time (tMRD) must be satisfied to complete the write  
extended mode register EMR(2) is written by asserting operation to the EMR(2). Mode register contents can  
LOW on CS, RAS, CAS, WE, BA0 and HIGH on BA1, be changed using the same command and clock cycle  
while controlling the states of the address pins. The requirements during normal operation as long as all  
DDR2 SDRAM should be in all bank precharge with banks are in precharge state.  
"!ꢃ "!ꢄ "!ꢀ !ꢄꢁ !ꢄꢃ !ꢄꢄ !ꢄꢀ !ꢂ  
!ꢅ  
!ꢆ  
!ꢇ  
!ꢈ  
!ꢉ  
!ꢁ  
!ꢃ  
!ꢄ  
!ꢀ  
32&  
REGꢊ ADDR  
-0"4ꢀꢁꢂꢃ  
Table 12  
Field Bits  
EMRS(2) Programming Extended Mode register Definition (BA[2:0]=010B)  
Type1)  
Description  
reg.addr Bank Address[2]  
Note:BA2 is not available on 256Mbit and 512Mbit components  
0B BA2, Bank Address  
BA2  
16  
BA1  
BA0  
A
15  
Bank Adress[1]  
1B  
BA1, Bank Address  
14  
Bank Adress[0]  
0B  
BA0, Bank Address  
[13:8]  
w
Address Bus[13:8]  
Note:A13 is not available for 256 Mbit and x16 512 Mbit configuration  
0B A[13:8], Address bits  
Data Sheet  
33  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
Table 12  
Field Bits  
EMRS(2) Programming Extended Mode register Definition (BA[2:0]=010B) (cont’d)  
Type1)  
Description  
SRF  
[7]  
w
Address Bus[7]  
Note:When DRAM is operated at 85 °C TCASE < 95 °C the extended self refresh rate  
must be enabled by setting bit A7 to "1" before the self refresh mode can be  
entered.  
0B  
1B  
A7, disable  
A7, enable, adapted self refresh rate for TCASE > 85 °C  
A
[6:0]  
w
Address Bus[6:0]  
0B A[6:0], Address bits  
1) w = write only  
3.11  
Extended Mode Register EMR(3)  
The Extended Mode Register EMR(3) is reserved for initialization. The EMRS(3) is written by asserting low  
future use and all bits except BA0 and BA1 must be on CS, RAS, CAS, WE, BA2 and high on BA0 and BA1,  
programmed to 0 when setting the mode register during while controlling the state of the address pins.  
"!ꢂ "!ꢃ "!ꢀ !ꢃꢄ !ꢃꢂ !ꢃꢃ !ꢃꢀ !ꢅ  
!ꢆ  
!ꢇ  
!ꢈ  
!ꢉ  
!ꢁ  
!ꢄ  
!ꢂ  
!ꢃ  
!ꢀ  
REGꢊ ADDR  
-0"4ꢀꢁꢀꢀ  
Table 13  
Field  
EMR(3) Programming Extended Mode Register Definition (BA[2:0]=010B)  
Bits Type1)  
Description  
BA2  
16  
reg.addr  
Bank Address[2]  
Note:BA2 is not available on 256Mbit and 512Mbit components  
0B  
BA2, Bank Address  
BA1  
BA0  
A
15  
14  
Bank Adress[1]  
1B  
BA1, Bank Address  
Bank Adress[0]  
1B  
BA0, Bank Address  
[13:0] w  
Address Bus[13:0]  
Note:A13 is not available for 256 Mbit and x16 512 Mbit configuration  
0B A[13:0], Address bits  
1) w = write only  
Data Sheet  
34  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
3.12  
Off-Chip Driver (OCD) Impedance Adjustment  
DDR2 SDRAM supports driver calibration feature and command being issued. MRS should be set before  
the flow chart below is an example of the sequence. entering OCD impedance adjustment and On Die  
Every calibration mode command should be followed Termination (ODT) should be carefully controlled  
by “OCD calibration mode exit” before any other depending on system environment.  
3TART  
%-23ꢂ /#$ CALIBRATION MODE EXIT  
%-23ꢂ $RIVE ꢆꢇꢈ  
$1 ꢉ $13 (IGHꢊ $13 ,OW  
%-23ꢂ $RIVE ꢆꢀꢈ  
$1 ꢉ $13 ,OWꢊ $13 (IGH  
!,, /+  
!,, /+  
4EST  
4EST  
.EED #ALIBRATION  
.EED #ALIBRATION  
%-23ꢂ /#$ CALIBRATION MODE EXIT  
%-23ꢂ /#$ CALIBRATION MODE EXIT  
%-23ꢂ  
%NTER !DJUST -ODE  
%-23ꢂ  
%NTER !DJUST -ODE  
", ꢃ ꢄ CODE INPUT TO ALL $1S  
)NCꢅ $EC OR ./0  
", ꢃ ꢄ CODE INPUT TO ALL $1S  
)NCꢅ $EC OR ./0  
%-23ꢂ /#$ CALIBRATION MODE EXIT  
%-23ꢂ /#$ CALIBRATION MODE EXIT  
%-23ꢂ /#$ CALIBRATION MODE EXIT  
%ND  
-0&4ꢀꢀꢁꢀ  
Figure 9  
OCD Impedance Adjustment Flow Chart  
Note:MR should be set before entering OCD impedance adjustment and ODT should be carefully controlled  
depending on system environment  
Data Sheet  
35  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
Extended Mode Register Set for OCD impedance adjustment  
OCD impedance adjustment can be done using the temperature and voltage conditions. Output driver  
following EMRS(1) mode. In drive mode all outputs are characteristics for OCD calibration default are specified  
driven out by DDR2 SDRAM and drive of RDQS is in the following table. OCD applies only to normal full  
dependent on EMR(1) bit enabling RDQS operation. In strength output drive setting defined by EMR(1) and if  
Drive(1)mode, all DQ, DQS (and RDQS) signals are half strength is set, OCD default driver characteristics  
driven HIGH and all DQS (and RDQS) signals are are not applicable. When OCD calibration adjust mode  
driven LOW. InDrive(0) mode, all DQ, DQS (and is used, OCD default output driver characteristics are  
RDQS) signals are driven LOW and all DQS (and not applicable. After OCD calibration is completed or  
RDQS) signals are driven HIGH. In adjust mode, BL = driver strength is set to default, subsequent EMRS(1)  
4 of operation code data must be used. In case of OCD commands not intended to adjust OCD characteristics  
calibration default, output driver characteristics have a must specify A[9:7] as’000’ in order to maintain the  
nominal impedance value of 18 Ohms during nominal default or calibrated value.  
Table 14  
Off Chip Driver Program  
A9  
0
0
0
1
A8  
A7  
0
1
0
0
Operation  
OCD calibration mode exit  
Drive(1) DQ, DQS, (RDQS) high and DQS (RDQS) low  
Drive(0) DQ, DQS, (RDQS) low and DQS (RDQS) high  
Adjust mode  
0
0
1
0
1
1
1
OCD calibration default  
OCD impedance adjust  
To adjust output driver impedance, controllers must simultaneously and after OCD calibration, all DQs of a  
issue the ADJUST EMRS(1) command along with a 4 given DDR2 SDRAM will be adjusted to the same driver  
bit burst code to DDR2 SDRAM as in the following strength setting. The maximum step count for  
table. For this operation, Burst Length has to be set to adjustment is 16 and when the limit is reached, further  
BL = 4 via MRS command before activating OCD and increment or decrement code has no effect. The default  
controllers must drive the burst code to all DQs at the setting may be any step within the maximum step count  
same time. DT0 in the table means all DQ bits at bit range. When Adjust mode command is issued, AL from  
time 0, DT1 at bit time 1, and so forth. The driver output previously set value must be applied.  
impedance is adjusted for all DDR2 SDRAM DQs  
Table 15  
Off-Chip-Driver Adjust Program  
4 bit burst code inputs to all DQs  
Operation  
DT0  
0
0
0
0
1
0
0
1
DT1  
0
0
0
1
0
1
1
0
DT2  
0
0
1
0
0
0
1
0
DT3  
0
1
0
0
0
1
0
1
Pull-up driver strength  
NOP (no operation)  
Increase by 1 step  
Decrease by 1 step  
NOP  
Pull-down driver strength  
NOP (no operation)  
NOP  
NOP  
Increase by 1 step  
Decrease by 1 step  
Increase by 1 step  
Increase by 1 step  
Decrease by 1 step  
Decrease by 1 step  
NOP  
Increase by 1 step  
Decrease by 1 step  
Increase by 1 step  
Decrease by 1 step  
Illegal  
1
0
1
0
Other Combinations  
Data Sheet  
36  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
For proper operation of adjust mode, WL = RL - 1 = sequential or interleave). Burst length of 4 have to be  
AL + CL - 1 clocks and tDS / tDH should be met as shown programmed in the MRS for OCD impedance  
in Figure 10. Input data pattern for adjustment, DT[0:3] adjustment.  
is fixed and not affected by MRS addressing mode (i.e.  
CK, CK  
CMD  
NOP  
NOP  
NOP  
EMRS(1)  
NOP  
NOP  
NOP  
EMRS(1)  
NOP  
WL  
tWR  
DQS  
DQS_in  
tDS tDH  
DQ_in  
DM  
DT2  
DT3  
DT0  
DT1  
OCD1  
OCD calibration  
mode exit  
OCD adjust mode  
Figure 10 Timing Diagram Adjust Mode  
Drive Mode  
Both Drive(1) and Drive(0) are used for controllers to driven out tOIT after “enter drive mode” command and all  
measure DDR2 SDRAM Driver impedance before OCD output drivers are turned-off tOIT after “OCD calibration  
impedance adjustment. In this mode, all outputs are mode exit” command. See Figure 11.  
CK, CK  
CMD  
NOP  
NOP  
NOP  
EMRS(1)  
tOIT  
NOP  
EMRS(1)  
tOIT  
NOP  
NOP  
NOP  
DQS_in  
DQ_in  
DQS high & DQS low for Drive(1), DQS low & DQS high for Drive 0  
DQS high for Drive(1)  
DQS high for Drive(0)  
OCD calibration  
mode exit  
Enter Drive Mode  
Figure 11 Timing Diagram Drive Mode  
Data Sheet  
37  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
3.13  
On-Die Termination (ODT)  
On-Die Termination (ODT) is a new feature on DDR2 the ODT control pin. UDQS and LDQS are terminated  
components that allows a DRAM to turn on/off termi- only when enabled in the EMRS(1) by address bit  
nation resistance for each DQ, DQS, DQS, DM for ×4 A10 = 0.  
and DQ, DQS, DQS, DM, RDQS (DM/RDQS share the  
same pin) and RDQS for ×8 configuration via the ODT  
control pin. DQS and RDQS are only terminated when  
enabled by EMR(1).  
For ×16 configuration ODT is applied to each DQ, can be used for all active and standby modes. ODT is  
UDQS, UDQS, LDQS, LDQS, UDM and LDM signal via turned off and not supported in Self-Refresh mode.  
The ODT feature is designed to improve signal integrity  
of the memory channel by allowing the DRAM  
controller to independently turn on/off termination resis-  
tance for any or all DRAM devices. The ODT function  
VDDQ  
VDDQ  
VDDQ  
sw2  
sw3  
sw1  
Rval2  
Rval3  
Rval1  
DRAM  
Input  
Buffer  
Input  
Pin  
Rval2  
Rval3  
Rval1  
sw1  
sw2  
sw3  
ODT_funct2  
VSSQ  
VSSQ  
VSSQ  
LE  
Figure 12 Functional Representation of ODT  
Switch sw1, sw2 or sw3 are enabled by the ODT pin. Target: Rval1 = Rval2 = Rval3 = 2 × Rtt  
Selection between sw1, sw2 or sw3 is determined by  
“Rtt (nominal)” in EMRS(1) address bits A6 & A2.  
The ODT pin will be ignored if the Extended Mode  
Register (EMRS(1)) is programmed to disable ODT.  
Data Sheet  
38  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
ODT Truth Tables  
The ODT Truth Table shows which of the input pins are organisations (×4, ×8 and ×16). To activate termination  
terminated depending on the state of address bit A10 of any of these pins, the ODT function has to be  
and A11 in the EMRS(1) for all three device enabled in the EMRS(1) by address bits A6 and A2.  
Table 16  
Input Pin  
ODT Truth Table  
EMRS(1) Address Bit A10  
EMRS(1) Address Bit A11  
x4 components  
DQ[3:0]  
DQS  
X
X
0
DQS  
X
DM  
X
x8 components  
DQ[7:0]  
DQS  
X
X
0
DQS  
X
1
1
0
RDQS  
RDQS  
DM  
X
0
X
x16 components  
DQ[7:0]  
DQ[15:8]  
LDQS  
X
X
X
0
LDQS  
X
X
UDQS  
UDQS  
X
0
LDM  
UDM  
X
X
Note:X = don’t care; 0 = bit set to low; 1 = bit set to high  
Data Sheet  
39  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
ODT timing modes  
Depending on the operating mode asynchronous or  
synchronous ODT timings apply.  
Slow Exit Active Power Down Mode (with MRS bit  
A12 is set to 1)  
Precharge Power Down Mode  
Asynchronous ODT timings (tAOFPD, tAONPD) apply when  
the on-die DLL is disabled.  
Synchronous ODT timings (tAOND, tAOFD, tAON, tAOF)  
apply for all other modes.  
These modes are:  
T1  
T3  
T4  
T5  
T6  
T7  
T8  
T0  
T2  
CK, CK  
CKE  
t
t
IS  
IS  
t
IS  
ODT  
tAOND (2 tck)  
tAOFD (2.5 tck)  
Rtt  
DQ  
tAON(min)  
tAOF(min)  
tAOF(max)  
tAON(max)  
ODT01  
Figure 13 ODT Timing for Active and Standby (Idle) Modes (Synchronous ODT timings)  
Notes  
to turn on. ODT turn on time max. (tAON.MAX) is  
when the ODT resistance is fully on. Both are  
1. Synchronous ODT timings apply for Active Mode  
and Standby Mode with CKE HIGH and for the  
“Fast Exit” Active Power Down Mode (MRS bit A12  
set to 0). In all these modes the on-die DLL is  
enabled.  
2. ODT turn-on time (tAON.MIN) is when the device  
leaves high impedance and ODT resistance begins  
measured from tAOND  
.
3. ODT turn off time min. (tAOF.MIN) is when the device  
starts to turn off the ODT resistance. ODT turn off  
time max. (tAOF.MAX) is when the bus is in high  
impedance. Both are measured from tAOFD  
.
T
1
T
3
T
4
T
5
T
6
T
7
T
8
T
0
T
2
CK, CK  
CKE  
"low"  
t
IS  
ODT  
DQ  
t
IS  
tAOFPDmax  
tAOFPDmin  
Rtt  
tAONPD,min  
tAONPD,max  
ODT02  
Figure 14 ODT Timing for Precharge Power-Down and Active Power-Down Mode  
Note:Asynchronous ODT timings apply for Precharge Power-Down Mode and “Slow Exit” Active Power Down  
Mode (MRS bit A12 set to 1), where the on-die DLL is disabled in this mode of operation.  
Data Sheet  
40  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
ODT timing mode switch  
When entering the Power Down Modes “Slow Exit” Active Power Down and Precharge Power Down two additional  
timing parameters (tANPD and tAXPD) define if synchronous or asynchronous ODT timings have to be applied.  
Mode entry  
As long as the timing parameter tANPD.MIN is satisfied can be applied. If tANPD.MIN is not satisfied,  
when ODT is turned on or off before entering these asynchronous timing parameters apply.  
power-down modes, synchronous timing parameters  
T-5  
T-4  
T-3  
T-2  
T-1  
T0  
T1  
T2  
CK, CK  
CKE  
tANPD (3 tck)  
tIS  
ODT turn-off, tANPD >= 3 tck :  
t
IS  
ODT  
Synchronous  
timings apply  
RTT  
tAOFD  
ODT turn-off, tANPD <3 tck :  
ODT  
Asynchronous  
timings apply  
RTT  
tAOFPDmax  
ODT turn-on, tANPD >= 3 tck :  
tIS  
tAOND  
ODT  
Synchronous  
timings apply  
RTT  
t
IS  
ODT turn-on, tANPD < 3 tck :  
tAONPDmax  
Asynchronous  
timings apply  
ODT  
RTT  
ODT03  
Figure 15 ODT Mode Entry Timing Diagram  
Data Sheet  
41  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
Mode exit  
As long as the timing parameter tAXPD.MIN is satisfied applied. If tAXPD.MIN is not satisfied, asynchronous timing  
when ODT is turned on or off after exiting these power- parameters apply.  
down modes, synchronous timing parameters can be  
T0  
T1  
T5  
T6  
T7  
T8  
T9  
T10  
CK,  
CK  
tIS  
tAXPD  
CKE  
tIS  
ODT turn-off, tAXPD >= tAXPDmin:  
ODT  
Synchronous  
timings apply  
Rtt  
tAOFD  
ODT turn-off, tAXPD < tAXPDmin:  
tIS  
ODT  
Asynchronous  
timings apply  
Rtt  
tAOFPDmax  
ODT turn-on, tAXPD >= tAXPDmin:  
Synchronous  
timings apply  
tIS  
ODT  
Rtt  
tAOND  
tIS  
ODT turn-on, tAXPD < tAXPDmin:  
ODT  
Asynchronous  
timings apply  
Rtt  
tAONPDmax  
ODT04  
Figure 16 ODT Mode Exit Timing Diagram  
Data Sheet  
42  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
3.14  
Bank Activate Command  
The Bank Activate command is issued by holding CAS latency must be programmed into the device to delay  
and WE HIGH with CS and RAS LOW at the rising edge the R/W command which is internally issued to the  
of the clock. The bank addresses BA[1:0] are used to device. The additive latency value must be chosen to  
select the desired bank. The row addresses A0 through assure tRCD.MIN is satisfied. Additive latencies of 0, 1, 2,  
A12 are used to determine which row to activate in the 3, 4 and 5 are supported. Once a bank has been  
selected bank for ×4 and ×8 organized components. activated it must be precharged before another Bank  
For ×16 components row addresses A0 through A12 Activate command can be applied to the same bank.  
have to be applied. The Bank Activate command must The bank active and precharge times are defined as  
be applied before any Read or Write operation can be tRAS and tRP, respectively. The minimum time interval  
executed. Immediately after the bank active command, between successive Bank Activate commands to the  
the DDR2 SDRAM can accept a read or write command same bank is determined by tRC. The minimum time  
(with or without Auto-Precharge) on the following clock interval between Bank Active commands to different  
cycle. If a R/W command is issued to a bank that has banks is tRRD  
not satisfied the tRCD.MIN specification, then additive  
.
T0  
T1  
T2  
T3  
T4  
Tn  
Tn+1  
Tn+2  
Tn+3  
CK, CK  
Internal RAS-CAS delay tRCDmin.  
Bank A  
Row Addr.  
Bank A  
Col. Addr.  
Bank B  
Row Addr.  
Bank B  
Col. Addr.  
Bank A  
Addr.  
Bank B  
Addr.  
Bank A  
Row Addr.  
NOP  
Address  
Bank A to Bank B delay tRRD.  
additive latency AL=2  
Read A  
Begins  
Posted CAS  
Bank A  
Activate Read A  
Posted CAS  
Read B  
Bank B  
Activate  
Bank A  
Precharge  
Bank B Bank A  
Precharge Activate  
NOP  
Command  
tRAS Row Active Time (Bank A)  
tCCD  
tRP Row Precharge Time (Bank A)  
tRC Row Cycle Time (Bank A)  
ACT  
Figure 17 Bank Activate Command Cycle  
RCD = 3, AL = 2, tRP = 3, tRRD = 2  
t
Data Sheet  
43  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
3.15  
Read and Write Commands and Access Modes  
After a bank has been activated, a read or write cycle the device during the Read or Write Command (CA[11,  
can be executed. This is accomplished by setting RAS 9:0]). The second, third and fourth access will also  
HIGH, CS and CAS LOW at the clock’s rising edge. WE occur within this segment, however, the burst order is a  
must also be defined at this time to determine whether function of the starting address, and the burst  
the access cycle is a read operation (WE HIGH) or a sequence.In case of a 8-bit burst operation (burst  
write operation (WE LOW). The DDR2 SDRAM length = 8) the page length of 512 is divided into 64  
provides a wide variety of fast access modes. A single uniquely addressable segments (8 bits x 4 I/O each).  
Read or Write Command will initiate a serial read or The 8-bit burst operation will occur entirely within one  
write operation on successive clock cycles at data rates of the 64 segments (defined by CA[7:0]) beginning with  
of up to 533 Mb/sec/pin for main memory. The the column address supplied to the device during the  
boundary of the burst cycle is restricted to specific Read or Write Command (CA[11, 9:0]). A new burst  
segments of the page length. For example, the access must not interrupt the previous 4 bit burst  
16 Mbit x 4 I/O x 4 Bank chip has a page length of 512 operation in case of BL = 4 setting. Therefore the  
bits (defined by CA[11, 9:0]).In case of a 4-bit burst minimum CAS to CAS delay (tCCD) is a minimum of 2  
operation (burst length = 4) the page length of 512  
clocks for read or write cycles.For 8 bit burst operation  
is divided into 128 uniquely addressable segments (4 (BL = 8) the minimum CAS to CAS delay (tCCD) is 4  
bits x 4 I/O each). The 4-bit burst operation will occur clocks for read or write cycles.Burst interruption is  
entirely within one of the 128 segments (defined by allowed with 8 bit burst operation. For details see  
CA[8:0]) starting with the column address supplied to Chapter 3.20.  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T12  
CK, C K  
CM D  
N O P  
tCCD  
N O P  
N O P  
N O P  
N O P  
R E A D  
B
N O P  
R E A D  
C
R E A D A  
N O P  
tCCD  
DQ S,  
DQ S  
Dout A0 Dout A1  
Dout A2 Dout A3 Dout B0 Dout B1  
Dout B2 Dout B3 Dout C0 Dout C1  
Dout C2 Dout C3  
DQ  
RB  
Figure 18 Read Timing Example  
CL = 3, AL = 0, RL = 3, BL = 4  
Data Sheet  
44  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
3.16  
Posted CAS  
Posted CAS operation is supported to make command latency (CL). Therefore if a user chooses to issue a  
and data bus efficient for sustainable bandwidths in Read/Write command before the tRCD.MIN, then AL  
DDR2 SDRAM. In this operation, the DDR2 SDRAM greater than 0 must be written into the EMR(1). The  
allows a Read or Write command to be issued Write Latency (WL) is always defined as RL - 1 (Read  
immediately after the bank activate command (or any Latency -1) where Read Latency is defined as the sum  
time during the RAS to CAS delay time, tRCD period). of Additive Latency plus CAS latency (RL=AL+CL). If a  
The command is held for the time of the Additive user chooses to issue a Read command after the  
Latency (AL) before it is issued inside the device. The tRCD.MIN period, the Read Latency is also defined as  
Read Latency (RL) is the sum of AL and the CAS RL = AL + CL.  
1
0
2
3
4
5
6
7
8
9
10 11  
CK, CK  
WL = RL -1 = 4  
Activate Read  
Bank A Bank A  
Write  
Bank A  
CMD  
AL = 2  
CL = 3  
DQS,  
DQS  
tRCD  
RL = AL + CL = 5  
DQ  
Dout0Dout1 Dout2Dout3  
Din0 Din1 Din2 Din3  
PostCAS  
Figure 19 Activate to Read Timing Example: Read followed by a write to the same bank  
Activate to Read delay < tRCD.MIN: AL = 2 and CL = 3, RL = (AL + CL) = 5, WL = (RL -1) = 4, BL = 4  
1
0
2
3
4
5
6
7
8
9
10 11 12  
CK, CK  
WL = RL -1 = 4  
Write  
Bank A  
Activate Read  
Bank A Bank A  
CMD  
AL = 2  
CL = 3  
DQS,  
DQS  
tRCD  
RL = AL + CL = 5  
DQ  
Dout0 Dout1Dout2 Dout3 Dout4 Dout5 Dout6 Dout7  
Din0 Din1 Din2 D
PostCAS3  
Figure 20 Read to Write Timing Example: Read followed by a write to the same bank  
Activate to Read delay < tRCD.MIN: AL = 2 and CL = 3, RL = (AL + CL) = 5, WL = (RL -1) = 4, BL = 8  
Data Sheet  
45  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
0
1
2
3
4
5
6
7
8
9
10  
11  
CK, CK  
CMD  
AL = 0  
Activate  
Bank A  
Read  
Bank A  
Write  
Bank A  
CL = 3  
WL = RL -1 = 2  
DQS,  
DQS  
tRCD  
RL = AL + CL = 3  
DQ  
Dout0  
Dout1  
Dout2  
Dout3  
Din0  
Din1  
Din2  
Din3  
PostCAS2  
Figure 21 Read to Write Timing Example: Read followed by a write to the same bank  
Activate to Read delay = tRCD.MIN: AL = 0, CL = 3, RL = (AL + CL) = 3, WL = (RL -1) = 2, BL = 4  
1
0
2
3
4
5
6
7
8
9
10 11 12 13  
CK, CK  
WL = 3  
Write  
Bank A  
Activate  
Bank A  
Read  
Bank A  
CMD  
tRCD > tRCDmin.  
DQS,  
DQS  
RL = 4  
DQ  
PostCAS5  
Figure 22 Read to Write Timing Example: Read followed by a write to the same bank  
Activate to Read delay > tRCD.MIN: AL = 1, CL = 3, RL = 4, WL = 3, BL = 4  
1
0
2
3
4
5
6
7
8
9
10 11 12 13  
CK, CK  
WL = 3  
Write  
Bank A  
Activate  
Bank A  
Read  
Bank A  
CMD  
tRCD > tRCDmin.  
DQS,  
DQS  
RL = 4  
DQ  
PostCAS5  
Figure 23 Write to Read Timing Example: Write followed by a read to the same bank  
AL = 2, CL = 3, RL = 5, WL = 4, tWTR = 2, BL = 4  
Data Sheet  
46  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
3.17  
Burst Mode Operation  
Burst mode operation is used to provide a constant flow the MR. The burst type, either sequential or  
of data to memory locations (write cycle), or from interleaved, is programmable and defined by the  
memory locations (read cycle). The parameters that address bit 3 (A3) of the MR. Seamless burst read or  
define how the burst mode will operate are burst write operations are supported. Interruption of a burst  
sequence and burst length. The DDR2 SDRAM read or write operation is prohibited, when burst length  
supports 4 bit and 8 bit burst modes only. For 8 bit burst = 4 is programmed. For burst interruption of a read or  
mode, full interleave address ordering is supported, write burst when burst length = 8 is used, see  
however, sequential address ordering is nibble based Chapter 3.19. A Burst Stop command is not supported  
