HYB25D1G160AE-7F [INFINEON]

DDR DRAM, 64MX16, 0.75ns, CMOS, PDSO66, PLASTIC, TSOP2-66;
HYB25D1G160AE-7F
型号: HYB25D1G160AE-7F
厂家: Infineon    Infineon
描述:

DDR DRAM, 64MX16, 0.75ns, CMOS, PDSO66, PLASTIC, TSOP2-66

动态存储器 双倍数据速率 光电二极管
文件: 总85页 (文件大小:2676K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet, V0.5, July 2003  
HYB25D1G400A[C/E/F/T](L)  
HYB25D1G800A[C/E/F/T](L)  
HYB25D1G160A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Green Product  
Lead-Containing Product  
Memory Products  
N e v e r s t o p t h i n k i n g .  
Edition 2003-07  
Published by Infineon Technologies AG,  
St.-Martin-Strasse 53,  
81669 München, Germany  
© Infineon Technologies AG 2003.  
All Rights Reserved.  
Attention please!  
The information herein is given to describe certain components and shall not be considered as a guarantee of  
characteristics.  
Terms of delivery and rights to technical change reserved.  
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding  
circuits, descriptions and charts stated herein.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in  
question please contact your nearest Infineon Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or systems with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
Data Sheet, V0.5, July 2003  
HYB25D1G400A[C/E/F/T](L)  
HYB25D1G800A[C/E/F/T](L)  
HYB25D1G160A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Green Product  
Lead-Containing Product  
Memory Products  
N e v e r s t o p t h i n k i n g .  
HYB25D1G400A[C/E/F/T](L), HYB25D1G800A[C/E/F/T](L), HYB25D1G160A[C/E/F/T](L)  
Revision History:  
V0.5  
2003-07  
Previous Version:  
V0.3  
2002-08-16  
Page  
11  
all  
Subjects (major changes since last revision)  
doubled number of support balls of FBGA Pin Configurations  
new data sheet template  
all  
thorougly check for A13  
all  
replace package name P-TFBGA-60 by P-TFBGA-68-2 (+8 support balls)  
8
Add to “Features” “Lead- and halogene-free = green product” and logo “green product”  
Add to “Features” increased nominal supply voltages for DDR400  
Remove from “Feature” DDR200 and CL1.5  
Remove –8 speed sort from “Performance” Table (and also CL1.5)  
9
Add logo “green product”  
Add green Part Numbers  
Update of product portfolio  
18  
Remove CL1.5 from Mode Register  
56  
Chapter 4: Add increased nominal supply voltages for DDR400  
removed -8/DDR200 and CL1.5; Table split in two: –7F/–7 and –5/–6  
63, 65  
63  
added tXSNR = 126 ns for –5 and tXSNR = 126 ns for –6  
adjust tAC, tDQSCK, tLZ, tHZ to Jedec values  
63, 65  
65  
Note: Added DDR400 for input slew rate 1 V/ns  
added tXSNR = 127.5 ns for –7/–7F  
69  
IDD values updated (CE V1.2.1), for IDD0 and IDD1: –7F > –7 (due to tRC = 60 ns)  
70  
Added IDD1 and IDD7 definition for DDR266 and DDR400B  
Updated IDD1 and IDD7 definition for DDR266A and DDR333B  
83  
Update Package Outline P-TFBGA-68-2  
We Listen to Your Comments  
Any information within this document that you feel is wrong, unclear or missing at all?  
Your feedback will help us to continuously improve the quality of this document.  
Please send your proposal (including a reference to this document) to:  
techdoc.mp@infineon.com  
Template: mp_a4_v1.0_2003-04-25.fm  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
1
1.1  
1.2  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3
3.1  
3.2  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Mode Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Burst Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Burst Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Read Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Operating Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Extended Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
DLL Enable/Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Output Drive Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Bank/Row Activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Reads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Writes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Simplified State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
3.2.1  
3.2.2  
3.2.3  
3.2.4  
3.3  
3.3.1  
3.3.2  
3.4  
3.5  
3.5.1  
3.5.2  
3.5.3  
3.5.4  
3.5.5  
3.6  
4
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Normal Strength Pull-down and Pull-up Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Weak Strength Pull-down and Pull-up Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
4.1  
4.2  
4.3  
4.4  
4.4.1  
IDD Current Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
5
6
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Data Sheet  
5
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
List of Figures  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Figure 8  
Figure 9  
Pin Configuration P-TFBGA-68-2 (256Mb × 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Pin Configuration P-TFBGA-68-2 (128Mb × 8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Pin Configuration P-TSOPII-66-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Block Diagram (256 Mbit × 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Block Diagram (128 Mbit × 8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Block Diagram (64 Mbit × 16). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Required CAS Latencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Activating a Specific Row in a Specific Bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
tRCD and tRRD Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 10 Read Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 11 Read Burst: CAS Latencies (Burst Length = 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 12 Consecutive Read Bursts: CAS Latencies (Burst Length = 4 or 8) . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 13 Non-Consecutive Read Bursts: CAS Latencies (Burst Length = 4) . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 14 Random Read Accesses: CAS Latencies (Burst Length = 2, 4 or 8) . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 15 Terminating a Read Burst: CAS Latencies (Burst Length = 8). . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 16 Read to Write: CAS Latencies (Burst Length = 4 or 8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 17 Read to Precharge: CAS Latencies (Burst Length = 4 or 8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 18 Write Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 19 Write Burst (Burst Length = 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 20 Write to Write (Burst Length = 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 21 Write to Write: Max. DQSS, Non-Consecutive (Burst Length = 4) . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 22 Random Write Cycles (Burst Length = 2, 4 or 8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 23 Write to Read: Non-Interrupting (CAS Latency = 2; Burst Length = 4). . . . . . . . . . . . . . . . . . . . . . 41  
Figure 24 Write to Read: Interrupting (CAS Latency = 2; Burst Length = 8). . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 25 Write to Read: Min. DQSS, Odd Number of Data (3-bit Write), Interrupting (CL2; BL8) . . . . . . . . 43  
Figure 26 Write to Read: Nominal DQSS, Interrupting (CAS Latency = 2; Burst Length = 8) . . . . . . . . . . . . 44  
Figure 27 Write to Precharge: Non-Interrupting (Burst Length = 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 28 Write to Precharge: Interrupting (Burst Length = 4 or 8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 29 Write to Precharge: Minimum DQSS, Odd Number of Data (1-bit Write), Interrupting (BL 4 or 8). 47  
Figure 30 Write to Precharge: Nominal DQSS (2-bit Write), Interrupting (Burst Length = 4 or 8) . . . . . . . . . 48  
Figure 31 Precharge Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 32 Power Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 33 Simplified State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 34 Normal Strength Pull-down Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Figure 35 Normal Strength Pull-up Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Figure 36 Weak Strength Pull-down Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Figure 37 Weak Strength Pull-up Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Figure 38 AC Output Load Circuit Diagram / Timing Reference Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Figure 39 Data Input (Write), Timing Burst Length = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Figure 40 Data Output (Read), Timing Burst Length = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Figure 41 Initialize and Mode Register Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Figure 42 Power Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Figure 43 Auto Refresh Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Figure 44 Self Refresh Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Figure 45 Read without Auto Precharge (Burst Length = 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Figure 46 Read with Auto Precharge (Burst Length = 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Figure 47 Bank Read Access (Burst Length = 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Figure 48 Write without Auto Precharge (Burst Length = 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Figure 49 Write with Auto Precharge (Burst Length = 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Figure 50 Bank Write Access (Burst Length = 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Figure 51 Write DM Operation (Burst Length = 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Figure 52 P-TFBGA-68-2 (Plastic Thin Fine-Pitch Ball Grid Array Package) . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Figure 53 P-TSOPII-66-1 (Plastic Thin Small Outline Package Type II). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Data Sheet  
6
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Table 1  
Table 2  
Table 3  
Table 4  
Table 5  
Table 6  
Table 7  
Table 8  
Table 9  
Table 10  
Table 11  
Table 12  
Table 13  
Table 14  
Table 15  
Table 16  
Table 17  
Table 18  
Table 19  
Table 20  
Table 21  
Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Input/Output Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Burst Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Truth Table 1a: Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Truth Table 1b: DM Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Truth Table 2: Clock Enable (CKE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Truth Table 3: Current State Bank n - Command to Bank n (same bank) . . . . . . . . . . . . . . . . . . . 51  
Truth Table 4: Current State Bank n - Command to Bank m (different bank). . . . . . . . . . . . . . . . . 53  
Truth Table 5: Concurrent Auto Precharge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Input and Output Capacitances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Electrical Characteristics and DC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Normal Strength Pull-down and Pull-up Currents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Evaluation Conditions for I/O Driver Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Weak Strength Driver Pull-down and Pull-up Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
AC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
AC Timing - Absolute Specifications –5/–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
AC Timing - Absolute Specifications –7F/–7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
IDD Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
DD Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
I
Data Sheet  
7
V0.5, 2003-07  
1-Gbit Double Data Rate SDRAM  
DDR SDRAM  
HYB25D1G400A[C/E/F/T](L)  
HYB25D1G800A[C/E/F/T](L)  
HYB25D1G160A[C/E/F/T](L)  
1
Overview  
1.1  
Features  
Double data rate architecture: two data transfers per clock cycle  
Bidirectional data strobe (DQS) is transmitted and received with data, to be used in capturing data at the  
receiver  
DQS is edge-aligned with data for reads and is center-aligned with data for writes  
Differential clock inputs (CK and CK)  
Four internal banks for concurrent operation  
Data mask (DM) for write data  
DLL aligns DQ and DQS transitions with CK transitions  
Commands entered on each positive CK edge; data and data mask referenced to both edges of DQS  
Burst Lengths: 2, 4, or 8  
CAS Latency: 2, 2.5, 3  
Auto Precharge option for each burst access  
Auto Refresh and Self Refresh Modes  
7.8 µs Maximum Average Periodic Refresh Interval  
120 ns Minimum Refresh Cycle Time  
2.5 V (SSTL_2 compatible) I/O  
V
V
DDQ = 2.5 V ± 0.2 V (DDR266, DDR333); VDDQ = 2.6 V ±0.1 V (DDR400)  
DD = 2.5 V ± 0.2 V (DDR266, DDR333); VDD = 2.6 V ±0.1 V (DDR400)  
P-TFBGA-68-2 package with 3 depopulated rows (18 × 10 mm2)  
P-TSOPII-66-1 package  
Lead- and halogene-free = green product variant available  
Table 1  
Performance  
Part Number Speed Code  
-5  
-6  
-7F  
-7  
Unit  
Speed Grade  
DDR400B  
3–3–3  
DDR333B  
2.5–3–3  
DDR266  
2–2–2  
DDR266A  
2–3–3  
max. Clock Frequency  
@CL3  
@CL2.5  
@CL2  
fCK3  
200  
166  
166  
133  
143  
143  
133  
143  
143  
133  
MHz  
MHz  
MHz  
fCK2.5 166  
fCK2 133  
1.2  
Description  
The 1-Gbit Double Data Rate SDRAM is a high-speed CMOS, dynamic random-access memory containing  
1,073,741,824 bits. It is internally configured as a quad-bank DRAM.  
The 1-Gbit Double Data Rate SDRAM uses a double-data-rate architecture to achieve high-speed operation. The  
double data rate architecture is essentially a 2n prefetch architecture with an interface designed to transfer two  
data words per clock cycle at the I/O pins. A single read or write access for the 1-Gbit Double Data Rate SDRAM  
effectively consists of a single 2n-bit wide, one clock cycle data transfer at the internal DRAM core and two  
corresponding n-bit wide, one-half-clock-cycle data transfers at the I/O pins.  
A bidirectional data strobe (DQS) is transmitted externally, along with data, for use in data capture at the receiver.  
DQS is a strobe transmitted by the DDR SDRAM during Reads and by the memory controller during Writes. DQS  
is edge-aligned with data for Reads and center-aligned with data for Writes.  
Data Sheet  
8
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Overview  
Table 2  
Ordering Information  
Part Number1)  
Org. CAS-RCD-RP Clock CAS-RCD-RP Clock Speed  
Package  
Latencies  
(MHz) Latencies  
(MHz)  
HYB25D1G400AC(L)-5  
HYB25D1G800AC(L)-5  
HYB25D1G400AC(L)-6  
HYB25D1G800AC(L)-6  
HYB25D1G400AC(L)-7  
HYB25D1G800AC(L)-7  
x4  
x8  
x4  
x8  
x4  
x8  
3-3-3  
200  
166  
143  
2.5-3-3  
2-3-3  
166  
DDR400B P-TFBGA-68-2  
2.5-3-3  
133  
DDR333  
DDR266A  
HYB25D1G400AC(L)-7F x4  
HYB25D1G800AC(L)-7F x8  
2-2-2  
DDR266  
HYB25D1G400AT(L)-5  
HYB25D1G800AT(L)-5  
HYB25D1G160AT(L)-5  
HYB25D1G400AT(L)-6  
HYB25D1G800AT(L)-6  
HYB25D1G160AT(L)-6  
HYB25D1G400AT(L)-7  
HYB25D1G800AT(L)-7  
HYB25D1G160AT(L)-7  
HYB25D1G400AT(L)-7F  
HYB25D1G800AT(L)-7F  
HYB25D1G160AT(L)-7F  
HYB25D1G400AF(L)-5  
HYB25D1G800AF(L)-5  
HYB25D1G400AF(L)-6  
HYB25D1G800AF(L)-6  
HYB25D1G400AF(L)-7  
HYB25D1G800AF(L)-7  
HYB25D1G400AF(L)-7F  
HYB25D1G800AF(L)-7F  
HYB25D1G400AE(L)-5  
HYB25D1G800AE(L)-5  
HYB25D1G160AE(L)-5  
HYB25D1G400AE(L)-6  
HYB25D1G800AE(L)-6  
HYB25D1G160AE(L)-6  
HYB25D1G400AE(L)-7  
HYB25D1G800AE(L)-7  
HYB25D1G160AE(L)-7  
x4  
3-3-3  
200  
166  
143  
2.5-3-3  
166  
133  
DDR400B P-TSOPII-66-1  
x8  
x16  
x4  
2.5-3-3  
2-3-3  
DDR333  
DDR266A  
DDR266  
