HYS72T128000HF-3-A [INFINEON]

DDR DRAM Module, 128MX72, CMOS, GREEN, DIMM-240;
HYS72T128000HF-3-A
型号: HYS72T128000HF-3-A
厂家: Infineon    Infineon
描述:

DDR DRAM Module, 128MX72, CMOS, GREEN, DIMM-240

动态存储器 双倍数据速率
文件: 总75页 (文件大小:1328K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet, Rev. 0.9, Apr. 2005  
HYS72T64000HF–[3.7/3]–A  
HYS72T1280[00/20]HF–[3.7/3]–A  
HYS72T256020HF–[3.7/3]–A  
240-Pin Fully- Buffered DDR2 SDRAM Modules  
DDR2 SDRAM  
FB-DIMM SDRAM  
RoHS Compliant  
Green Product  
High-Speed Differential Point-to-Point Link  
Interface at 1.5 V  
Memory Products  
N e v e r s t o p t h i n k i n g .  
Edition 2005-04  
Published by Infineon Technologies AG,  
St.-Martin-Strasse 53,  
81669 München, Germany  
© Infineon Technologies AG 2005.  
All Rights Reserved.  
Attention please!  
The information herein is given to describe certain components and shall not be considered as a guarantee of  
characteristics.  
Terms of delivery and rights to technical change reserved.  
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding  
circuits, descriptions and charts stated herein.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in  
question please contact your nearest Infineon Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or systems with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
HYS72T64000HF–[3.7/3]–A HYS72T1280[00/20]HF–[3.7/3]–A HYS72T256020HF–[3.7/3]–A  
Preliminary  
Revision History: 2005-04, Rev. 0.9  
Previous Version: 0.8  
Page  
28  
Subjects (major changes since last revision)  
updated Table 13  
29  
updated Table 14  
We Listen to Your Comments  
Any information within this document that you feel is wrong, unclear or missing at all?  
Your feedback will help us to continuously improve the quality of this document.  
Please send us your proposal (including a reference to this document) to:  
techdoc.mp@infineon.com  
Template: mp_a4_s_rev312 / 3 / 2005-03-18  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Table of Contents  
1
1.1  
1.2  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2
3
4
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
FB-DIMM Input/Output Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5
5.1  
5.2  
5.2.1  
5.2.2  
5.2.3  
5.3  
5.4  
5.5  
5.5.1  
5.5.2  
5.5.3  
5.5.4  
5.6  
Basic Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Advanced Memory Buffer Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Advanced Memory Buffer Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Advanced Memory Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Transparent Mode for DRAM Test Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
DDR2 SDRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Advanced Memory Buffer Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
High-Speed Differential Point-to-Point Link (at 1.5 V) Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
DDR2 Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
SMBus Slave Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Channel Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Peak Theoretical Channel Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Hot-add . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Hot-remove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Hot-replace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
5.7  
5.8  
6
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
6.1  
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
7
8
9
Current Specification and Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
ICC/IDD Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Termination Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
10  
10.1  
High-Speed Differential Point-to-Point Link Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Differential Signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Transition Density in Transmitted Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Jitter and Bit Error Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
De-Emphasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Electrical Idle (EI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Reference Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