for ease of implementation. The burst length is on DDR2 SDRAM devices.  
programmable and defined by the addresses A[2:0] of  
Table 17  
Burst Length and Sequence  
Burst Length  
Starting Address  
(A2 A1 A0)  
Sequential Addressing  
(decimal)  
Interleave Addressing  
(decimal)  
4
x 0 0  
x 0 1  
x 1 0  
x 1 1  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
0, 1, 2, 3  
1, 2, 3, 0  
2, 3, 0, 1  
3, 0, 1, 2  
0, 1, 2, 3, 4, 5, 6, 7  
1, 2, 3, 0, 5, 6, 7, 4  
2, 3, 0, 1, 6, 7, 4, 5  
3, 0, 1, 2, 7, 4, 5, 6  
4, 5, 6, 7, 0, 1, 2, 3  
5, 6, 7, 4, 1, 2, 3, 0  
6, 7, 4, 5, 2, 3, 0, 1  
7, 4, 5, 6, 3, 0, 1, 2  
0, 1, 2, 3  
1, 0, 3, 2  
2, 3, 0, 1  
3, 2, 1, 0  
0, 1, 2, 3, 4, 5, 6, 7  
1, 0, 3, 2, 5, 4, 7, 6  
2, 3, 0, 1, 6, 7, 4, 5  
3, 2, 1, 0, 7, 6, 5, 4  
4, 5, 6, 7, 0, 1, 2, 3  
5, 4, 7, 6, 1, 0, 3, 2  
6, 7, 4, 5, 2, 3, 0, 1  
7, 6, 5, 4, 3, 2, 1, 0  
8
Notes  
1. Page size for all 256 Mbit components is 1 KByte  
2. Order of burst access for sequential addressing is “nibble-based” and therefore different from SDR or DDR  
components  
Data Sheet  
47  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
3.18  
Read Command  
The Read command is initiated by having CS and CAS onto the data bus. The first bit of the burst is  
LOW while holding RAS and WE HIGH at the rising synchronized with the rising edge of the data strobe  
edge of the clock. The address inputs determine the (DQS). Each subsequent data-out appears on the DQ  
starting column address for the burst. The delay from pin in phase with the DQS signal in a source  
the start of the command until the data from the first cell synchronous manner. The RL is equal to an additive  
appears on the outputs is equal to the value of the read latency (AL) plus CAS latency (CL). The CL is defined  
latency (RL). The data strobe output (DQS) is driven by the Mode Register Set (MRS). The AL is defined by  
LOW one clock cycle before valid data (DQ) is driven the Extended Mode Register Set (EMRS(1)).  
t
t
t
CK  
CH  
CL  
CLK  
CLK  
CLK, CLK  
t
DQS  
DQSCK  
t
AC  
DQS,  
DQS  
DQS  
t
RPST  
Dout  
t
RPRE  
t
t
HZ  
LZ  
DQ  
Dout  
Dout  
Dout  
t
DQSQmax  
t
DQSQmax  
t
t
QH  
QH  
DO-Read  
Figure 24 Basic Read Timing Diagram  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, CK  
CMD  
Posted CAS  
READ A  
NOP  
NOP  
NOP  
<= t DQSCK  
NOP  
NOP  
NOP  
NOP  
NOP  
DQS,  
DQS  
AL = 2  
CL = 3  
RL = 5  
DQ  
Dout A0  
Dout A1  
Dout A2  
Dout A3  
BRead523  
Figure 25 Read Operation Example 1  
RL = 5 (AL = 2, CL = 3, BL = 4)  
Data Sheet  
48  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, C K  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
R E A D A  
N O P  
N O P  
CMD  
<= tD Q S C K  
DQ S,  
DQ S  
C L =  
R L =  
3
3
DQ's  
Dout A0 Dout A1  
Dout A2 Dout A3  
Dout A4 Dout A5  
Dout A6 Dout A7  
BRead303  
Figure 26 Read Operation Example 2  
RL = 3 (AL = 0, CL = 3, BL = 8)  
T0  
T1  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
CK, C K  
CM D  
P osted C A S  
W R ITE A  
P osted C A S  
R E A D A  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
BL/2 + 2  
DQ S,  
DQ S  
WL = RL - 1 = 4  
RL = 5  
DQ  
Dout A0 Dout A1  
Dout A2 Dout A3  
Din A0  
Din A1  
Din A2  
Din A3  
BRBW514  
Figure 27 Read followed by Write Example  
RL = 5, WL = (RL-1) = 4, BL = 4  
The minimum time from the read command to the write command is defined by a read-to-write turn-around time,  
which is BL/2 + 2 clocks.  
Data Sheet  
49  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, CK  
CMD  
Posted CAS  
READ B  
Posted CAS  
READ A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
DQS,  
DQS  
AL = 2  
CL = 3  
RL = 5  
DQ  
Dout A0  
Dout A1  
Dout A2  
Dout A3  
Dout B0  
Dout B1  
Dout B2  
Dout B3  
SBR523  
Figure 28 Seamless Read Operation Example 1  
RL = 5, AL = 2, CL = 3, BL = 4  
The seamless read operation is supported by enabling a read command at every BL / 2 number of clocks. This  
operation is allowed regardless of same or different banks as long as the banks are activated.  
T9  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, CK  
CMD  
Posted CAS  
READ A  
Posted CAS  
READ B  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
DQS,  
DQS  
CL = 3  
RL = 3  
DQ  
Dout A0  
Dout A1  
Dout A2  
Dout A3  
Dout A4  
Dout A5  
Dout A6  
Dout A7  
Dout B0  
Dout B1  
Dout B2  
Dout B3  
Dout B4  
SBR_BL8  
Figure 29 Seamless Read Operation Example 2  
RL = 3, AL = 0, CL = 3, BL = 8 (non interrupting)  
The seamless, non interrupting 8-bit read operation is supported by enabling a read command at every BL/2  
number of clocks. This operation is allowed regardless of same or different banks as long as the banks are  
activated.  
Data Sheet  
50  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
3.19  
Write Command  
The Write command is initiated by having CS, CAS and successive edges of the DQS until the burst length is  
WE LOW while holding RAS HIGH at the rising edge of completed. When the burst has finished, any additional  
the clock. The address inputs determine the starting data supplied to the DQ pins will be ignored. The DQ  
column address. Write latency (WL) is defined by a signal is ignored after the burst write operation is  
read latency (RL) minus one and is equal to (AL + CL – complete. The time from the completion of the burst  
1). A data strobe signal (DQS) has to be driven LOW write to bank precharge is named “write recovery time”  
(preamble) a time tWPRE prior to the WL. The first data (tWR) and is the time needed to store the write data into  
bit of the burst cycle must be applied to the DQ pins at the memory array. tWR is an analog timing parameter  
the first rising edge of the DQS following the preamble. (see Chapter 5) and is not the programmed value for  
The tDQSS specification must be satisfied for write WR in the MRS.  
cycles. The subsequent burst bit data are issued on  
t DQSH  
DQS  
tDQSL  
DQS,  
DQS  
DQS  
t
t
WPRE  
WPST  
Din  
Din  
Din  
Din  
t
DS  
t DH  
Figure 30 Basic Write Timing  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T9  
CK, CK  
CMD  
Posted CAS  
WRITE A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Precharge  
<= t DQSS  
Completion of  
the Burst Write  
DQS,  
DQS  
tWR  
WL = RL-1 = 4  
DQ  
DIN A0  
DIN A1 DIN A2 DIN A3  
BW543  
Figure 31 Write Operation Example 1  
RL = 5 (AL = 2, CL = 3), WL = 4, BL = 4  
Data Sheet  
51  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T9  
CK, CK  
CMD  
Bank A  
Activate  
Posted CAS  
WRITE A  
NOP  
NOP  
NOP  
Precharge  
NOP  
NOP  
NOP  
Completion of  
the Burst Write  
<= t DQSS  
DQS,  
DQS  
tRP  
tWR  
WL = RL-1 = 2  
DQ  
DIN A0  
DIN A1 DIN A2 DIN A3  
BW322  
Figure 32 Write Operation Example 2  
RL = 3 (AL = 0, CL = 3), WL = 2, BL = 4  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
CK, CK  
CMD  
Write to Read = (CL - 1)+ BL/2 +tWTR(2) = 6  
Posted CAS  
READ A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
DQS,  
DQS  
CL=3  
AL=2  
tWTR  
WL = RL - 1 = 4  
DQ  
DIN A0 DIN A1 DIN A2 DIN A3  
RL=5  
BWBR  
Figure 33 Write followed by Read Example  
RL = 5 (AL = 2, CL = 3), WL = 4, tWTR = 2, BL = 4  
The minimum number of clocks from the write command to the read command is (CL - 1) +BL/2 + tWTR, where  
WTR is the write-to-read turn-around time tWTR expressed in clock cycles. The tWTR is not a write recovery time (tWR  
but the time required to transfer 4 bit write data from the input buffer into sense amplifiers in the array.  
t
)
Data Sheet  
52  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, CK  
CMD  
Posted CAS  
WRITE A  
Posted CAS  
WRITE B  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
DQS,  
DQS  
WL = RL - 1 = 4  
DQ  
DIN B0  
DIN A0  
DIN B1 DIN B2 DIN B3  
DIN A1 DIN A2 DIN A3  
SBR  
Figure 34 Seamless Write Operation Example 1  
RL = 5, WL = 4, BL = 4  
The seamless write operation is supported by enabling a write command every BL/2 number of clocks. This  
operation is allowed regardless of same or different banks as long as the banks are activated.  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, CK  
CM D  
N O P  
N O P  
N O P  
N O P  
W R ITE A  
N O P  
N O P  
N O P  
W R ITE B  
DQ S,  
DQ S  
W L = R L - 1 = 2  
DQ  
DIN B4  
DIN B1 DIN B2 DIN B3  
DIN B5 DIN  
DIN B0  
DIN A0  
DIN A1 DIN A2 DIN A3  
DIN A4  
DIN A5 DIN A5 DIN A7  
SBW_BL8  
Figure 35 Seamless Write Operation Example 2  
RL = 3, WL = 2, BL = 8, non interrupting  
The seamless write operation is supported by enabling a write command at every BL/2 number of clocks. This  
operation is allowed regardless of same or different banks as long as the banks are activated.  
Data Sheet  
53  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
3.20  
Write Data Mask  
One write data mask input (DM) for ×4 and ×8 insure matched system timing. Data mask is not used  
components and two write data mask inputs (LDM, during read cycles. If DM is HIGH during a write burst  
UDM) for ×16 components are supported on DDR2 coincident with the write data, the write data bit is not  
SDRAM’s, consistent with the implementation on DDR written to the memory. For ×8 components the DM  
SDRAM’s. It has identical timings on write operations function is disabled, when RDQS / RDQS are enabled  
as the data bits, and though used in a uni-directional by EMRS(1).  
manner, is internally loaded identically to data bits to  
T
T
$13,  
$13(  
$13ꢄ $13  
T
T
7034  
702%  
$IN  
$1  
$-  
$IN  
$IN  
$IN  
T
T
$3  
$(  
DONgT CARE  
-044ꢀꢁꢂꢃ  
Figure 36 Write Data Mask Timing  
4ꢃ  
4ꢀ  
4ꢂ  
4ꢄ  
4ꢅ  
4ꢁ  
4ꢆ  
4ꢇ  
4ꢈ  
4ꢉ  
4ꢀꢃ  
4ꢀꢀ  
#,+  
#,+  
"ANK !  
!CTIVATE  
0RECHARGE  
#-$  
7RITE !  
./0  
./0  
./0  
./0  
./0  
ꢍ ꢋ T$133  
./0  
./0  
./0  
$13ꢊ  
$13ꢊ  
7, ꢋ 2, ꢌꢀ ꢋ ꢂ  
T72  
T20  
$IN  
!ꢃ  
$IN  
!ꢀ  
$IN  
!ꢂ  
$IN  
!ꢄ  
$1  
$-  
-044ꢀꢁꢂꢃ  
Figure 37 Write Operation with Data Mask Example  
RL = 3 (AL = 0, CL = 3), WL = 2, tWR = 3, BL = 4  
Data Sheet  
54  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
3.21  
Burst Interruption  
Interruption of a read or write burst is prohibited for 6. Read or Write burst with Auto-Precharge enabled is  
burst length of 4 and only allowed for burst length of 8  
under the following conditions:  
1. A Read Burst can only be interrupted by another  
Read command. Read burst interruption by a Write  
or Precharge Command is prohibited.  
not allowed to be interrupted.  
7. Read burst interruption is allowed by a Read with  
Auto-Precharge command.  
8. Write burst interruption is allowed by a Write with  
Auto-Precharge command.  
9. All command timings are referenced to burst length  
set in the mode register. They are not referenced to  
the actual burst. For example, Minimum Read to  
Precharge timing is AL + BL/2 where BL is the burst  
length set in the mode register and not the actual  
burst (which is shorter because of interrupt).  
Minimum Write to Precharge timing is WL + BL/ 2 +  
2. A Write Burst can only be interrupted by another  
Write command. Write burst interruption by a Read  
or Precharge Command is prohibited.  
3. Read burst interrupt must occur exactly two clocks  
after the previous Read command. Any other Read  
burst interrupt timings are prohibited.  
4. Write burst interrupt must occur exactly two clocks  
after the previous Write command. Any other Read  
burst interrupt timings are prohibited.  
5. Read or Write burst interruption is allowed to any  
bank inside the DDR2 SDRAM.  
t
WR, where tWR starts with the rising clock after the  
un-interrupted burst end and not from the end of the  
actual burst end.  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
C K, CK  
CM D  
N O P  
N O P  
N O P  
N O P  
N O P  
R E A D  
B
N O P  
N O P  
R E A D  
A
N O P  
DQ S,  
DQ S  
D Q  
Dout A0 Dout A1  
Dout A2 Dout A3 Dout B0 Dout B1  
Dout B2 Dout B3 Dout B4 Dout B5  
Dout B6 Dout B7  
RBI  
Figure 38 Read Interrupt Timing Example 1  
CL = 3, AL = 0, RL = 3, BL = 8  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, CK  
CM D  
N O P  
N O P  
N O P  
N O P  
W R IT E  
A
N O P  
W R ITE  
B
N O P  
N O P  
N O P  
DQ S,  
DQ S  
D Q  
Din A0  
Din A1  
Din A2  
Din A3  
Din B0  
Din B1  
Din B2  
Din B3  
Dout B4 Din B5  
Din B6  
Din B7  
WBI  
Figure 39 Write Interrupt Timing Example 2  
CL = 3, AL = 0, WL = 2, BL = 8  
Data Sheet  
55  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
3.22  
Precharge Command  
The Precharge Command is used to precharge or close The Pre-charge Command can be used to precharge  
a bank that has been activated. The Precharge each bank independently or all banks simultaneously. 3  
Command is triggered when CS, RAS and WE are  
LOW and CAS is HIGH at the rising edge of the clock. bank to precharge when the command is issued.  
address bits A10, BA[1:0] are used to define which  
Table 18  
Bank Selection for Precharge by Address Bits  
A10  
0
0
0
0
BA1  
0
0
1
BA0  
0
1
0
Precharge Bank(s)  
Bank 0 only  
Bank 1 only  
Bank 2 only  
Bank 3 only  
All banks  
1
1
1
Don’t Care  
Don’t Care  
Note:The bank address assignment is the same for activating and precharging a specific bank.  
3.22.1  
Read Followed by a Precharge  
The following rules apply as long as the tRTP timing The term (tRTP - 2×tCK) is 0 clocks for operating  
parameter - Internal Read to Precharge Command frequencies less or equal 266 MHz (DDR2-400 and  
delay time - is less or equal two clocks, which is the DDR2-533 product speed sorts). The term (tRTP - 2×tCK)  
case for operating frequencies less or equal 266 MHz is one clock for frequencies higher then 266 MHz  
(DDR2 400 and 533 speed sorts).  
(DDR2-667 and DDR2-800 speed sorts).  
Minimum Read to Precharge command spacing to the A new bank active command may be issued to the  
same bank = AL + BL/2 clocks. For the earliest possible same bank if the following two conditions are satisfied  
precharge, the Precharge command may be issued on simultaneously:  
the rising edge which is “Additive Latency (AL) + BL/2  
1. The RAS precharge time (tRP) has been satisfied  
clocks” after a Read Command, as long as the  
from the clock at which the precharge begins.  
2. The RAS cycle time (tRC.MIN) from the previous bank  
activation has been satisfied.  
minimum tRAS timing is satisfied.  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, CK  
CMD  
Bank A  
Activate  
Posted CAS  
READ A  
NOP  
AL + BL/2 clks  
NOP  
NOP  
NOP  
Precharge  
NOP  
NOP  
tRP  
DQS,  
DQS  
AL = 1  
CL = 3  
RL = 4  
DQ  
Dout A0  
Dout A1  
Dout A2  
Dout A3  
>=tRAS  
CL = 3  
>=tRC  
>=tRTP  
BR-P413  
Figure 40 Read Operation Followed by Precharge Example 1  
RL = 4 (AL = 1, CL = 3), BL = 4, tRTP 2 CKs  
Data Sheet  
56  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, CK  
CMD  
Posted CAS  
READ A  
Bank A  
Activate  
NOP  
AL + BL/2 clks  
NOP  
NOP  
NOP  
Precharge  
NOP  
NOP  
tRP  
DQS,  
DQS  
AL = 1  
CL = 3  
RL = 4  
DQ  
Dout A0  
Dout A1  
Dout A2  
Dout A3  
Dout A4  
Dout A5  
Dout A6  
Dout A7  
>=tRAS  
CL = 3  
>=tRC  
>=tRTP  
BR-P413(8)  
first 4-bit prefetch  
second 4-bit prefetch  
Figure 41 Read Operation Followed by Precharge Example 2  
RL = 4 (AL = 1, CL = 3), BL = 8, tRTP 2 CKs  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, CK  
CMD  
Bank A  
Activate  
Posted CAS  
READ A  
NOP  
NOP  
tRP  
NOP  
NOP  
NOP  
NOP  
Precharge  
AL + BL/2 clks  
DQS,  
DQS  
AL = 2  
RL = 5  
CL = 3  
DQ  
Dout A0  
Dout A1  
Dout A2  
Dout A3  
>=tRAS  
CL = 3  
>=tRC  
>=tRTP  
BR-P523  
Figure 42 Read Operation Followed by Precharge Example 3  
RL = 5 (AL = 2, CL = 3), BL = 4, tRTP 2 CKs  
Data Sheet  
57  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, CK  
CMD  
Bank A  
Activate  
Posted CAS  
READ A  
Precharge  
A
NOP  
NOP  
NOP  
NOP  
NOP  
tRP  
NOP  
AL + BL/2 clocks  
DQS,  
DQS  
AL = 2  
RL = 6  
CL = 4  
DQ  
Dout A0  
Dout A1  
Dout A2  
Dout A3  
>=tRAS  
CL = 4  
>=tRC  
>=tRTP  
BR-P624  
Figure 43 Read Operation Followed by Precharge Example 4  
RL = 6, (AL = 2, CL = 4), BL = 4, tRTP 2 CKs  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, CK  
CM D  
B ank A  
A ctivate  
N O P  
N O P  
N O P  
N O P  
P recharge  
R E A D A  
N O P  
N O P  
tR P  
A L + B L/2 clks + 1  
DQ S,  
DQ S  
C L = 4  
R L = 4  
DQ  
Dout A0 Dout A1  
Dout A2 Dout A3 Dout A4 Dout A5  
Dout A6 Dout A7  
>=tR A S  
>=tR TP  
BR-P404(8)  
first 4-bit prefetch  
second 4-bit prefetch  
R
Figure 44 Read Operation Followed by Precharge Example 5  
RL = 4, (AL = 0, CL = 4), BL = 8, tRTP > 2 CKs  
Data Sheet  
58  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
3.22.2  
Write followed by Precharge  
Minimum Write to Precharge command spacing to the to the Precharge command. No Precharge command  
same bank = WL + BL/2 + tWR. For write cycles, a delay should be issued prior to the tWR delay, as DDR2  
must be satisfied from the completion of the last burst SDRAM does not support any burst interrupt by a  
write cycle until the Precharge command can be Precharge command. tWR is an analog timing  
issued. This delay is known as a write recovery time parameter (see Chapter 7) and is not the programmed  
(tWR) referenced from the completion of the burst write value WR in the MR.  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, CK  
CMD  
Precharge  
A
Posted CAS  
WRITE A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Completion of  
the Burst Write  
DQS,  
DQS  
tWR  
WL = 3  
DQ  
DIN A0  
DIN A1 DIN A2 DIN A3  
BW-P3  
Figure 45 Write followed by Precharge Example 1  
WL = (RL - 1) = 3, BL = 4, tWR = 3  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T9  
CK, CK  
CMD  
Precharge  
A
Posted CAS  
WRITE A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Completion of  
the Burst Write  
DQS,  
DQS  
tWR  
WL = 4  
DQ  
DIN A0  
DIN A1 DIN A2 DIN A3  
BW-P4  
Figure 46 Write followed by Precharge Example 2  
WL = (RL - 1) = 4, BL = 4, tWR = 3  
Data Sheet  
59  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
3.23  
Auto-Precharge Operation  
Before a new row in an active bank can be opened, the internally on the rising edge which is CAS Latency (CL)  
active bank must be precharged using either the Pre- clock cycles before the end of the read burst. Auto-  
charge Command or the Auto-Precharge function. Precharge is also implemented for Write Commands.  
When a Read or a Write Command is given to the The Precharge operation engaged by the Auto-  
DDR2 SDRAM, the CAS timing accepts one extra Precharge command will not begin until the last data of  
address, column address A10, to allow the active bank the write burst sequence is properly stored in the  
to automatically begin precharge at the earliest memory array. This feature allows the precharge  
possible moment during the burst read or write cycle. If operation to be partially or completely hidden during  
A10 is LOW when the Read or Write Command is burst read cycles (dependent upon CAS Latency) thus  
issued, then normal Read or Write burst operation is improving system performance for random data  
executed and the bank remains active at the access. The RAS lockout circuit internally delays the  
completion of the burst sequence. If A10 is HIGH when Precharge operation until the array restore operation  
the Read or Write Command is issued, then the Auto- has been completed so that the Auto-Precharge  
Precharge function is enabled. During Auto-Precharge, command may be issued with any read or write  
a Read Command will execute as normal with the command.  
exception that the active bank will begin to precharge  
3.23.1  
Read with Auto-Precharge  
If A10 is 1 when a Read Command is issued, the Read Auto-Precharge to the next Activate command  
with Auto-Precharge function is engaged. The DDR2 becomes AL + tRTP + tRP. For BL = 8 the time from Read  
SDRAM starts an Auto-Precharge operation on the with Auto-Precharge to the next Activate command is  
rising edge which is (AL + BL/2) cycles later from the AL + 2 + tRTP + tRP. Note that (tRTP + tRP) has to be  
Read with AP command if tRAS.MIN and tRTP are rounded up to the next integer value. In any event  
satisfied. If tRAS.MIN is not satisfied at the edge, the start internal precharge does not start earlier than two clocks  
point of Auto-Precharge operation will be delayed until after the last 4-bit prefetch.  
t
RAS.MIN is satisfied. If tRTP.MIN is not satisfied at the edge,  
A new bank active command may be issued to the  
same bank if the following two conditions are satisfied  
simultaneously:  
the start point of Auto-Precharge operation will be  
delayed until tRTP.MIN is satisfied.  
In case the internal precharge is pushed out by tRTP, tRP  
starts at the point where the internal precharge  
happens (not at the next rising clock edge after this  
event). So for BL = 4 the minimum time from Read with  
1. The RAS precharge time (tRP) has been satisfied  
from the clock at which the Auto-Precharge begins.  
2. The RAS cycle time (tRC) from the previous bank  
activation has been satisfied.  
Data Sheet  
60  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, C K  
CM D  
B ank  
A ctivate  
P osted C A S  
R E A D w /A P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
A10 ="high"  
Auto-Precharge Begins  
AL + BL/2  
RL = 5  
DQ S,  
DQ S  
AL = 2  
CL = 3  
tRP  
DQ  
Dout A0 Dout A1  
Dout A2 Dout A3  
tRAS  
tRCmin.  
BR-AP5231  
Figure 47 Read with Auto-Precharge Example 1, followed by an Activation to the Same Bank (tRC Limit)  
RL = 5 (AL = 2, CL = 3), BL = 4, tRTP2 CKs  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, CK  
CM D  
B ank  
A ctivate  
P osted C A S  
R E A D w /A P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
A10 ="high"  
Auto-Precharge Begins  
tRAS(min)  
DQ S,  
DQ S  
AL = 2  
CL = 3  
tRP  
RL = 5  
DQ  
Dout A0 Dout A1  
Dout A2 Dout A3  
tRC  
BR-AP5232  
Figure 48 Read with Auto-Precharge Example 2, followed by an Activation to the Same Bank (tRAS Limit)  
RL = 5 (AL = 2, CL = 3), BL = 4, tRTP2 CKs  
Data Sheet  
61  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CK, C K  
CM D  
B ank  
A ctivate  
P osted C A S  
R E A D w /A P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
A10 ="high"  
AL + BL/2  
tRP  
Auto-Precharge Begins  
DQ S,  
DQ S  
AL = 1  
CL = 3  
RL = 4  
DQ  
Dout A4 Dout A5  
Dout A2 Dout A3  
Dout A6 Dout A7  
Dout A0 Dout A1  
>= tRTP  
BR-AP413(8)2  
second 4-bit prefetch  
first 4-bit prefetch  
Figure 49 Read with Auto-Precharge Example 3, followed by an Activation to the Same Bank  
RL = 4 (AL = 1, CL = 3), BL = 8, tRTP2 CKs  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