x8  
x16  
x4  
x8  
x16  
x4  
2-2-2  
x8  
x16  
x4  
3-3-3  
200  
166  
143  
2.5-3-3  
2-3-3  
166  
133  
DDR400B P-TFBGA-68-2  
DDR333  
x8  
x4  
2.5-3-3  
x8  
x4  
DDR266A  
x8  
x4  
2-2-2  
DDR266  
x8  
x4  
3-3-3  
200  
166  
143  
2.5-3-3  
166  
133  
DDR400B P-TSOPII-66-1  
x8  
x16  
x4  
2.5-3-3  
2-3-3  
DDR333  
DDR266A  
DDR266  
x8  
x16  
x4  
x8  
x16  
HYB25D1G400AE(L)-7F x4  
HYB25D1G800AE(L)-7F x8  
HYB25D1G160AE(L)-7F x16  
2-2-2  
Data Sheet  
9
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Overview  
1) HYB: designator for memory components  
25D: DDR SDRAMs at VDDQ = 2.5 V  
1G: 1-Gbit density  
400/800/160: Product variations x4, x8 and x16  
A: Die revision A  
E/F: Package type TSOP and FBGA  
L: Low power version (optional) - these components are specifically selected for low IDD6 Self Refresh currents  
-5/6/7/7F: speed grade - see Table 1  
The 1-Gbit Double Data Rate SDRAM operates from a differential clock (CK and CK; the crossing of CK going  
HIGH and CK going LOW is referred to as the positive edge of CK). Commands (address and control signals) are  
registered at every positive edge of CK. Input data is registered on both edges of DQS, and output data is  
referenced to both edges of DQS, as well as to both edges of CK.  
Read and write accesses to the DDR SDRAM are burst oriented; accesses start at a selected location and  
continue for a programmed number of locations in a programmed sequence. Accesses begin with the registration  
of an Active command, which is then followed by a Read or Write command. The address bits registered  
coincident with the Active command are used to select the bank and row to be accessed. The address bits  
registered coincident with the Read or Write command are used to select the bank and the starting column location  
for the burst access.  
The DDR SDRAM provides for programmable Read or Write burst lengths of 2, 4 or 8 locations. An Auto  
Precharge function may be enabled to provide a self-timed row precharge that is initiated at the end of the burst  
access.  
As with standard SDRAMs, the pipelined, multibank architecture of DDR SDRAMs allows for concurrent operation,  
thereby providing high effective bandwidth by hiding row precharge and activation time.  
An auto refresh mode is provided along with a power-saving power-down mode. All inputs are compatible with the  
JEDEC Standard for SSTL_2. All outputs are SSTL_2, Class II compatible.  
Note: The functionality described and the timing specifications included in this data sheet are for the DLL Enabled  
mode of operation.  
Data Sheet  
10  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Pin Configuration  
2
Pin Configuration  
1
2
3
7
8
9
NC  
NC  
NC  
NC  
VSSQ  
NC  
NC  
VDDQ  
VSSQ  
VDDQ  
VSSQ  
VSS  
CK  
VSS  
DQ3  
NC  
A
B
C
D
E
F
VDD  
DQ0  
NC  
NC  
VSSQ  
VDDQ  
VSSQ  
VDDQ  
VDD  
CAS  
CS  
VDDQ  
NC  
NC  
NC  
NC  
DQ2  
DQS  
DM  
CK  
DQ1  
NC  
NC  
NC  
NC  
VREF  
NC  
A13  
G
H
J
WE  
RAS  
BA1  
A0  
A12  
CKE  
A9  
A11  
BA0  
A8  
A7  
K
L
A10/AP  
A1  
A6  
A5  
A2  
A4  
VSS  
M
VDD  
A3  
NC  
NC  
NC  
NC  
Top View - see balls through package  
Figure 1  
Pin Configuration P-TFBGA-68-2 (256Mb × 4)  
1
2
3
7
8
9
NC  
NC  
NC  
NC  
VSSQ  
NC  
DQ7  
VDDQ  
VSSQ  
VDDQ  
VSSQ  
VSS  
CK  
VSS  
DQ6  
DQ5  
DQ4  
DQS  
DM  
A
B
C
D
E
F
VDD  
DQ1  
DQ2  
DQ3  
NC  
DQ0  
VSSQ  
VDDQ  
VSSQ  
VDDQ  
VDD  
CAS  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VREF  
NC  
A13  
CK  
G
H
J
WE  
A12  
CKE  
A9  
RAS  
BA1  
A0  
CS  
A11  
BA0  
A8  
A7  
K
L
A10/AP  
A1  
A6  
A5  
A2  
A4  
VSS  
M
VDD  
A3  
NC  
NC  
NC  
NC  
Top View - see balls through package  
Figure 2  
Pin Configuration P-TFBGA-68-2 (128Mb × 8)  
Data Sheet  
11  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Pin Configuration  
VDD  
NC  
VDD  
DQ0  
VDDQ  
DQ1  
DQ2  
VSS  
VSS  
VSS  
VDD  
1
2
3
4
5
66  
65  
64  
63  
62  
DQ15  
VSSQ  
DQ7  
VSSQ  
NC  
NC  
DQ0  
VDDQ  
NC  
VDDQ  
NC  
VSSQ  
NC  
DQ14  
DQ13  
DQ0  
DQ6  
DQ3  
DQ1  
VSSQ  
NC  
VSSQ  
NC  
VSSQ  
DQ3  
DQ4  
VDDQ  
DQ5  
VDDQ  
VDDQ  
NC  
VDDQ  
NC  
6
61  
60  
59  
58  
57  
DQ12  
DQ11  
VSSQ  
7
NC  
DQ5  
VSSQ  
NC  
NC  
DQ2  
VDDQ  
NC  
8
VDDQ  
NC  
VSSQ  
NC  
9
DQ10  
10  
DQ3  
DQ1  
VSSQ  
NC  
DQ6  
VSSQ  
DQ7  
NC  
DQ9  
VDDQ  
DQ4  
VDDQ  
DQ2  
VDDQ  
11  
12  
56  
55  
VSSQ  
NC  
DQ8  
NC  
NC  
NC  
13  
14  
15  
16  
17  
18  
19  
20  
54  
53  
52  
51  
50  
49  
48  
47  
NC  
NC  
NC  
NC  
VSSQ  
UDQS  
NC  
VSSQ  
DQS  
NC  
VSSQ  
DQS  
NC  
VDDQ  
NC  
VDDQ  
NC  
VDDQ  
LDQS  
A13  
VDD  
NC  
NC  
A13  
VDD  
NC  
NC  
A13  
VDD  
VREF  
VSS  
VREF  
VSS  
VREF  
VSS  
NC  
LDM  
UDM  
DM  
DM  
WE  
CAS  
WE  
CAS  
WE  
CAS  
CK  
CK  
CK  
CK  
CK  
CK  
21  
22  
23  
46  
45  
44  
RAS  
RAS  
RAS  
CKE  
CKE  
CKE  
CS  
NC  
CS  
NC  
CS  
NC  
NC  
A12  
NC  
A12  
NC  
A12  
24  
25  
43  
42  
BA0  
BA1  
BA0  
BA1  
BA0  
BA1  
A11  
A9  
A8  
A11  
A9  
A8  
A11  
A9  
A8  
26  
27  
28  
29  
41  
40  
39  
38  
A10/AP  
A10/AP  
A10/AP  
A7  
A7  
A7  
A0  
A1  
A2  
A0  
A1  
A2  
A0  
A1  
A2  
A6  
A5  
A6  
A5  
A6  
A5  
30  
31  
37  
36  
A3  
A3  
A3  
A4  
VSS  
A4  
VSS  
A4  
VSS  
32  
33  
35  
34  
VDD  
VDD  
VDD  
64Mb x 16  
128Mb x 8  
256Mb x 4  
Figure 3  
Pin Configuration P-TSOPII-66-1  
Data Sheet  
12  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Pin Configuration  
Table 3  
Symbol  
CK, CK  
Input/Output Functional Description  
Type  
Function  
Input  
Clock: CK and CK are differential clock inputs. All address and control input  
signals are sampled on the crossing of the positive edge of CK and negative  
edge of CK. Output (read) data is referenced to the crossings of CK and CK  
(both directions of crossing).  
CKE  
Input  
Input  
Clock Enable: CKE HIGH activates, and CKE Low deactivates, internal clock  
signals and device input buffers and output drivers. Taking CKE Low provides  
Precharge Power-Down and Self Refresh operation (all banks idle), or Active  
Power-Down (row Active in any bank). CKE is synchronous for power down  
entry and exit, and for self refresh entry. CKE is asynchronous for self refresh  
exit. CKE must be maintained high throughout read and write accesses. Input  
buffers, excluding CK, CK and CKE are disabled during power-down. Input  
buffers, excluding CKE, are disabled during self refresh.  
CS  
Chip Select: All commands are masked when CS is registered HIGH. CS  
provides for external bank selection on systems with multiple banks. CS is  
considered part of the command code. The standard pinout includes one CS  
pin.  
RAS, CAS, WE Input  
Command Inputs: RAS, CAS and WE (along with CS) define the command  
being entered.  
DM  
Input  
Input  
Input  
Input Data Mask: DM is an input mask signal for write data. Input data is  
masked when DM is sampled HIGH coincident with that input data during a  
Write access. DM is sampled on both edges of DQS. Although DM pins are  
input only, the DM loading matches the DQ and DQS loading.  
BA0, BA1  
A0 - A13  
Bank Address Inputs: BA0 and BA1 define to which bank an Active, Read,  
Write or Precharge command is being applied. BA0 and BA1 also determines  
if the mode register or extended mode register is to be accessed during a  
MRS or EMRS cycle.  
Address Inputs: Provide the row address for Active commands, and the  
column address and Auto Precharge bit for Read/Write commands, to select  
one location out of the memory array in the respective bank. A10 is sampled  
during a Precharge command to determine whether the Precharge applies to  
one bank (A10 LOW) or all banks (A10 HIGH). If only one bank is to be  
precharged, the bank is selected by BA0, BA1. The address inputs also  
provide the op-code during a Mode Register Set command.  
DQ  
Input/Output  
Input/Output  
Data Input/Output: Data bus.  
DQS  
Data Strobe: Output with read data, input with write data. Edge-aligned with  
read data, centered in write data. Used to capture write data.  
NC  
No Connect: No internal electrical connection is present.  
DQ Power Supply: 2.5 V ±0.2 V.  
DQ Ground  
VDDQ  
VSSQ  
VDD  
Supply  
Supply  
Supply  
Supply  
Supply  
Power Supply: 2.5 V ±0.2 V.  
Ground  
VSS  
VREF  
SSTL_2 Reference Voltage: (VDDQ/2)  
Data Sheet  
13  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Pin Configuration  
CKE  
CK  
CK  
CS  
WE  
CAS  
RAS  
Bank3  
Bank2  
Bank1  
CK, CK  
DLL  
Mode  
Registers  
14  
16384  
Bank0  
Memory  
Array  
16  
Data  
14  
(16384 x 2048 x 8)  
4
4
4
8
Sense Amplifiers  
1
DQS  
Generator  
DQ0-DQ3,  
DM  
COL0  
Mask  
DQS  
Input  
Register  
1
I/O Gating  
DM Mask Logic  
8
2
DQS  
1
1
A0-A13,  
BA0, BA1  
Write  
16  
1
FIFO  
1
&
8
2
8
2048  
(x8)  
2
Drivers  
4
4
4
4
4
clk  
clk  
Column  
Decoder  
in  
out  
Data  
11  
COL0  
CK,  
CK  
Column-Address  
Counter/Latch  
12  
COL0  
1
1
Figure 4  
Notes  
Block Diagram (256 Mbit × 4)  
1. This Functional Block Diagram is intended to facilitate user understanding of the operation of the device; it does  
not represent an actual circuit implementation.  
2. DM is a unidirectional signal (input only), but is internally loaded to match the load of the bidirectional DQ and  
DQS signals.  
Data Sheet  
14  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Pin Configuration  
CKE  
CK  
CK  
CS  
WE  
CAS  
RAS  
Bank3  
Bank2  
Bank1  
CK, CK  
DLL  
Mode  
Registers  
14  
Bank0  
Memory  
Array  
16384  
16  
Data  
14  
(16384 x 1024 x16)  
8
8
8
16  
Sense Amplifiers  
1
DQS  
Generator  
DQ0-DQ7,  
DM  
COL0  
Mask  
DQS  
Input  
Register  
1
I/O Gating  
DM Mask Logic  
16  
2
DQS  
1
1
A0-A13,  
BA0, BA1  
Write  
16  
1
FIFO  
1
&
16  
2
16  
2
1024  
(x16)  
Drivers  
8
8
8
8
8
clk  
clk  
Column  
Decoder  
in  
out  
Data  
10  
COL0  
CK,  
CK  
Column-Address  
Counter/Latch  
11  
COL0  
1
1
Figure 5  
Notes  
Block Diagram (128 Mbit × 8)  
1. This Functional Block Diagram is intended to facilitate user understanding of the operation of the device; it does  
not represent an actual circuit implementation.  
2. DM is a unidirectional signal (input only), but is internally loaded to match the load of the bidirectional DQ and  
DQS signals.  
Data Sheet  
15  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Pin Configuration  
CKE  
CK  
CK  
CS  
WE  
CAS  
RAS  
Bank3  
Bank2  
Bank1  
CK, CK  
DLL  
Mode  
Registers  
14  
16  
Bank0  
Memory  
Array  
16384  
Data  
14  
(16384 x 512 x 32)  
16  
16  
16  
32  
Sense Amplifiers  
1
DQS  
Generator  
DQ0-DQ15,  
DM  
COL0  
Mask  
DQS  
Input  
Register  
1
I/O Gating  
DM Mask Logic  
32  
2
LDQS, UDQS  
1
1
A0-A13,  
BA0, BA1  
Write  
16  
1
FIFO  
1
&
32  
2
32  
2
512  
Drivers  
(x32)  
16  
16  
16  
16  
16  
clk  
clk  
Column  
Decoder  
in  
out  
Data  
9
COL0  
CK,  
CK  
Column-Address  
Counter/Latch  
10  
COL0  
2
1
Figure 6  
Notes  
Block Diagram (64 Mbit × 16)  
1. This Functional Block Diagram is intended to facilitate user understanding of the operation of the device; it does  
not represent an actual circuit implementation.  
2. UDM and LDM are unidirectional signals (input only), but is internally loaded to match the load of the  
bidirectional DQ, UDQS and LDQS signals.  
Data Sheet  
16  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Functional Description  
3
Functional Description  
The 1-Gbit Double Data Rate SDRAM is a high-speed CMOS, dynamic random-access memory containing  
1,073,741,824 bits. The 1-Gbit Double Data Rate SDRAM is internally configured as a quad-bank DRAM.  
The 1-Gbit Double Data Rate SDRAM uses a double-data-rate architecture to achieve high-speed operation. The  
double-data-rate architecture is essentially a 2n prefetch architecture, with an interface designed to transfer two  
data words per clock cycle at the I/O pins. A single read or write access for the 1-Gbit Double Data Rate SDRAM  
consists of a single 2n-bit wide, one clock cycle data transfer at the internal DRAM core and two corresponding n-  
bit wide, one-half clock cycle data transfers at the I/O pins.  
Read and write accesses to the DDR SDRAM are burst oriented; accesses start at a selected location and  
continue for a programmed number of locations in a programmed sequence. Accesses begin with the registration  
of an Active command, which is then followed by a Read or Write command. The address bits registered  
coincident with the Active command are used to select the bank and row to be accessed (BA0, BA1 select the  
bank; A0-A13 select the row). The address bits registered coincident with the Read or Write command are used  
to select the starting column location for the burst access.  
Prior to normal operation, the DDR SDRAM must be initialized. The following sections provide detailed information  
covering device initialization, register definition, command descriptions and device operation.  
3.1  
Initialization  
DDR SDRAMs must be powered up and initialized in a predefined manner. Operational procedures other than  
those specified may result in undefined operation. The following criteria must be met:  
No power sequencing is specified during power up or power down given the following criteria:  
V
V
DD and VDDQ are driven from a single power converter output  
TT meets the specification  
A minimum resistance of 42 limits the input current from the VTT supply into any pin and VREF tracks VDDQ/2  
or the following relationship must be followed:  
V
V
V
DDQ is driven after or with VDD such that VDDQ < VDD + 0.3 V  
TT is driven after or with VDDQ such that VTT < VDDQ + 0.3 V  
REF is driven after or with VDDQ such that VREF < VDDQ + 0.3 V  
The DQ and DQS outputs are in the High-Z state, where they remain until driven in normal operation (by a read  
access). After all power supply and reference voltages are stable, and the clock is stable, the DDR SDRAM  
requires a 200 µs delay prior to applying an executable command.  
Once the 200 µs delay has been satisfied, a Deselect or NOP command should be applied, and CKE should be  
brought HIGH. Following the NOP command, a Precharge ALL command should be applied. Next a Mode  
Register Set command should be issued for the Extended Mode Register, to enable the DLL, then a Mode  
Register Set command should be issued for the Mode Register, to reset the DLL, and to program the operating  
parameters. 200 clock cycles are required between the DLL reset and any executable command. During the  
200 cycles of clock for DLL locking, a Deselect or NOP command must be applied. After the 200 clock cycles, a  
Precharge ALL command should be applied, placing the device in the “all banks idle” state.  
Once in the idle state, two AUTO REFRESH cycles must be performed. Additionally, a Mode Register Set  
command for the Mode Register, with the reset DLL bit deactivated (i.e. to program operating parameters without  
resetting the DLL) must be performed. Following these cycles, the DDR SDRAM is ready for normal operation.  
Data Sheet  
17  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Functional Description  
3.2  
Mode Register Definition  
The Mode Register is used to define the specific mode of operation of the DDR SDRAM. This definition includes  
the selection of a burst length, a burst type, a CAS latency, and an operating mode. The Mode Register is  
programmed via the Mode Register Set command (with BA0 = 0 and BA1 = 0) and retains the stored information  
until it is programmed again or the device loses power (except for bit A8, which is self-clearing).  