High Speed Serial Link Reference Clocks (SCK, SCK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Spread Spectrum Clocking (SSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Reference Clock Input Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Differential Transmitter Output Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Differential Receiver Input Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Receiver Input Compliance Eye Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
10.1.1  
10.1.2  
10.1.3  
10.1.4  
10.1.5  
10.2  
10.3  
10.4  
10.5  
10.6  
10.6.1  
11  
11.1  
11.1.1  
11.2  
11.2.1  
11.2.2  
11.2.3  
11.2.4  
11.2.5  
Channel Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
RESET Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Inband Control ‘Signals’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Channel Initialization Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Firmware Transition Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
AMB Internal State Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Disable State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Training State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Testing State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Data Sheet  
4
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
11.2.6  
11.2.7  
Polling State 43  
Config State 43  
12.3.3  
Simultaneous Read and Write Data  
Transfers 51  
12.3.4  
DRAM Bus Segment Restrictions 51  
12  
Channel Protocol 44  
12.1  
12.1.1  
12.1.2  
12.1.3  
12.1.3.1  
12.1.3.2  
12.1.4  
12.1.4.1  
12.1.4.2  
12.1.4.3  
12.1.4.4  
12.1.4.5  
12.1.4.6  
12.1.4.7  
12.1.4.8  
Southbound Frames 44  
13  
Reliability, Availability and Serviceability  
52  
Overview 52  
Example Error Flows 52  
Command Error Flow 52  
Normal Southbound Frames 44  
Fail-over Southbound Frames 44  
Command Frame Format 44  
Command Frame with Data Format 44  
Command+Wdata Frame Format 44  
Southbound Commands 44  
DRAM Commands 44  
13.1  
13.2  
13.2.1  
13.2.2  
13.2.3  
13.3  
Write Data Error Flow 52  
Read Error Flow 52  
Overview of Error Protection, Detection,  
Correction, and Logging 53  
Error Protection and Detection Methods 54  
CRC Logic Used on Normal Southbound  
Frames 54  
Fail-over Southbound Frames 54  
Write and Read Data ECC Error Protection  
54  
Southbound Error Handling at the AMB 54  
Exiting Command Error State 54  
Northbound Error Handling at the AMB 55  
Error Logging 55  
Fail-over Mode Operation 55  
Fail-over Mode Operation on Southbound  
Lanes 55  
Channel Commands 45  
CKE Control Commands 45  
Soft Channel Reset Command 45  
Sync Command 46  
13.4  
13.4.1  
NOP Frame 46  
13.4.2  
13.4.3  
Command Delivery Timing 46  
Concurrent Command Delivery Rules  
46  
13.5  
13.5.1  
13.6  
13.7  
13.8  
12.1.4.9  
12.2  
Command Encoding 47  
Northbound CRC Modes 47  
Northbound Idle Frame 48  
Northbound Alert Frame 48  
Northbound Data Frames 48  
14-bit Lane Northbound Data Frame 48  
13-bit Lane Fail-over Northbound Data  
Frame 48  
12.2.1  
12.2.2  
12.2.3  
12.2.3.1  
12.2.3.2  
13.8.1  
13.8.2  
Fail-over Mode Operation on Northbound  
Lanes 55  
12.2.3.3  
12.2.3.4  
13-bit Lane Northbound Data Frame 48  
13-bit Lane Fail-Over Northbound Data  
Frame 48  
13.9  
13.10  
13.11  
AMB Pass-through Functionality 55  
Memory Initialization 56  
Thermal Trip Sensor 56  
12.2.3.5  
12-bit Lane Northbound Data Frame  
(Non-ECC Mode) 49  
Northbound Register Data Frame 49  
Northbound Status Frame 49  
DRAM Memory Timing 49  
Read Timing 49  
14  
15  
16  
SPD Codes 57  
Package Outline 68  
12.2.3.6  
12.2.3.7  
12.3  
12.3.1  
12.3.2  
DDR2 Nomencature (Component &  
Modules) 73  
DDR2 Component 73  
16.1  
Write Timing 50  
12.3.2.1  
Write Data FIFO 51  
Data Sheet  
5
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
Preliminary  
240-Pin Fully- Buffered DDR2 SDRAM Modules  
DDR2 SDRAM  
HYS72T64000HF–[3.7/3]–A  
HYS72T1280[00/20]HF–[3.7/3]–A  
HYS72T256020HF–[3.7/3]–A  
1
Overview  
This chapter describes the main characteristics of the 240-Pin Fully- Buffered DDR2 SDRAM Modules product  
family.  
1.1  
Features  
240-pin Fully Buffered ECC Dual-In-Line  
DDR2 SDRAM Module for PC, Workstation and  
Server main memory applications.  
One rank 64Mb x 72, 128Mb x 72 and two ranks  
128Mbx72, 256Mb x 72 memory array.  
JEDEC Standard Double Data Rate 2  
Synchronous DRAMs (DDR2 SDRAMs) with 1.8 V  
(± 0.1 V) power supply.  