A
CK, CK  
CMD  
Bank  
Activate  
Posted CAS  
READ w/AP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
A10 ="high"  
AL + tRTP + tRP  
Auto-Precharge Begins  
DQS,  
DQS  
AL = 1  
CL = 4  
RL = 5  
DQ  
Dout A0 Dout A1 Dout A2 Dout A3  
tRTP  
tRP  
BR-AP4133  
first 4-bit prefetch  
Figure 50 Read with Auto-Precharge Example 4, followed by an Activation to the Same Bank,  
RL = 5 (AL = 1, CL = 4), BL = 4, tRTP= 3 CKs  
Data Sheet  
62  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
3.23.2  
Write with Auto-Precharge  
If A10 is HIGH when a Write Command is issued, the 1. The last data-in to bank activate delay time (tDAL  
Write with Auto-Precharge function is engaged. The WR + tRP) has been satisfied.  
DDR2 SDRAM automatically begins precharge 2. The RAS cycle time (tRC) from the previous bank  
=
operation after the completion of the write burst plus the  
write recovery time delay (WR), programmed in the  
MRS register, as long as tRAS is satisfied. The bank  
undergoing Auto-Precharge from the completion of the  
write burst may be reactivated if the following two  
conditions are satisfied.  
activation has been satisfied.  
In DDR2 SDRAM’s the write recovery time delay (WR)  
has to be programmed into the MRS mode register. As  
long as the analog tWR timing parameter is not violated,  
WR can be programmed between 2 and 6 clock cycles.  
Minimum Write to Activate command spacing to the  
same bank = WL + BL/2 + tDAL  
.
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CK, C K  
CM D  
W R ITE  
w /A P  
B ank A  
A ctivate  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
A10 ="high"  
Completion of the Burst Write  
Auto-Precharge Begins  
DQ S,  
DQ S  
WR  
tRP  
WL = RL-1 = 2  
tDAL  
DQ  
DIN A0  
DIN A1 DIN A2 DIN A3  
tRCmin.  
>=tRASmin.  
BW-AP223  
Figure 51 Write with Auto-Precharge Example 1 (tRC Limit)  
WL = 2, tDAL = 6 (WR = 3, tRP = 3), BL = 4  
T0  
T3  
T4  
T5  
T6  
T7  
T8  
T12  
T9  
CK, C K  
CM D  
P osted C A S  
W R ITE w /A P  
B ank A  
A ctivate  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
Completion of the Burst Write  
A10 ="high"  
Auto-Precharge Begins  
DQ S,  
DQ S  
tRP  
WR  
tDAL  
WL = RL-1 = 4  
DQ  
DIN A0  
DIN A1 DIN A2 DIN A3  
>=tRC  
>=tRAS  
BW-AP423  
Figure 52 Write with Auto-Precharge Example 2 (WR + tRP Limit)  
WL = 4, tDAL = 6 (WR = 3, tRP = 3), BL = 4  
Data Sheet  
63  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
3.23.3  
Read or Write to Precharge Command Spacing Summary  
The following table summarizes the minimum command delays between Read, Read w/AP, Write, Write w/AP to  
the Precharge commands to the same banks and Precharge-All commands.  
Table 19  
Minimum Command Delays  
From Command  
To Command  
Minimum Delay between “From Unit Note  
Command” to “To Command”  
1)2)  
READ  
PRECHARGE (to same banks as  
READ)  
PRECHARGE-ALL  
PRECHARGE (to same banks as  
READ w/AP)  
PRECHARGE-ALL  
PRECHARGE (to same banks as  
WRITE)  
PRECHARGE-ALL  
PRECHARGE (to same banks as  
WRITE w/AP)  
PRECHARGE-ALL  
AL + BL/2 + max(tRTP, 2) - 2×tCK  
tCK  
1)2)  
1)2)  
AL + BL/2 + max(tRTP, 2) - 2×tCK  
AL + BL/2 + max(tRTP, 2) - 2×tCK  
tCK  
tCK  
READ w/AP  
WRITE  
1)2)  
2)  
AL + BL/2 + max(tRTP, 2) - 2×tCK  
WL + BL/2 + tWR  
tCK  
tCK  
2)  
2)  
WL + BL/2 + tWR  
WL + BL/2 + WR  
tCK  
tCK  
WRITE w/AP  
PRECHARGE  
2)  
2)  
WL + BL/2 + WR  
1
tCK  
tCK  
PRECHARGE (to same banks as  
PRECHARGE)  
PRECHARGE-ALL  
2)  
2)  
2)  
1
1
1
tCK  
tCK  
tCK  
PRECHARGE-ALL PRECHARGE  
PRECHARGE-ALL  
1) RU{tRTP(ns) / tCK(ns)} must be used, where RU stands for “Round Up”  
2) For a given bank, the precharge period should be counted from the latest precharge command, either one bank precharge  
or precharge-all, issued to that bank. The precharge period is satisfied after tRP,all depending on the latest precharge  
command issued to that bank  
Data Sheet  
64  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
3.23.4  
Concurrent Auto-Precharge  
DDR2 devices support the “Concurrent Auto- The minimum delay from a Read or Write command  
Precharge” feature. A Read with Auto-Precharge with Auto-Precharge enabled, to a command to a  
enabled, or a Write with Auto-Precharge enabled, may different bank, is summarized in the Command Delay  
be followed by any command to the other bank, as long Table. As defined, the WL = RL - 1 for DDR2 devices  
as that command does not interrupt the read or write which allows the command gap and corresponding  
data transfer, and all other related limitations (e.g. data gaps to be minimized.  
contention between Read data and Write data must be  
avoided externally and on the internal data bus).  
Table 20  
Command Delay Table  
From Command To Command (different bank, Minimum Delay with Concurrent Auto- Unit  
Note  
non-interrupting command)  
Read or Read w/AP  
Write or Write w/AP  
Precharge Support  
WRITE w/AP  
Read w/AP  
(CL -1) + (BL/2) + tWTR  
BL/2  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
1)  
1)  
Precharge or Activate  
Read or Read w/AP  
Write or Write w/AP  
1
BL/2  
BL/2 + 2  
1
Precharge or Activate  
1) This rule only applies to a selective Precharge command to another bank, a Precharge-All command is illegal  
3.24  
Refresh  
DDR2 SDRAM requires a refresh of all rows in any rolling 64 ms interval. The necessary refresh can be generated  
in one of two ways: by explicit Auto-Refresh commands or by an internally timed Self-Refresh mode.  
3.24.1  
Auto-Refresh Command  
Auto-Refresh is used during normal operation of the external address bus is required once this cycle has  
DDR2 SDRAM’s. This command is non persistent, so it started.  
must be issued each time a refresh is required. The  
refresh addressing is generated by the internal refresh  
controller. This makes the address bits ”don’t care”  
during an Auto-Refresh command. The DDR2 SDRAM  
requires Auto-Refresh cycles at an average periodic  
When the refresh cycle has completed, all banks of the  
SDRAM will be in the precharged (idle) state. A delay  
between the Auto-Refresh Command and the next  
Activate Command or subsequent Auto-Refresh  
Command must be greater than or equal to the Auto-  
Refresh cycle time (tRFC).  
interval of tREFI.MAX  
.
When CS, RAS and CAS are held LOW and WE HIGH To allow for improved efficiency in scheduling and  
at the rising edge of the clock, the chip enters the Auto- switching between tasks, some flexibility in the  
Refresh mode. All banks of the SDRAM must be absolute refresh interval is provided. A maximum of  
precharged and idle for a minimum of the precharge eight Auto-Refresh commands can be posted to any  
time (tRP) before the Auto-Refresh Command can be given DDR2 SDRAM, meaning that the maximum  
applied. An internal address counter supplies the absolute interval between any Auto-Refresh command  
addresses during the refresh cycle. No control of the and the next Auto-Refresh command is 9 ×tREFI  
.
Data Sheet  
65  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
T0  
T1  
T2  
T3  
CK, CK  
"high"  
CKE  
> = t  
> = t  
> = t  
RFC  
N O P  
RP  
RFC  
A U TO  
R E FR E S H  
A U TO  
R E FR E S H  
CMD  
N O P  
N O P  
A N Y  
P recharge  
N O P  
N O P  
AR  
Figure 53 Auto Refresh Timing  
3.24.2  
Self-Refresh Command  
The Self-Refresh command can be used to retain data, clock after Self-Refresh entry is registered, however,  
even if the rest of the system is powered down. When the clock must be restarted and stable before the  
in the Self-Refresh mode, the DDR2 SDRAM retains device can exit Self-Refresh operation.  
data without external clocking. The DDR2 SDRAM  
device has a built-in timer to accommodate Self-  
Refresh operation. The Self-Refresh Command is  
defined by having CS, RAS, CAS and CKE held LOW  
with WE HIGH at the rising edge of the clock. The  
device must be in idle state and ODT must be turned off  
before issuing Self Refresh command, by either driving  
ODT pin LOW or using EMRS(1) command. Once the  
command is registered, CKE must be held LOW to  
keep the device in Self-Refresh mode. The DLL is  
automatically disabled upon entering Self Refresh and  
is automatically enabled upon exiting Self Refresh.  
When the DDR2 SDRAM has entered Self-Refresh  
mode all of the external control signals, except CKE,  
are “don’t care”. The DRAM initiates a minimum of one  
Auto Refresh command internally within tCKE period  
once it enters Self Refresh mode. The clock is internally  
disabled during Self-Refresh Operation to save power.  
The minimum time that the DDR2 SDRAM must remain  
in Self Refresh mode is tCKE. The user may change the  
external clock frequency or halt the external clock one  
The procedure for exiting Self Refresh requires a  
sequence of commands. First, the clock must be stable  
prior to CKE going back HIGH. Once Self-Refresh Exit  
command is registered, a delay of at least tXSNR must  
be satisfied before a valid command can be issued to  
the device to allow for any internal refresh in progress.  
CKE must remain HIGH for the entire Self-Refresh exit  
period tXSRD for proper operation. Upon exit from Self  
Refresh, the DDR2 SDRAM can be put back into Self  
Refresh mode after tXSNR expires. NOP or deselect  
commands must be registered on each positive clock  
edge during the Self-Refresh exit interval tXSNR. ODT  
should be turned off during tXSNR  
.
The use of Self Refresh mode introduces the possibility  
that an internally timed refresh event can be missed  
when CKE is raised for exit from Self Refresh mode.  
Upon exit from Self Refresh, the DDR2 SDRAM  
requires a minimum of one extra auto refresh command  
before it is put back into Self Refresh Mode.  
Data Sheet  
66  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
T4  
T0  
T5  
Tm  
Tr  
T1  
T2  
T3  
Tn  
CK/CK  
CKE  
tRP  
tis  
tis  
>=tXSRD  
tCKE  
tis  
tAOFD  
>= tXSNR  
ODT  
CMD  
Read  
Command  
Self Refresh  
Entry  
Non-Read  
Command  
NOP  
CK/CK may  
be halted  
CK/CK must  
be stable  
Figure 54 Self Refresh Timing  
Notes  
1. Device must be in the “All banks idle” state before  
entering Self Refresh mode.  
2. tXSRD (200 tCK) has to be satisfied for a Read or a  
Read with Auto-Precharge command.  
3. tXSNR has to be satisfied for any command except a  
Read or a Read with Auto-Precharge command  
4. Since CKE is an SSTL input, VREF must be  
maintained during Self Refresh.  
3.25  
Power-Down  
Power-down is synchronously entered when CKE is For Active Power-down two different power saving  
registered LOW, along with NOP or Deselect modes can be selected within the MRS register,  
command. CKE is not allowed to go LOW while mode address bit A12. When A12 is set to LOW this mode is  
register or extended mode register command time, or referred as “standard active power-down mode” and a  
read or write operation is in progress. CKE is allowed to fast power-down exit timing defined by the tXARD timing  
go LOW while any other operation such as row parameter can be used. When A12 is set to HIGH this  
activation, Precharge, Auto-Precharge or Auto-Refresh mode is referred as a power saving “low power active  
is in progress, but power-down IDD specification will not power-down mode”. This mode takes longer to exit  
be applied until finishing those operations.  
The DLL should be in a locked state when power-down  
from the power-down mode and the tXARDS timing  
parameter has to be satisfied.  
is entered. Otherwise DLL should be reset after exiting Entering power-down deactivates the input and output  
power-down mode for proper read operation. DRAM buffers, excluding CK, CK, ODT and CKE. Also the DLL  
design guarantees it’s DLL in a locked state with any is disabled upon entering Precharge Power-down or  
CKE intensive operations as long as DRAM controller slow exit active power-down, but the DLL is kept  
complies with DRAM specifications.  
enabled during fast exit active power-down. In power-  
down mode, CKE LOW and a stable clock signal must  
be maintained at the inputs of the DDR2 SDRAM, and  
all other input signals are “Don’t Care”. Power-down  
duration is limited by 9 times tREFI of the device.  
If power-down occurs when all banks are precharged,  
this mode is referred to as Precharge Power-down; if  
power-down occurs when there is a row active in any  
bank, this mode is referred to as Active Power-down.  
Data Sheet  
67  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
Power-Down Entry  
Active Power-down mode can be entered after an Active Power-down mode entry is prohibited as long as  
Activate command. Precharge Power-down mode can a Write Burst and the internal write recovery is in  
be entered after a Precharge, Precharge-All or internal progress. In case of a write command, active power-  
precharge command. It is also allowed to enter power- down mode entry is allowed when WL + BL/2 + tWTR is  
mode after an Auto-Refresh command or MRS / satisfied.  
EMRS(1) command when tMRD is satisfied.  
In case of a write command with Auto-Precharge,  
Active Power-down mode entry is prohibited as long as Power-down mode entry is allowed after the internal  
a Read Burst is in progress, meaning CKE should be precharge command has been executed, which is WL  
kept HIGH until the burst operation is finished. + BL/2 + WR starting from the write with Auto-  
Therefore Active Power-Down mode entry after a Read Precharge command. In this case the DDR2 SDRAM  
or Read with Auto-Precharge command is allowed after enters the Precharge Power-down mode.  
RL + BL/2 is satisfied.  
Power-Down Exit  
The power-down state is synchronously exited when applied with power-down exit latency, tXP, tXARD or t  
CKE is registered HIGH (along with a NOP or Deselect XARDS, after CKE goes HIGH. Power-down exit  
command). A valid, executable command can be latencies are defined in Chapter 7.2.  
T0  
T1  
T2  
Tn  
Tn+1  
Tn+2  
CK, CK  
V alid  
C om m and  
CM D  
CKE  
N O P  
N O
N O P  
Activate  
N O P  
P  
tIS  
tIS  
tXARD or  
tXARDS *)  
Act.PD 0  
Active  
Power-Down  
Exit  
Active  
Power-Down  
Entry  
Figure 55 Active Power-Down Mode Entry and Exit after an Activate Command  
Note:Active Power-Down mode exit timing tXARD (“fast exit”) or tXARDS (“slow exit”) depends on the programmed  
state in the MR, address bit A12.  
Data Sheet  
68  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
Tn  
Tn+1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
Tn+2  
C K, C K  
Valid  
Com m and  
R EAD  
R EAD w/A P  
C M D  
CKE  
N O P  
N
N O P  
NO P  
N O P  
N O P  
P  
N O P  
N O P  
N O P  
tIS  
RL + BL/2  
tIS  
D Q S,  
D Q S  
CL = 3  
RL = 4  
tXARD or  
tXARDS *)  
AL = 1  
DQ  
Dout A0 Dout A1  
Dout A2 Dout A3  
Active  
Power-Down  
Entry  
Active  
Power-Down  
Exit  
Act.PD 1  
Active Power-Down Mode Entry and Exit Example after
C
a Read Command  
Figure 56  
Note:Active Power-Down mode exit timing tXARD (“fast exit”) or tXARDS (“slow exit”) depends on the programmed  
state in the MR, address bit A12.  
RL = 4 (AL = 1, CL =3), BL = 4  
T0  
T1  
T2  
T3  
Tn  
A
Tn+1  
Tn+2  
CK, CK  
Precharge  
*)  
Valid  
C om m and  
CM D  
C KE  
N O P  
N O P  
N O P  
N O P  
N
NO P  
N O P  
tIS  
tIS  
tXP  
tRP  
Precharge  
Power-Down  
Entry  
Precharge  
Power-Down  
Exit  
Figure 57 Active Power-Down Mode Entry and Exit Example after a Write Command  
E
WL = 2, tWTR = 2, BL = 4  
Note:Active Power-Down mode exit timing tXARD (“fast exit”) or tXARDS (“slow exit”) depends on the programmed  
state in the MR, address bit A12.  
Data Sheet  
69  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
Tn  
Tn+1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
Tn+2  
C K, CK  
Valid  
C om m and  
W R ITE  
w /A P  
C M D  
CKE  
N O P  
N O P  
N O P  
N O P  
P  
N O P  
N O P  
N
N O P  
N O P  
WL + BL/2 + WR  
tIS  
tIS  
D Q S,  
D Q S  
WL = RL - 1 = 2  
WR  
tXARD or  
tXARDS *)  
DQ  
DIN A0  
DIN A1 DIN A2 DIN A3  
Active  
Power-Down  
Entry  
Active  
Power-Down  
Exit  
Act.PD 3  
Active Power-Down Mode Entry and Exit Example after
C
a Write Command with AP  
Figure 58  
WL = 2, WR = 3, BL = 4  
Note:Active Power-Down mode exit timing tXARD (“fast exit”) or tXARDS (“slow exit”) depends on the programmed  
state in the MR, address bit A12. WR is the programmed value in the MRS mode register.  
T0  
T1  
T2  
T3  
Tn  
Tn+1  
Tn+2  
CK, CK  
Valid  
Command  
CMD  
CKE  
NOP  
NOP  
NOP  
Precharge  
NOP  
NOP  
N
NOP  
tIS  
tIS  
tXP  
tRP  
Precharge  
Power-Down  
Entry  
Precharge  
Power-Down  
Exit  
Figure 59 Precharge Power Down Mode Entry and Exit  
Note:"Precharge" may be an external command or an internal precharge following Write with AP.  
Data Sheet  
70  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
T0  
T1  
T2  
T3  
T4  
Tn  
CK, CK  
tRFC  
Valid  
Command  
Auto  
Refresh  
CM D  
CKE  
tXP  
tis  
CKE can go low one clock after an Auto-Refresh command  
When tRFC expires the DRAM is in Precharge Power-Down Mode  
ARPD  
Figure 60 Auto-Refresh command to Power-Down entry  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CK, CK  
MRS or  
EMRS  
CM D  
CKE  
t
MRD  
Enters Precharge Power-Down Mode  
MRS_PD  
Figure 61 MRS, EMRS command to Power-Down entry  
3.26  
Other Commands  
3.26.1  
No Operation Command  
The No Operation Command (NOP) should be used in registered when CS is LOW with RAS, CAS, and WE  
cases when the SDRAM is in a idle or a wait state. The held HIGH at the rising edge of the clock. A No  
purpose of the No Operation Command is to prevent Operation Command will not terminate a previous  
the SDRAM from registering any unwanted commands operation that is still executing, such as a burst read or  
between operations. A No Operation Command is write cycle.  
3.26.2  
Deselect Command  
The Deselect Command performs the same function as when CS is brought HIGH, the RAS, CAS, and WE  
a No Operation Command. Deselect Command occurs signals become don’t care.  
Data Sheet  
71  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
3.27  
Input Clock Frequency Change  
During operation the DRAM input clock frequency can cycles after tRP and tAOFD have been satisfied the input  
be changed under the following conditions:  
clock frequency can be changed. A stable new clock  
frequency has to be provided, before CKE can be  
changed to a HIGH logic level again. After tXP has been  
satisfied a DLL RESET command via EMRS(1) has to  
be issued. During the following DLL re-lock period of  
200 clock cycles, ODT must remain off. After the DLL-  
re-lock period the DRAM is ready to operate with the  
new clock frequency.  
During Self-Refresh operation  
DRAM is in Precharge Power-down mode and ODT  
is completely turned off.  
In the Precharge Power-down mode the DDR2-  
SDRAM has to be in Precharged Power-down mode  
and idle. ODT must be already turned off and CKE must  
be at a logic LOW state. After a minimum of two clock  
Ty+2  
Tz  
Ty+3  
T0  
T1  
T2  
T3  
T4  
Tx  
Tx+1  
Ty  
Ty+1  
CK, C K  
D LL  
R E SET  
Valid  
C om m and  
C M D  
CKE  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
N O P  
tRP  
tAOFD  
tXP  
200 clocks  
Minimum 2 clocks  
required before  
Frequency Change  
occurs here  
Stable new clock  
ODT is off during  
DLL RESET  
before power-down exit  
changing the frequency  
Frequ.Ch.  
Figure 62 Input Frequency Change Example during Precharge Power-Down mode  
Data Sheet  
72  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Functional Description  
3.28  
Asynchronous CKE LOW Reset Event  
In a given system, Asynchronous Reset event can occurs, the memory controller must satisfy a time delay  
occur at any time without prior knowledge. In this (tDELAY) before turning off the clocks. Stable clocks must  
situation, memory controller is forced to drop CKE exist at the input of DRAM before CKE is raised HIGH  
asynchronously LOW, immediately interrupting any again. The DRAM must be fully re-initialized as  
valid operation. DRAM requires CKE to be maintained described the initialization sequence (Power On and  
HIGH for all valid operations as defined in this data Initialization, step 4 through 13). DRAM is ready for  
sheet. If CKE asynchronously drops LOW during any normal operation after the initialization sequence. See  
valid operation, the DRAM is not guaranteed to Chapter 7 for tDELAY specification.  
preserve the contents of the memory array. If this event  
stable clocks  
CK, CK  
tdelay  
CKE  
CKE drops low due to an  
asynchronous reset event  
Clocks can be turned off after  
this point  
Figure 63 Asynchronous Low Reset Event  
Data Sheet  
73  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Truth tables  
4
Truth tables  
Table 21  
Function  
Command Truth Table  
CKE  
CS RAS CAS WE BA0 A[12:11] A10 A[9:0] Notes  
1)2)3)  
BA1  
Previous Current  
Cycle  
Cycle  
4)5)  
(Extended) Mode  
Register Set  
Auto-Refresh  
Self-Refresh Entry  
Self-Refresh Exit  
H
H
L
L
L
L
BA  
OP Code  
4)  
H
H
L
H
L
H
L
L
H
L
L
L
L
L
L
L
L
X
H
L
L
L
H
H
L
L
H
H
X
H
L
L
H
L
X
X
X
X
X
X
X
X
X
X
X
X
4)6)  
4)6)7)  
X
H
H
H
H
L
4)5)  
Single Bank Precharge H  
H
H
H
H
H
BA  
X
BA  
BA  
BA  
X
X
L
H
X
X
4)  
Precharge all Banks  
Bank Activate  
Write  
Write with Auto-  
Precharge  
Read  
Read with Auto-  
Precharge  
H
H
H
H
4)5)  
Row Address  
Column  
Column  
4)5)8)  
4)5)8)  
L
H
Column  
Column  
L
L
4)5)8)  
4)5)8)  
H
H
H
H
L
L
H
H
L
L
H
H
BA  
BA  
Column  
Column  
L
H
Column  
Column  
4)  
No Operation  
Device Deselect  
Power Down Entry  
H
H
H
X
X
L
L
H
X
X
H
X
H
H
X
X
H
X
H
H
X
X
H
X
H
X
X
X
X
X
X
X
X
X
X
X
X
4)  
H
H
L
H
L
4)9)  
4)9)  
Power Down Exit  
L
H
X
X
X
X
1) The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh.  
2) “X” means “H or L (but a defined logic level)”.  
3) Operation that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must  
be powered down and then restarted through the specified initialization sequence before normal operation can continue.  
4) All DDR2 SDRAM commands are defined by states of CS, WE, RAS, CAS, and CKE at the rising edge of the clock.  
5) Bank addresses BA[1:0] determine which bank is to be operated upon. For (E)MRS BA[1:0] selects an (Extended) Mode  
Register.  
6) VREF must be maintained during Self Refresh operation.  
7) Self Refresh Exit is asynchronous.  
8) Burst reads or writes at BL = 4 cannot be terminated. See Chapter 3.19 for details.  
9) The Power Down Mode does not perform any refresh operations. The duration of Power Down is therefore limited by the  