Mode Register bits A0-A2 specify the burst length, A3 specifies the type of burst (sequential or interleaved), A4-  
A6 specify the CAS latency, and A7-A13 specify the operating mode.  
The Mode Register must be loaded when all banks are idle, and the controller must wait the specified time before  
initiating the subsequent operation. Violating either of these requirements results in unspecified operation.  
MR  
Mode Register Definition  
(BA[1:0] = 00B)  
A8 A7  
BA1  
BA0  
A13  
A12  
A11  
A10  
A9  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
0
0
MODE  
CL  
BT  
BL  
reg. addr  
w
w
w
w
Field Bits Type1) Description  
MODE [13:7] w  
Operating Mode  
See Chapter 3.2.4.  
Note: All other bit combinations are RESERVED.  
000000 Normal Operation without DLL Reset  
000010 Normal Operation with DLL Reset  
CL  
[6:4]  
w
CAS Latency  
Number of full clocks from read command to first data valid window; see Chapter 3.2.3.  
Note: All other bit combinations are RESERVED.  
010 2  
011 3  
110 2.5  
BT  
BL  
3
w
w
Burst Type  
See Table 4 for internal address sequence of low order address bits; see Chapter 3.2.2.  
0
1
Sequential  
Interleaved  
[2:0]  
Burst Length  
Number of sequential bits per DQ related to one read/write command; see Chapter 3.2.1.  
Note: All other bit combinations are RESERVED.  
001 2  
010 4  
011 8  
1) w: write only register bit  
Data Sheet  
18  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Functional Description  
3.2.1  
Burst Length  
Read and write accesses to the DDR SDRAM are burst oriented, with the burst length being programmable. The  
burst length determines the maximum number of column locations that can be accessed for a given Read or Write  
command. Burst lengths of 2, 4, or 8 locations are available for both the sequential and the interleaved burst types.  
Reserved states should not be used, as unknown operation or incompatibility with future versions may result.  
When a Read or Write command is issued, a block of columns equal to the burst length is effectively selected. All  
accesses for that burst take place within this block, meaning that the burst wraps within the block if a boundary is  
reached. The block is uniquely selected by A1-Ai when the burst length is set to two, by A2-Ai when the burst  
length is set to four and by A3-Ai when the burst length is set to eight (where Ai is the most significant column  
address bit for a given configuration). The remaining (least significant) address bit(s) is (are) used to select the  
starting location within the block. The programmed burst length applies to both Read and Write bursts.  
3.2.2  
Burst Type  
Accesses within a given burst may be programmed to be either sequential or interleaved; this is referred to as the  
burst type and is selected via bit A3. The ordering of accesses within a burst is determined by the burst length, the  
burst type and the starting column address, as shown in Table 4.  
Table 4  
Burst Definition  
Burst  
Starting Column Address  
Order of Accesses Within a Burst  
Length  
A2  
A1  
A0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Type = Sequential  
Type = Interleaved  
0-1  
2
0-1  
1-0  
1-0  
4
0
0
1
1
0
0
1
1
0
0
1
1
0-1-2-3  
0-1-2-3  
1-2-3-0  
1-0-3-2  
2-3-0-1  
2-3-0-1  
3-0-1-2  
3-2-1-0  
8
0
0
0
0
1
1
1
1
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-0  
2-3-4-5-6-7-0-1  
3-4-5-6-7-0-1-2  
4-5-6-7-0-1-2-3  
5-6-7-0-1-2-3-4  
6-7-0-1-2-3-4-5  
7-0-1-2-3-4-5-6  
0-1-2-3-4-5-6-7  
1-0-3-2-5-4-7-6  
2-3-0-1-6-7-4-5  
3-2-1-0-7-6-5-4  
4-5-6-7-0-1-2-3  
5-4-7-6-1-0-3-2  
6-7-4-5-2-3-0-1  
7-6-5-4-3-2-1-0  
Notes  
1. For a burst length of two, A1-Ai selects the two-data-element block; A0 selects the first access within the block.  
2. For a burst length of four, A2-Ai selects the four-data-element block; A0-A1 selects the first access within the  
block.  
3. For a burst length of eight, A3-Ai selects the eight-data- element block; A0-A2 selects the first access within  
the block.  
4. Whenever a boundary of the block is reached within a given sequence above, the following access wraps  
within the block.  
Data Sheet  
19  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Functional Description  
3.2.3  
Read Latency  
The Read latency, or CAS latency, is the delay, in clock cycles, between the registration of a Read command and  
the availability of the first burst of output data. The latency can be programmed 2, 2.5 and 3 clocks.  
If a Read command is registered at clock edge n, and the latency is m clocks, the data is available nominally  
coincident with clock edge n + m (see Figure 7).  
Reserved states should not be used as unknown operation or incompatibility with future versions may result.  
3.2.4  
Operating Mode  
The normal operating mode is selected by issuing a Mode Register Set Command with bits A7-A13 set to zero,  
and bits A0-A6 set to the desired values. A DLL reset is initiated by issuing a Mode Register Set command with  
bits A7 and A9-A13 each set to zero, bit A8 set to one, and bits A0-A6 set to the desired values. A Mode Register  
Set command issued to reset the DLL should always be followed by a Mode Register Set command to select  
normal operating mode.  
All other combinations of values for A7–A13 are reserved for future use and/or test modes. Test modes and  
reserved states should not be used as unknown operation or incompatibility with future versions may result.  
CAS Latency = 2, BL = 4  
CK  
CK  
Read  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
CL=2  
DQS  
DQ  
CAS Latency = 2.5, BL = 4  
CK  
CK  
Read  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
CL=2.5  
DQS  
DQ  
Shown with nominal tAC, tDQSCK, and tDQSQ  
.
Don’t Care  
Figure 7  
Required CAS Latencies  
Data Sheet  
20  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Functional Description  
3.3  
Extended Mode Register  
The Extended Mode Register controls functions beyond those controlled by the Mode Register; these additional  
functions include DLL enable/disable, and output drive strength selection (optional). These functions are controlled  
via the bits shown in the Extended Mode Register Definition. The Extended Mode Register is programmed via the  
Mode Register Set command (with BA0 = 1 and BA1 = 0) and retains the stored information until it is programmed  
again or the device loses power. The Extended Mode Register must be loaded when all banks are idle, and the  
controller must wait the specified time before initiating any subsequent operation. Violating either of these  
requirements result in unspecified operation.  
3.3.1  
DLL Enable/Disable  
The DLL must be enabled for normal operation. DLL enable is required during power up initialization, and upon  
returning to normal operation after having disabled the DLL for the purpose of debug or evaluation. The DLL is  
automatically disabled when entering self refresh operation and is automatically re-enabled upon exit of self  
refresh operation. Any time the DLL is enabled, 200 clock cycles must occur before a Read command can be  
issued. This is the reason 200 clock cycles must occur before issuing a Read or Write command upon exit of self  
refresh operation.  
3.3.2  
Output Drive Strength  
The normal drive strength for all outputs is specified to be SSTL_2, Class II. In addition this design version  
supports a weak driver mode for lighter load and/or point-to-point environments which can be activated during  
mode register set. I-V curves for the normal and weak drive strength are included in this document.  
EMR  
Extended Mode Register Definition  
(BA[1:0] = 01B)  
A8 A7  
BA1  
BA0  
A13  
A12  
A11  
A10  
A9  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
0
1
MODE  
DS  
DLL  
reg. addr  
w
w
w
Field  
Bits  
Type1)  
Description  
MODE  
[13:2]  
w
Operating Mode  
Note:All other bit combinations are RESERVED.  
Normal Operation  
0
DS  
1
w
w
Drive Strength  
See Chapter 3.3.2, Chapter 4.2 and Chapter 4.3.  
0
1
Normal  
Weak  
DLL  
0
DLL Status  
See Chapter 3.3.1.  
0
1
Enabled  
Disabled  
1) w: write only register bit  
Data Sheet  
21  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Functional Description  
3.4  
Commands  
Deselect  
The Deselect function prevents new commands from being executed by the DDR SDRAM. The DDR SDRAM is  
effectively deselected. Operations already in progress are not affected.  
No Operation (NOP)  
The No Operation (NOP) command is used to perform a NOP to a DDR SDRAM. This prevents unwanted  
commands from being registered during idle or wait states. Operations already in progress are not affected.  
Mode Register Set  
The mode registers are loaded via inputs A0-A13, BA0 and BA1. See mode register descriptions in Chapter 3.2.  
The Mode Register Set command can only be issued when all banks are idle and no bursts are in progress. A  
subsequent executable command cannot be issued until tMRD is met.  
Active  
The Active command is used to open (or activate) a row in a particular bank for a subsequent access. The value  
on the BA0, BA1 inputs selects the bank, and the address provided on inputs A0-A13 selects the row. This row  
remains active (or open) for accesses until a Precharge (or Read or Write with Auto Precharge) is issued to that  
bank. A Precharge (or Read or Write with Auto Precharge) command must be issued and completed before  
opening a different row in the same bank.  
Read  
The Read command is used to initiate a burst read access to an active (open) row. The value on the BA0, BA1  
inputs selects the bank, and the address provided on inputs A0-Ai, Aj (where [i = 8, j = don’t care] for x16, [i = 9,  
j = don’t care] for x8 and [i = 9, j = 11] for x4) selects the starting column location. The value on input A10  
determines whether or not Auto Precharge is used. If Auto Precharge is selected, the row being accessed is  
precharged at the end of the Read burst; if Auto Precharge is not selected, the row remains open for subsequent  
accesses.  
Write  
The Write command is used to initiate a burst write access to an active (open) row. The value on the BA0, BA1  
inputs selects the bank, and the address provided on inputs A0-Ai, Aj (where [i = 9, j = don’t care] for x8; where  
[i = 9, j = 11] for x4) selects the starting column location. The value on input A10 determines whether or not Auto  
Precharge is used. If Auto Precharge is selected, the row being accessed is precharged at the end of the Write  
burst; if Auto Precharge is not selected, the row remains open for subsequent accesses. Input data appearing on  
the DQs is written to the memory array subject to the DM input logic level appearing coincident with the data. If a  
given DM signal is registered low, the corresponding data is written to memory; if the DM signal is registered high,  
the corresponding data inputs are ignored, and a Write is not executed to that byte/column location.  
Precharge  
The Precharge command is used to deactivate (close) the open row in a particular bank or the open row(s) in all  
banks. The bank(s) will be available for a subsequent row access a specified time (tRP) after the Precharge  
command is issued. Input A10 determines whether one or all banks are to be precharged, and in the case where  
only one bank is to be precharged, inputs BA0, BA1 select the bank. Otherwise BA0, BA1 are treated as “Don’t  
Care”. Once a bank has been precharged, it is in the idle state and must be activated prior to any Read or Write  
commands being issued to that bank. A precharge command is treated as a NOP if there is no open row in that  
bank, or if the previously open row is already in the process of precharging.  
Data Sheet  
22  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Functional Description  
Auto Precharge  
Auto Precharge is a feature which performs the same individual-bank precharge functions described above, but  
without requiring an explicit command. This is accomplished by using A10 to enable Auto Precharge in conjunction  
with a specific Read or Write command. A precharge of the bank/row that is addressed with the Read or Write  
command is automatically performed upon completion of the Read or Write burst. Auto Precharge is nonpersistent  
in that it is either enabled or disabled for each individual Read or Write command. Auto Precharge ensures that  
the precharge is initiated at the earliest valid stage within a burst. The user must not issue another command to  
the same bank until the precharge (tRP) is completed. This is determined as if an explicit Precharge command was  
issued at the earliest possible time, as described for each burst type in Chapter 3.5.  
Burst Terminate  
The Burst Terminate command is used to truncate read bursts (with Auto Precharge disabled). The most recently  
registered Read command prior to the Burst Terminate command is truncated, as shown in Chapter 3.5.  
Auto Refresh  
Auto Refresh is used during normal operation of the DDR SDRAM and is analogous to CAS Before RAS (CBR)  
Refresh in previous DRAM types. This command is nonpersistent, so it must be issued each time a refresh is  
required.  
The refresh addressing is generated by the internal refresh controller. This makes the address bits “Don’t Care”  
during an Auto Refresh command. The 1-Gbit Double Data Rate SDRAM requires Auto Refresh cycles at an  
average periodic interval of 7.8 µs (maximum).  
To allow for improved efficiency in scheduling and switching between tasks, some flexibility in the absolute refresh  
interval is provided. A maximum of eight Auto Refresh commands can be posted in the system, meaning that the  
maximum absolute interval between any Auto Refresh command and the next Auto Refresh command is  
9 × 7.8 µs (70.2 µs). This maximum absolute interval is short enough to allow for DLL updates internal to the  
DDR SDRAM to be restricted to Auto Refresh cycles, without allowing too much drift in tAC between updates.  
Self Refresh  
The Self Refresh command can be used to retain data in the DDR SDRAM, even if the rest of the system is  
powered down. When in the self refresh mode, the DDR SDRAM retains data without external clocking. The Self  
Refresh command is initiated as an Auto Refresh command coincident with CKE transitioning low. The DLL is  
automatically disabled upon entering Self Refresh, and is automatically enabled upon exiting Self Refresh  
(200 clock cycles must then occur before a Read command can be issued). Input signals except CKE (low) are  
“Don’t Care” during Self Refresh operation.  
The procedure for exiting self refresh requires a sequence of commands. CK (and CK) must be stable prior to CKE  
returning high. Once CKE is high, the SDRAM must have NOP commands issued for tXSNR because time is  
required for the completion of any internal refresh in progress. A simple algorithm for meeting both refresh and  
DLL requirements is to apply NOPs for 200 clock cycles before applying any other command.  
Data Sheet  
23  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Functional Description  
Table 5  
Truth Table 1a: Commands  
Name (Function)  
CS RAS CAS WE Address MNE  
Notes  
1)2)  
Deselect (NOP)  
H
L
L
L
L
L
L
L
L
X
H
L
X
H
H
L
X
H
H
H
L
X
X
NOP  
NOP  
1)2)  
1)3)  
1)4)  
1)4)  
1)5)  
1)6)  
1)7)8)  
1)9)  
No Operation (NOP)  
Active (Select Bank And Activate Row)  
Read (Select Bank And Column, And Start Read Burst)  
Write (Select Bank And Column, And Start Write Burst)  
Burst Terminate  
Bank/Row ACT  
Bank/Col Read  
Bank/Col Write  
H
H
H
L
L
H
H
L
L
X
BST  
Precharge (Deactivate Row In Bank Or Banks)  