Built with 512Mb DDR2 SDRAMs in 60-ball FBGA  
Chipsize Packages.  
Re-drive and re-sync of all address, command,  
clock and data signals using AMB (Advanced  
Memory Buffer).  
High-Speed Differential Point-to-Point Link  
Interface at 1.5 V (Jedec standard pending).  
Host Interface and AMB component industry  
standard compliant.  
Supports SMBus protocol interface for access to  
the AMB configuration registers.  
Detects errors on the channel and reports them to  
the host memory controller.  
Automatic DDR2 DRAM Bus Calibration.  
Automatic Channel Calibration.  
Full Host Control of the DDR2 DRAMs.  
Over-Temperature Detection and Alert.  
Hot Add-on and Hot Remove Capability.  
MBIST and IBIST Test Functions.  
Transparent Mode for DRAM Test Support.  
Low profile: 133.35mm x 30,35mm  
240 Pin gold plated card connector with 1.00mm  
contact centers (JEDEC standard pending).  
Based on JEDEC standard reference card designs  
(Jedec standard pending).  
SPD (Serial Presence Detect) with 256 Byte serial  
E2PROM.Performance:  
RoHS Compliant Products1)  
Table 1  
Performance  
Speed Grade Indicator  
-3.7  
-3  
Unit  
DDR2 DRAM Speed Grade  
DDR2-533C 4-4-4  
DDR2-667D 4-4-4  
FB-DIMM Speed Grade  
PC2-4200F  
PC2-5300F  
FB-DIMM Peak Channel Throughput  
FB-DIMM Link Transfer Rate  
6.4  
3.2  
8.0  
4.0  
GByte/s  
GT/s  
1.2  
Description  
This document describes the electrical and mechanical Modules (DDR2 SDRAM FB-DIMMs). Fully Buffered  
features of Infineon’s 240-pin, PC2-4200F, PC2- DIMMs use commodity DRAMs isolated from the  
5300F, ECC type, Fully Buffered Double-Data-Rate memory channel behind a buffer on the DIMM. They  
Two Synchronous DRAM Dual In-Line Memory are intended for use as main memory when installed in  
1) RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and  
electronic equipment as defined in the directive 2002/95/EC issued by the European Parliament and of the  
Council of 27 January 2003. These substances include mercury, lead, cadmium, hexavalent chromium,  
polybrominated biphenyls and polybrominated biphenyl ethers.  
Data Sheet  
6
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Overview  
systems such as servers and workstations. PC2-4200, The Advanced Memory Buffer also allows buffering of  
PC2-5300 refers to the DIMM naming convention memory traffic to support large memory capacities. All  
indicating the DDR2 SDRAMs running at 266, 333 MHz memory control for the DRAM resides in the host,  
clock speed and offering 4200, 5300 MB/s peak including memory request initiation, timing, refresh,  
bandwidth. FB-DIMM features a novel architecture scrubbing, sparing, configuration access, and power  
including the Advanced Memory Buffer. This single management. The Advanced Memory Buffer interface  
chip component, located in the center of each DIMM, is responsible for handling channel and memory  
acts as a repeater and buffer for all signals and requests to and from the local DIMM and for forwarding  
commands which are exchanged between the host requests to other DIMMs on the memory channel. Fully  
controller and the DDR2 SDRAMs including data in- Buffered DIMM provides a high memory bandwidth,  
and output. The AMB communicates with the host large capacity channel solution that has a narrow host  
controller and / or the adjacent DIMMs on a system interface. The maximum memory capacity is 288 DDR2  
board using an Industry Standard High-Speed SDRAM devices per channel or 8 DIMMs.  
Differential Point-to-Point Link Interface at 1.5 V.  