refresh requirements outlined in Chapter 3.23  
Data Sheet  
74  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Truth tables  
Table 22  
Clock Enable (CKE) Truth Table for Synchronous Transitions  
Current State1) CKE  
Command (N)2)3)  
RAS, CAS, WE  
Action (N)2)  
Notes4)5)  
Previous Cycle6) Current Cycle6)  
(N-1)  
(N)  
L
H
L
H
L
7)8)11)  
Power-Down  
Self Refresh  
L
L
L
L
H
X
Maintain Power-Down  
7)9)10)11)  
8)11)12)  
DESELECT or NOP Power-Down Exit  
Maintain Self Refresh  
X
9)12)13)14)  
7)9)10)11)15)  
DESELECT or NOP Self Refresh Exit  
DESELECT or NOP Active Power-Down Entry  
Bank(s)  
Active  
All Banks Idle  
9)10)11)15)  
H
L
DESELECT or NOP Precharge Power-Down  
Entry  
7)11)14)16)  
17)  
H
L
AUTOREFRESH  
Self Refresh Entry  
Any State other H  
than  
listed above  
H
Refer to the Command Truth Table  
1) Current state is the state of the DDR2 SDRAM immediately prior to clock edge N.  
2) Command (N) is the command registered at clock edge N, and Action (N) is a result of Command (N)  
3) The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh.  
See Chapter 3.23.  
4) CKE must be maintained HIGH while the device is in OCD calibration mode.  
5) Operation that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must  
be powered down and then restarted through the specified initialization sequence before normal operation can continue.  
6) CKE (N) is the logic state of CKE at clock edge N; CKE (N-1) was the state of CKE at the previous clock edge.  
7) The Power-Down Mode does not perform any refresh operations. The duration of Power-Down Mode is therefor limited by  
the refresh requirements  
8) “X” means “don’t care (including floating around VREF)” in Self Refresh and Power Down. However ODT must be driven  
HIGH or LOW in Power Down if the ODT function is enabled (Bit A2 or A6 set to “1” in EMRS(1)).  
9) All states and sequences not shown are illegal or reserved unless explicitly described elsewhere in this document.  
10) Valid commands for Power-Down Entry and Exit are NOP and DESELECT only.  
11) tCKE.MIN of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid  
input level the entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not  
transition from its valid level during the time period of tIS + 2xtCKE + tIH.  
12) VREF must be maintained during Self Refresh operation.  
13) On Self Refresh Exit DESELECT or NOP commands must be issued on every clock edge occurring during the tXSNR  
period. Read commands may be issued only after tXSRD (200 clocks) is satisfied.  
14) Valid commands for Self Refresh Exit are NOP and DESELCT only.  
15) Power-Down and Self Refresh can not be entered while Read or Write operations, (Extended) mode Register operations,  
Precharge or Refresh operations are in progress. See Chapter 3.23 and Chapter 3.22.2 for a detailed list of restrictions.  
16) Self Refresh mode can only be entered from the All Banks Idle state.  
17) Must be a legal command as defined in the Command Truth Table.  
Table 23  
Data Mask (DM) Truth Table  
Name (Function)  
Write Enable  
Write Inhibit  
DM  
L
H
DQs  
Valid  
X
Note  
1)  
1)  
1) Used to mask write data; provided coincident with the corresponding data.  
Data Sheet  
75  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
AC & DC Operating Conditions  
5
AC & DC Operating Conditions  
5.1  
Absolute Maximum Ratings  
Table 24  
Symbol  
VDD  
VDDQ  
VDDL  
VIN, VOUT  
TSTG  
Absolute Maximum Ratings  
Parameter  
Voltage on VDD pin relative to VSS  
Voltage on VDDQ pin relative to VSS  
Voltage on VDDL pin relative to VSS  
Voltage on any pin relative to VSS  
Storage Temperature  
Rating  
Unit  
V
V
V
V
Notes  
1)2)  
–1.0 to +2.3  
–0.5 to +2.3  
–0.5 to +2.3  
–0.5 to +2.3  
–55 to +100  
1)2)  
1)2)  
1)  
1)3)  
°C  
1) Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This  
is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the  
operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended  
periods may affect reliability.  
2) When VDD and VDDQ and VDDL are less than 500 mV; VREF may be equal to or less than 300 mV.  
3) Storage Temperature is the case surface temperature on the center/top side of the DRAM.  
Table 25  
Symbol  
TOPER  
DRAM Component Operating Temperature Range  
Parameter  
Rating  
Unit  
°C  
Notes  
1)2)3)4)  
Operating Temperature  
0 to 95  
1) Operating Temperature is the case surface temperature on the center / top side of the DRAM.  
2) The operating temperature range are the temperatures where all DRAM specification will be supported. During operation,  
the DRAM case temperature must be maintained between 0 - 95 °C under all other specification parameters.  
3) Above 85 °C case temperature the Auto-Refresh command interval has to be reduced to tREFI = 3.9 µs.  
4) When operating this product in the 85 °C to 95°C TCASE temperature range, the High temperature Self Refresh has to be  
enabled by setting EMR(2) bit A7 to “1”. Note, when the high Temperature Self Refresh is enabled there is an increase of  
I
DD6 by approximately 50%.  
Data Sheet  
76  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
AC & DC Operating Conditions  
5.2  
DC Characteristics  
Table 26  
Symbol  
Recommended DC Operating Conditions (SSTL_18)  
Parameter  
Rating  
Min.  
Unit  
Note  
Typ.  
1.8  
Max.  
1.9  
1.9  
1.9  
0.51 ×VDDQ  
1)  
VDD  
Supply Voltage  
1.7  
V
V
V
V
V
1)  
VDDDL  
VDDQ  
VREF  
VTT  
Supply Voltage for DLL  
Supply Voltage for Output  
Input Reference Voltage  
Termination Voltage  
1.7  
1.7  
0.49 ×VDDQ  
1.8  
1.8  
0.5 ×VDDQ  
VREF  
1)  
2)3)  
4)  
V
REF – 0.04  
VREF + 0.04  
1) VDDQ tracks with VDD, VDDDL tracks with VDD. AC parameters are measured with VDD, VDDQ and VDDDL tied together.  
2) The value of VREF may be selected by the user to provide optimum noise margin in the system. Typically the value of VREF  
is expected to be about 0.5 ×VDDQ of the transmitting device and VREF is expected to track variations in VDDQ  
.
3) Peak to peak ac noise on VREF may not exceed ± 2% VREF (dc)  
4) VTT is not applied directly to the device. VTT is a system supply for signal termination resistors, is expected to be set equal  
to VREF, and must track variations in die dc level of VREF  
.
Table 27  
ODT DC Electrical Characteristics  
Parameter / Condition  
Termination resistor impedance value for  
EMRS(1)[A6,A2] = [0,1]; 75 Ohm  
Symbol  
Rtt1(eff)  
Min.  
60  
Nom.  
75  
Max.  
90  
Unit  
Note  
1)  
1)  
1)  
2)  
Termination resistor impedance value for  
EMRS(1)[A6,A2] =[1,0]; 150 Ohm  
Termination resistor impedance value for  
EMRS(1)(A6,A2)=[1,1]; 50 Ohm  
Rtt2(eff)  
Rtt3(eff)  
delta VM  
120  
40  
150  
50  
180  
%
60  
Deviation of VM with respect to VDDQ / 2  
–6.00  
+ 6.00  
1) Measurement Definition for Rtt(eff): Apply VIH(ac) and VIL(ac) to test pin separately, then measure current I(VIHac) and I(VILac  
)
respectively. Rtt(eff) = (VIH(ac) VIL(ac)) /(I(VIHac) – I(VILac)).  
2) Measurement Definition for VM: Turn ODT on and measure voltage (VM) at test pin (midpoint) with no load:  
delta VM = ((2 x VM / VDDQ) – 1) x 100%  
Table 28  
Symbol  
IIL  
Input and Output Leakage Currents  
Parameter / Condition  
Input Leakage Current; any input 0 V < VIN < VDD  
Output Leakage Current; 0 V < VOUT < VDDQ  
Min.  
–2  
–5  
Max.  
+2  
+5  
Unit  
µA  
µA  
Note  
1)  
2)  
IOL  
1) All other pins not under test = 0 V  
2) DQ’s, LDQS, LDQS, UDQS, UDQS, DQS, DQS, RDQS, RDQS are disabled and ODT is turned off  
Data Sheet  
77  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
AC & DC Operating Conditions  
5.3  
DC & AC Characteristics  
DDR2 SDRAM pin timing are specified for either single relative to the rising or falling edges of DQS crossing at  
ended or differential mode depending on the setting of REF. In differential mode, these timing relationships  
V
the EMRS(1) “Enable DQS” mode bit; timing are measured relative to the crosspoint of DQS and its  
advantages of differential mode are realized in system complement, DQS. This distinction in timing methods is  
design. The method by which the DDR2 SDRAM pin verified by design and characterization but not subject  
timing are measured is mode dependent. In single to production test. In single ended mode, the DQS (and  
ended mode, timing relationships are measured RDQS) signals are internally disabled and don’t care.  
Table 29  
Symbol Parameter  
DC & AC Logic Input Levels  
DDR2-400 & DDR2-533  
Min. Max.  
DDR2-667 & DDR2-800  
Min. Max.  
Unit  
V
VIH(dc)  
VIL(dc)  
VIH(ac)  
VIL(ac)  
DC input logic high  
DC input low  
AC input logic high  
AC input low  
V
–0.3  
REF + 0.125  
V
V
DDQ + 0.3  
REF – 0.125  
V
REF + 0.125  
VDDQ + 0.3  
–0.3  
V
REF – 0.125  
V
V
V
VREF + 0.250  
V
REF + 0.200  
V
REF – 0.250  
VREF – 0.200  
Table 30  
Symbol  
VREF  
VSWING.MAX  
SLEW  
Single-ended AC Input Test Conditions  
Condition  
Value  
0.5 x VDDQ  
1.0  
Unit  
V
V
Note  
1)  
Input reference voltage  
Input signal maximum peak to peak swing  
Input signal minimum Slew Rate  
1)  
2)3)  
1.0  
V / ns  
1) Input waveform timing is referenced to the input signal crossing through the VREF level applied to the device under test.  
2) The input signal minimum Slew Rate is to be maintained over the range from VIH(ac).MIN to VREF for rising edges and the  
range from VREF to VIL(ac).MAX for falling edges as shown in Figure 64.  
3) AC timings are referenced with input waveforms switching from VIL(ac) to VIH(ac) on the positive transitions and VIH(ac) to VIL(ac)  
on the negative transitions.  
Start of Falling Edge Input Timing  
Start of Rising Edge Input Timing  
V
V
V
DDQ  
.MIN  
IH (ac)  
IH (dc) .MIN  
REF  
V
SWING.MAX  
V
V
V
.MAX  
IL (dc)  
IL (ac) .MAX  
SS  
V
delta TF  
V
delta TR  
- V  
V
V
REF  
IL (ac).MAX  
IH(ac).MIN - REF  
Falling Slew =  
Rising Slew =  
delta TR  
delta TF  
Figure 64 Single-ended AC Input Test Conditions Diagram  
Data Sheet  
78  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
AC & DC Operating Conditions  
Table 31  
Symbol  
VIN(dc)  
VID(dc)  
VID(ac)  
Differential DC and AC Input and Output Logic Levels  
Parameter  
Min.  
Max.  
Unit  
V
Note  
1)  
DC input signal voltage  
DC differential input voltage  
AC differential input voltage  
–0.3  
0.25  
0.5  
V
V
V
DDQ + 0.3  
DDQ + 0.6  
DDQ + 0.6  
2)  
3)  
4)  
VIX(ac)  
AC differential cross point input  
voltage  
0.5 ×VDDQ – 0.175  
0.5 ×VDDQ + 0.175  
V
5)  
VOX(ac)  
AC differential cross point output  
voltage  
0.5 ×VDDQ – 0.125  
0.5 ×VDDQ + 0.125  
V
1) VIN(dc) specifies the allowable DC execution of each input of differential pair such as CK, CK, DQS, DQS etc.  
2) VID(dc) specifies the input differential voltage VTRVCP required for switching. The minimum value is equal to VIH(dc) VIL(dc)  
3) VID(ac) specifies the input differential voltage VTR VCP required for switching. The minimum value is equal to VIH(ac) VIL(ac)  
.
.
4) The value of VIX(ac) is expected to equal 0.5 ×VDDQ of the transmitting device and VIX(ac) is expected to track variations in V  
DDQ. VIX(ac) indicates the voltage at which differential input signals must cross.  
5) The value of VOX(ac) is expected to equal 0.5 ×VDDQ of the transmitting device and VOX(ac) is expected to track variations in  
V
DDQ. VOX(ac) indicates the voltage at which differential input signals must cross.  
VDDQ  
VTR  
Crossing Point  
VID  
VIX or VOX  
VCP  
VSSQ  
SSTL18_3  
Figure 65 Differential DC and AC Input and Output Logic Levels Diagram  
Data Sheet  
79  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
AC & DC Operating Conditions  
5.4  
Output Buffer Characteristics  
Table 32  
Symbol  
IOH  
SSTL_18 Output DC Current Drive  
Parameter  
Output Minimum Source DC Current  
SSTL_18  
–13.4  
13.4  
Unit  
mA  
mA  
Note  
1)2)  
2)3)  
IOL  
Output Minimum Sink DC Current  
1) VDDQ = 1.7 V; VOUT = 1.42 V. (VOUTVDDQ) / IOH must be less than 21 Ohm for values of VOUT between VDDQ and VDDQ  
280 mV.  
2) The values of IOH(dc) and IOL(dc) are based on the conditions given in 1) and 3). They are used to test drive current capability  
to ensure VIH.MIN. plus a noise margin and VIL.MAX minus a noise margin are delivered to an SSTL_18 receiver. The actual  
current values are derived by shifting the desired driver operating points along 21 Ohm load line to define a convenient  
current for measurement.  
3) VDDQ = 1.7 V; VOUT = 280 mV. VOUT / IOL must be less than 21 Ohm for values of VOUT between 0 V and 280 mV.  
Table 33  
Symbol  
VOH  
VOL  
VOTR  
SSTL_18 Output AC Test Conditions  
Parameter  
Minimum Required Output Pull-up  
Maximum Required Output Pull-down  
Output Timing Measurement Reference Level  
SSTL_18  
Unit  
V
V
Note  
1)  
VTT + 0.603  
VTT – 0.603  
0.5 ×VDDQ  
1)  
V
1) SSTL_18 test load for VOH and VOL is different from the referenced load described in Chapter 8.1. The SSTL_18 test load  
has a 20 Ohm series resistor additionally to the 25 Ohm termination resistor into VTT. The SSTL_18 definition assumes  
that ± 335 mV must be developed across the effectively 25 Ohm termination resistor (13.4 mA × 25 Ohm = 335 mV). With  
an additional series resistor of 20 Ohm this translates into a minimum requirement of 603 mV swing relative to VTT, at the  
ouput device (13.4 mA × 45 Ohm = 603 mV).  
Table 34  
Symbol  
OCD Default Characteristics  
Description  
Min.  
See Chapter 5.5  
0
0
Nominal  
Max.  
Unit  
Note  
1)2)  
Output Impedance  
Pull-up / Pull down mismatch  
Output Impedance step size  
for OCD calibration  
Ohms  
Ohms  
Ohms  
1)2)3)  
4)  
4
1.5  
1)5)6)7)8)  
SOUT  
Output Slew Rate  
1.5  
5.0  
V / ns  
1) Absolute Specifications (TOPER; VDD = 1.8 V ± 0.1 V; VDDQ = 1.8 V ± 0.1 V), altering OCD from default state no longer  
requires DRAM to meet timing, voltage and slew rate specifications on I/O’s.  
2) Impedance measurement condition for output source dc current: VDDQ = 1.7 V, VOUT = 1420 mV;  
(VOUTVDDQ) / IOH must be less than 23.4 ohms for values of VOUT between VDDQ and VDDQ – 280 mV. Impedance  
measurement condition for output sink dc current: VDDQ = 1.7 V; VOUT = –280 mV; VOUT / IOL must be less than 23.4 Ohms  
for values of VOUT between 0 V and 280 mV.  
3) Mismatch is absolute value between pull-up and pull-down, both measured at same temperature and voltage.  
4) This represents the step size when the OCD is near 18 ohms at nominal conditions across all process parameters and  
represents only the DRAM uncertainty. A 0 Ohm value (no calibration) can only be achieved if the OCD impedance is 18  
± 0.75 Ohms under nominal conditions.  
5) Slew Rates according to Chapter 8.2.1VIL(ac) to VIH(ac) with the load specified in Figure 72.  
6) The absolute value of the Slew Rate as measured from DC to DC is equal to or greater than the Slew Rate as measured  
from AC to AC. This is verified by design and characterization but not subject to production test.  
7) Timing skew due to DRAM output Slew Rate mis-match between DQS / DQS and associated DQ’s is included in tDQSQ and  
t
QHS specification.  
8) DRAM output Slew Rate specification applies to 400, 533 and 667 MHz speed bins.  
Data Sheet 80  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
AC & DC Operating Conditions  
5.5  
Full Strength Output V-I Characteristics  
DDR2 SDRAM output driver characteristics are defined show the driver characteristics graphically and the  
for full strength default operation as selected by the tables show the same data suitable for input into  
EMRS(1) bits A[9:7] =’111’. Figure 66 and Figure 67 simulation tools.  
Table 35  
Voltage (V)  
Full Strength Default Pull-up Driver Characteristics  
Pull-up Driver Current [mA]  
Min.1)  
0.00  
IBIS Target low2)  
0.00  
IBIS Target high2)  
0.00  
Max.3)  
0.00  
–7.95  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
–4.30  
–8.60  
–12.90  
–16.90  
–20.05  
–22.10  
–23.27  
–24.10  
–24.73  
–25.23  
–25.65  
–26.02  
–26.35  
–26.65  
–26.93  
–27.20  
–27.46  
–5.55  
–5.90  
–11.10  
–16.00  
–20.30  
–24.00  
–27.20  
–29.80  
–31.90  
–33.40  
–34.60  
–35.50  
–36.20  
–36.80  
–37.20  
–37.70  
–38.00  
–38.40  
–38.60  
–11.80  
–17.00  
–22.20  
–27.50  
–32.40  
–36.90  
–40.80  
–44.50  
–47.70  
–50.40  
–52.50  
–54.20  
–55.90  
–57.10  
–58.40  
–59.60  
–60.80  
–15.90  
–23.85  
–31.80  
–39.75  
–47.70  
–55.55  
–62.95  
–69.55  
–75.35  
–80.35  
–84.55  
–87.95  
–90.70  
–93.00  
–95.05  
–97.05  
–99.05  
–101.05  
1) The driver characteristics evaluation conditions are Minimum 95 °C (TCASE), VDDQ = 1.7 V, slow–slow process  
2) The driver characteristics evaluation conditions are Nominal Default 25 °C (TCASE), VDDQ = 1.8 V, typical process  
3) The driver characteristics evaluation conditions are Maximum 0 °C (TCASE). VDDQ = 1.9 V, fast–fast process  
Data Sheet  
81  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
AC & DC Operating Conditions  
ꢃꢄꢃꢃ  
ꢀꢂꢃꢄꢃꢃ  
ꢀꢇꢃꢄꢃꢃ  
ꢀꢆꢃꢄꢃꢃ  
ꢀꢅꢃꢄꢃꢃ  
ꢀꢁꢃꢃꢄꢃꢃ  
ꢀꢁꢂꢃꢄꢃꢃ  
0LQLPXP  
,%,6ꢀ7DUJHWꢀ/RZ  
,%,6ꢀ7DUJHWꢀ+LJK  
0D[LPXP  
ꢃꢄꢂ ꢃꢄꢇ ꢃꢄꢆ ꢃꢄꢅ  
ꢁꢄꢂ ꢁꢄꢇ ꢁꢄꢆ ꢁꢄꢅ  
9''4ꢈWRꢈ9287ꢈꢉ9ꢊ  
Figure 66 Full Strength Default Pull-up Driver Diagram  
Table 36  
Voltage (V)  
Full Strength Default Pull–down Driver Characteristics  
Pull-down Driver Current [mA]  
Min.1)  
0.00  
Nominal Default low2) Nominal Default high2) Max.3)  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
0.00  
0.00  
0.00  
4.30  
8.60  
5.65  
5.90  
7.95  
11.30  
16.50  
21.20  
25.00  
28.30  
30.90  
33.00  
34.50  
35.50  
36.10  
36.60  
36.90  
37.10  
37.40  
37.60  
37.70  
37.90  
11.80  
16.80  
22.10  
27.60  
32.40  
36.90  
40.90  
44.60  
47.70  
50.40  
52.60  
54.20  
55.90  
57.10  
58.40  
59.60  
60.90  
15.90  
23.85  
31.80  
39.75  
47.70  
55.05  
62.95  
69.55  
75.35  
80.35  
84.55  
87.95  
90.70  
93.00  
95.05  
97.05  
99.05  
101.05  
12.90  
16.90  
20.05  
22.10  
23.27  
24.10  
24.73  
25.23  
25.65  
26.02  
26.35  
26.65  
26.93  
27.20  
27.46  
1) The driver characteristics evaluation conditions are Minimum 95 °C (TCASE), VDDQ = 1.7 V, slow-slow process  
2) The driver characteristics evaluation conditions are Nominal Default 25 °C (TCASE), VDDQ = 1.8 V, typical process  
3) The driver characteristics evaluation conditions are Maximum 0 °C (TCASE). VDDQ = 1.9 V, fast-fast process  
Data Sheet  
82  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
AC & DC Operating Conditions  
ꢅꢁꢀ  
ꢅꢀꢀ  
ꢄꢀ  
ꢃꢀ  
ꢂꢀ  
ꢁꢀ  
0LQLPXP  
,%,6ꢀ7DUJHWꢀ/RZ  
,%,6ꢀ7DUJHWꢀ+LJK  
0D[LPXP  
ꢀꢆꢁ ꢀꢆꢂ ꢀꢆꢃ ꢀꢆꢄ  
ꢅꢆꢁ ꢅꢆꢂ ꢅꢆꢃ ꢅꢆꢄ  
9287ꢇWRꢇ9664ꢇꢈ9ꢉ  
Figure 67 Full Strength Default Pull–down Driver Diagram  
5.5.1  
Calibrated Output Driver V-I Characteristics  
DDR2 SDRAM output driver characteristics are defined looking at one DQ only. If the calibration procedure is  
for full strength calibrated operation as selected by the used, it is possible to cause the device to operate  
procedure outlined in the Off-Chip Driver (OCD) outside the bounds of the default device characteristics  
Impedance Adjustment. The Table 37 and Table 38 tables and figure. In such a situation, the timing  
show the data in tabular format suitable for input into parameters in the specification cannot be guaranteed.  
simulation tools. The nominal points represent a device It is solely up to the system application to ensure that  
at exactly 18 ohms. The nominal low and nominal high the device is calibrated between the minimum and  
values represent the range that can be achieved with a maximum default values at all times. If this can’t be  
maximum 1.5 ohms step size with no calibration error guaranteed by the system calibration procedure, re-  
at the exact nominal conditions only (i.e. perfect calibration policy and uncertainty with DQ to DQ  
calibration procedure, 1.5 ohm maximum step size variation, it is recommended that only the default  
guaranteed by specification). Real system calibration values to be used. The nominal maximum and  
error needs to be added to these values. It must be minimum values represent the change in impedance  
understood that these V-I curves are represented here from nominal LOW and HIGH as a result of voltage and  
or in supplier IBIS models need to be adjusted to a temperature change from the nominal condition to the  
wider range as a result of any system calibration error. maximum and minimum conditions. If calibrated at an  
Since this is a system specific phenomena, it cannot be extreme condition, the amount of variation could be as  
quantified here. The values in the calibrated tables much as from the nominal minimum to the nominal  
represent just the DRAM portion of uncertainty while maximum or vice versa.  
Data Sheet  
83  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
AC & DC Operating Conditions  
Table 37  
Full Strength Calibrated Pull-down Driver Characteristics  
Voltage (V)  
Calibrated Pull-down Driver Current [mA]  
Nominal Minimum1) Nominal Low2) Nominal3)  
Nominal High2) Nominal Maximum4)  
(21 Ohms)  
9.5  
(18.75 Ohms) (18 ohms)  
(17.25 Ohms)  
11.8  
(15 Ohms)  
13.3  
0.2  
0.3  
0.4  
10.7  
16.0  
21.0  
11.5  
16.6  
21.6  
14.3  
18.7  
17.4  
20.0  
23.0  
27.0  
1) The driver characteristics evaluation conditions are Nominal Minimum 95 °C (TCASE). VDDQ = 1.7 V, any process  
2) The driver characteristics evaluation conditions are Nominal Low and Nominal High 25 °C (TCASE), VDDQ = 1.8 V, any  
process  
3) The driver characteristics evaluation conditions are Nominal 25 °C (TCASE), VDDQ = 1.8 V, typical process  
4) The driver characteristics evaluation conditions are Nominal Maximum 0 °C (TCASE), VDDQ = 1.9 V, any process  
Table 38  
Full Strength Calibrated Pull-up Driver Characteristics  
Voltage (V) Calibrated Pull-up Driver Current [mA]  
Nominal Minimum1) Nominal Low2) Nominal  
Nominal High2) NominalMaximum4)  
(17.25 Ohms) (15 Ohms)  
(21 Ohms)  
–9.5  
(18.75 Ohms) (18 ohms)3)  
0.2  
0.3  
0.4  
–10.7  
–16.0  
–21.0  
–11.4  
–16.5  
–21.2  
–11.8  
–17.4  
–23.0  
–13.3  
–20.0  
–27.0  
–14.3  
–18.3  
1) The driver characteristics evaluation conditions are Nominal Minimum 95 °C (TCASE). VDDQ = 1.7 V, any process  
2) The driver characteristics evaluation conditions are Nominal Low and Nominal High 25 °C (TCASE), VDDQ = 1.8V, any  
process  
3) The driver characteristics evaluation conditions are Nominal 25 °C (TCASE), VDDQ = 1.8 V, typical process  
4) The driver characteristics evaluation conditions are Nominal Maximum 0 °C (TCASE), VDDQ = 1.9 V, any process  
Data Sheet  
84  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
AC & DC Operating Conditions  
5.6  
Reduced Output Drive Characteristics  