Auto Refresh Or Self Refresh (Enter Self Refresh Mode)  
Mode Register Set  
L
Code  
X
PRE  
L
H
L
AR/SR  
L
L
Op-Code MRS  
1) CKE is HIGH for all commands shown except Self Refresh.  
2) Deselect and NOP are functionally interchangeable.  
3) BA0-BA1 provide bank address and A0-A13 provide row address.  
4) BA0, BA1 provide bank address; A0-Ai provide column address (where i = 8 for x16, i = 9 for x8 and 9, 11 for x4);  
A10 HIGH enables the Auto Precharge feature (nonpersistent), A10 LOW disables the Auto Precharge feature.  
5) Applies only to read bursts with Auto Precharge disabled; this command is undefined (and should not be used) for read  
bursts with Auto Precharge enabled or for write bursts.  
6) A10 LOW: BA0, BA1 determine which bank is precharged.  
A10 HIGH: all banks are precharged and BA0, BA1 are “Don’t Care”.  
7) This command is Auto Refresh if CKE is HIGH; Self Refresh if CKE is LOW.  
8) Internal refresh counter controls row and bank addressing; all inputs and I/Os are “Don’t Care” except for CKE.  
9) BA0, BA1 select either the Base or the Extended Mode Register (BA0 = 0, BA1 = 0 selects Mode Register; BA0 = 1,  
BA1 = 0 selects Extended Mode Register; other combinations of BA0-BA1 are reserved; A0-A13 provide the op-code to  
be written to the selected Mode Register).  
Table 6  
Truth Table 1b: DM Operation  
Name (Function)  
Write Enable  
DM  
L
DQs  
Valid  
X
Notes  
1)  
1)  
Write Inhibit  
H
1) Used to mask write data; provided coincident with the corresponding data.  
Data Sheet  
24  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Functional Description  
3.5  
Operations  
3.5.1  
Bank/Row Activation  
Before any Read or Write commands can be issued to a bank within the DDR SDRAM, a row in that bank must  
be “opened” (activated). This is accomplished via the Active command and addresses A0-A13, BA0 and BA1 (see  
Figure 8), which decode and select both the bank and the row to be activated. After opening a row (issuing an  
Active command), a Read or Write command may be issued to that row, subject to the tRCD specification. A  
subsequent Active command to a different row in the same bank can only be issued after the previous active row  
has been “closed” (precharged). The minimum time interval between successive Active commands to the same  
bank is defined by tRC. A subsequent Active command to another bank can be issued while the first bank is being  
accessed, which results in a reduction of total row-access overhead. The minimum time interval between  
successive Active commands to different banks is defined by tRRD  
.
CK  
CK  
HIGH  
CKE  
CS  
RAS  
CAS  
WE  
RA = row address.  
BA = bank address.  
RA  
BA  
A0-A13  
BA0, BA1  
Don’t Care  
Figure 8  
Activating a Specific Row in a Specific Bank  
CK  
CK  
RD/WR  
ACT  
NOP  
ACT  
NOP  
NOP  
NOP  
NOP  
Command  
A0-A13  
ROW  
BA x  
ROW  
BA y  
COL  
BA y  
BA0, BA1  
tRRD  
tRCD  
Don’t Care  
Figure 9  
tRCD and tRRD Definition  
Data Sheet  
25  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Functional Description  
3.5.2  
Reads  
Subsequent to programming the mode register with CAS latency, burst type, and burst length, Read bursts are  
initiated with a Read command, as shown on Figure 10.  
The starting column and bank addresses are provided with the Read command and Auto Precharge is either  
enabled or disabled for that burst access. If Auto Precharge is enabled, the row that is accessed starts precharge  
at the completion of the burst, provided tRAS has been satisfied. For the generic Read commands used in the  
following illustrations, Auto Precharge is disabled.  
During Read bursts, the valid data-out element from the starting column address is available following the CAS  
latency after the Read command. Each subsequent data-out element is valid nominally at the next positive or  
negative clock edge (i.e. at the next crossing of CK and CK). Figure 11 shows general timing for each supported  
CAS latency setting. DQS is driven by the DDR SDRAM along with output data. The initial low state on DQS is  
known as the read preamble; the low state coincident with the last data-out element is known as the read  
postamble. Upon completion of a burst, assuming no other commands have been initiated, the DQs goes High-Z.  
Data from any Read burst may be concatenated with or truncated with data from a subsequent Read command.  
In either case, a continuous flow of data can be maintained. The first data element from the new burst follows either  
the last element of a completed burst or the last desired data element of a longer burst which is being truncated.  
The new Read command should be issued x cycles after the first Read command, where x equals the number of  
desired data element pairs (pairs are required by the 2n prefetch architecture). This is shown on Figure 12. A  
Read command can be initiated on any clock cycle following a previous Read command. Nonconsecutive Read  
data is illustrated on Figure 13. Full-speed Random Read Accesses: CAS Latencies (Burst Length = 2, 4 or 8)  
within a page (or pages) can be performed as shown on Figure 14.  
CK  
CK  
HIGH  
CKE  
CS  
RAS  
CAS  
WE  
x4: A0-A9, A11  
x8: A0-A9  
CA  
x16: A0-A8  
EN AP  
A10  
DIS AP  
BA  
CA = column address  
BA = bank address  
EN AP = enable Auto Precharge  
DIS AP = disable Auto Precharge  
BA0, BA1  
Don’t Care  
Figure 10 Read Command  
Data Sheet  
26  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Functional Description  
CAS Latency = 2  
CK  
CK  
Read  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
Address  
BA a,COL n  
CL=2  
DQS  
DQ  
DOa-n  
CAS Latency = 2.5  
CK  
CK  
Read  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
Address  
BA a,COL n  
CL=2.5  
DQS  
DQ  
DOa-n  
Don’t Care  
DO a-n = data out from bank a, column n.  
3 subsequent elements of data out appear in the programmed order following DO a-n.  
Shown with nominal tAC, tDQSCK, and tDQSQ  
.
Figure 11 Read Burst: CAS Latencies (Burst Length = 4)  
Data Sheet  
27  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Functional Description  
CAS Latency = 2  
CK  
CK  
Read  
NOP  
Read  
NOP  
NOP  
NOP  
Command  
Address  
BAa, COL n  
BAa, COL b  
CL=2  
DQS  
DQ  
DOa-b  
DOa-n  
CAS Latency = 2.5  
CK  
CK  
Read  
NOP  
Read  
NOP  
NOP  
NOP  
Command  
Address  
BAa, COL n  
BAa,COL b  
CL=2.5  
DQS  
DQ  
DOa- n  
DOa- b  
DO a-n (or a-b) = data out from bank a, column n (or bank a, column b).  
When burst length = 4, the bursts are concatenated.  
When burst length = 8, the second burst interrupts the first.  
Don’t Care  
3 subsequent elements of data out appear in the programmed order following DO a-n.  
3 (or 7) subsequent elements of data out appear in the programmed order following DO a-b.  
Shown with nominal tAC, tDQSCK, and tDQSQ  
.
Figure 12 Consecutive Read Bursts: CAS Latencies (Burst Length = 4 or 8)  
Data Sheet  
28  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Functional Description  
CAS Latency = 2  
CK  
CK  
Read  
NOP  
NOP  
Read  
NOP  
NOP  
Command  
Address  
BAa, COL n  
BAa, COL b  
CL=2  
DQS  
DQ  
DO a-n  
DOa- b  
CAS Latency = 2.5  
CK  
CK  
Read  
NOP  
NOP  
Read  
NOP  
NOP  
NOP  
Command  
Address  
BAa, COL n  
BAa, COL b  
CL=2.5  
DQS  
DQ  
DO a-n  
DOa- b  
DO a-n (or a-b) = data out from bank a, column n (or bank a, column b).  
3 subsequent elements of data out appear in the programmed order following DO a-n (and following DO a-b).  
Shown with nominal tAC, tDQSCK, and tDQSQ  
.
Don’t Care  
Figure 13 Non-Consecutive Read Bursts: CAS Latencies (Burst Length = 4)  
Data Sheet  
29  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Functional Description  
CAS Latency = 2  
CK  
CK  
Read  
Read  
BAa, COL x  
CL=2  
Read  
Read  
NOP  
NOP  
Command  
Address  
BAa, COL n  
BAa, COL b  
BAa, COL g  
DQS  
DQ  
DOa-n  
DOa-n’  
DOa-x  
DOa-x’  
DOa-b  
DOa-b’  
DOa-g  
CAS Latency = 2.5  
CK  
CK  
Read  
Read  
Read  
Read  
NOP  
NOP  
Command  
Address  
BAa, COL n  
BAa, COL x  
BAa, COL b  
BAa, COL g  
CL=2.5  
DQS  
DQ  
DOa-n  
DOa-n’  
DOa-x  
DOa-x’  
DOa-b  
DOa-b’  
DO a-n, etc. = data out from bank a, column n etc.  
n' etc. = odd or even complement of n, etc. (i.e., column address LSB inverted).  
Reads are to active rows in any banks.  
Don’t Care  
Shown with nominal tAC, tDQSCK, and tDQSQ  
.
Figure 14 Random Read Accesses: CAS Latencies (Burst Length = 2, 4 or 8)  
Data Sheet  
30  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Functional Description  
Data from any Read burst may be truncated with a Burst Terminate command, as shown on Figure 15. The Burst  
Terminate latency is equal to the read (CAS) latency, i.e. the Burst Terminate command should be issued x cycles  
after the Read command, where x equals the number of desired data element pairs.  
Data from any Read burst must be completed or truncated before a subsequent Write command can be issued. If  
truncation is necessary, the Burst Terminate command must be used, as shown on Figure 16. The example is  
shown for tDQSS(min). The tDQSS(max) case, not shown here, has a longer bus idle time. tDQSS(min) and tDQSS(max) are  
defined in Chapter 3.5.3.  
A Read burst may be followed by, or truncated with, a Precharge command to the same bank (provided that Auto  
Precharge was not activated). The Precharge command should be issued x cycles after the Read command,  
where x equals the number of desired data element pairs (pairs are required by the 2n prefetch architecture). This  
is shown on Figure 17 for Read latencies of 2 and 2.5. Following the Precharge command, a subsequent  
command to the same bank cannot be issued until tRP is met. Note that part of the row precharge time is hidden  
during the access of the last data elements.  
In the case of a Read being executed to completion, a Precharge command issued at the optimum time (as  
described above) provides the same operation that would result from the same Read burst with Auto Precharge  
enabled. The disadvantage of the Precharge command is that it requires that the command and address busses  
be available at the appropriate time to issue the command. The advantage of the Precharge command is that it  
can be used to truncate bursts.  
Data Sheet  
31  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Functional Description  
CAS Latency = 2  
CK  
CK  
Read  
NOP  
BST  
NOP  
NOP  
NOP  
Command  
Address  
BAa, COL n  
CL=2  
DQS  
DQ  
DOa-n  
No further output data after this point.  
DQS tristated.  
CAS Latency = 2.5  
CK  
CK  
Read  
NOP  
BST  
NOP  
NOP  
NOP  
Command  
Address  
BAa, COL n  
CL=2.5  
DQS  
DQ  
DOa-n  
No further output data after this point.  
DQS tristated.  
DO a-n = data out from bank a, column n.  
Cases shown are bursts of 8 terminated after 4 data elements.  
3 subsequent elements of data out appear in the programmed order following DO a-n.  
Shown with nominal tAC, tDQSCK, and tDQSQ  
Don’t Care  
.
Figure 15 Terminating a Read Burst: CAS Latencies (Burst Length = 8)  
Data Sheet  
32  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Functional Description  
CAS Latency = 2  
CK  
CK  
Read  
BST  
NOP  
Write  
NOP  
NOP  
Command  
Address  
BAa, COL n  
BAa, COL b  
CL=2  
tDQSS (min)  
DQS  
DQ  
DI a-b  
DOa-n  
DM  
CAS Latency = 2.5  
CK  
CK  
Read  
BST  
NOP  
NOP  
Write  
NOP  
Command  
Address  
BAa, COL n  
BAa, COL b  
CL=2.5  
tDQSS (min)  
DQS  
DQ  
DOa-n  
Dla-b  
DM  
DO a-n = data out from bank a, column n  
.
DI a-b = data in to bank a, column b  
1 subsequent elements of data out appear in the programmed order following DO a-n.  
Data In elements are applied following Dl a-b in the programmed order, according to burst length.  
Shown with nominal tAC, tDQSCK, and tDQSQ  
.
Don’t Care  
Figure 16 Read to Write: CAS Latencies (Burst Length = 4 or 8)  
Data Sheet  
33  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Functional Description  
CAS Latency = 2  
CK  
CK  
Read  
NOP  
PRE  
NOP  
NOP  
ACT  
Command  
tRP  
BA a or all  
BA a, COL n  
BA a, ROW  
Address  
CL=2  
DQS  
DQ  
DOa-n  
CAS Latency = 2.5  
CK  
CK  
Read  
NOP  
PRE  
NOP  
NOP  
ACT  
Command  
tRP  
BA a or all  
BA a, COL n  
BA a, ROW  
Address  
CL=2.5  
DQS  
DQ  
DOa-n  
DO a-n = data out from bank a, column n.  
Cases shown are either uninterrupted bursts of 4 or interrupted bursts of 8.  
3 subsequent elements of data out appear in the programmed order following DO a-n.  
Shown with nominal tAC, tDQSCK, and tDQSQ  
.
Don’t Care  
Figure 17 Read to Precharge: CAS Latencies (Burst Length = 4 or 8)  
Data Sheet  
34  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Functional Description  
3.5.3  
Writes  
Write bursts are initiated with a Write command, as shown in Figure 18.  
The starting column and bank addresses are provided with the Write command, and Auto Precharge is either  
enabled or disabled for that access. If Auto Precharge is enabled, the row being accessed is precharged at the  
completion of the burst. For the generic Write commands used in the following illustrations, Auto Precharge is  
disabled.  
During Write bursts, the first valid data-in element is registered on the first rising edge of DQS following the write  
command, and subsequent data elements are registered on successive edges of DQS. The Low state on DQS  
between the Write command and the first rising edge is known as the write preamble; the Low state on DQS  
following the last data-in element is known as the write postamble. The time between the Write command and the  
first corresponding rising edge of DQS (tDQSS) is specified with a relatively wide range (from 75% to 125% of one  
clock cycle), so most of the Write diagrams that follow are drawn for the two extreme cases (i.e. tDQSS(min) and  
t
DQSS(max)). Figure 19 shows the two extremes of tDQSS for a burst of four. Upon completion of a burst, assuming  
no other commands have been initiated, the DQs and DQS enters High-Z and any additional input data is ignored.  
Data for any Write burst may be concatenated with or truncated with a subsequent Write command. In either case,  
a continuous flow of input data can be maintained. The new Write command can be issued on any positive edge  
of clock following the previous Write command. The first data element from the new burst is applied after either  
the last element of a completed burst or the last desired data element of a longer burst which is being truncated.  
The new Write command should be issued x cycles after the first Write command, where x equals the number of  
desired data element pairs (pairs are required by the 2n prefetch architecture). Figure 20 shows concatenated  
bursts of 4. An example of non-consecutive Writes is shown in Figure 21. Full-speed random write accesses  
within a page or pages can be performed as shown in Figure 22. Data for any Write burst may be followed by a  
subsequent Read command. To follow a Write without truncating the write burst, tWTR (Write to Read) should be  
met as shown in Figure 23.  
Data for any Write burst may be truncated by a subsequent Read command, as shown in Figure 24 to Figure 26.  
Note that only the data-in pairs that are registered prior to the tWTR period are written to the internal array, and any  
subsequent data-in must be masked with DM, as shown in the diagrams noted previously.  
Data for any Write burst may be followed by a subsequent Precharge command. To follow a Write without  
truncating the write burst, tWR should be met as shown in Figure 27.  