Table 2  
Ordering Information (Pb-free components and assembly)  
Type & Partnumber1)  
Compliance Code2)  
Description  
SDRAM  
Technology  
PC2-4200F (DDR2-533):  
HYS72T64000HF-3.7-A  
HYS72T128020HF-3.7-A  
HYS72T128000HF-3.7-A  
HYS72T256020HF-3.7-A  
PC2-5300F (DDR2-667):  
HYS72T64000HF-3-A  
HYS72T128020HF-3-A  
HYS72T128000HF-3-A  
HYS72T256020HF-3-A  
PC2-4200F-44410-A  
PC2-4200F-44410-B  
PC2-4200F-44410-C  
PC2-4200F-44410-H  
one rank 512 MB FB-DIMM  
two ranks 1024 MB FB-DIMM  
one rank 1024 MB FB-DIMM  
two ranks 2048 MB FB-DIMM  
512 Mbit (x8)  
512 Mbit (x8)  
512 Mbit (x4)  
512 Mbit (x4)  
PC2-5300F-44410-A  
PC2-5300F-44410-B  
PC2-5300F-44410-C  
PC2-5300F-44410-H  
one rank 512 MB FB-DIMM  
two ranks 1024 MB FB-DIMM  
one rank 1024 MB FB-DIMM  
two ranks 2048 MB FB-DIMM  
512 Mbit (x8)  
512 Mbit (x8)  
512 Mbit (x4)  
512 Mbit (x4)  
1) All product types end with a place code, designating the silicon die revision. Example: HYS 72T64000HF-3.7-A, indicating  
Rev. A dice are used for DDR2 SDRAM components. To learn more on INFINEON DDR2 module and component  
nomenclature see section 8 of this datasheet.  
2) The Compliance Code is printed on the module label and describes the speed grade, e.g. “PC2-4200F-444-10-C”, where  
4200F means Fully Buffered DIMM with 4.26 GB/sec Module Bandwidth and “444-10” means CAS latency = 4, trcd latency  
= 4 and trp latency = 4 using JEDEC SPD Revision 1.0 and assembled on Raw Card “C”.  
Data Sheet  
7
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Pin Configuration  
2
Pin Configuration  
The pin configuration of the DDR2 SDRAM DIMM is listed by function in Table 3 (240 pins). The abbreviations  
used in columns Pin and Buffer Type are explained in Table 5 and Table 4 respectively. The pin numbering is  
depicted in Figure 1.  
Table 3  
Pin#  
Pin Configuration of FB-DIMM  
Name  
Pin  
Type  
Buffer  
Type  
Function  
Clock Signals  
228  
229  
SCK  
SCK  
I
I
HSDL_15 System Clock Input, positive line  
HSDL_15 System Clock Input, negative line  
Control Signals  
17  
RESET  
I
LV-CMOS AMB reset signal  
Northbound  
22  
25  
28  
31  
34  
37  
51  
54  
57  
60  
63  
66  
48  
40  
23  
26  
29  
32  
35  
38  
52  
55  
58  
61  
64  
67  
49  
41  
PN0  
PN1  
PN2  
PN3  
PN4  
PN5  
PN6  
PN7  
PN8  
PN9  
PN10  
PN11  
PN12  
PN13  
PN0  
PN1  
PN2  
PN3  
PN4  
PN5  
PN6  
PN7  
PN8  
PN9  
PN10  
PN11  
PN12  
PN13  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
HSDL_15 Primary Northbound Data, positive  
lines  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15 Primary Northbound Data, negative  
lines  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
Data Sheet  
8
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Pin Configuration  
Table 3  
Pin#  
Pin Configuration of FB-DIMM (cont’d)  
Name  
Pin  
Type  
Buffer  
Type  
HSDL_15 Secondary Northbound Data,  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
Function  
142  
145  
148  
151  
154  
157  
171  
174  
177  
180  
183  
186  
168  
160  
143  
146  
149  
152  
155  
158  
172  
175  
178  
181  
184  
187  
169  
161  
Southbound  
70  
SN0  
SN1  
SN2  
SN3  
SN4  
SN5  
SN6  
SN7  
SN8  
SN9  
SN10  
SN11  
SN12  
SN13  
SN0  
SN1  
SN2  
SN3  
SN4  
SN5  
SN6  
SN7  
SN8  
SN9  
SN10  
SN11  
SN12  
SN13  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
positive lines  
HSDL_15 Secondary Northbound Data,  