A driver mode with reduced output drive characteristics can be selected by setting address bit A1 in the EMRS(1)  
extended mode register to 1.  
Table 39  
Voltage (V)  
Reduced Strength Default Pull-up Driver Characteristics  
Pull-up Driver Current [mA]  
Min.1)  
0.00  
IBIS Target low2)  
0.00  
IBIS Target high2)  
0.00  
Max.3)  
0.00  
–4.77  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
–1.72  
–3.44  
–5.16  
–6.76  
–8.02  
–8.84  
–9.31  
–9.64  
–9.89  
–10.09  
–10.26  
–10.41  
–10.54  
–10.66  
–10.77  
–10.88  
–10.98  
–3.20  
–6.20  
–9.04  
–3.70  
–7.22  
–9.54  
–10.56  
–13.75  
–16.78  
–19.61  
–22.20  
–24.50  
–26.46  
–28.07  
–29.36  
–30.40  
–31.24  
–31.93  
–32.51  
–33.01  
–33.46  
–33.89  
–14.31  
–19.08  
–23.85  
–28.62  
–33.33  
–37.77  
–41.73  
–45.21  
–48.21  
–50.73  
–52.77  
–54.42  
–55.80  
–57.03  
–58.23  
–59.43  
–60.63  
–11.69  
–14.11  
–16.27  
–18.16  
–19.77  
–21.10  
–22.15  
–22.96  
–23.61  
–24.61  
–24.64  
–25.07  
–25.47  
–25.85  
–26.21  
1) The driver characteristics evaluation conditions are Minimum 95 °C (TCASE), VDDQ = 1.7 V, slow–slow process  
2) The driver characteristics evaluation conditions are Nominal Default 25 °C (TCASE), VDDQ = 1.8 V, typical process  
3) The driver characteristics evaluation conditions are Maximum 0 °C (TCASE). VDDQ = 1.9 V, fast–fast process  
Data Sheet  
85  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
AC & DC Operating Conditions  
0,00  
-20,00  
-40,00  
-60,00  
-80,00  
Minimum  
IBIS Target Low  
IBIS Target High  
Maximum  
0
0,2 0,4 0,6 0,8  
1
1,2 1,4 1,6 1,8  
2
VDDQ to VOUT (V)  
Reduced Strength Default Pull-up Driver Diagram
E  
Figure 68  
Table 40  
Reduced Strength Default Pull–down Driver Characteristics  
Voltage (V)  
Pull-down Driver Current [mA]  
Min.1)  
0.00  
1.72  
3.44  
5.16  
6.76  
8.02  
8.84  
9.31  
9.64  
9.89  
10.09  
10.26  
10.41  
10.54  
10.66  
10.77  
10.88  
10.98  
IBIS Target low2)  
0.00  
IBIS Target high2)  
0.00  
4.11  
Max.3)  
0.00  
4.77  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
3.24  
6.25  
9.03  
8.01  
9.54  
11.67  
15.03  
18.03  
20.61  
22.71  
24.35  
25.56  
26.38  
26.90  
27.24  
27.47  
27.64  
27.78  
27.89  
27.97  
28.02  
14.31  
19.08  
23.85  
28.62  
33.33  
37.77  
41.73  
45.21  
48.21  
50.73  
52.77  
54.42  
55.80  
57.03  
58.23  
59.43  
60.63  
11.52  
13.66  
15.41  
16.77  
17.74  
18.83  
18.80  
19.06  
19.23  
19.35  
19.46  
19.56  
19.65  
19.73  
19.80  
1) The driver characteristics evaluation conditions are Minimum 95 °C (TCASE), VDDQ = 1.7 V, slow-slow process  
2) The driver characteristics evaluation conditions are Nominal Default 25 °C (TCASE), VDDQ = 1.8 V, typical process  
3) The driver characteristics evaluation conditions are Maximum 0 °C (TCASE). VDDQ = 1.9 V, fast-fast process  
Data Sheet  
86  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
AC & DC Operating Conditions  
80  
70  
60  
50  
Minimum  
IBIS Target Low  
40  
IBIS Target High  
Maximum  
30  
20  
10  
0
0,2 0,4 0,6 0,8  
VOUT to VSSQ (V)  
1,2 1,4 1,6 1,8  
0
1
2
E
Figure 69 Reduced Strength Default Pull–down Driver Diagram  
5.7  
Input / Output Capacitance  
Table 41  
Input / Output Capacitance  
Symbol Parameter  
DDR2-400 & DDR2-667  
DDR2-800  
Max. Min. Max.  
Unit  
DDR-2-533  
Min. Max. Min.  
CCK  
CDCK  
CI  
Input capacitance, CK and CK  
Input capacitance delta, CK and CK  
Input capacitance, all other input-only pins  
Input capacitance delta, all other input-only  
pins  
1.0  
1.0  
2.0  
0.25  
2.0  
1.0  
1.0  
2.0  
0.25  
2.0  
1.0  
1.0  
2.0  
pF  
pF  
pF  
pF  
0.25  
1.75  
0.25  
CDI  
0.25  
0.25  
CIO  
Input/output capacitance,  
2.5  
4.0  
0.5  
2.5  
3.5  
0.5  
2.5  
3.5  
0.5  
pF  
pF  
DQ, DM, DQS, DQS, RDQS, RDQS  
CDIO  
Input/output capacitance delta,  
DQ, DM, DQS, DQS, RDQS, RDQS  
Data Sheet  
87  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
AC & DC Operating Conditions  
5.8  
Power & Ground Clamp V-I Characteristics  
Power and Ground clamps are provided on address  
The V-I characteristics for pins with clamps is shown in  
(A[12:0], BA[1:0]), RAS, CAS, CS, WE, and ODT pins. Table 42.  
Table 42  
Power & Ground Clamp V-I Characteristics  
Voltage across clamp (V)  
Minimum Power Clamp  
Current (mA)  
Minimum Ground Clamp Current (mA)  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
0
0
0
0
0
0
0
0
0.1  
1.0  
2.5  
4.7  
6.8  
9.1  
11.0  
13.5  
16.0  
18.2  
21.0  
0
0
0
0
0
0
0
0
0.1  
1.0  
2.5  
4.7  
6.8  
9.1  
11.0  
13.5  
16.0  
18.2  
21.0  
Data Sheet  
88  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
AC & DC Operating Conditions  
5.9  
Overshoot and Undershoot Specification  
Table 43  
AC Overshoot / Undershoot Specification for Address and Control Pins  
Parameter  
DDR2-400  
DDR2-533  
0.5  
DD2-667  
0.5  
Unit  
V
Maximum peak amplitude allowed for overshoot area 0.5  
Maximum peak amplitude allowed for undershoot area 0.5  
0.5  
0.5  
V
Maximum overshoot area above VDD  
Maximum undershoot area below VSS  
1.33  
1.33  
1.00  
1.00  
0.80  
0.80  
V.ns  
V.ns  
Maximum Amplitude  
Overshoot Area  
VDD  
VSS  
Undershoot Area  
Maximum Amplitude  
Time (ns)  
Figure 70 AC Overshoot / Undershoot Diagram for Address and Control Pins  
Table 44  
AC Overshoot / Undershoot Specification for Clock, Data, Strobe and Mask Pins  
Parameter  
DDR2-400  
DDR2-533  
0.5  
DD2-667  
0.5  
Unit  
V
Maximum peak amplitude allowed for overshoot area 0.5  
Maximum peak amplitude allowed for undershoot area 0.5  
0.5  
0.5  
V
Maximum overshoot area above VDDQ  
Maximum undershoot area below VSSQ  
0.38  
0.38  
0.28  
0.28  
0.23  
0.23  
V.ns  
V.ns  
Maximum Amplitude  
Overshoot Area  
VDDQ  
VSSQ  
Undershoot Area  
Maximum Amplitude  
Time (ns)  
Figure 71 AC Overshoot / Undershoot Diagram for Clock, Data, Strobe and Mask Pins  
Data Sheet  
89  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Measurement Specifications and Conditions  
6
Measurement Specifications and Conditions  
Table 45  
IDD Measurement Conditions  
Parameter  
Symbol Notes  
IDD0  
1)2)3)4)5)6)  
Operating Current - One bank Active - Precharge  
t
CK = tCK(IDD), tRC = tRC(IDD), tRAS = tRAS.MIN(IDD), CKE is HIGH, CS is HIGH between valid  
commands. Address and control inputs are switching; Databus inputs are switching.  
1)2)3)4)5)6)  
Operating Current - One bank Active - Read - Precharge  
IDD1  
I
OUT = 0 mA, BL = 4, tCK = tCK(IDD), tRC = tRC(IDD), tRAS = tRAS.MIN(IDD), tRCD = tRCD(IDD), AL = 0,  
CL = CL(IDD); CKE is HIGH, CS is HIGH between valid commands. Address and control  
inputs are switching; Databus inputs are switching.  
1)2)3)4)5)6)  
1)2)3)4)5)6)  
1)2)3)4)5)6)  
1)2)3)4)5)6)  
1)2)3)4)5)6)  
1)2)3)4)5)6)  
1)2)3)4)5)6)  
Precharge Power-Down Current  
IDD2P  
All banks idle; CKE is LOW; tCK = tCK(IDD);Other control and address inputs are stable; Data  
bus inputs are floating.  
Precharge Standby Current  
IDD2N  
All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK(IDD); Other control and address inputs are  
switching, Data bus inputs are switching.  
Precharge Quiet Standby Current  
IDD2Q  
IDD3P(0)  
IDD3P(1)  
IDD3N  
All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK(IDD); Other control and address inputs are  
stable, Data bus inputs are floating.  
Active Power-Down Current  
All banks open; tCK = tCK(IDD), CKE is LOW; Other control and address inputs are stable; Data  
bus inputs are floating. MRS A12 bit is set to “0” (Fast Power-down Exit).  
Active Power-Down Current  
All banks open; tCK = tCK(IDD), CKE is LOW; Other control and address inputs are stable, Data  
bus inputs are floating. MRS A12 bit is set to 1 (Slow Power-down Exit);  
Active Standby Current  
All banks open; tCK = tCK(IDD); tRAS = tRAS.MAX(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH  
between valid commands. Address inputs are switching; Data Bus inputs are switching;  
Operating Current  
IDD4R  
Burst Read: All banks open; Continuous burst reads; BL = 4; AL = 0, CL = CL(IDD)  
;
t
CK = tCK(IDD); tRAS = tRAS.MAX.(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid  
commands. Address inputs are switching; Data Bus inputs are switching; IOUT = 0 mA.  
1)2)3)4)5)6)  
1)2)3)4)5)6)  
1)2)3)4)5)6)  
Operating Current  
IDD4W  
IDD5B  
IDD5D  
Burst Write: All banks open; Continuous burst writes; BL = 4; AL = 0, CL = CL(IDD)  
;
t
CK = tCK(IDD); tRAS = tRAS.MAX(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid  
commands. Address inputs are switching; Data Bus inputs are switching;  
Burst Refresh Current  
t
CK = tCK(IDD), Refresh command every tRFC = tRFC(IDD) interval, CKE is HIGH, CS is HIGH  
between valid commands, Other control and address inputs are switching, Data bus inputs  
are switching.  
Distributed Refresh Current  
t
CK = tCK(IDD), Refresh command every tREFI = 7.8 µs interval, CKE is LOW and CS is HIGH  
between valid commands, Other control and address inputs are switching, Data bus inputs  
are switching.  
Data Sheet  
90  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Measurement Specifications and Conditions  
Table 45  
IDD Measurement Conditions (cont’d)  
Parameter  
Self-Refresh Current  
Symbol Notes  
IDD6  
1)2)3)4)5)6)  
CKE 0.2 V; external clock off, CK and CK at 0 V; Other control and address inputs are  
floating, Data bus inputs are floating.  
1)2)3)4)5)6)7)  
Operating Bank Interleave Read Current  
IDD7  
1. All banks interleaving reads, IOUT = 0 mA; BL = 4, CL = CL(IDD), AL = tRCD(IDD) -1 ×tCK(IDD)  
;
t
CK = tCK(IDD), tRC = tRC(IDD), tRRD = tRRD(IDD); CKE is HIGH, CS is HIGH between valid  
commands. Address bus inputs are stable during deselects; Data bus is switching.  
2. Timing pattern:  
DDR2-400-333: A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D D (11 clocks)  
DDR2-533-333: A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D D (15 clocks)  
DDR2-533-444: A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D D D (16 clocks)  
DDR2-667-444: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D (19 clocks)  
DDR2-667-555: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D (20 clocks)  
DDR2-800-444: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D D D (22 clocks)  
DDR2-800-555: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D D D D  
(23 clocks)  
DDR2-800-666: A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D D D D D D  
(24 clocks)  
1) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ± 0.1 V  
2) IDD specifications are tested after the device is properly initialized.  
3) IDD parameter are specified with ODT disabled.  
4) Data Bus consists of DQ, DM, DQS, DQS, RDQS, RDQS, LDQS, LDQS, UDQS and UDQS.  
5) Definitions for IDD: see Table 46  
6) Timing parameter minimum and maximum values for IDD current measurements are defined in chapter 7.  
7) A = Activate, RA = Read with Auto-Precharge, D=DESELECT  
Table 46  
Parameter  
LOW  
Definition for IDD  
Description  
defined as VINVIL(ac).MAX  
HIGH  
defined as VINVIH(ac).MIN  
STABLE  
FLOATING  
SWITCHING  
defined as inputs are stable at a HIGH or LOW level  
defined as inputs are VREF = VDDQ / 2  
defined as: Inputs are changing between high and low every other clock (once per two clocks)  
for address and control signals, and inputs changing between high and low every other clock  
(once per clock) for DQ signals not including mask or strobes  
Data Sheet  
91  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Measurement Specifications and Conditions  
Table 47  
Symbol  
I
DD Specification for HYB18T256xxxAF  
–25F –2.5 –3 –3S  
DDR2–800 DDR2–800 DDR2–667 DDR2–667 DDR2–533 DDR2–400  
–3.7  
–5  
Unit  
Notes  
Max.  
80  
90  
50  
5
35  
50  
Max.  
75  
85  
50  
5
35  
50  
22  
Max.  
65  
75  
45  
5
Max.  
62  
71  
45  
5
30  
45  
19  
Max.  
55  
60  
35  
4.5  
2
25  
35  
16  
4.5  
90  
115  
95  
130  
90  
6
4.5  
2
Max.  
50  
55  
28  
4.5  
20  
30  
13  
4.5  
70  
90  
75  
105  
85  
6
4.5  
125  
140  
IDD0  
IDD1  
IDD2N  
IDD2P  
IDD2P(L)  
IDD2Q  
IDD3N  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
1)  
30  
45  
19  
5
110  
145  
115  
160  
95  
6
4.5  
2)  
3)  
IDD3P(MRS= 0) 22  
IDD3P(MRS= 1)  
IDD4R  
5
5
5
125  
175  
135  
190  
95  
6
4.5  
125  
175  
135  
190  
95  
6
4.5  
110  
145  
115  
160  
95  
6
4.5  
×4/×8  
×16  
×4/×8  
×16  
IDD4W  
IDD5B  
IDD5D  
IDD6  
IDD6(L)  
IDD7  
4)  
4)  
1)4)  
165  
180  
155  
170  
145  
165  
138  
157  
135  
150  
×4/×8  
×16  
1) For LowPower Components  
2) MRS(12)=0  
3) MRS(12)=1  
4) 0 TCASE 85°C  
Data Sheet  
92  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Measurement Specifications and Conditions  
6.1  
IDD Test Conditions  
For testing the IDD parameters, the following timing parameters are used:  
Table 48  
IDD Measurement Test Condition for DDR2–800  
Parameter  
Symbol  
–25F  
DDR2–800  
5
–2.5  
DDR2–800  
6
2.5  
15  
60  
7.5  
10  
Unit Notes  
CAS Latency  
Clock Cycle Time  
Active to Read or Write delay  
Active to Active / Auto-Refresh command period tRC.IDD  
Active bank A to Active bank B command delay tRRD.IDD  
CLIDD  
tCK.IDD  
tRCD.IDD  
tCK  
ns  
ns  
ns  
2.5  
12.5  
57.5  
7.5  
1)  
ns  
2)  
10  
ns  
Active to Precharge Command  
tRAS.MIN.IDD  
tRAS.MAX.IDD  
tRP.IDD  
45  
45  
70000  
15  
ns  
ns  
ns  
ns  
70000  
12.5  
75  
Precharge Command Period  
Auto-Refresh to Active / Auto-Refresh command tRFC.IDD  
75  
period  
Average periodic Refresh  
interval  
0°C TCASE 85°C tREFI  
7.8  
7.8  
µs  
1) ×4 & ×8 (1 KByte page size)  
2) ×16 (2 KByte page size); not on 256M component  
Table 49  
IDD Measurement Test Conditions for DDR2–667  
Parameter  
Symbol  
–3  
–3S  
Unit Notes  
DDR2–667 4–4–4  
DDR2–667 5–5–5  
CAS Latency  
Clock Cycle Time  
Active to Read or Write delay  
Active to Active / Auto-Refresh  
command period  
CL(IDD)  
tCK(IDD)  
tRCD(IDD)  
tRC(IDD)  
4
3
12  
57  
5
3
15  
60  
tCK  
ns  
ns  
ns  
1)  
Active bank A to Active bank B  
command delay  
tRRD(IDD)  
tRRD(IDD)  
7.5  
10  
7.5  
10  
ns  
ns  
2)  
Active to Precharge Command  
tRAS.MIN(IDD) 45  
tRAS.MAX(IDD) 70000  
45  
70000  
15  
ns  
ns  
ns  
ns  
Precharge Command Period  
tRP(IDD)  
12  
75  
Auto-Refresh to Active / Auto-Refresh tRFC(IDD)  
75  
command period  
Average periodic Refresh interval  
1) ×4 & ×8 (1 KByte Page Size)  
tREFI  
7.8  
7.8  
µs  
2) ×16 (2 KByte Page Size); not on 256M component  
Data Sheet  
93  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Measurement Specifications and Conditions  
Table 50  
IDD Measurement Test Condition for DDR2–533C and DDR2–400B  
Parameter  
Symbol  
–3.7  
–5  
Unit  
Notes  
DDR2–533 4–4–4  
DDR2–400 3–3–3  
CAS Latency  
Clock Cycle Time  
Active to Read or Write delay  
Active to Active / Auto-Refresh  
command period  
CL(IDD)  
tCK(IDD)  
tRCD(IDD)  
tRC(IDD)  
4
3
5
15  
55  
tCK  
ns  
ns  
ns  
3.75  
15  
60  
1)  
2)  
Active bank A to Active bank B  
command delay  
tRRD(IDD)  
7.5  
10  
45  
70000  
15  
75  
7.5  
10  
40  
70000  
15  
75  
ns  
ns  
ns  
ns  
ns  
ns  
Active to Precharge Command  
tRAS.MIN(IDD)  
tRAS.MAX(IDD)  
tRP(IDD)  
Precharge Command Period  
Auto-Refresh to Active / Auto-  
Refresh command period  
tRFC(IDD)  
Average periodic Refresh interval tREFI  
7.8  
7.8  
µs  
1)×4 & ×8 (1 KByte Page Size)  
2)×16 (2 KByte Page Size); not on 256M component  
6.1.1  
On Die Termination (ODT) Current  
The ODT function adds additional current consumption consumption for any terminated input pin depends on  
to the DDR2 SDRAM when enabled by the EMRS(1). whether the input pin is in tri-state or driving “0” or “1”,  
Depending on address bits A6 & A2 in the EMRS(1) a as long a ODT is enabled during a given period of time.  
full or reduced termination can be selected. The current See Table 51.  
Table 51  
ODT current per terminated input pin  
ODT Current  
EMRS(1) State  
A6 = 0, A2 = 1  
A6 = 1, A2 = 0  
A6 = 1, A2 = 1  
A6 = 0, A2 = 1  
A6 = 1, A2 = 0  
A6 = 1, A2 = 0  
Min. Typ.  
Max. Unit  
Enabled ODT current per DQadded IDDQ  
IODTO  
5
6
7.5  
mA/DQ  
current for ODT enabled;  
2.5  
7.5  
10  
5
3
9
12  
6
3.75  
mA/DQ  
ODT is HIGH; Data Bus inputs are floating  
11.25 mA/DQ  
Active ODT current per DQadded IDDQ current IODTT  
for ODT enabled;  
ODT is HIGH; worst case of Data Bus inputs are  
stable or switching.  
15  
7.5  
22.5  
mA/DQ  
mA/DQ  
mA/DQ  
15  
18  
Note:For power consumption calculations the ODT duty cycle has to be taken into account  
Data Sheet  
94  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Electrical Characteristics  
7
Electrical Characteristics  
7.1  
Speed Grade Defenitions  
Table 52  
Speed Grade Definition Speed Bins DDR2-800  
Speed Grade  
DDR2–800  
–2.5F  
5–5–5  
DDR2–800  
–2.5  
6–6–6  
Unit  
Notes  
IFX Sort Name  
CAS-RCD-RP latencies  
Parameter  
tCK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Symbol  
tCK  
tCK  
tCK  
tCK  
tRAS  
tRC  
tRCD  
tRP  
Min.  
5
Max.  
8
Min.  
5
Max.  
8
1)2)3)4)  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)5)  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)  
Clock Frequency  
@ CL = 3  
@ CL = 4  
@ CL = 5  
@ CL = 6  
3.75  
2.5  
8
8
3.75  
3
8
8
2.5  
8
2.5  
45  
60  
15  
15  
8
Row Active Time  
Row Cycle Time  
RAS-CAS-Delay  
Row Precharge Time  
45  
70000  
70000  
57.5  
12.5  
12.5  
1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a  
differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. For other  
Slew Rates see Chapter 8Timings are further guaranteed for normal OCD drive strength (EMRS(1) A1 = 0) under the  
“Reference Load for Timing Measurements” according to Chapter 8.1 only.  
2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS,  
RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode; The input reference level for signals  
other than CK/CK, DQS / DQS, RDQS / RDQS is defined in Chapter 8.3.  
3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is  
recognized as low.  
4) The output timing reference voltage level is VTT. See section 8 for the reference load for timing measurements.  
5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is  
equal to 9 x tREFI  
.
Data Sheet  
95  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Electrical Characteristics  
Table 53  
Speed Grade Definition Speed Bins for DDR2–667  
Speed Grade  
DDR2–667  
–3  
4–4–4  
DDR2–667  
–3S  
5–5–5  
Unit  
Notes  
IFX Sort Name  
CAS-RCD-RP latencies  
Parameter  
tCK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Symbol  
tCK  
tCK  
Min.  
5
Max.  
8
Min.  
5
Max.  
8
1)2)3)4)  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)5)  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)  
Clock Frequency  
@ CL = 3  
@ CL = 4  
@ CL = 5  
3
8
3.75  
3
8
8
tCK  
3
8
Row Active Time  
Row Cycle Time  
RAS-CAS-Delay  
Row Precharge Time  
tRAS  
tRC  
tRCD  
tRP  
45  
57  
12  
12  
70000  
45  
60  
15  
15  
70000  
1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a  
differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. For other  
Slew Rates see Chapter 8. Timings are further guaranteed for normal OCD drive strength (EMRS(1) A1 = 0) under the  
“Reference Load for Timing Measurements” according to Chapter 8.1 only.  
2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS/DQS,  
RDQS/RDQS, input reference level is the crosspoint when in differential strobe mode; The input reference level for signals  
other than CK/CK, DQS/DQS, RDQS/RDQS is defined in Chapter 8.3.  
3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is  
recognized as low.  
4) The output timing reference voltage level is VTT. See section 8 for the reference load for timing measurements.  
5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is  
equal to 9 x tREFI  
.
Data Sheet  
96  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Electrical Characteristics  
Table 54  
Speed Grade Definition Speed Bins for DDR2-533C and DDR2-400B  
Speed Grade  
DDR2–533  
–3.7  
4–4–4  
DDR2–400  
–5  
3–3–3  
Unit  
Note  
IFX Sort Name  
CAS-RCD-RP latencies  
Parameter  
tCK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Symbol  
tCK  
tCK  
Min.  
5
Max.  
8
Min.  
5
Max.  
8
1)2)3)4)  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)5)  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)  
Clock Frequency  
@ CL = 3  
@ CL = 4  
@ CL = 5  
3.75  
3.75  
45  
8
8
5
8
tCK  
5
8
Row Active Time  
Row Cycle Time  
RAS-CAS-Delay  
Row Precharge Time  
tRAS  
tRC  
tRCD  
tRP  
70000  
40  
55  
15  
15  
70000  
60  
15  
15  
1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a  
differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. For other  
Slew Rates see Chapter 8Timings are further guaranteed for normal OCD drive strength (EMRS(1) A1 = 0) under the  
“Reference Load for Timing Measurements” according to Chapter 8.1 only.  
2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS,  
RDQS / RDQS, input reference level is the crosspoint when in differential strobe mode; The input reference level for signals  
other than CK/CK, DQS / DQS, RDQS / RDQS is defined in Chapter 8.3.  
3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is  
recognized as low.  
4) The output timing reference voltage level is VTT. See section 8 for the reference load for timing measurements.  
5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is  
equal to 9 x tREFI  
.
Data Sheet  
97  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Electrical Characteristics  
7.2  
AC Timing Parameters  
Table 55  
Parameter  
Timing Parameter by Speed Grade - DDR2-800  
Symbol  
DDR2-800  
Min.  
–400  
2
0.45  
3
0.45  
WR + tRP  
tIS + tCK + tIH ––  
Unit Note  
1)2)3)4)5)6)  
Max.  
+400  
0.55  
DQ output access time from CK / CK  
CAS A to CAS B command period  
CK, CK high-level width  
CKE minimum high and low pulse width  
CK, CK low-level width  
Auto-Precharge write recovery + precharge time  
Minimum time clocks remain ON after CKE  
asynchronously drops LOW  
tAC  
tCCD  
tCH  
tCKE  
tCL  
tDAL  
tDELAY  
ps  
tCK  
tCK  
tCK  
tCK  
tCK  
ns  
0.55  
7)  
8)  
9)  
DQ and DM input hold time (differential data strobe)  
DQ and DM input hold time (single ended data strobe)  
DQ and DM input pulse width (each input)  
tDH(base)  
125  
––  
––  
+350  
200  
+0.25  
ps  
ps  
tCK  
ps  
tCK  
ps  
tCK  
ps  
ps  
tCK  
tCK  
10)  
t
DH1(base) ––  
tDIPW  
0.35  
–350  
0.35  
–0.25  
50  
0.2  
DQS output access time from CK / CK  
tDQSCK  
tDQSL,H  
tDQSQ  
tDQSS  
tDS(base)  