Data for any Write burst may be truncated by a subsequent Precharge command, as shown in Figure 28 to  
Figure 30. Note that only the data-in pairs that are registered prior to the tWR period are written to the internal array,  
and any subsequent data in should be masked with DM. Following the Precharge command, a subsequent  
command to the same bank cannot be issued until tRP is met.  
In the case of a Write burst being executed to completion, a Precharge command issued at the optimum time (as  
described above) provides the same operation that would result from the same burst with Auto Precharge. The  
disadvantage of the Precharge command is that it requires that the command and address busses be available at  
the appropriate time to issue the command. The advantage of the Precharge command is that it can be used to  
truncate bursts.  
Data Sheet  
35  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Functional Description  
CK  
CK  
HIGH  
CKE  
CS  
RAS  
CAS  
WE  
x4: A0-A9, A11  
x8: A0-A9  
CA  
x16: A0-A8  
EN AP  
A10  
DIS AP  
BA  
CA = column address  
BA = bank address  
EN AP = enable Auto Precharge  
DIS AP = disable Auto Precharge  
BA0, BA1  
Don’t Care  
Figure 18 Write Command  
Data Sheet  
36  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Functional Description  
Maximum DQSS  
T1  
T2  
T3  
T4  
CK  
CK  
Write  
NOP  
NOP  
NOP  
Command  
Address  
BA a, COL b  
tDQSS (max)  
DQS  
DQ  
Dla-b  
DM  
Minimum DQSS  
T4  
T1  
T2  
T3  
CK  
CK  
Write  
NOP  
NOP  
NOP  
Command  
Address  
BA a, COL b  
tDQSS (min)  
DQS  
DQ  
Dla-b  
DM  
DI a-b = data in for bank a, column b.  
3 subsequent elements of data in are applied in the programmed order following DI a-b.  
A non-interrupted burst is shown.  
A10 is Low with the Write command (Auto Precharge is disabled).  
Don’t Care  
Figure 19 Write Burst (Burst Length = 4)  
Data Sheet  
37  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Functional Description  
Maximum DQSS  
T1  
T2  
T3  
T4  
T5  
T6  
CK  
CK  
Write  
NOP  
Write  
NOP  
NOP  
NOP  
Command  
Address  
BAa, COL b  
BAa, COL n  
tDQSS (max)  
DQS  
DQ  
DI a-b  
DI a-n  
DM  
Minimum DQSS  
T1  
T2  
T3  
T4  
T5  
T6  
CK  
CK  
Write  
NOP  
Write  
NOP  
NOP  
NOP  
Command  
Address  
BA, COL b  
BA, COL n  
tDQSS (min)  
DQS  
DQ  
DI a-b  
DI a-n  
DM  
DI a-b = data in for bank a, column b, etc.  
3 subsequent elements of data in are applied in the programmed order following DI a-b.  
3 subsequent elements of data in are applied in the programmed order following DI a-n.  
A non-interrupted burst is shown.  
Don’t Care  
Each Write command may be to any bank.  
Figure 20 Write to Write (Burst Length = 4)  
Data Sheet  
38  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Functional Description  
T1  
T2  
T3  
T4  
T5  
CK  
CK  
Write  
NOP  
NOP  
Write  
NOP  
Command  
Address  
BAa, COL b  
BAa, COL n  
tDQSS (max)  
DQS  
DQ  
DI a-b  
DI a-n  
DM  
DI a-b, etc. = data in for bank a, column b, etc.  
3 subsequent elements of data in are applied in the programmed order following DI a-b.  
3 subsequent elements of data in are applied in the programmed order following DI a-n.  
A non-interrupted burst is shown.  
Don’t Care  
Each Write command may be to any bank.  
Figure 21 Write to Write: Max. DQSS, Non-Consecutive (Burst Length = 4)  
Data Sheet  
39  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Functional Description  
Maximum DQSS  
T1  
T2  
T3  
T4  
T5  
CK  
CK  
Write  
Write  
Write  
Write  
Write  
Command  
Address  
BAa, COL b  
BAa, COL x  
BAa, COL n  
BAa, COL a  
BAa, COL g  
tDQSS (max)  
DQS  
DQ  
DI a-b  
DI a-b’  
DI a-x  
DI a-x’  
DI a-n  
DI a-n’  
DI a-a  
DI a-a’  
DM  
Minimum DQSS  
T5  
T1  
T2  
T3  
T4  
CK  
CK  
Write  
Write  
Write  
Write  
Write  
Command  
Address  
BAa, COL b  
BAa, COL x  
BAa, COL n  
BAa, COL a  
BAa, COL g  
tDQSS (min)  
DQS  
DQ  
DI a-g  
DI a-b  
DI a-b’  
DI a-x  
DI a-x’  
DI a-n  
DI a-n’  
DI a-a  
DI a-a’  
DM  
DI a-b, etc. = data in for bank a, column b, etc.  
b', etc. = odd or even complement of b, etc. (i.e., column address LSB inverted).  
Each Write command may be to any bank.  
Don’t Care  
Figure 22 Random Write Cycles (Burst Length = 2, 4 or 8)  
Data Sheet  
40  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Functional Description  
Maximum DQSS  
T1  
T2  
T3  
T4  
T5  
T6  
CK  
CK  
Write  
NOP  
NOP  
NOP  
Read  
NOP  
Command  
tWTR  
BAa, COL b  
BAa, COL n  
Address  
CL = 2  
tDQSS (max)  
DQS  
DQ  
DI a-b  
DM  
Minimum DQSS  
T1  
T2  
T3  
T4  
T5  
T6  
CK  
CK  
Write  
NOP  
NOP  
NOP  
Read  
NOP  
Command  
tWTR  
BAa, COL n  
BAa, COL b  
Address  
CL = 2  
tDQSS (min)  
DQS  
DQ  
DI a-b  
DM  
DI a-b = data in for bank a, column b.  
3 subsequent elements of data in are applied in the programmed order following DI a-b.  
A non-interrupted burst is shown.  
t
WTR is referenced from the first positive CK edge after the last data in pair.  
A10 is Low with the Write command (Auto Precharge is disabled).  
The Read and Write commands may be to any bank.  
Don’t Care  
Figure 23 Write to Read: Non-Interrupting (CAS Latency = 2; Burst Length = 4)  
Data Sheet  
41  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Functional Description  
Maximum DQSS  
T1  
T2  
T3  
T4  
T5  
T6  
CK  
CK  
Write  
NOP  
NOP  
NOP  
Read  
NOP  
Command  
tWTR  
BAa, COL n  
BAa, COL b  
Address  
CL = 2  
tDQSS (max)  
DQS  
DQ  
DIa- b  
1
1
DM  
Minimum DQSS  
T1  
T2  
T3  
T4  
T5  
T6  
CK  
CK  
Write  
NOP  
NOP  
NOP  
Read  
NOP  
Command  
tWTR  
BAa, COL n  
BAa, COL b  
Address  
CL = 2  
tDQSS (min)  
DQS  
DQ  
DI a-b  
1
1
DM  
DI a-b = data in for bank a, column b.  
An interrupted burst is shown, 4 data elements are written.  
3 subsequent elements of data in are applied in the programmed order following DI a-b.  
WTR is referenced from the first positive CK edge after the last data in pair.  
t
The Read command masks the last 2 data elements in the burst.  
A10 is Low with the Write command (Auto Precharge is disabled).  
The Read and Write commands are not necessarily to the same bank.  
1 = These bits are incorrectly written into the memory array if DM is low.  
Don’t Care  
Figure 24 Write to Read: Interrupting (CAS Latency = 2; Burst Length = 8)  
Data Sheet  
42  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Functional Description  
T1  
T2  
T3  
T4  
T5  
T6  
CK  
CK  
Write  
NOP  
NOP  
NOP  
Read  
NOP  
Command  
tWTR  
BAa, COL n  
BAa, COL b  
Address  
CL = 2  
tDQSS (min)  
DQS  
DQ  
DI a-b  
1
2
2
DM  
DI a-b = data in for bank a, column b.  
An interrupted burst is shown, 3 data elements are written.  
2 subsequent elements of data in are applied in the programmed order following DI a-b.  
WTR is referenced from the first positive CK edge after the last desired data in pair (not the last desired data in element)  
t
The Read command masks the last 2 data elements in the burst.  
A10 is Low with the Write command (Auto Precharge is disabled).  
The Read and Write commands are not necessarily to the same bank.  
1 = This bit is correctly written into the memory array if DM is low.  
2 = These bits are incorrectly written into the memory array if DM is low.  
Don’t Care  
Figure 25 Write to Read: Min. DQSS, Odd Number of Data (3-bit Write), Interrupting (CL2; BL8)  
Data Sheet  
43  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Functional Description  
T1  
T2  
T3  
T4  
T5  
T6  
CK  
CK  
Write  
NOP  
NOP  
NOP  
Read  
NOP  
Command  
tWTR  
BAa, COL n  
BAa, COL b  
Address  
CL = 2  
tDQSS (nom)  
DQS  
DQ  
DI a-b  
DM  
1
1
DI a-b = data in for bank a, column b.  
An interrupted burst is shown, 4 data elements are written.  
3 subsequent elements of data in are applied in the programmed order following DI a-b.  
WTR is referenced from the first positive CK edge after the last desired data in pair.  
t
The Read command masks the last 2 data elements in the burst.  
A10 is Low with the Write command (Auto Precharge is disabled).  
The Read and Write commands are not necessarily to the same bank.  
1 = These bits are incorrectly written into the memory array if DM is low.  
Don’t Care  
Figure 26 Write to Read: Nominal DQSS, Interrupting (CAS Latency = 2; Burst Length = 8)  
Data Sheet  
44  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Functional Description  
Maximum DQSS  
T1  
T2  
T3  
T4  
T5  
T6  
CK  
CK  
Write  
NOP  
NOP  
NOP  
NOP  
tWR  
PRE  
Command  
BA (a or all)  
BA a, COL b  
Address  
tRP  
tDQSS (max)  
DQS  
DQ  
DI a-b  
DM  
Minimum DQSS  
T1  
T2  
T3  
T4  
T5  
T6  
CK  
CK  
Write  
NOP  
NOP  
NOP  
NOP  
tWR  
PRE  
Command  
BA (a or all)  
BA a, COL b  
Address  
tRP  
tDQSS (min)  
DQS  
DQ  
DI a-b  
DM  
DI a-b = data in for bank a, column b.  
3 subsequent elements of data in are applied in the programmed order following DI a-b.  
A non-interrupted burst is shown.  
t
WR is referenced from the first positive CK edge after the last data in pair.  
Don’t Care  
A10 is Low with the Write command (Auto Precharge is disabled).  
Figure 27 Write to Precharge: Non-Interrupting (Burst Length = 4)  
Data Sheet  
45  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Functional Description  
Maximum DQSS  
T1  
T2  
T3  
T4  
T5  
T6  
CK  
CK  
Write  
NOP  
NOP  
NOP  
tWR  
PRE  
NOP  
Command  
BA (a or all)  
BA a, COL b  
Address  
tRP  
tDQSS (max)  
2
DQS  
DQ  
DI a-b  
1
1
3
3
DM  
Minimum DQSS  
T5 T6  
T1  
T2  
T3  
T4  
CK  
CK  
Write  
NOP  
NOP  
NOP  
tWR  
PRE  
NOP  
Command  
BA a, COL b  
BA (a or all)  
Address  
tRP  
tDQSS (min)  
2
DQS  
DQ  
DI a-b  
3
3
1
1
DM  
DI a-b = data in for bank a, column b.  
An interrupted burst is shown, 2 data elements are written.  
1 subsequent element of data in is applied in the programmed order following DI a-b.  
WR is referenced from the first positive CK edge after the last desired data in pair.  
t
The Precharge command masks the last 2 data elements in the burst, for burst length = 8.  
A10 is Low with the Write command (Auto Precharge is disabled).  
1 = Can be don't care for programmed burst length of 4.  
2 = For programmed burst length of 4, DQS becomes don't care at this point.  
3 = These bits are incorrectly written into the memory array if DM is low.  
Don’t Care  
Figure 28 Write to Precharge: Interrupting (Burst Length = 4 or 8)  
Data Sheet  
46  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Functional Description  
T1  
T2  
T3  
T4  
T5  
T6  
CK  
CK  
Write  
NOP  
NOP  
NOP  
tWR  
PRE  
NOP  
Command  
BA a, COL b  
BA (a or all)  
Address  
tRP  
tDQSS (min)  
2
DQS  
DQ  
DI a-b  
1
1
3
4
4
DM  
DI a-b = data in for bank a, column b.  
An interrupted burst is shown, 1 data element is written.  
WR is referenced from the first positive CK edge after the last desired data in pair.  
t
The Precharge command masks the last 2 data elements in the burst.  
A10 is Low with the Write command (Auto Precharge is disabled).  
1 = Can be don't care for programmed burst length of 4.  
2 = For programmed burst length of 4, DQS becomes don't care at this point.  
3 = This bit is correctly written into the memory array if DM is low.  
4 = These bits are incorrectly written into the memory array if DM is low.  
Don’t Care  
Figure 29 Write to Precharge: Minimum DQSS, Odd Number of Data (1-bit Write), Interrupting (BL 4 or 8)  
Data Sheet  
47  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Functional Description  
T1  
T2  
T3  
T4  
T5  
T6  
CK  
CK  
Write  
NOP  
NOP  
NOP  
tWR  
PRE  
NOP  
Command  
BA a, COL b  
BA (a or all)  
Address  
tRP  
tDQSS (nom)  
2
DQS  
DQ  
DI a-b  
3
3
1
1
DM  
DI a-b = Data In for bank a, column b.  
An interrupted burst is shown, 2 data elements are written.  
1 subsequent element of data in is applied in the programmed order following DI a-b.  
tWR is referenced from the first positive CK edge after the last desired data in pair.  
The Precharge command masks the last 2 data elements in the burst.  
A10 is Low with the Write command (Auto Precharge is disabled).  
1 = Can be don't care for programmed burst length of 4.  
2 = For programmed burst length of 4, DQS becomes don't care at this point.  
3 = These bits are incorrectly written into the memory array if DM is low.  
Don’t Care  
Figure 30 Write to Precharge: Nominal DQSS (2-bit Write), Interrupting (Burst Length = 4 or 8)  
Data Sheet  
48  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Functional Description  
3.5.4  
Precharge  
The Precharge command is used to deactivate the open row in a particular bank or the open row in all banks. The  
bank(s) will be available for a subsequent row access some specified time (tRP) after the Precharge command is  
issued. Input A10 determines whether one or all banks are to be precharged, and in the case where only one bank  
is to be precharged, inputs BA0, BA1 select the bank. When all banks are to be precharged, inputs BA0, BA1 are  
treated as “Don’t Care”. Once a bank has been precharged, it is in the idle state and must be activated prior to any  
Read or Write commands being issued to that bank.  
CK  
CK  
HIGH  
CKE  
CS  
RAS  
CAS  
WE  
A0-A9, A11, A13  
All Banks  
A10  
One Bank  
BA  
BA0, BA1  
BA = bank address  
(if A10 is Low, otherwise Don’t Care).  
Don’t Care  
Figure 31 Precharge Command  
Data Sheet  
49  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Functional Description  
3.5.5  
Power-Down  
Power-down is entered when CKE is registered LOW (no accesses can be in progress). If power-down occurs  
when all banks are idle, this mode is referred to as precharge power-down; if power-down occurs when there is a  
row active in any bank, this mode is referred to as active power-down. Entering power-down deactivates the input  
and output buffers, excluding CK, CK and CKE. The DLL is still running in Power Down mode, so for maximum  
power savings, the user has the option of disabling the DLL prior to entering Power-down. In that case, the DLL  
must be enabled after exiting power-down, and 200 clock cycles must occur before a Read command can be  
issued. In power-down mode, CKE Low and a stable clock signal must be maintained at the inputs of the  
DDR SDRAM, and all other input signals are “Don’t Care”. However, power-down duration is limited by the refresh  
requirements of the device, so in most applications, the self refresh mode is preferred over the DLL-disabled  
power-down mode.  
The power-down state is synchronously exited when CKE is registered HIGH (along with a NOP or Deselect  
command). A valid, executable command may be applied one clock cycle later.  
CK  
CK  
tIS  
tIS  
CKE  
Command  
VALID  
NOP  
VALID  
NOP  
No column  
access in  
progress  
Exit  
power down  
mode  
Don’t Care  
Enter Power Down mode  
(Burst Read or Write operation  
must not be in progress)  
Figure 32 Power Down  
Data Sheet  
50  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Functional Description  
Table 7  
Truth Table 2: Clock Enable (CKE)  
Current State CKE n-1 CKEn  
Previous Current  
Command n  
Action n  
Notes  
Cycle  
Cycle  
Self Refresh  
Self Refresh  
Power Down  
Power Down  
All Banks Idle  
All Banks Idle  
L
L
L
L
H
H
L
X
Maintain Self-Refresh  
Exit Self-Refresh  
1)  
H
L
Deselect or NOP  
X
Maintain Power-Down  
Exit Power-Down  
H
L
Deselect or NOP  
Deselect or NOP  
AUTO REFRESH  
Deselect or NOP  
See Table 8  
Precharge Power-Down Entry –  
L
Self Refresh Entry  
Bank(s) Active H  
H
L
Active Power-Down Entry  
H
1) Deselect or NOP commands should be issued on any clock edges occurring during the Self Refresh Exit (tXSNR) period. A  
minimum of 200 clock cycles are needed before applying a read command to allow the DLL to lock to the input clock.  
1. CKEn is the logic state of CKE at clock edge n: CKE n-1 was the state of CKE at the previous clock edge.  
2. Current state is the state of the DDR SDRAM immediately prior to clock edge n.  
3. COMMAND n is the command registered at clock edge n, and ACTION n is a result of COMMAND n.  
4. All states and sequences not shown are illegal or reserved.  
Table 8  
Truth Table 3: Current State Bank n - Command to Bank n (same bank)  
Current State CS RAS CAS WE Command  
Action  
Notes  
1)2)3)4)5)6)  
Any  
Idle  
H
L
L
L
L
X
H
L
L
L
X
H
H
L
X
H
H
H
L
Deselect  
NOP. Continue previous operation.  
1) to 6)  
1) to 6)  
1) to 7)  
1) to 7)  
No Operation  
Active  
NOP. Continue previous operation.  
Select and activate row  
AUTO REFRESH  
L
MODE  
REGISTER SET  
1) to 6), 8)  
1) to 6), 8)  
1) to 6), 9)  
1) to 6), 8)  
Row Active  
L
L
L
L
H
H
L
L
L
H
L
H
L
Read  
Select column and start Read burst  
Select column and start Write burst  
Deactivate row in bank(s)  
Write  
L
Precharge  
Read  
Read (Auto  
Precharge  
Disabled)  
H
H
Select column and start new Read  
burst  
1) to 6), 9)  
L
L
L
H
H
L
L
Precharge  
Truncate Read burst, start  
Precharge  
1) to 6), 10)  
H
BURST  
BURST TERMINATE  
TERMINATE  
1) to 6), 8), 11)  
1) to 6), 8)  
Write (Auto  
Precharge  
Disabled)  
L
L
L
H
H
L
L
L
H
H
L
L
Read  
Select column and start Read burst  
Select column and start Write burst  
Truncate Write burst, start Precharge  
Write  
1) to 6), 9), 11)  
Precharge  
1) This table applies when CKE n-1 was HIGH and CKE n is HIGH (see Table 7 and after tXSNR/tXSRD has been met (if the  
previous state was self refresh).  
2) This table is bank-specific, except where noted, i.e., the current state is for a specific bank and the commands shown are  
those allowed to be issued to that bank when in that state. Exceptions are covered in the notes below.  
Data Sheet  
51  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Functional Description  
3) Current state definitions:  
Idle: The bank has been precharged, and tRP has been met.  
Row Active: A row in the bank has been activated, and tRCD has been met. No data bursts/accesses and no register  
accesses are in progress.  
Read: A Read burst has been initiated, with Auto Precharge disabled, and has not yet terminated or been terminated.  
Write: A Write burst has been initiated, with Auto Precharge disabled, and has not yet terminated or been terminated.  
4) The following states must not be interrupted by a command issued to the same bank.  
Precharging: Starts with registration of a Precharge command and ends when tRP is met. Once tRP is met, the bank is in  
the idle state.  
Row Activating: Starts with registration of an Active command and ends when tRCD is met. Once tRCD is met, the bank is in  
the “row active” state.  
Read w/Auto Precharge Enabled: Starts with registration of a Read command with Auto Precharge enabled and ends when  
t
RP has been met. Once tRP is met, the bank is in the idle state.  
Write w/Auto Precharge Enabled: Starts with registration of a Write command with Auto Precharge enabled and ends when  
RP has been met. Once tRP is met, the bank is in the idle state.  
t
Deselect or NOP commands, or allowable commands to the other bank should be issued on any clock edge occurring  
during these states. Allowable commands to the other bank are determined by its current state and according to Table 9.  
5) The following states must not be interrupted by any executable command; Deselect or NOP commands must be applied  
on each positive clock edge during these states.  
Refreshing: Starts with registration of an Auto Refresh command and ends when tRFC is met. Once tRFC is met, the  
DDR SDRAM is in the “all banks idle” state.  
Accessing Mode Register: Starts with registration of a Mode Register Set command and ends when tMRD has been met.  
Once tMRD is met, the DDR SDRAM is in the “all banks idle” state.  
Precharging All: Starts with registration of a Precharge All command and ends when tRP is met. Once tRP is met, all banks  
is in the idle state.  
6) All states and sequences not shown are illegal or reserved.  
7) Not bank-specific; requires that all banks are idle.  
8) Reads or Writes listed in the Command/Action column include Reads or Writes with Auto Precharge enabled and Reads  
or Writes with Auto Precharge disabled.  
9) May or may not be bank-specific; if all/any banks are to be precharged, all/any must be in a valid state for precharging.  
10) Not bank-specific; BURST TERMINATE affects the most recent Read burst, regardless of bank.  
11) Requires appropriate DM masking.  
Data Sheet  
52  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Functional Description  
Table 9  
Truth Table 4: Current State Bank n - Command to Bank m (different bank)  
Current State  
CS RAS CAS WE Command  
Action  
Notes  
1)2)3)4)5)6)  
Any  
H
L
X
H
X
X
H
X
X
H
X
Deselect  
NOP. Continue previous operation.  
1) to 6)  
1) to 6)  
No Operation  
NOP. Continue previous operation.  
Idle  
X
Any Command  
Otherwise Allowed  
to Bank m  
1) to 6)  
1) to 7)  
1) to 7)  
1) to 6)  
1) to 6)  
1) to 7)  
Row Activating,  
Active, or  
Precharging  
L
L
L
L
L
L
L
H
L
H
H
L
Active  
Read  
Select and activate row  
Select column and start Read burst  
Select column and start Write burst  
H
H
L
L
Write  
H
H
L
L
Precharge  
Active  
Read  
Read (Auto  
Precharge  
Disabled)  
L
H
H
Select and activate row  
H
Select column and start new Read  
burst  
1) to 6)  
1) to 6)  
1) to 8)  
1) to 7)  
L
L
L
L
L
H
H
L
L
Precharge  
Active  
Write (Auto  
Precharge  
Disabled)  
L
H
H
L
Select and activate row  
H
H
Read  
Select column and start Read burst  
L
Write  
Select column and start new Write  
burst  
1) to 6)  
L
L
L
H
H
H
L
L
Precharge  
Active  
1) to 6)  
Read (With Auto L  
H
H
Select and activate row  
1) to 7), 9)  
Precharge)  
L
Read  
Select column and start new Read  
burst  
1) to 7), 9), 10)  
1) to 6)  
L
L
H
L
L
L
Write  
Select column and start Write burst  
H
H
L
L
Precharge  
Active  
Read  
1) to 6)  
Write (With Auto L  
L
H
H
L
Select and activate row  
Select column and start Read burst  
1) to 7), 9)  
1) to 7), 9)  
Precharge)  
L
H
H
L
L
L
Write  
Select column and start new Write  
burst  
1) to 6)  
L
H
L
Precharge  
1) This table applies when CKE n-1 was HIGH and CKE n is HIGH (see Table 7: Clock Enable (CKE) and after tXSNR/tXSRD  
has been met (if the previous state was self refresh).  
2) This table describes alternate bank operation, except where noted, i.e., the current state is for bank n and the commands  
shown are those allowed to be issued to bank m (assuming that bank m is in such a state that the given command is  
allowable). Exceptions are covered in the notes below.  
3) Current state definitions:  
Idle: The bank has been precharged, and tRP has been met.  
Row Active: A row in the bank has been activated, and tRCD has been met. No data bursts/accesses and no register  
accesses are in progress.  
Read: A Read burst has been initiated, with Auto Precharge disabled, and has not yet terminated or been terminated.  
Write: A Write burst has been initiated, with Auto Precharge disabled, and has not yet terminated or been terminated.  
Read with Auto Precharge Enabled: See 10)  
Write with Auto Precharge Enabled: See 10)  
.
.
4) AUTO REFRESH and Mode Register Set commands may only be issued when all banks are idle.  
5) A BURST TERMINATE command cannot be issued to another bank; it applies to the bank represented by the current state  
only.  
6) All states and sequences not shown are illegal or reserved.  
Data Sheet  
53  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Functional Description  
7) Reads or Writes listed in the Command/Action column include Reads or Writes with Auto Precharge enabled and Reads  
or Writes with Auto Precharge disabled.  
8) Requires appropriate DM masking.  
9) Concurrent Auto Precharge:  
This device supports “Concurrent Auto Precharge”. When a read with auto precharge or a write with auto precharge is  
enabled any command may follow to the other banks as long as that command does not interrupt the read or write data  
transfer and all other limitations apply (e.g. contention between READ data and WRITE data must be avoided). The  
minimum delay from a read or write command with auto precharge enable, to a command to a different banks is  
summarized in Table 10.  
10) A Write command may be applied after the completion of data output.  
Table 10  
Truth Table 5: Concurrent Auto Precharge  
From Command  
To Command (different bank)  
Minimum Delay with Concurrent  
Auto Precharge Support  
Unit  
WRITE w/AP  
Read or Read w/AP  
Write or Write w/AP  
Precharge or Activate  
Read or Read w/AP  
Write or Write w/AP  
Precharge or Activate  
1 + (BL/2) + tWTR  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
BL/2  
1
Read w/AP  
BL/2  
CL (rounded up) + BL/2  
1
Data Sheet  
54  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Functional Description  
3.6  
Simplified State Diagram  
Power  
Applied  
Power  
On  
Self  
Refresh  
Precharge  
PREALL  
REFS  
REFSX  
REFA  
MRS  
EMRS  
MRS  
Auto  
Refresh  
Idle  
CKEL  
CKEH  
Active  
Power  
Down  
ACT  
Precharge  
Power  
Down  
CKEH  
CKEL  
Burst Stop  
Row  
Active  
Read  
Write  
Write A  
Read A  
Write  
Read  
Read  
Read A  
Write A  
Read  
A
PRE  
Write  
A
Read  
A
PRE  
PRE  
Precharge  
PREALL  
PRE  
Automatic Sequence  
Command Sequence  
PREALL = Precharge All Banks  
MRS = Mode Register Set  
EMRS = Extended Mode Register Set  
REFS = Enter Self Refresh  
REFSX = Exit Self Refresh  
REFA = Auto Refresh  
CKEL = Enter Power Down  
CKEH = Exit Power Down  
ACT = Active  
Write A = Write with Autoprecharge  
Read A = Read with Autoprecharge  
PRE = Precharge  
Figure 33 Simplified State Diagram  
Data Sheet  
55  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Electrical Characteristics  
4
Electrical Characteristics  
4.1  
Operating Conditions  
Table 11  
Absolute Maximum Ratings  
Parameter  
Symbol  
Values  
typ.  
Unit Note/ Test  
Condition  
min.  
VIN, VOUT –0.5  
max.  
Voltage on I/O pins relative to VSS  
VDDQ  
+
V
0.5  
Voltage on inputs relative to VSS  
Voltage on VDD supply relative to VSS  
Voltage on VDDQ supply relative to VSS  
Operating temperature (ambient)  
Storage temperature (plastic)  
VIN  
–1  
–1  
–1  
0
+3.6  
+3.6  
+3.6  
+70  
+150  
V
VDD  
VDDQ  
TA  
V
V
°C  
°C  
W
mA  
TSTG  
PD  
-55  
Power dissipation (per SDRAM component)  
Short circuit output current  
1.5  
50  
IOUT  
Attention: Permanent damage to the device may occur if “Absolute Maximum Ratings” are exceeded. This  
is a stress rating only, and functional operation should be restricted to recommended operation  
conditions. Exposure to absolute maximum rating conditions for extended periods of time may  
affect device reliability and exceeding only one of the values may cause irreversible damage to  
the integrated circuit.  
Table 12  
Input and Output Capacitances  
Symbol  
Parameter  
Values  
Typ.  
Unit  
Note/  
Test Condition  
Min.  
1.5  
2.0  
Max.  
2.5  
Input Capacitance: CK, CK  
Delta Input Capacitance  
CI1  
pF  
pF  
pF  
pF  
pF  
pF  
P-TFBGA-68-2 1)  
P-TSOPII-66-1 1)  
3.0  
1)  
CdI1  
CI2  
0.25  
2.5  
Input Capacitance:  
All other input-only pins  
1.5  
2.0  
P-TFBGA-68-2 1)  
P-TSOPII-66-1 1)  
3.0  
1)  
Delta Input Capacitance:  
All other input-only pins  
CdIO  
0.5  
P-TFBGA-68-2 1)  
2)  
Input/Output Capacitance: DQ, DQS, DM CIO  
3.5  
4.0  
4.5  
5.0  
0.5  
pF  
pF  
pF  
P-TSOPII-66-1 1)2)  
1)  
Delta Input/Output Capacitance:  
DQ, DQS, DM  
CdIO  
1) These values are guaranteed by design and are tested on a sample base only. VDDQ = VDD = 2.5 V ± 0.2 V, f = 100 MHz,  
TA = 25 °C, VOUT(DC) = VDDQ/2, VOUT (Peak to Peak) 0.2 V. Unused pins are tied to ground.  
2) DM inputs are grouped with I/O pins reflecting the fact that they are matched in loading to DQ and DQS to facilitate trace  
matching at the board level.  
Data Sheet  
56  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Electrical Characteristics  
Table 13  
Electrical Characteristics and DC Operating Conditions  
Parameter  
Symbol  
Values  
Typ.  
Unit Note/Test Condition 1)  
Min.  
2.3  
2.5  
2.3  
2.5  
0
Max.  
2.7  
2.7  
2.7  
2.7  
0
Device Supply Voltage  
Device Supply Voltage  
Output Supply Voltage  
Output Supply Voltage  
VDD  
2.5  
2.6  
2.5  
2.6  
V
V
V
V
V
fCK 166 MHz  
CK > 166 MHz 2)  
fCK 166 MHz 3)  
CK > 166 MHz 2)3)  
VDD  
f
VDDQ  
VDDQ  
f
Supply Voltage, I/O Supply VSS,  
Voltage  
VSSQ  
VREF  
VTT  
4)  
5)  
Input Reference Voltage  
0.49 × VDDQ 0.5 × VDDQ 0.51 × VDDQ  
V
I/O Termination Voltage  
(System)  
V
REF – 0.04  
V
REF + 0.04 V  
6)  
6)  
6)  
Input High (Logic1) Voltage VIH(DC)  
Input Low (Logic0) Voltage VIL(DC)  
V
REF + 0.15  
V
V
V
DDQ + 0.3  
V
–0.3  
REF – 0.15 V  
Input Voltage Level,  
CK and CK Inputs  
VIN(DC) –0.3  
DDQ + 0.3  
DDQ + 0.6  
V
6)7)  
8)  
Input Differential Voltage, VID(DC) 0.36  
CK and CK Inputs  
V
V
VI-Matching Pull-up  
Current to Pull-down  
Current  
VIRatio  
0.71  
–2  
1.4  
2
Input Leakage Current  
II  
µA Any input 0 V VIN VDD;  
All other pins not under test  
= 0 V 6)9)  
Output Leakage Current  
IOZ  
IOH  
IOL  
–5  
5
µA DQs are disabled;  
6)  
0 V VOUT VDDQ  
Output High Current,  
Normal Strength Driver  
–16.2  
mA  
mA  
V
OUT = 1.95 V 6)  
OUT = 0.35 V 6)  
Output Low  
16.2  
V
Current, Normal Strength  
Driver  
1) 0 °C TA 70 °C  
2) DDR400 conditions apply for all clock frequencies above 166 MHz  
3) Under all conditions, VDDQ must be less than or equal to VDD  
4) Peak to peak AC noise on VREF may not exceed ± 2% VREF (DC). VREF is also expected to track noise variations in VDDQ  
5) VTT is not applied directly to the device. VTT is a system supply for signal termination resistors, is expected to be set equal  
.
.
to VREF, and must track variations in the DC level of VREF  
.
6) Inputs are not recognized as valid until VREF stabilizes.  
7) VID is the magnitude of the difference between the input level on CK and the input level on CK.  
8) The ration of the pull-up current to the pull-down current is specified for the same temperature and voltage, over the entire  
temperature and voltage range, for device drain to source voltage from 0.25 to 1.0 V. For a given output, it represents the  
maximum difference between pull-up and pull-down drivers due to process variation.  
9) Values are shown per Green Product component  
Data Sheet  
57  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Electrical Characteristics  
4.2  
Normal Strength Pull-down and Pull-up Characteristics  
1. The nominal pull-down V-I curve for DDR SDRAM devices is expected, but not guaranteed, to lie within the  
inner bounding lines of the V-I curve.  
2. The full variation in driver pull-down current from minimum to maximum process, temperature, and voltage lie  
within the outer bounding lines of the V-I curve.  
3. The nominal pull-up V-I curve for DDR SDRAM devices is expected, but not guaranteed, to lie within the inner  
bounding lines of the V-I curve.  
4. The full variation in driver pull-up current from minimum to maximum process, temperature, and voltage lie  
within the outer bounding lines of the V-I curve.  