DQS input low (high) pulse width (write cycle)  
DQS-DQ skew (for DQS & associated DQ signals)  
Write command to 1st DQS latching transition  
DQ and DM input setup time (differential data strobe)  
11)  
9)  
9)  
DQ and DM input setup time (single ended data strobe) tDS1(base)  
DQS falling edge hold time from CK (write cycle)  
DQS falling edge to CK setup time (write cycle)  
Clock half period  
Data-out high-impedance time from CK / CK  
Address and control input hold time  
tDSH  
tDSS  
tHP  
tHZ  
tIH(base)  
tIPW  
0.2  
12)  
13)  
9)  
MIN. (tCL, tCH)  
250  
0.6  
tAC.MAX ps  
ps  
tCK  
Address and control input pulse width  
(each input)  
9)  
Address and control input setup time  
DQ low-impedance time from CK / CK  
DQS low-impedance from CK / CK  
Mode register set command cycle time  
OCD drive mode output delay  
tIS(base)  
tLZ(DQ)  
tLZ(DQS)  
tMRD  
175  
2 x tAC.MIN  
tAC.MIN  
2
ps  
13)  
13)  
tAC.MAX ps  
tAC.MAX ps  
tCK  
ns  
tOIT  
0
12  
Data output hold time from DQS  
Data hold skew factor  
Average periodic refresh Interval  
tQH  
tQHS  
tREFI  
t
75  
0.9  
0.40  
HP tQHS  
300  
7.8  
3.9  
1.1  
0.60  
ps  
µs  
µs  
ns  
tCK  
tCK  
14)15)  
14)16)  
17)  
Auto-Refresh to Active/Auto-Refresh command period tRFC  
Read preamble  
Read postamble  
13)  
tRPRE  
tRPST  
13)  
Data Sheet  
98  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Electrical Characteristics  
Table 55  
Parameter  
Timing Parameter by Speed Grade - DDR2-800  
Symbol  
DDR2-800  
Min.  
7.5  
10  
7.5  
0.35 x tCK  
0.40  
15  
tWR/tCK  
7.5  
Unit Note  
1)2)3)4)5)6)  
Max.  
18)19)  
20)20)  
Active bank A to Active bank B command period  
tRRD  
ns  
ns  
ns  
tCK  
tCK  
ns  
tCK  
ns  
tCK  
Internal Read to Precharge command delay  
Write preamble  
Write postamble  
Write recovery time for write without Auto-Precharge  
Write recovery time for write with Auto-Precharge  
Internal Write to Read command delay  
Exit power down to any valid command  
(other than NOP or Deselect)  
tRTP  
tWPRE  
tWPST  
tWR  
WR  
tWTR  
tXARD  
21)  
0.60  
22)  
23)  
2
24)  
Exit active power-down mode to Read command (slow tXARDS  
8 – AL  
2
tCK  
tCK  
exit, lower power)  
Exit precharge power-down to any valid command (other tXP  
than NOP or Deselect)  
Exit Self-Refresh to non-Read command  
Exit Self-Refresh to Read command  
tXSNR  
tXSRD  
t
RFC +10  
ns  
tCK  
200  
1) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ± 0.1 V. See notes 3)4)5)6)  
2) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be  
powered down and then restarted through the specified initialization sequence before normal operation can continue.  
3) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a  
differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. For other  
Slew Rates see Chapter 8 of this data sheet. Timings are further guaranteed for normal OCD drive strength (EMRS(1) A1  
= 0) under the Reference Load for Timing Measurements according to Chapter 8.1 only.  
4) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross.  
The DQS/DQS, RDQS/RDQS, input reference level is the crosspoint when in differential strobe mode;  
The input reference level for signals other than CK/CK, DQS/DQS, RDQS/RDQS is defined in Chapter 8.3 of this data  
sheet.  
5) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is  
recognized as low.  
6) The output timing reference voltage level is VTT. See Chapter 8 for the reference load for timing measurements.  
7) For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period.  
WR refers to the WR parameter stored in the MR.  
8) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode. In case of clock  
frequency change during power-down, a specific procedure is required as describes in Chapter 2.12.  
9) For timing definition, Slew Rate and Slew Rate derating see Chapter 8.3  
10) For timing definition, Slew Rate and Slew Rate derating see Chapter 8.3  
11) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as  
output Slew Rate mis-match between DQS/DQS and associated DQ in any given cycle.  
12) MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e.  
this value can be greater than the minimum specification limits for tCL and tCH).  
13) The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device output is  
no longer driving (tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access time windows  
as valid data transitions.These parameters are verified by design and characterization, but not subject to production test.  
14) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range  
between 85 °C and 95 °C.  
15) 0 TCASE 85 °C  
16) 85 °C < TCASE 95 °C  
Data Sheet  
99  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Electrical Characteristics  
17) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device.  
18) x4 & x8 (1k page size)  
19) The tRRD timing parameter depends on the page size of the DRAM organization. See Chapter 1.5  
20) x16 (2k page size), not on 256Mbit component  
21) The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this parameter,  
but system performance (bus turnaround) degrades accordingly.  
22) Minimum tWTR is two clocks when operating the DDR2-SDRAM at frequencies 200 ΜΗz.  
23) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In “standard  
active power-down mode” (MR, A12 = “0”) a fast power-down exit timing tXARD can be used. In “low active power-down  
mode” (MR, A12 =”1”) a slow power-down exit timing tXARDS has to be satisfied.  
Table 56  
Parameter  
Timing Parameter by Speed Grade - DDR2-667  
Symbol  
DDR2-667  
Min.  
–450  
2
0.45  
3
0.45  
WR + tRP  
tIS + tCK + tIH ––  
Unit Note  
1)2)3)4)5)6)  
Max.  
+450  
0.55  
DQ output access time from CK / CK  
CAS A to CAS B command period  
CK, CK high-level width  
CKE minimum high and low pulse width  
CK, CK low-level width  
Auto-Precharge write recovery + precharge time  
Minimum time clocks remain ON after CKE  
asynchronously drops LOW  
tAC  
tCCD  
tCH  
tCKE  
tCL  
tDAL  
tDELAY  
ps  
tCK  
tCK  
tCK  
tCK  
tCK  
ns  
0.55  
7)  
8)  
9)  
DQ and DM input hold time (differential data strobe)  
DQ and DM input hold time (single ended data strobe)  
DQ and DM input pulse width (each input)  
tDH(base)  
175  
––  
––  
+400  
+0.25  
ps  
ps  
tCK  
ps  
tCK  
ps  
tCK  
ps  
ps  
tCK  
tCK  
10)  
t
DH1(base) ––  
tDIPW  
0.35  
–400  
0.35  
240  
–0.25  
100  
0.2  
0.2  
DQS output access time from CK / CK  
tDQSCK  
tDQSL,H  
tDQSQ  
tDQSS  
tDS(base)  
DQS input low (high) pulse width (write cycle)  
DQS-DQ skew (for DQS & associated DQ signals)  
Write command to 1st DQS latching transition  
DQ and DM input setup time (differential data strobe)  
11)  
9)  
9)  
DQ and DM input setup time (single ended data strobe) tDS1(base)  
DQS falling edge hold time from CK (write cycle)  
DQS falling edge to CK setup time (write cycle)  
Clock half period  
Data-out high-impedance time from CK / CK  
Address and control input hold time  
tDSH  
tDSS  
tHP  
tHZ  
tIH(base)  
tIPW  
12)  
13)  
9)  
MIN. (tCL, tCH)  
tAC.MAX ps  
275  
ps  
tCK  
Address and control input pulse width  
(each input)  
0.6  
9)  
Address and control input setup time  
DQ low-impedance time from CK / CK  
DQS low-impedance from CK / CK  
Mode register set command cycle time  
OCD drive mode output delay  
tIS(base)  
tLZ(DQ)  
tLZ(DQS)  
tMRD  
tOIT  
tQH  
200  
2 x tAC.MIN  
tAC.MIN  
2
ps  
13)  
13)  
tAC.MAX ps  
tAC.MAX ps  
12  
tCK  
ns  
0
Data output hold time from DQS  
Data hold skew factor  
t
HP tQHS  
tQHS  
340  
ps  
Data Sheet  
100  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Electrical Characteristics  
Table 56  
Parameter  
Timing Parameter by Speed Grade - DDR2-667  
Symbol  
DDR2-667  
Min.  
75  
Unit Note  
1)2)3)4)5)6)  
Max.  
7.8  
3.9  
14)15)  
14)16)  
17)  
Average periodic refresh Interval  
tREFI  
µs  
µs  
ns  
ns  
tCK  
tCK  
ns  
ns  
ns  
tCK  
tCK  
ns  
tCK  
ns  
tCK  
Auto-Refresh to Active/Auto-Refresh command period tRFC  
18)  
Precharge-All (4 banks) command period  
Read preamble  
Read postamble  
tRP  
t
RP + 1tCK  
13)  
tRPRE  
tRPST  
tRRD  
0.9  
1.1  
0.60  
0.60  
13)  
0.40  
7.5  
10  
7.5  
0.35  
0.40  
15  
tWR/tCK  
7.5  
2
19)20)  
21)  
Active bank A to Active bank B command period  
Internal Read to Precharge command delay  
Write preamble  
Write postamble  
Write recovery time for write without Auto-Precharge  
Write recovery time for write with Auto-Precharge  
Internal Write to Read command delay  
Exit power down to any valid command  
(other than NOP or Deselect)  
tRTP  
tWPRE  
tWPST  
tWR  
WR  
tWTR  
tXARD  
22)  
23)  
24)  
24)  
Exit active power-down mode to Read command (slow tXARDS  
7 – AL  
2
tCK  
tCK  
exit, lower power)  
Exit precharge power-down to any valid command (other tXP  
than NOP or Deselect)  
Exit Self-Refresh to non-Read command  
Exit Self-Refresh to Read command  
tXSNR  
tXSRD  
t
RFC +10  
ns  
tCK  
200  
1) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ± 0.1 V. See notes 3)4)5)6)  
2) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be  
powered down and then restarted through the specified initialization sequence before normal operation can continue.  
3) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a  
differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. For other  
Slew Rates see Chapter 8 of this data sheet. Timings are further guaranteed for normal OCD drive strength (EMRS(1) A1  
= 0) under the Reference Load for Timing Measurements according to Chapter 8.1 only.  
4) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross.  
The DQS/DQS, RDQS/RDQS, input reference level is the crosspoint when in differential strobe mode;  
The input reference level for signals other than CK/CK, DQS/DQS, RDQS/RDQS is defined in Chapter 8.3 of this data  
sheet.  
5) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is  
recognized as low.  
6) The output timing reference voltage level is VTT. See Chapter 8 for the reference load for timing measurements.  
7) For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period.  
WR refers to the WR parameter stored in the MR.  
8) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode. In case of clock  
frequency change during power-down, a specific procedure is required as describes in Chapter 2.12.  
9) For timing definition, Slew Rate and Slew Rate derating see Chapter 8.3  
10) For timing definition, Slew Rate and Slew Rate derating see Chapter 8.3  
11) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as  
output Slew Rate mis-match between DQS/DQS and associated DQ in any given cycle.  
12) MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e.  
this value can be greater than the minimum specification limits for tCL and tCH).  
Data Sheet  
101  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Electrical Characteristics  
13) The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device output is  
no longer driving (tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access time windows  
as valid data transitions.These parameters are verified by design and characterization, but not subject to production test.  
14) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range  
between 85 °C and 95 °C.  
15) 0 TCASE 85 °C  
16) 85 °C < TCASE 95 °C  
17) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device.  
18) tRP(A) for a Precharge-All command for an 8 bank device is equal to tRP + 1tCK, where tRP are the values for a single bank  
precharge.  
19) x4 & x8 (1k page size)  
20) The tRRD timing parameter depends on the page size of the DRAM organization. See Chapter 1.5  
21) x16 (2k page size), not on 256Mbit component  
22) The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this parameter,  
but system performance (bus turnaround) degrades accordingly.  
23) Minimum tWTR is two clocks when operating the DDR2-SDRAM at frequencies 200 ΜΗz.  
24) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In “standard  
active power-down mode” (MR, A12 = “0”) a fast power-down exit timing tXARD can be used. In “low active power-down  
mode” (MR, A12 =”1”) a slow power-down exit timing tXARDS has to be satisfied.  
Table 57  
Parameter  
Timing Parameter by Speed Grade - DDR2-533  
Symbol  
DDR2–533  
Min.  
–500  
2
0.45  
3
0.45  
WR + tRP  
tIS + tCK + tIH ––  
Unit Note1)2)  
3)4)5)6)  
Max.  
+500  
0.55  
DQ output access time from CK / CK  
CAS A to CAS B command period  
CK, CK high-level width  
CKE minimum high and low pulse width  
CK, CK low-level width  
Auto-Precharge write recovery + precharge time  
Minimum time clocks remain ON after CKE  
asynchronously drops LOW  
DQ and DM input hold time (differential data  
strobe)  
DQ and DM input hold time (single ended data  
strobe)  
tAC  
ps  
tCCD  
tCH  
tCKE  
tCL  
tDAL  
tDELAY  
tCK  
tCK  
tCK  
tCK  
tCK  
ns  
0.55  
7)  
8)  
9)  
tDH(base)  
225  
–25  
––  
ps  
9)  
t
DH1(base)  
ps  
DQ and DM input pulse width (each input)  
DQS output access time from CK / CK  
DQS input low (high) pulse width (write cycle)  
DQS-DQ skew (for DQS & associated DQ signals) tDQSQ  
Write command to 1st DQS latching transition  
DQ and DM input setup time (differential data  
strobe)  
DQ and DM input setup time (single ended data  
strobe)  
tDIPW  
tDQSCK  
tDQSL,H  
0.35  
–450  
0.35  
–0.25  
100  
+450  
300  
+0.25  
tCK  
ps  
tCK  
ps  
tCK  
10)  
tDQSS  
tDS(base)  
9)  
ps  
9)  
t
DS1(base)  
–25  
ps  
DQS falling edge hold time from CK (write cycle) tDSH  
0.2  
0.2  
tCK  
tCK  
DQS falling edge to CK setup time (write cycle)  
tDSS  
tHP  
11)  
Clock half period  
MIN. (tCL, tCH)  
Data Sheet  
102  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Electrical Characteristics  
Table 57  
Parameter  
Timing Parameter by Speed Grade - DDR2-533 (cont’d)  
Symbol DDR2–533  
Unit Note1)2)  
3)4)5)6)  
Min.  
Max.  
tAC.MAX  
12)  
Data-out high-impedance time from CK / CK  
Address and control input hold time  
Address and control input pulse width  
(each input)  
Address and control input setup time  
DQ low-impedance time from CK / CK  
DQS low-impedance from CK / CK  
Mode register set command cycle time  
OCD drive mode output delay  
tHZ  
ps  
ps  
9)  
tIH(base)  
tIPW  
375  
0.6  
tCK  
9)  
tIS(base)  
tLZ(DQ)  
tLZ(DQS)  
tMRD  
250  
2 ° tAC.MIN  
tAC.MIN  
2
ps  
ps  
ps  
12)  
tAC.MAX  
tAC.MAX  
12)  
tCK  
ns  
tOIT  
0
12  
Data output hold time from DQS  
Data hold skew factor  
Average periodic refresh Interval  
tQH  
tQHS  
tREFI  
t
HP tQHS  
400  
7.8  
3.9  
75  
ps  
µs  
µs  
ns  
13)14)  
13)15)  
16)  
Auto-Refresh to Active/Auto-Refresh command  
period  
Precharge-All (4 banks) command period  
Read preamble  
Read postamble  
Active bank A to Active bank B command period tRRD  
tRFC  
17)  
tRP  
tRPRE  
tRPST  
t
RP + 1tCK  
ns  
tCK  
tCK  
ns  
12)  
0.9  
0.40  
7.5  
1.1  
0.60  
12)  
1)18)19)  
1)1)20)  
10  
ns  
Internal Read to Precharge command delay  
Write preamble  
Write postamble  
Write recovery time for write without Auto-  
Precharge  
tRTP  
7.5  
0.60  
ns  
tCK  
tCK  
ns  
tWPRE  
tWPST  
tWR  
0.35xtCK  
0.40  
15  
21)  
Write recovery time for write with Auto-Precharge WR  
t
WR/tCK  
tCK  
ns  
tCK  
22)  
Internal Write to Read command delay  
tWTR  
7.5  
2
23)  
Exit power down to any valid command  
(other than NOP or Deselect)  
tXARD  
1)  
Exit active power-down mode to Read command tXARDS  
6 – AL  
2
tCK  
(slow exit, lower power)  
Exit precharge power-down to any valid command tXP  
tCK  
(other than NOP or Deselect)  
Exit Self-Refresh to non-Read command  
Exit Self-Refresh to Read command  
tXSNR  
tXSRD  
t
RFC +10  
ns  
tCK  
200  
1) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ± 0.1 V. See notes 3)4)5)6)  
2) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be  
powered down and then restarted through the specified initialization sequence before normal operation can continue.  
3) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a  
differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. For other  
Slew Rates see Chapter 8 of this data sheet. Timings are further guaranteed for normal OCD drive strength (EMRS(1) A1  
= 0) under the Reference Load for Timing Measurements according to Chapter 8.1 only.  
Data Sheet  
103  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Electrical Characteristics  
4) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS,  
RDQS/ RDQS, input reference level is the crosspoint when in differential strobe mode;  
The input reference level for signals other than CK/CK, DQS / DQS, RDQS / RDQS is defined in Chapter 8.3 of this data  
sheet.  
5) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is  
recognized as low.  
6) The output timing reference voltage level is VTT. See Chapter 8 for the reference load for timing measurements.  
7) For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period.  
WR refers to the WR parameter stored in the MR.  
8) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode. In case of clock  
frequency change during power-down, a specific procedure is required as describes in Chapter 2.12.  
9) For timing definition, Slew Rate and Slew Rate derating see Chapter 8.3  
10) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as  
output Slew Rate mis-match between DQS / DQS and associated DQ in any given cycle.  
11) MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e.  
this value can be greater than the minimum specification limits for tCL and tCH).  
12) The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device output is  
no longer driving (tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access time windows as  
valid data transitions.These parameters are verified by design and characterization, but not subject to production test.  
13) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range  
between 85 °C and 95 °C.  
14) 0 TCASE 85 °C  
15) 85 < TCASE 95 °C  
16) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device.  
17) tRP(A) for a Precharge-All command for an 8 bank device is equal to tRP + 1tCK, where tRP are the values for a single bank  
precharge.  
18) The tRRD timing parameter depends on the page size of the DRAM organization. See Chapter 1.5  
19) x4 & x8  
20) x16  
21) The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this parameter,  
but system performance (bus turnaround) degrades accordingly.  
22) Minimum tWTR is two clocks when operating the DDR2-SDRAM at frequencies 200 ΜΗz.  
23) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In “standard  
active power-down mode” (MR, A12 = “0”) a fast power-down exit timing tXARD can be used. In “low active power-down  
mode” (MR, A12 =”1”) a slow power-down exit timing tXARDS has to be satisfied.  
Table 58  
Parameter  
Timing Parameter by Speed Grade - DDR2-400  
Symbol  
DDR2-400  
Min.  
–600  
2
0.45  
3
0.45  
WR + tRP  
tIS + tCK + tIH ––  
Unit Note  
1)2)3)4)5)6)  
Max.  
+600  
0.55  
DQ output access time from CK / CK  
CAS A to CAS B command period  
CK, CK high-level width  
CKE minimum high and low pulse width  
CK, CK low-level width  
Auto-Precharge write recovery + precharge time  
Minimum time clocks remain ON after CKE  
asynchronously drops LOW  
tAC  
tCCD  
tCH  
tCKE  
tCL  
tDAL  
tDELAY  
ps  
tCK  
tCK  
tCK  
tCK  
tCK  
ns  
0.55  
7)  
8)  
9)  
DQ and DM input hold time (differential data strobe)  
DQ and DM input hold time (single-ended strobe)  
DQ and DM input pulse width (each input)  
tDH(base)  
275  
––  
––  
ps  
ps  
tCK  
10)  
t
DH1(base) 25  
tDIPW  
0.35  
Data Sheet  
104  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Electrical Characteristics  
Table 58  
Parameter  
Timing Parameter by Speed Grade - DDR2-400  
Symbol  
DDR2-400  
Min.  
–500  
0.35  
Unit Note  
1)2)3)4)5)6)  
Max.  
+500  
350  
+0.25  
DQS output access time from CK / CK  
tDQSCK  
tDQSL,H  
tDQSQ  
tDQSS  
tDS(base)  
ps  
tCK  
ps  
tCK  
ps  
ps  
tCK  
tCK  
DQS input low (high) pulse width (write cycle)  
DQS-DQ skew (for DQS & associated DQ signals)  
Write command to 1st DQS latching transition  
DQ and DM input setup time (differential data strobe)  
DQ and DM input setup time (single-ended strobe)  
DQS falling edge hold time from CK (write cycle)  
DQS falling edge to CK setup time (write cycle)  
Clock half period  
11)  
–0.25  
150  
9)  
9)  
t
DS1(base) 25  
tDSH  
tDSS  
tHP  
tHZ  
tIH(base)  
tIPW  
0.2  
0.2  
12)  
13)  
9)  
MIN. (tCL, tCH)  
475  
0.6  
Data-out high-impedance time from CK / CK  
Address and control input hold time  
tAC.MAX ps  
ps  
Address and control input pulse width  
(each input)  
tCK  
9)  
Address and control input setup time  
DQ low-impedance time from CK / CK  
DQS low-impedance from CK / CK  
Mode register set command cycle time  
OCD drive mode output delay  
tIS(base)  
tLZ(DQ)  
tLZ(DQS)  
tMRD  
350  
2 x tAC.MIN  
tAC.MIN  
2
ps  
13)  
13)  
tAC.MAX ps  
tAC.MAX ps  
tCK  
ns  
tOIT  
0
12  
Data output hold time from DQS  
Data hold skew factor  
Average periodic refresh Interval  
tQH  
tQHS  
tREFI  
t
HP tQHS  
75  
450  
7.8  
3.9  
ps  
µs  
µs  
ns  
ns  
tCK  
tCK  
ns  
ns  
ns  
tCK  
tCK  
ns  
tCK  
ns  
tCK  
14)15)  
14)16)  
17)  
Auto-Refresh to Active/Auto-Refresh command period tRFC  
Precharge-All (4 banks) command period  
Read preamble  
Read postamble  
18)  
tRP  
t
RP + 1tCK  
13)  
tRPRE  
tRPST  
tRRD  
0.9  
0.40  
7.5  
10  
7.5  
0.35  
0.40  
15  
1.1  
0.60  
0.60  
13)  
19)20)  
20)21)  
Active bank A to Active bank B command period  
Internal Read to Precharge command delay  
Write preamble  
Write postamble  
Write recovery time for write without Auto-Precharge  
Write recovery time for write with Auto-Precharge  
Internal Write to Read command delay  
Exit power down to any valid command  
(other than NOP or Deselect)  
tRTP  
tWPRE  
tWPST  
tWR  
WR  
tWTR  
tXARD  
22)  
tWR/tCK  
7.5  
2
23)  
24)  
24)  
Exit active power-down mode to Read command (slow tXARDS  
6 – AL  
2
tCK  
tCK  
exit, lower power)  
Exit precharge power-down to any valid command  
(other than NOP or Deselect)  
tXP  
Data Sheet  
105  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Electrical Characteristics  
Table 58  
Parameter  
Timing Parameter by Speed Grade - DDR2-400  
Symbol  
DDR2-400  
Min.  
Unit Note  
1)2)3)4)5)6)  
Max.  
Exit Self-Refresh to non-Read command  
Exit Self-Refresh to Read command  
tXSNR  
tXSRD  
t
RFC +10  
ns  
200  
tCK  
1) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ± 0.1 V. See notes 3)4)5)6)  
2) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be  
powered down and then restarted through the specified initialization sequence before normal operation can continue.  
3) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a  
differential Slew Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. For other  
Slew Rates see Chapter 8 of this data sheet. Timings are further guaranteed for normal OCD drive strength (EMRS(1) A1  
= 0) under the Reference Load for Timing Measurements according to Chapter 8.1 only.  
4) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross.  
The DQS/DQS, RDQS/RDQS, input reference level is the crosspoint when in differential strobe mode;  
The input reference level for signals other than CK/CK, DQS/DQS, RDQS/RDQS is defined in Chapter 8.3 of this data  
sheet.  
5) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is  
recognized as low.  
6) The output timing reference voltage level is VTT. See Chapter 8 for the reference load for timing measurements.  
7) For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period.  
WR refers to the WR parameter stored in the MR.  
8) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode. In case of clock  
frequency change during power-down, a specific procedure is required as describes in Chapter 2.12.  
9) For timing definition, Slew Rate and Slew Rate derating see Chapter 8.3  
10) For timing definition, Slew Rate and Slew Rate derating see Chapter 8.3  
11) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as  
output Slew Rate mis-match between DQS/DQS and associated DQ in any given cycle.  
12) MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e.  
this value can be greater than the minimum specification limits for tCL and tCH).  
13) The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device output is  
no longer driving (tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access time windows  
as valid data transitions.These parameters are verified by design and characterization, but not subject to production test.  
14) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range  
between 85 °C and 95 °C.  
15) 0 TCASE 85 °C  
16) 85 °C < TCASE 95 °C  
17) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device.  
18) tRP(A) for a Precharge-All command for an 8 bank device is equal to tRP + 1tCK, where tRP are the values for a single bank  
precharge.  
19) x4 & x8 (1k page size)  
20) The tRRD timing parameter depends on the page size of the DRAM organization. See Chapter 1.5  
21) x16 (2k page size), not on 256Mbit component  
22) The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this parameter,  
but system performance (bus turnaround) degrades accordingly.  
23) Minimum tWTR is two clocks when operating the DDR2-SDRAM at frequencies 200 ΜΗz.  
24) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In “standard  
active power-down mode” (MR, A12 = “0”) a fast power-down exit timing tXARD can be used. In “low active power-down  
mode” (MR, A12 =”1”) a slow power-down exit timing tXARDS has to be satisfied.  
Data Sheet  
106  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Electrical Characteristics  
7.3  
ODT AC Electrical Characteristics  
Table 59  
ODT AC Electrical Characteristics and Operating Conditions for DDR2-667 and DDR2-800  
Symbol Parameter / Condition  
Values  
Min.  
2
Unit  
Note  
Max.  
2
tAOND  
tAON  
tAONPD  
tAOFD  
tAOF  
ODT turn-on delay  
ODT turn-on  
ODT turn-on (Power-Down Modes)  
ODT turn-off delay  
tCK  
ns  
ns  
tCK  
ns  
1)  
tAC.MIN  
t
AC.MAX + 0.7 ns  
AC.MAX + 1 ns  
t
AC.MIN + 2 ns 2 tCK +  
t
2.5  
tAC.MIN  
2.5  
2)  
ODT turn-off  
tAC.MAX + 0.6 ns  
tAOFPD  
tANPD  
tAXPD  
ODT turn-off (Power-Down Modes)  
ODT to Power Down Mode Entry Latency 3  
ODT Power Down Exit Latency  
tAC.MIN + 2 ns 2.5 tCK + tAC.MAX + 1 ns ns  
tCK  
tCK  
8
1) ODT turn on time min. is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time  
max is when the ODT resistance is fully on. Both are measure from tAOND  
2) ODT turn off time min. is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high  
impedance. Both are measured from tAOFD  
.
.
Table 60  
ODT AC Electrical Characteristics and Operating Conditions for DDR2-533 and DDR2-400  
Symbol Parameter / Condition  
Values  
Min.  
2
Unit  
Note  
Max.  
2
tAOND  
tAON  
tAONPD  
tAOFD  
tAOF  
ODT turn-on delay  
ODT turn-on  
ODT turn-on (Power-Down Modes)  
ODT turn-off delay  
tCK  
ns  
ns  
tCK  
ns  
1)  
tAC.MIN  
t
AC.MAX + 1 ns  
AC.MAX + 1 ns  
t
AC.MIN + 2 ns 2 tCK +  
t
2.5  
tAC.MIN  
2.5  
2)  
ODT turn-off  
tAC.MAX + 0.6 ns  
tAOFPD  
tANPD  
tAXPD  
ODT turn-off (Power-Down Modes)  
ODT to Power Down Mode Entry Latency 3  
ODT Power Down Exit Latency  
tAC.MIN + 2 ns 2.5 tCK + tAC.MAX + 1 ns ns  
tCK  
tCK  
8
1) ODT turn on time min. is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time  
max is when the ODT resistance is fully on. Both are measure from tAOND  
2) ODT turn off time min. is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high  
impedance. Both are measured from tAOFD  
.
.
Data Sheet  
107  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
AC Timing Measurement Conditions  
8
AC Timing Measurement Conditions  
8.1  
Reference Load for Timing Measurements  
Figure 72 represents the timing reference load used in production test conditions, generally  
a
coaxial  
defining the relevant timing parameters of the device. It transmission line terminated at the tester electronics.  
is not intended to either a precise representation of the This reference load is also used for output Slew Rate  
typical system environment nor a depiction of the actual characterization. The output timing reference voltage  
load presented by a production tester. System level for single ended signals is the crosspoint with VTT.  
designers should use IBIS or other simulation tools to  
correlate the timing reference load to a system  
environment. Manufacturers correlate to their  
The output timing reference voltage level for differential  
signals is the crosspoint of the true (e.g. DQS) and the  
complement (e.g. DQS) signal.  
VDDQ  
DQ  
DQS  
DQS  
RDQS  
RDQS  
CK, CK  
DUT  
VTT = VDDQ / 2  
25 Ohm  
Timing Reference Points  
Figure 72 Reference Load for Timing Measurements  
8.2  
Slew Rate Measurement Conditions  
Output Slew Rate  
8.2.1  
For DQ and single ended DQS signals output Slew DQS – DQS = + 500 mV. Output Slew Rate is defined  
Rate for falling and rising edges is measured between with the reference load according to Figure 72 and  
V
TT – 250 mV and VTT + 250 mV.  
verified by design and characterization, but not subject  
to production test.  
For differential signals (DQS / DQS) output Slew Rate  
is measured between DQS - DQS = –500 mV and  
8.2.2  
Input Slew Rate - Differential signals  
Input Slew Rate for differential signals (CK / CK, DQS / from CK – CK = +250 mV to CK – CK = –500mV for  
DQS, RDQS / RDQS) for rising edges are measured falling edges.  
from CK - CK = –250 mV to CK – CK = +500 mV and  
Data Sheet  
108  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
AC Timing Measurement Conditions  
8.3  
Input and Data Setup and Hold Time  
8.3.1  
Definition for Input Setup (tIS) and Hold Time (tIH)  
Address and control input setup time (tIS) is referenced (tIH) is referenced from the input signal crossing at the  
from the input signal crossing at the VIH(ac) level for a VIL(dc) level for a rising signal and VIH(dc) for a falling  
rising signal and VIL(ac) for a falling signal applied to the signal applied to the device under test.  
device under test. Address and control input hold time  
CK  
CK  
t
t
t
t
IS  
IH  
IS IH  
V
V
V
V
V
V
V
DDQ  
IH(ac)  
IH(dc)  
REF  
min  
min  
max  
max  
IL(dc)  
IL(ac)  
SS  
Figure 73 Input Setup and Hold Time  
8.3.2  
Definition for Data Setup (tDS) and Hold Time (tDH), differential Data Strobes  
Data input setup time (tDS) with differential data strobe differential data strobe enabled MR[bit10]=0, is  
enabled MR[bit10]=0, is referenced from the input referenced from the input signal crossing at the VIL(dc)  
signal crossing at the VIH(ac) level to the differential data level to the differential data strobe crosspoint for a  
strobe crosspoint for a rising signal, and from the input rising signal and VIH(dc) to the differential data strobe  
signal crossing at the VIL(ac) level to the differential data crosspoint for a falling signal applied to the device  
strobe crosspoint for a falling signal applied to the under test.  
device under test.  
DQS/DQS signals must be monotonic between  
DQS/DQS signals must be monotonic between  
V
IL(dc).MAX and VIH(dc).MIN  
.
V
IL(dc).MAX and VIH(dc).MIN. Data input hold time (tDH) with  
DQS  
DQS  
t
t
t
t
DS DH  
DS DH  
VDDQ  
VIH(ac)  
VIH(dc)  
VREF  
min  
min  
VIL(dc)  
VIL(ac)  
VSS  
max  
max  
Figure 74 Data Setup and Hold Time (Differential Data Strobes)  
Data Sheet 109  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
AC Timing Measurement Conditions  
8.3.3  
Definition Data Setup (tDS1) and Hold Time (tDH1), Single-Ended Data Strobes  
Data input setup time (tDS1) with single-ended data input signal crossing at the VIH(dc) level to the single-  
strobe enabled MR[bit10]=1, is referenced from the ended data strobe crossing VIH/L(ac) at the end of its  
input signal crossing at the VIH(ac) level to the single- transition for a rising signal and from the input signal  
ended data strobe crossing VIH/L(dc) at the start of its crossing at the VIL(dc) level to the single-ended data  
transition for a rising signal, and from the input signal strobe crossing VIH/L(ac) at the end of its transition for a  
crossing at the VIL(ac) level to the single-ended data falling signal applied to the device under test.  
strobe crossing VIH/L(dc) at the start of its transition for a  
The DQS signal must be monotonic between VIL(dc.MAX  
falling signal applied to the device under test.  
and VIH(dc).MIN  
.
Data input hold time (tDH1) with single-ended data  
strobe enabled MR[bit10]=1, is referenced from the  
VDDQ  
VIH(ac)  
VIH(dc)  
VREF  
min  
min  
DQS  
VIL(dc)  
VIL(ac)  
VSS  
max  
max  
t
t
DS  
t
DS  
t
DH  
DH  
VDDQ  
VIH(ac)  
VIH(dc)  
VREF  
min  
min  
DQ  
VIL(dc)  
VIL(ac)  
VSS  
max  
max  
Figure 75 Data Setup and Hold Time (Single Ended Data Strobes)  
Data Sheet  
110  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
AC Timing Measurement Conditions  
8.3.4  
Slew Rate Definition for Input and Data Setup and Hold Times  
Setup (tIS & tDS) nominal Slew Rate for a rising signal is level is used for derating value.(see Figure 77) Hold  
defined as the Slew Rate between the last crossing of (tIH & tDH) nominal Slew Rate for a rising signal is  
V
REF(dc) and the first crossing of VIH(ac).MIN. Setup (tIS & defined as the Slew Rate between the last crossing of  
tDS) nominal Slew Rate for a falling signal is defined as VIL(dc).MAX and the first crossing of VREF(dc). Hold (tIH  
&
the Slew Rate between the last crossing of VREF(dc) and tDH) nominal Slew Rate for a falling signal is defined as  
the first crossing of VIL(ac).MAX. If the actual signal is the Slew Rate between the last crossing of VIH(dc).MIN  
always earlier than the nominal Slew Rate line between and the first crossing of VREF(dc). If the actual signal is  
shaded ‘VREF(dc) to ac region’, use nominal Slew Rate always later than the nominal Slew Rate line between  
for derating value (see Figure 76). If the actual signal shaded ‘dc to VREF region’, use nominal Slew Rate for  
is later than the nominal Slew Rate line anywhere derating value (see Figure 76). If the actual signal is  
between shaded ‘VREF(dc) to ac region’, the Slew Rate of earlier than the actual signal from the dc level to VREF  
a tangent line to the actual signal from the ac level to dc level is used for derating value (see Figure 77)  
#+ꢄ #+ FOR T)3 AND T)(  
$13ꢄ $13 FOR T$3 AND T$(  
T)3  
T$3  
T)(  
T$(  
T
)(  
T
)3  
$3  
T
T
$(  
6
6
$$1  
MIN  
)(ꢁACꢂ  
62%& TO AC  
REGION  
6
MIN  
)(ꢁDCꢂ  
DC TO 62%&  
REGION  
6
2%&  
DC TO 62%&  
REGION  
6
),ꢁDCꢂMAX  
62%& TO AC  
REGION  
6
),ꢁACꢂMAX  
6
33  
$ELTA 4&3  
$ELTA 42( $ELTA 423  
$ELTA 4&(  
62%&ꢁDCꢂ ꢃ 6),ꢁACꢂMAX  
$ELTA 4&3  
FALLING SIGNAL  
RISING SIGNAL  
3ETUP 3LEW 2ATE ꢀ  
3ETUP 3LEW 2ATE ꢀ  
6)(ꢁACꢂMIN ꢃ 62%&ꢁDCꢂ  
$ELTA 423  
62%&ꢁDCꢂ ꢃ 6),ꢁDCꢂMAX  
$ELTA 42(  
RISING SIGNAL  
FALLING SIGNAL  
(OLD 3LEW 2ATE  
(OLD 3LEW 2ATE  
6)(ꢁDCꢂMIN ꢃ 62%&ꢁDCꢂ  
$ELTA 4&(  
Figure 76 Slew Rate Definition Nominal  
Data Sheet  
111  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
AC Timing Measurement Conditions  
#+ꢂ #+ FOR T)3 AND T)(  
$13ꢂ $13 FOR T$3 AND T$(  
T
T
T
T
)(  
)3  
)3 )(  
T
T
T
T
$(  
$3  
$3 $(  
6
6
6
$$1  
MIN  
MIN  
)(ꢀACꢁ  
)(ꢀDCꢁ  
62%& TO AC  
REGION  
DC TO 6REF  
REGION  
6
2%&  
DC TO 6REF  
REGION  
6
6
MAX  
MAX  
),ꢀDCꢁ  
),ꢀACꢁ  
62%& TO AC  
REGION  
6
33  
$ELTA 4&(  
$ELTA 4&3  
$ELTA 42( $ELTA 423  
TANGENT LINE  
NOMINAL LINE  
TANGENT LINE ;62%&ꢀDCꢁ ꢄ 6),ꢀACꢁMAX=  
$ELTA 4&3  
FALLING  
SIGNAL  
3ETUP 3LEW 2ATE ꢃ  
3ETUP 3LEW 2ATE ꢃ  
TANGENT LINE ;6)(ꢀACꢁMIN ꢄ 62%&ꢀDCꢁ=  
$ELTA 423  
RISING  
SIGNAL  
TANGENT LINE ;62%&ꢀDCꢁ ꢄ 6),ꢀDCꢁMAX=  
$ELTA 42(  
RISING  
SIGNAL  
(OLD 3LEW 2ATE  
(OLD 3LEW 2ATE  
TANGENT LINE ;6)(ꢀDCꢁMIN ꢄ 62%&ꢀDCꢁ=  
$ELTA 4&(  
FALLING  
SIGNAL  
Figure 77 Slew Rate Definition Tangent  
Data Sheet  
112  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
AC Timing Measurement Conditions  
8.3.5  
Setup (tIS) and Hold (tIH) Time Derating Tables  
1. For all input signals the total input setup time and  
input hold time required is calculated by adding the  
data sheet value to the derating value respectively.  
Example: tIS(total setup tine) = tIS(base) + tIS  
2. For slow Slew Rate the total setup time might be  
negative (i.e. a valid input signal will not have  
reached VIH(ac) / VIL(ac) at the time of the rising clock)  
a valid input signal is still required to complete the  
transition and reach VIH(ac) / VIL(ac). For Slew Rates  
in between the values listed in the next tables, the  
derating values may be obtained by linear  
interpolation. These values are not subject to  
production test. They are verified only by design  
and characterization.  
Table 61  
Derating Values for Input Setup and Hold Time (DDR2-667 & DDR2-800)  
Command / Address Slew Rate CK, CK Differential Slew Rate  
Unit Note  
(V/ns)  
2.0 V/ns  
tIS  
1.5 V/ns  
tIS  
1.0 V/ns  
tIS  
tIH  
tIH  
tIH  
1)2)  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.25  
0.2  
0.15  
0.1  
+150  
+143  
+133  
+120  
+100  
+67  
+94  
+89  
+83  
+75  
+45  
+21  
0
+180  
+173  
+163  
+150  
+130  
+97  
+124  
+119  
+113  
+105  
+75  
+210  
+203  
+193  
+180  
+160  
+127  
+60  
+55  
+47  
+38  
+26  
+154  
+149  
+143  
+135  
+105  
+81  
+60  
+46  
+29  
+6  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
1)  
1)  
1)  
1)  
1)  
+51  
1)  
0
+30  
+30  
1)  
–5  
–14  
+25  
+16  
1)  
–13  
–31  
+17  
–1  
1)  
–22  
–54  
+8  
–24  
1)  
–34  
–83  
–4  
–53  
–23  
–65  
1)  
–60  
–125  
–188  
–292  
–375  
–500  
–708  
–1125  
–30  
–70  
–95  
0
–40  
1)  
–100  
–168  
–200  
–325  
–517  
–1000  
–158  
–262  
–345  
–470  
–678  
–1095  
–128  
–232  
–315  
–440  
–648  
–1065  
1)  
–138  
–170  
–295  
–487  
–970  
–108  
–140  
–265  
–457  
–940  
1)  
1)  
1)  
ps  
1)  
ps  
1) For all input signals tIS(total) = tIS(base) + tIS and tIH(total) = tIH(base) + tIH  
2) For slow slewrate the total setup time might be negative (i.e. valid input signal will not have reached VIH(ac) / VIL(ac) at the  
time of the rising clock) a valid signal is still required to complete the transistion and reach VIH(ac) / VIL(ac). For slew rates in  
between the values listed in the next tables, the derating values may be obtained by linear interpolation. These values are  
not subject to production test. They are verified only by design and characterisation.  
Data Sheet  
113  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
AC Timing Measurement Conditions  
Table 62  
Derating Values for Input Setup and Hold Time (DDR2-400 & DDR2-533)  
Command / Address Slew Rate CK, CK Differential Slew Rate  
Unit Note  
(V/ns)  
2.0 V/ns  
tIS  
1.5 V/ns  
tIS  
1.0 V/ns  
tIS  
tIH  
tIH  
tIH  
1)2)  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.25  
0.2  
0.15  
0.1  
+187  
+179  
+167  
+150  
+125  
+83  
+94  
+89  
+83  
+75  
+45  
+21  
0
+217  
+209  
+197  
+180  
+155  
+113  
+30  
+124  
+119  
+113  
+105  
+75  
+247  
+239  
+227  
+210  
+185  
+143  
+60  
+49  
+35  
+17  
–7  
+154  
+149  
+143  
+135  
+105  
+81  
+60  
+46  
+29  
+6  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
1)  
1)  
1)  
1)  
1)  
+51  
1)  
0
+30  
1)  
–11  
–14  
+19  
+16  
1)  
–25  
–31  
+5  
–1  
1)  
–43  
–54  
–13  
–24  
1)  
–67  
–83  
–37  
–53  
–23  
–65  
1)  
–110  
–175  
–285  
–350  
–525  
–800  
–1450  
–125  
–188  
–292  
–375  
–500  
–708  
–1125  
–80  
–95  
–50  
1)  
–145  
–255  
–320  
–495  
–770  
–1420  
–158  
–262  
–345  
–470  
–678  
–1095  
–115  
–225  
–290  
–465  
–740  
–1390  
–128  
–232  
–315  
–440  
–648  
–1065  
1)  
1)  
1)  
1)  
ps  
1)  
ps  
1) For all input signals tIS(total) = tIS(base) + tIS and tIH(total) = tIH(base) + tIH  
2) For slow slewrate the total setup time might be negative (i.e. valid input signal will not have reached VIH(ac) / VIL(ac) at the  
time of the rising clock) a valid signal is still required to complete the transistion and reach VIH(ac) / VIL(ac). For slew rates in  
between the values listed in the next tables, the derating values may be obtained by linear interpolation. These values are  
not subject to production test. They are verified only by design and characterisation.  
Data Sheet  
114  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
AC Timing Measurement Conditions  
Table 63  
Derating Values for Data Setup and Hold Time of Differential DQS (DDR2-667 & DDR2-800)  
DQS, DQS Differential Slew Rate1)2)  
4.0 V/ns 3.0 V/ns 2.0 V/ns 1.8 V/ns 1.6 V/ns 1.4 V/ns 1.2 V/ns  
1.0 V/ns  
0.8 V/ns  
tDS  
tDH tDS  
tDH tDS  
tDH tDS tDH tDS tDH tDS tDH tDS  
tDH tDS  
tDH tDS  
tDH  
2.0 +100 +45 +100 +45 +100 +45 —  
1.5 +67 +21 +67 +21 +67 +21 +97 +33 —  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0
0
0
0
0
0
+12 +12 +24 +24 —  
–5  
–14 –5  
–14 +7 –2 +19 +10 +31 +22 —  
–13 –31 –1 –19 +11 –7 +23 +5 +35 +17  
–10 –42 +2 –30 +14 –18 +26 –6  
+38 +6  
–10 –59 +2 –47 +14 –35 +26 –23 +538 –11  
–24 –89 –12 –77  
0
–65 +12 –53  
–52 –140 –20 –28 –28 –116  
1) All units in ps.  
2) For all input signals tDS(total) = tDS(base) + tDS and tDH(total) = tDH(base) + tDH  
Data Sheet  
115  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
AC Timing Measurement Conditions  
Table 64  
Derating Values for Data Setup and Hold Time of Differential DQS (DDR2-400 & -533)  
DQS, DQS Differential Slew Rate1)2)  
4.0 V/ns 3.0 V/ns 2.0 V/ns 1.8 V/ns 1.6 V/ns 1.4 V/ns 1.2 V/ns  
1.0 V/ns  
0.8 V/ns  
tDS  
tDH tDS  
tDH tDS  
tDH tDS tDH tDS tDH tDS tDH tDS  
tDH tDS  
tDH tDS  
tDH  
2.0 +125 +45 +125 +45 +125 +45 —  
1.5 +83 +21 +83 +21 +83 +21 +95 +33 —  
–11  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0
0
0
0
0
0
+12 +12 +24 +24 —  
–11 –14 –11 –14 +1 –2 +13 +10 +25 +22 —  
–25 –31 –13 –19 –1 –7 +11 +5 +23 +17  
–31 –42 –19 –30 –7 –18 +5  
–6  
+17 +6  
–43 –59 –31 –47 –19 –35 –7  
–23 +5  
–74 –89 –62 –77 –50 –65 –38 –53  
–127 –140 –115 –128 –103 –116  
1) All units in ps.  
2) For all input signals tDS(total) = tDS(base) + tDS and tDH(total) = tDH(base) + tDH  
Table 65  
DQS, DQS Single-ended Slew Rate1)2)  
2.0 V/ns 1.5 V/ns 1.0 V/ns 0.9 V/ns 0.8 V/ns 0.7 V/ns  
Derating Values for Data Setup and Hold Time of Single-ended DQS (DDR2-400 & -533)  
0.6 V/ns  
0.5 V/ns  
0.4 V/ns  
tDS1 tDH1 tDS1 tDH1 tDS1 tDH1 tDS1 tDH1 tDS1 tDH1 tDS1 tDH1 tDS1 tDH1 tDS1 tDH1 tDS1 tDH1  
2.0 +188 +188 +167 +146 +125 +63 —  
1.5 +146 +167 +125 +125 +83 +42 +81 +43 —  
1.0 +63 +125 +42 +83  
0
0
-2 +1 -7 -13 —  
0.9 —  
0.8 —  
0.7 —  
0.6 —  
0.5 —  
0.4 —  
+31 +69 -11  
-14 -13 -13 -18 -27 -29 -45  
-31 -27 -30 -32 -44 -43 -62 -60 –86  
-25  
-45 -53 -50 -67 -61 -85 -78 -109 -108 -152 —  
-74 -96 -85 -114 -102 -138 -132 -181 -183 -246  
-128 -156 -145 -180 -175 -223 -226 -288  
-210 -243 -240 -286 -291 -351  
1) All units in ps.  
2) For all input signals tDS1(total) = tDS1(base) + tDS1 and tDH1(total) = tDH1(base) + tDH1  
Data Sheet  
116  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Package Dimensions  
9
Package Dimensions  
ꢀꢁꢂꢅ  
ꢀꢀ X ꢁꢂꢃ ꢄ ꢃꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢀꢃ -!8ꢂ  
ꢁꢂꢆ  
ꢆꢇ  
"
ꢆꢇ  
ꢀꢇ  
ꢅꢇ  
ꢉꢇ ꢊꢇ  
!
ꢁꢂꢀ  
#
ꢁꢂꢀ  
#
ꢈꢁX  
’ꢁꢂꢀꢅ  
’ꢁꢂꢁꢃ  
›ꢁꢂꢁꢅ  
’ꢁꢂꢉꢈ  
-
-
3%!4).' 0,!.%  
#
! "  
#
ꢀꢇ $UMMY PADS WITHOUT BALL  
ꢆꢇ -IDDLE OF PACKAGES EDGES  
ꢊꢇ 0ACKAGE ORIENTATION MARK !ꢀ  
ꢉꢇ "AD UNIT MARKING ꢋ"5-ꢇ  
ꢅꢇ $IE SORT FIDUCIAL  
Figure 78 Package Pinout PG-TFBGA-60 (top view)  
Data Sheet  
117  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Package Dimensions  
ꢀꢁꢂꢃ  
ꢀꢄ X ꢅꢂꢆ ꢇ ꢀꢀꢂꢁ  
ꢅꢂꢆ  
ꢅꢂꢀꢆ -!8ꢂ  
ꢅꢂꢁ  
ꢁꢈ  
"
ꢁꢈ  
ꢀꢈ ꢃꢈ  
ꢄꢈ  
ꢉꢈ  
!
ꢅꢂꢀ  
#
ꢅꢂꢀ  
#
ꢆꢄX  
’ꢅꢂꢀꢃ  
’ꢅꢂꢅꢆ  
›ꢅꢂꢅꢃ  
’ꢅꢂꢄꢊ  
-
! "  
3%!4).' 0,!.%  
#
#
-
ꢀꢈ $UMMY PADS WITHOUT BALL  
ꢁꢈ -IDDLE OF PACKAGES EDGES  
ꢉꢈ 0ACKAGE ORIENTATION MARK !ꢀ  
ꢄꢈ "AD UNIT MARKING ꢋ"5-ꢈ  
ꢃꢈ $IE SORT FIDUCIAL  
Figure 79 Package Pinout PG-TFBGA-84 (top view)  
Data Sheet  
118  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
HYB18T256[40/80/16]0AF(L)–[2.5/25F/3/3S/3.7/5]  
256-Mbit DDR2 SDRAM  
Product Namenclature  
10  
Product Namenclature  
Table 66  
Example for  
Nomenclature Fields and Examples  
Field Number  
1
2
3
4
5
6
7
8
9
10  
11  
DDR2 DRAM  
HYB  
18  
T
512  
16  
0
A
C
–3.7  
Table 67  
Field  
1
DDR2 Memory Components  
Description  
INFINEON  
Component Prefix  
Values  
HYB  
Coding  
Constant  
2
3
4
Interface Voltage [V]  
DRAM Technology  
Component Density [Mbit]  
18  
T
SSTL_18  
DDR2  
256 M  
512 M  
1 Gb  
×4  
×8  
x16  
look up table  
First  
256  
512  
1G  
40  
80  
160  
0 .. 9  
A
5+6  
Number of I/Os  
7
8
Product Variations  
Die Revision  
B
Second  
9
Package,  
Lead-Free Status  
C
FBGA,  
lead-containing  
F
L
FBGA, lead-free  
low power product  
DDR2–800 6–6–6  
DDR2–800 5–5–5  
DDR2–667 4–4–4  
DDR2–667 5–5–5  
DDR2–533 4–4–4  
DDR2–400 3–3–3  
Power  
10  
Speed Grade  
–2.5  
–25F  
–3  
–3S  
–3.7  
–5  
11  
N/A for Components  
Data Sheet  
119  
Rev. 1.4, 2005-08  
09112003-LZPT-I17F  
w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