5. The full variation in the ratio of the maximum to minimum pull-up and pull-down current does not exceed 1.7,  
for device drain to source voltages from 0.1 to 1.0.  
6. The full variation in the ratio of the nominal pull-up to pull-down current should be unity ±10%, for device drain  
to source voltages from 0.1 to 1.0 V.  
140  
Maximum  
120  
100  
Nominal High  
80  
60  
40  
Nominal Low  
Minimum  
20  
0
0
0.5  
1
1.5  
2
2.5  
V
DDQ - VOUT (V)  
Figure 34 Normal Strength Pull-down Characteristics  
0
-20  
-40  
-60  
-80  
Minimum  
Nominal Low  
-100  
-120  
-140  
-160  
Nominal High  
Maximum  
0
0.5  
1
1.5  
2
2.5  
V
DDQ - VOUT (V)  
Figure 35 Normal Strength Pull-up Characteristics  
Data Sheet  
58  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Electrical Characteristics  
Table 14  
Normal Strength Pull-down and Pull-up Currents  
Pulldown Current (mA)  
Voltage (V)  
Pullup Current (mA)  
Nominal  
Low  
Nominal  
High  
Min.  
Max.  
Nominal  
Low  
Nominal  
High  
Min.  
Max.  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
6.0  
6.8  
4.6  
9.6  
-6.1  
-7.6  
-4.6  
-10.0  
12.2  
18.1  
24.1  
29.8  
34.6  
39.4  
43.7  
47.5  
51.3  
54.1  
56.2  
57.9  
59.3  
60.1  
60.5  
61.0  
61.5  
62.0  
62.5  
62.9  
63.3  
63.8  
64.1  
64.6  
64.8  
65.0  
13.5  
20.1  
26.6  
33.0  
39.1  
44.2  
49.8  
55.2  
60.3  
65.2  
69.9  
74.2  
78.4  
82.3  
85.9  
89.1  
92.2  
95.3  
97.2  
99.1  
100.9  
101.9  
102.8  
103.8  
104.6  
105.4  
9.2  
18.2  
-12.2  
-18.1  
-24.0  
-29.8  
-34.3  
-38.1  
-41.1  
-43.8  
-46.0  
-47.8  
-49.2  
-50.0  
-50.5  
-50.7  
-51.0  
-51.1  
-51.3  
-51.5  
-51.6  
-51.8  
-52.0  
-52.2  
-52.3  
-52.5  
-52.7  
-52.8  
-14.5  
-21.2  
-27.7  
-34.1  
-40.5  
-46.9  
-53.1  
-59.4  
-65.5  
-71.6  
-77.6  
-83.6  
-89.7  
-95.5  
-101.3  
-107.1  
-112.4  
-118.7  
-124.0  
-129.3  
-134.6  
-139.9  
-145.2  
-150.5  
-155.3  
-160.1  
-9.2  
-20.0  
13.8  
18.4  
23.0  
27.7  
32.2  
36.8  
39.6  
42.6  
44.8  
46.2  
47.1  
47.4  
47.7  
48.0  
48.4  
48.9  
49.1  
49.4  
49.6  
49.8  
49.9  
50.0  
50.2  
50.4  
50.5  
26.0  
-13.8  
-18.4  
-23.0  
-27.7  
-32.2  
-36.0  
-38.2  
-38.7  
-39.0  
-39.2  
-39.4  
-39.6  
-39.9  
-40.1  
-40.2  
-40.3  
-40.4  
-40.5  
-40.6  
-40.7  
-40.8  
-40.9  
-41.0  
-41.1  
-41.2  
-29.8  
33.9  
-38.8  
41.8  
-46.8  
49.4  
-54.4  
56.8  
-61.8  
63.2  
-69.5  
69.9  
-77.3  
76.3  
-85.2  
82.5  
-93.0  
88.3  
-100.6  
-108.1  
-115.5  
-123.0  
-130.4  
-136.7  
-144.2  
-150.5  
-156.9  
-163.2  
-169.6  
-176.0  
-181.3  
-187.6  
-192.9  
-198.2  
93.8  
99.1  
103.8  
108.4  
112.1  
115.9  
119.6  
123.3  
126.5  
129.5  
132.4  
135.0  
137.3  
139.2  
140.8  
Table 15  
Evaluation Conditions for I/O Driver Characteristics  
Nominal  
Parameter  
Minimum  
Maximum  
Operating Temperature  
VDD/VDDQ  
25 ° C  
2.5 V  
0 ° C  
70 °C  
2.7 V  
2.3 V  
Process Corner  
typical  
slow-slow  
fast-fast  
Data Sheet  
59  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Electrical Characteristics  
4.3  
Weak Strength Pull-down and Pull-up Characteristics  
1. The weak pull-down V-I curve for DDR SDRAM devices is expected, but not guaranteed, to lie within the inner  
bounding lines of the V-I curve.  
2. The weak pull-up V-I curve for DDR SDRAM devices is expected, but not guaranteed, to lie within the inner  
bounding lines of the V-I curve.  
3. The full variation in driver pull-up current from minimum to maximum process, temperature, and voltage lie  
within the outer bounding lines of the V-I curve.  
4. The full variation in the ratio of the maximum to minimum pull-up and pull-down current does not exceed 1.7,  
for device drain to source voltages from 0.1 to 1.0.  
5. The full variation in the ratio of the nominal pull-up to pull-down current should be unity ±10%, for device drain  
to source voltages from 0.1 to 1.0 V.  
80  
Maximum  
70  
60  
Typical high  
50  
Typical low  
Minimum  
40  
30  
20  
10  
0
0,0  
0,5  
1,0  
1,5  
Vout [V]  
2,0  
2,5  
Figure 36 Weak Strength Pull-down Characteristics  
0,0  
0,0  
0,5  
1,0  
1,5  
2,0  
2,5  
-10,0  
-20,0  
-30,0  
-40,0  
-50,0  
-60,0  
-70,0  
-80,0  
Minimum  
Typical low  
Typical high  
Maximum  
Vout [V]  
Figure 37 Weak Strength Pull-up Characteristics  
Data Sheet  
60  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Electrical Characteristics  
Table 16  
Weak Strength Driver Pull-down and Pull-up Characteristics  
Pulldown Current (mA) Pullup Current (mA)  
Voltage (V)  
Nominal  
Low  
Nominal  
High  
Min.  
Max.  
Nominal  
Low  
Nominal  
High  
Min.  
Max.  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
3.4  
3.8  
2.6  
5.0  
-3.5  
-4.3  
-2.6  
-5.0  
6.9  
7.6  
5.2  
9.9  
-6.9  
-8.2  
-5.2  
-9.9  
10.3  
13.6  
16.9  
19.6  
22.3  
24.7  
26.9  
29.0  
30.6  
31.8  
32.8  
33.5  
34.0  
34.3  
34.5  
34.8  
35.1  
35.4  
35.6  
35.8  
36.1  
36.3  
36.5  
36.7  
36.8  
11.4  
15.1  
18.7  
22.1  
25.0  
28.2  
31.3  
34.1  
36.9  
39.5  
42.0  
44.4  
46.6  
48.6  
50.5  
52.2  
53.9  
55.0  
56.1  
57.1  
57.7  
58.2  
58.7  
59.2  
59.6  
7.8  
14.6  
19.2  
23.6  
28.0  
32.2  
35.8  
39.5  
43.2  
46.7  
50.0  
53.1  
56.1  
58.7  
61.4  
63.5  
65.6  
67.7  
69.8  
71.6  
73.3  
74.9  
76.4  
77.7  
78.8  
79.7  
-10.3  
-13.6  
-16.9  
-19.4  
-21.5  
-23.3  
-24.8  
-26.0  
-27.1  
-27.8  
-28.3  
-28.6  
-28.7  
-28.9  
-28.9  
-29.0  
-29.2  
-29.2  
-29.3  
-29.5  
-29.5  
-29.6  
-29.7  
-29.8  
-29.9  
-12.0  
-15.7  
-19.3  
-22.9  
-26.5  
-30.1  
-33.6  
-37.1  
-40.3  
-43.1  
-45.8  
-48.4  
-50.7  
-52.9  
-55.0  
-56.8  
-58.7  
-60.0  
-61.2  
-62.4  
-63.1  
-63.8  
-64.4  
-65.1  
-65.8  
-7.8  
-14.6  
-19.2  
-23.6  
-28.0  
-32.2  
-35.8  
-39.5  
-43.2  
-46.7  
-50.0  
-53.1  
-56.1  
-58.7  
-61.4  
-63.5  
-65.6  
-67.7  
-69.8  
-71.6  
-73.3  
-74.9  
-76.4  
-77.7  
-78.8  
-79.7  
10.4  
13.0  
15.7  
18.2  
20.8  
22.4  
24.1  
25.4  
26.2  
26.6  
26.8  
27.0  
27.2  
27.4  
27.7  
27.8  
28.0  
28.1  
28.2  
28.3  
28.3  
28.4  
28.5  
28.6  
-10.4  
-13.0  
-15.7  
-18.2  
-20.4  
-21.6  
-21.9  
-22.1  
-22.2  
-22.3  
-22.4  
-22.6  
-22.7  
-22.7  
-22.8  
-22.9  
-22.9  
-23.0  
-23.0  
-23.1  
-23.2  
-23.2  
-23.3  
-23.3  
Data Sheet  
61  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Electrical Characteristics  
4.4  
AC Characteristics  
(Notes 1-5 apply to the following Tables; Electrical Characteristics and DC Operating Conditions, AC Operating  
Conditions, IDD Specifications and Conditions, and Electrical Characteristics and AC Timing.)  
Notes  
1. All voltages referenced to VSS.  
2. Tests for AC timing, IDD, and electrical, AC and DC characteristics, may be conducted at nominal  
reference/supply voltage levels, but the related specifications and device operation are guaranteed for the full  
voltage range specified.  
3. Figure 38 represents the timing reference load used in defining the relevant timing parameters of the part. It  
is not intended to be either a precise representation of the typical system environment nor a depiction of the  
actual load presented by a production tester. System designers will use IBIS or other simulation tools to  
correlate the timing reference load to a system environment. Manufacturers will correlate to their production  
test conditions (generally a coaxial transmission line terminated at the tester electronics).  
4. AC timing and IDD tests may use a VIL to VIH swing of up to 1.5 V in the test environment, but input timing is  
still referenced to VREF (or to the crossing point for CK, CK), and parameter specifications are guaranteed for  
the specified AC input levels under normal use conditions. The minimum slew rate for the input signals is  
1 V/ns in the range between VIL(AC) and VIH(AC)  
.
5. The AC and DC input level specifications are as defined in the SSTL_2 Standard (i.e. the receiver effectively  
switches as a result of the signal crossing the AC input level, and remains in that state as long as the signal  
does not ring back above (below) the DC input LOW (HIGH) level).  
6. For System Characteristics like Setup & Holdtime Derating for Slew Rate, I/O Delta Rise/Fall Derating, DDR  
SDRAM Slew Rate Standards, Overshoot & Undershoot specification and Clamp V-I characteristics see the  
latest JEDEC specification for DDR components.  
VTT  
50 Ω  
Output  
Timing Reference Point  
(VOUT  
)
30 pF  
Figure 38 AC Output Load Circuit Diagram / Timing Reference Load  
Data Sheet  
62  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Electrical Characteristics  
Table 17  
AC Operating Conditions1)  
Parameter  
Symbol  
Values  
Max.  
Unit Note/  
Test  
Min.  
Condition  
2)3)  
Input High (Logic 1) Voltage, DQ, DQS and DM Signals VIH(AC)  
Input Low (Logic 0) Voltage, DQ, DQS and DM Signals VIL(AC)  
V
REF + 0.31 —  
V
2)3)  
V
V
REF – 0.31 V  
2)3)4)  
2)3)5)  
Input Differential Voltage, CK and CK Inputs  
Input Closing Point Voltage, CK and CK Inputs  
VID(AC)  
VIX(AC)  
0.7  
DDQ + 0.6  
V
V
0.5 × VDDQ 0.5 × VDDQ  
– 0.2 + 0.2  
1) VDDQ = 2.5 V ± 0.2 V, VDD = +2.5 V ± 0.2 V (DDR266, DDR333); VDDQ = 2.6 V ± 0.1 V, VDD = +2.6 V ± 0.1 V (DDR400);  
0 °C TA 70 °C  
2) Input slew rate = 1 V/ns.  
3) Inputs are not recognized as valid until VREF stabilizes.  
4) VID is the magnitude of the difference between the input level on CK and the input level on CK.  
5) The value of VIX is expected to equal 0.5 × VDDQ of the transmitting device and must track variations in the DC level of the  
same.  
Table 18  
AC Timing - Absolute Specifications –5/–6  
Symbol  
Parameter  
–5  
–6  
Unit Note/Test  
Condition 1)  
DDR400B  
DDR333  
Min.  
Max. Min.  
Max.  
2)3)4)5)  
DQ output access time from CK/CK  
DQS output access time from CK/CK  
CK high-level width  
tAC  
–0.7  
–0.6  
0.45  
0.45  
+0.7  
+0.6  
0.55  
0.55  
–0.7  
–0.6  
0.45  
0.45  
+0.7  
+0.6  
0.55  
0.55  
ns  
2)3)4)5)  
tDQSCK  
tCH  
ns  
2)3)4)5)  
tCK  
2)3)4)5)  
CK low-level width  
tCL  
tCK  
2)3)4)5)  
Clock Half Period  
tHP  
min. (tCL, tCH) min. (tCL, tCH) ns  
Clock cycle time  
tCK  
5
12  
6
12  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCK  
CL = 3.02)3)4)5)  
CL = 2.52)3)4)5)  
CL = 2.02)3)4)5)  
6
12  
6
12  
7.5  
0.4  
0.4  
2.2  
1.75  
–0.7  
–0.7  
0.75  
12  
7.5  
0.45  
0.45  
2.2  
1.75  
–0.7  
–0.7  
0.75  
12  
2)3)4)5)  
DQ and DM input hold time  
DQ and DM input setup time  
tDH  
tDS  
2)3)4)5)  
2)3)4)5)6)  
2)3)4)5)6)  
2)3)4)5)7)  
2)3)4)5)7)  
2)3)4)5)  
Control and Addr. input pulse width (each input) tIPW  
DQ and DM input pulse width (each input)  
Data-out high-impedance time from CK/CK  
Data-out low-impedance time from CK/CK  
tDIPW  
tHZ  
+0.7  
+0.7  
1.25  
+0.40  
+0.40  
0.45  
+0.7  
+0.7  
1.25  
tLZ  
Write command to 1st DQS latching transition tDQSS  
DQS-DQ skew (DQS and associated DQ  
signals)  
tDQSQ  
tQHS  
tQH  
+0.40 ns  
+0.45 ns  
TFBGA 2)3)4)5)  
TSOPII 2)3)4)5)  
TFBGA 2)3)4)5)  
TSOPII 2)3)4)5)  
2)3)4)5)  
Data hold skew factor  
0.5  
0.55  
ns  
ns  
ns  
0.35  
DQ/DQS output hold time  
tHP  
tHP –  
tQHS  
tQHS  
2)3)4)5)  
2)3)4)5)  
DQS input low (high) pulse width (write cycle) tDQSL,H 0.35  
0.35  
0.2  
tCK  
tCK  
DQS falling edge to CK setup time (write cycle) tDSS  
0.2  
Data Sheet  
63  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Electrical Characteristics  
Table 18  
AC Timing - Absolute Specifications –5/–6 (cont’d)  
Parameter  
Symbol  
–5  
–6  
Unit Note/Test  
Condition 1)  
DDR400B  
DDR333  
Min.  
Max. Min.  
Max.  
2)3)4)5)  
DQS falling edge hold time from CK (write  
cycle)  
tDSH  
0.2  
0.2  
tCK  
2)3)4)5)  
Mode register set command cycle time  
Write preamble setup time  
Write postamble  
tMRD  
2
2
tCK  
2)3)4)5)8)  
tWPRES  
tWPST  
tWPRE  
tIS  
0
0
ns  
2)3)4)5)9)  
0.40  
0.25  
0.6  
0.60  
0.40  
0.25  
0.75  
0.60  
tCK  
2)3)4)5)  
Write preamble  
tCK  
Address and control input setup time  
ns  
ns  
ns  
ns  
fast slew rate  
3)4)5)6)10)  
0.6  
0.6  
0.7  
0.8  
slow slew rate  
3)4)5)6)10)  
Address and control input hold time  
tIH  
0.75  
0.8  
fast slew rate  
3)4)5)6)10)  
slow slew rate  
3)4)5)6)10)  
2)3)4)5)  
2)3)4)5)  
2)3)4)5)  
2)3)4)5)  
2)3)4)5)  
Read preamble  
tRPRE  
tRPST  
tRAS  
0.9  
0.40  
40  
1.1  
0.9  
1.1  
tCK  
tCK  
Read postamble  
0.60  
0.40  
0.60  
Active to Precharge command  
70E+3 42  
70E+3 ns  
Active to Active/Auto-refresh command period tRC  
55  
60  
ns  
ns  
Auto-refresh to Active/Auto-refresh command tRFC  
120  
120  
period  
2)3)4)5)  
Active to Read or Write delay  
Precharge command period  
Active to Read w/AP delay  
Active bank A to Active bank B command  
Write recovery time  
tRCD  
tRP  
15  
15  
15  
10  
15  
18  
18  
18  
12  
15  
ns  
ns  
ns  
ns  
ns  
tCK  
tCK  
ns  
tCK  
µs  
2)3)4)5)  
2)3)4)5)  
tRAP  
tRRD  
tWR  
2)3)4)5)  
2)3)4)5)  
2)3)4)5)11)  
2)3)4)5)  
Auto precharge write recovery + precharge time tDAL  
(twr/tCK) + (trp/tCK)  
Internal write to read command delay  
Exit self-refresh to non-read command  
Exit self-refresh to read command  
Average Periodic Refresh Interval  
tWTR  
tXSNR  
tXSRD  
tREFI  
1
1
7.8  
2)3)4)5)12)  
2)3)4)5)  
126  
200  
126  
200  
2)3)4)5)13)  
7.8  
1) VDDQ = 2.5 V ±0.2 V, VDD = +2.5 V ±0.2 V (DDR333); VDDQ = 2.6 V ± 0.1 V, VDD = +2.6 V ± 0.1 V (DDR400); 0 °C TA 70 °C  
2) Input slew rate 1 V/ns for DDR400, DDR333  
3) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross: the input reference  
level for signals other than CK/CK, is VREF. CK/CK slew rate are 1.0 V/ns.  
4) Inputs are not recognized as valid until VREF stabilizes.  
5) The Output timing reference level, as measured at the timing reference point indicated in AC Characteristics (note 3) is VTT.  
6) These parameters guarantee device timing, but they are not necessarily tested on each device.  
7) tHZ and tLZ transitions occur in the same access time windows as valid data transitions. These parameters are not referred  
to a specific voltage level, but specify when the device is no longer driving (HZ), or begins driving (LZ).  
Data Sheet  
64  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Electrical Characteristics  
8) The specific requirement is that DQS be valid (HIGH, LOW, or some point on a valid transition) on or before this CK edge.  
A valid transition is defined as monotonic and meeting the input slew rate specifications of the device. When no writes were  
previously in progress on the bus, DQS will be transitioning from Hi-Z to logic LOW. If a previous write was in progress,  
DQS could be HIGH, LOW, or transitioning from HIGH to LOW at this time, depending on tDQSS  
.
9) The maximum limit for this parameter is not a device limit. The device operates with a greater value for this parameter, but  
system performance (bus turnaround) degrades accordingly.  
10) Fast slew rate 1.0 V/ns , slow slew rate 0.5 V/ns and < 1 V/ns for command/address and CK & CK slew rate > 1.0 V/ns,  
measured between VOH(ac) and VOL(ac)  
.
11) For each of the terms, if not already an integer, round to the next highest integer. tCK is equal to the actual system clock  
cycle time.  
12) In all circumstances, tXSNR can be satisfied using tXSNR = tRFC,min + 1 × tCK  
13) A maximum of eight Autorefresh commands can be posted to any given DDR SDRAM device.  
Table 19  
AC Timing - Absolute Specifications –7F/–7  
Symbol  
Parameter  
–7F  
–7  
Unit Note/Test  
Condition 1)  
DDR266  
DDR266A  
Min.  
Max. Min.  
Max.  
2)3)4)5)  
DQ output access time from CK/CK  
DQS output access time from CK/CK  
CK high-level width  