HYB18T256400AF-3

256 Mbi t DDR2 SDRAM
INFINEON

HYB18T256400AF-3

DDR DRAM, 64MX4, 0.45ns, CMOS, PBGA60, GREEN, PLASTIC, TFBGA-60
QIMONDA

HYB18T256400AF-3.7

DDR DRAM, 64MX4, 0.5ns, CMOS, PBGA60, GREEN, PLASTIC, TFBGA-60
INFINEON

HYB18T256400AF-37

256 Mbi t DDR2 SDRAM
INFINEON

HYB18T256400AF-3S

256 Mbi t DDR2 SDRAM
INFINEON

HYB18T256400AF-5

256 Mbi t DDR2 SDRAM
INFINEON

HYB18T256400AF-5

DDR DRAM, 64MX4, 0.6ns, CMOS, PBGA60, GREEN, PLASTIC, TFBGA-60
QIMONDA

HYB18T256400AFL-3

256 Mbi t DDR2 SDRAM
INFINEON
QIMONDA

HYB18T256400AFL-3.7

DDR DRAM, 64MX4, 0.5ns, CMOS, PBGA60, GREEN, PLASTIC, TFBGA-60
INFINEON

HYB18T256400AFL-37

256 Mbi t DDR2 SDRAM
INFINEON

HYB18T256400AFL-3S

256 Mbi t DDR2 SDRAM
INFINEON