tAC  
–0.75 +0.75 –0.75 +0.75 ns  
–0.75 +0.75 –0.75 +0.75 ns  
2)3)4)5)  
2)3)4)5)  
2)3)4)5)  
2)3)4)5)  
tDQSCK  
tCH  
0.45  
0.45  
0.55  
0.55  
0.45  
0.45  
0.55  
0.55  
tCK  
tCK  
CK low-level width  
tCL  
Clock Half Period  
tHP  
min. (tCL, tCH) min. (tCL, tCH) ns  
Clock cycle time  
tCK3  
tCK2.5  
tCK2  
tDH  
7
12  
12  
12  
7
12  
12  
12  
ns  
ns  
ns  
ns  
ns  
ns  
CL = 3.0 2)3)4)5)  
CL = 2.5 2)3)4)5)  
CL = 2.0 2)3)4)5)  
7
7
7.5  
0.5  
0.5  
2.2  
7.5  
0.5  
0.5  
2.2  
2)3)4)5)  
DQ and DM input hold time  
DQ and DM input setup time  
2)3)4)5)  
tDS  
2)3)4)5)6)  
Control and Addr. input pulse width (each  
input)  
tIPW  
2)3)4)5)6)  
2)3)4)5)7)  
2)3)4)5)7)  
2)3)4)5)  
DQ and DM input pulse width (each input)  
Data-out high-impedance time from CK/CK  
Data-out low-impedance time from CK/CK  
tDIPW  
tHZ  
1.75  
1.75  
ns  
–0.75 +0.75 –0.75 +0.75 ns  
–0.75 +0.75 –0.75 +0.75 ns  
tLZ  
Write command to 1st DQS latching transition tDQSS  
0.75  
1.25  
+0.5  
0.75  
1.25  
+0.5  
tCK  
2)3)4)5)  
DQS-DQ skew (DQS and associated DQ  
signals)  
tDQSQ  
ns  
2)3)4)5)  
2)3)4)5)  
Data hold skew factor  
tQHS  
tQH  
0.75  
0.75  
ns  
ns  
DQ/DQS output hold time  
tHP  
tHP –  
tQHS  
tQHS  
2)3)4)5)  
2)3)4)5)  
2)3)4)5)  
DQS input low (high) pulse width (write cycle) tDQSL,H 0.35  
0.35  
0.2  
tCK  
tCK  
tCK  
DQS falling edge to CK setup time (write cycle) tDSS  
0.2  
0.2  
DQS falling edge hold time from CK (write  
cycle)  
tDSH  
0.2  
2)3)4)5)  
Mode register set command cycle time  
Write preamble setup time  
Write postamble  
tMRD  
2
2
tCK  
ns  
2)3)4)5)8)  
2)3)4)5)9)  
2)3)4)5)  
tWPRES  
tWPST  
tWPRE  
0
0
0.40  
0.25  
0.60  
0.40  
0.25  
0.60  
tCK  
tCK  
Write preamble  
Data Sheet  
65  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Electrical Characteristics  
Table 19  
AC Timing - Absolute Specifications –7F/–7 (cont’d)  
Parameter  
Symbol  
–7F  
–7  
Unit Note/Test  
Condition 1)  
DDR266  
DDR266A  
Min.  
Max. Min.  
Max.  
Address and control input setup time  
Address and control input hold time  
tIS  
0.9  
1.0  
0.9  
1.0  
1.1  
0.9  
1.0  
0.9  
1.0  
ns  
ns  
ns  
ns  
fast slew rate  
3)4)5)6)10)  
slow slew rate  
3)4)5)6)10)  
tIH  
fast slew rate  
3)4)5)6)10)  
slow slew rate  
3)4)5)6)10)  
2)3)4)5)  
Read preamble  
tRPRE  
tRPRES  
tRPST  
tRAS  
0.9  
NA  
0.40  
45  
0.9  
NA  
0.40  
45  
1.1  
tCK  
ns  
tCK  
ns  
Read preamble setup time  
Read postamble  
only CL = 1.5  
2)3)4)5)  
0.60  
0.60  
2)3)4)5)  
Active to Precharge command  
120  
E+3  
120  
E+3  
2)3)4)5)  
2)3)4)5)  
Active to Active/Auto-refresh command period tRC  
60  
65  
ns  
ns  
Auto-refresh to Active/Auto-refresh command tRFC  
120  
120  
period  
2)3)4)5)  
2)3)4)5)  
2)3)4)5)  
2)3)4)5)  
2)3)4)5)  
2)3)4)5)11)  
Active to Read or Write delay  
Precharge command period  
Active to Read w/AP delay  
Active bank A to Active bank B command  
Write recovery time  
tRCD  
tRP  
15  
15  
15  
15  
15  
20  
20  
20  
15  
15  
ns  
ns  
ns  
ns  
ns  
tCK  
tRAP  
tRRD  
tWR  
Auto precharge write recovery + precharge  
time  
tDAL  
(twr/tCK) + (trp/tCK)  
2)3)4)5)  
Internal write to read command delay  
Exit self-refresh to non-read command  
Exit self-refresh to read command  
Average Periodic Refresh Interval  
tWTR  
tXSNR  
tXSRD  
tREFI  
1
1
tCK  
ns  
tCK  
µs  
2)3)4)5)12)  
2)3)4)5)  
127.5  
200  
127.5  
200  
2)3)4)5)13)  
7.8  
7.8  
1) 0 °C TA 70 °C; VDDQ = 2.5 V ±0.2 V, VDD = +2.5 V ±0.2 V  
2) Input slew rate 1 V/ns for DDR266  
3) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross: the input reference  
level for signals other than CK/CK, is VREF. CK/CK slew rate are 1.0 V/ns.  
4) Inputs are not recognized as valid until VREF stabilizes.  
5) The Output timing reference level, as measured at the timing reference point indicated in AC Characteristics (note 3) is VTT.  
6) These parameters guarantee device timing, but they are not necessarily tested on each device.  
7) tHZ and tLZ transitions occur in the same access time windows as valid data transitions. These parameters are not referred  
to a specific voltage level, but specify when the device is no longer driving (HZ), or begins driving (LZ).  
8) The specific requirement is that DQS be valid (HIGH, LOW, or some point on a valid transition) on or before this CK edge.  
A valid transition is defined as monotonic and meeting the input slew rate specifications of the device. When no writes were  
previously in progress on the bus, DQS will be transitioning from Hi-Z to logic LOW. If a previous write was in progress,  
DQS could be HIGH, LOW, or transitioning from HIGH to LOW at this time, depending on tDQSS  
.
9) The maximum limit for this parameter is not a device limit. The device operates with a greater value for this parameter, but  
system performance (bus turnaround) degrades accordingly.  
Data Sheet  
66  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Electrical Characteristics  
10) Fast slew rate 1.0 V/ns , slow slew rate 0.5 V/ns and < 1 V/ns for command/address and CK & CK slew rate > 1.0 V/ns,  
measured between VOH(ac) and VOL(ac)  
.
11) For each of the terms, if not already an integer, round to the next highest integer. tCK is equal to the actual system clock  
cycle time.  
12) In all circumstances, tXSNR can be satisfied using tXSNR = tRFC,min + 1 × tCK  
13) A maximum of eight Autorefresh commands can be posted to any given DDR SDRAM device.  
Data Sheet  
67  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Electrical Characteristics  
Table 20  
IDD Conditions  
Parameter  
Symbol  
Operating Current 0  
IDD0  
one bank; active/ precharge; tRC = tRC,MIN  
;
DQ, DM, and DQS inputs changing once per clock cycle;  
address and control inputs changing once every two clock cycles.  
Operating Current 1  
IDD1  
one bank; active/read/precharge; Burst Length = 4; Refer to Chapter 4.4.1 for detailed test conditions.  
Precharge Power-Down Standby Current  
all banks idle; power-down mode; CKE VIL,MAX  
IDD2P  
IDD2F  
Precharge Floating Standby Current  
CS VIH,,MIN, all banks idle; CKE VIH,MIN  
;
address and other control inputs changing once per clock cycle; VIN = VREF for DQ, DQS and DM.  
Precharge Quiet Standby Current  
IDD2Q  
CS VIHMIN, all banks idle; CKE VIH,MIN  
;
address and other control inputs stable at VIH,MIN or VIL,MAX; VIN = VREF for DQ, DQS and DM.  
Active Power-Down Standby Current  
one bank active; power-down mode; CKE VILMAX; VIN = VREF for DQ, DQS and DM.  
IDD3P  
IDD3N  
Active Standby Current  
one bank active; CS VIH,MIN; CKE VIH,MIN; tRC = tRAS,MAX  
DQ, DM and DQS inputs changing twice per clock cycle;  
address and control inputs changing once per clock cycle.  
;
Operating Current Read  
IDD4R  
one bank active; Burst Length = 2; reads; continuous burst;  
address and control inputs changing once per clock cycle;  
50% of data outputs changing on every clock edge;  
CL = 2 for DDR266(A), CL = 3 for DDR333 and DDR400B; IOUT = 0 mA  
Operating Current Write  
IDD4W  
one bank active; Burst Length = 2; writes; continuous burst;  
address and control inputs changing once per clock cycle;  
50% of data outputs changing on every clock edge;  
CL = 2 for DDR266(A), CL = 3 for DDR333 and DDR400B  
Auto-Refresh Current  
IDD5  
IDD6  
IDD7  
t
RC = tRFCMIN, distributed refresh  
Self-Refresh Current  
CKE 0.2 V; external clock on  
Operating Current 7  
four bank interleaving with Burst Length = 4; Refer to Chapter 4.4.1 for detailed test conditions.  
Data Sheet  
68  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Electrical Characteristics  
Table 21  
IDD Specification  
Parameter  
Symbol  
-7  
DDR266A DDR266  
Typ. Max. Typ. Max. Typ. Max. Typ. Max.  
-7F  
-6  
-5  
Unit Note/  
Test  
DDR333 DDR400B  
Condition1)  
Operating Current 0  
Operating Current 1  
IDD0  
IDD1  
IDD2P  
95  
95  
110 110 125 105 130 120 145 mA x4/x8 2)3)  
115 110 130 110 135 125 150 mA x16 3)  
105 125 120 140 120 145 130 160 mA x4/x8 3)  
110 135 125 155 130 155 145 170 mA x16 3)  
3)  
Precharge Power-Down  
Standby Current  
3.5 6.0  
3.5 6.0  
4.0 6.5  
4.5 7.0  
mA  
mA  
mA  
mA  
mA  
3)  
3)  
3)  
3)  
Precharge Floating Standby IDD2F  
Current  
27  
19  
13  
32  
23  
16  
52  
27  
19  
13  
46  
32  
23  
16  
52  
34  
22  
14  
54  
40  
26  
18  
61  
40  
25  
16  
62  
48  
30  
20  
71  
Precharge Quiet Standby  
Current  
IDD2Q  
Active Power-Down Standby IDD3P  
Current  
Active Standby Current  
Operating Current Read  
IDD3N  
IDD4R  
46  
85  
105 85  
105 105 125 120 145 mA x4/x8 3)  
105 125 105 125 125 150 145 175 mA x16 3)  
90 110 90  
110 110 135 130 155 mA x4/x8 3)  
Operating Current Write  
IDD4W  
110 135 110 135 135 160 155 190 mA x16 3)  
3)  
Auto-Refresh Current  
Self-Refresh Current  
Operating Current 7  
IDD5  
IDD6  
IDD7  
280 335 280 335 300 360 340 405 mA  
3)4)  
6.2 9.3  
6.2 9.3  
6.3 9.4  
6.4 9.5  
mA  
285 335 285 335 360 420 400 470 mA x4/x8 3)  
320 380 320 380 400 470 450 530 mA x16 3)  
1) Test conditions for typical values: VDD = 2.5 V (DDR266, DDR333), VDD = 2.6 V (DDR400), TA = 25 ° C, test conditions for  
maximum values: VDD = 2.7 V, TA = 10 °C  
2) IDD specifications are tested after the device is properly initialized and measured at 133 MHz for DDR266, 166 MHz for  
DDR333, and 200 MHz for DDR400.  
3) Input slew rate = 1 V/ns.  
4) Enables on-chip refresh and address counters.  
Data Sheet  
69  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Electrical Characteristics  
4.4.1  
IDD Current Measurement Conditions  
Legend: A = Activate, R = Read, RA = Read with Autoprecharge, P = Precharge, N = NOP or DESELECT  
I
DD1: Operating Current: One Bank Operation  
1. General test condition  
a) Only one bank is accessed with tRC,MIN  
.
b) Burst Mode, Address and Control inputs are changing once per NOP and DESELECT cycle.  
c) 50% of data changing at every transfer  
d) IOUT = 0 mA.  
2. Timing patterns  
a) DDR266A (133 MHz, CL = 2): tCK = 7.5 ns, BL = 4, tRCD = 3 × tCK, tRC = 9 × tCK, tRAS = 6 × tCK  
Setup: A0 N N R0 N N P0 N N  
Read: A0 N N R0 N N P0 N N - repeat the same timing with random address changing  
b) DDR266 (133 MHz, CL = 2): tCK = 7.5 ns, BL = 4, tRCD = 2 × tCK, tRC = 8 × tCK, tRAS = 6 × tCK  
Setup: A0 N R0 N N N P0 N  
Read: A0 N R0 N N N P0 N - repeat the same timing with random address changing  
c) DDR333B (166 MHz, CL = 2.5): tCK = 6 ns, BL = 4, tRCD = 3 × tCK, tRC = 10 × tCK, tRAS = 7 × tCK  
Setup: A0 N N R0 N N N P0 N N  
Read: A0 N N R0 N N N P0 N N - repeat the same timing with random address changing  
d) DDR400B (200 MHz, CL = 3): tCK = 5 ns, BL = 4, tRCD = 3 × tCK, tRC = 11 × tCK, tRAS = 8 × tCK  
Setup:A0 N N R0 N N N N P0 N N  
Read: A0 N N R0 N N N N P0 N N -repeat the same timing with random address changing  
I
DD7: Operating Current: Four Bank Operation  
1. General test condition  
a) Four banks are being interleaved with tRCMIN  
.
b) Burst Mode, Address and Control inputs on NOP edge are not changing.  
c) 50% of data changing at every transfer  
d) IOUT = 0 mA.  
2. Timing patterns  
a) DDR266A/DDR266 (133 MHz, CL = 2): tCK = 7.5 ns, BL = 4, tRRD = 2 × tCK, tRCD = 3 × tCK, tRAS = 6 × tCK  
Setup: A0 N A1 RA0 A2 RA1 A3 RA2 N RA3  
Read: A0 N A1 RA0 A2 RA1 A3 RA2 N RA3 - repeat the same timing with random address changing  
b) DDR333B (166 MHz, CL = 2.5): tCK = 6 ns, BL = 4, tRRD = 2 × tCK, tRCD = 3 × tCK, tRAS = 7 × tCK  
Setup: A0 N A1 RA0 A2 RA1 A3 RA2 N RA3  
Read: A0 N A1 RA0 A2 RA1 A3 RA2 N RA3 - repeat the same timing with random address changing  
c) DDR400B (200 MHz, CL = 3): tCK = 5 ns, BL = 4, tRRD = 2 × tCK, tRCD = 3 × tCK, tRAS = 8 × tCK  
Setup: A0 N A1 RA0 A2 RA1 A3 RA2 N RA3 N  
Read: A0 N A1 RA0 A2 RA1 A3 RA2 N RA3 N - repeat the same timing with random address  
Data Sheet  
70  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Timing Diagrams  
5
Timing Diagrams  
tDQSL  
tDQSH  
DQS  
DQ  
tDH  
tDS  
DI n  
tDH  
tDS  
DM  
DI n = Data In for column n.  
3 subsequent elements of data in are applied in programmed order following DI n.  
Don’t Care  
Figure 39 Data Input (Write), Timing Burst Length = 4  
DQS  
tDQSQ max  
tQH  
DQ  
tQH (Data output hold time from DQS)  
tDQSQ and tQH are only shown once and are shown referenced to different edges of DQS, only for clarify of illustration.  
.
tDQSQ and tQH both apply to each of the four relevant edges of DQS.  
tDQSQ max. is used to determine the worst case setup time for controller data capture.  
tQH is used to determine the worst case hold time for controller data capture.  
Figure 40 Data Output (Read), Timing Burst Length = 4  
Data Sheet  
71  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Timing Diagrams  
Figure 41 Initialize and Mode Register Sets  
Data Sheet  
72  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Timing Diagrams  
Figure 42 Power Down Mode  
Data Sheet  
73  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Timing Diagrams  
Figure 43 Auto Refresh Mode  
Data Sheet  
74  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Timing Diagrams  
Figure 44 Self Refresh Mode  
Data Sheet  
75  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Timing Diagrams  
Figure 45 Read without Auto Precharge (Burst Length = 4)  
Data Sheet  
76  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Timing Diagrams  
Figure 46 Read with Auto Precharge (Burst Length = 4)  
Data Sheet  
77  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Timing Diagrams  
Figure 47 Bank Read Access (Burst Length = 4)  
Data Sheet  
78  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Timing Diagrams  
Figure 48 Write without Auto Precharge (Burst Length = 4)  
Data Sheet  
79  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Timing Diagrams  
Figure 49 Write with Auto Precharge (Burst Length = 4)  
Data Sheet  
80  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Timing Diagrams  
Figure 50 Bank Write Access (Burst Length = 4)  
Data Sheet  
81  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Timing Diagrams  
Figure 51 Write DM Operation (Burst Length = 4)  
Data Sheet  
82  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Package Outlines  
6
Package Outlines  
Figure 52 P-TFBGA-68-2 (Plastic Thin Fine-Pitch Ball Grid Array Package)  
Data Sheet  
83  
V0.5, 2003-07  
HYB25D1G[40/80/16]0A[C/E/F/T](L)  
1-Gbit Double Data Rate SDRAM  
Package Outlines  
Gage Plane  
±0.13  
10.16  
±0.1  
0.65 Basic  
0.5  
+0.1  
0.805 REF  
0.1  
Seating Plane  
0.35  
±0.2  
-0.05  
11.76  
±0.13  
22.22  
Lead 1  
GPX09261  
Figure 53 P-TSOPII-66-1 (Plastic Thin Small Outline Package Type II)  
You can find all of our packages, sorts of packing and others in our  
Infineon Internet Page “Products”: http://www.infineon.com/products.  
Dimensions in mm  
V0.5, 2003-07  
SMD = Surface Mounted Device  
Data Sheet  
84  
w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

HYB25D1G160AT-5

DDR DRAM, 64MX16, 0.7ns, CMOS, PDSO66, PLASTIC, TSOP2-66
INFINEON

HYB25D1G160AT-7F

DDR DRAM, 64MX16, 0.75ns, CMOS, PDSO66, PLASTIC, TSOP2-66
INFINEON

HYB25D1G160ATL-6

DDR DRAM, 64MX16, 0.7ns, CMOS, PDSO66, PLASTIC, TSOP2-66
INFINEON

HYB25D1G160TC-3

MEMORY SPECTRUM
INFINEON

HYB25D1G160TC-37

MEMORY SPECTRUM
INFINEON

HYB25D1G160TC-5

MEMORY SPECTRUM
INFINEON

HYB25D1G160TC-6

MEMORY SPECTRUM
INFINEON

HYB25D1G160TC-7

MEMORY SPECTRUM
INFINEON

HYB25D1G160TC-75

MEMORY SPECTRUM
INFINEON

HYB25D1G160TC-7F

MEMORY SPECTRUM
INFINEON

HYB25D1G160TC-8

MEMORY SPECTRUM
INFINEON

HYB25D1G160TCL-3

MEMORY SPECTRUM
INFINEON