positive lines  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15 Secondary Northbound Data,  
negative lines  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
PS0  
PS1  
PS2  
PS3  
PS4  
PS5  
PS6  
PS7  
PS8  
PS9  
I
I
I
I
I
I
I
I
I
I
HSDL_15 Primary Southbound Data, positive  
lines  
73  
76  
79  
82  
93  
96  
99  
102  
90  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
Data Sheet  
9
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Pin Configuration  
Table 3  
Pin#  
Pin Configuration of FB-DIMM (cont’d)  
Name  
Pin  
Type  
Buffer  
Type  
HSDL_15 Primary Southbound Data, negative  
Function  
71  
74  
77  
80  
83  
94  
97  
100  
103  
91  
190  
193  
196  
199  
202  
213  
216  
219  
222  
210  
191  
194  
197  
200  
203  
214  
217  
220  
223  
211  
PS0  
PS1  
PS2  
PS3  
PS4  
PS5  
PS6  
PS7  
PS8  
PS9  
SS0  
SS1  
SS2  
SS3  
SS4  
SS5  
SS6  
SS7  
SS8  
SS9  
SS0  
SS1  
SS2  
SS3  
SS4  
SS5  
SS6  
SS7  
SS8  
SS9  
I
I
I
I
I
I
I
I
lines  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
I
I
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
HSDL_15 Secondary Southbound data,  
positive lines  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15 Secondary Southbound data,  
positive lines  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15 Secondary Southbound data,  
negative lines  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
HSDL_15  
EEPROM  
120  
119  
239  
240  
SCL  
SDA  
SA0  
SA1  
SA2  
I
CMOS  
OD  
CMOS  
CMOS  
CMOS  
Serial Bus Clock  
Serial Bus Data  
Serial Address Select Bus 2:0  
I/O  
I
I
I
118  
Power Supplies  
238  
9,10,12,13,129,130,132,133  
VDDSPD  
VCC  
PWR  
PWR  
EEPROM Power Supply  
AMB Core Power / Channel Interface  
Power  
Data Sheet  
10  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Pin Configuration  
Table 3  
Pin#  
Pin Configuration of FB-DIMM (cont’d)  
Name  
Pin  
Type  
Buffer  
Type  
Function  
15,117,135,237  
VTT  
PWR  
Address/Command/Clock  
Termination Power  
1,2,3,5,6,7,108,109,111,112,113, VDD  
115,116,121,122,123,125,126,  
127,231,232,233,235,236  
PWR  
Power Supply  
4,8,11,14,18,21,24,27,30,33,36,  
39,42,43,46,47,50,53,56,59,62,  
65,68,69,72,75,78,81,84,85,88,  
89,92,95,98,101,104,107,110,  
114,124,128,131,134,138,141,  
144,147,150,153,156,159,162,  
163,166,167,170,173,176,179,  
182,185,188,189,192,195,198,  
201,204,205,208,209,212,215,  
218,221,224,227,230,234  
VSS  
GND  
Ground Plane  
Other Pins  
19,20,44,45,86,87,105,106,139,  
140,164,165,206,207,225,226  
NC  
NC  
Not connected  
Pins not connected on Infineon FB-  
DIMM’s  
136  
16  
VID0  
VID1  
Voltage ID  
Note: These Pins must be unconnected  
for DDR2-based Fully Buffered  
DIMMs VID[0] is VDD value:  
OPEN = 1.8 V, GND = 1.5 V;  
VID[1] is VCC value: OPEN = 1.5  
V, GND = 1.2 V  
137  
Test  
AI  
VREF  
Note: Pin must be unconnected for  
normal operation  
Table 4  
Abbreviations for Buffer Type  
Description  
Abbreviation  
HSDL_15  
LV-CMOS  
CMOS  
High-Speed Differential Point-to-Point Link Interface at 1.5 V  
Low Voltage CMOS  
CMOS Levels  
OD  
Open Drain. The corresponding pin has 2 operational states, active low and  
tristate, and allows multiple devices to share as a wire-OR.  
Data Sheet  
11  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Table 5  
Pin Configuration  
Abbreviations for Pin Type  
Abbreviation  
Description  
I
O
Standard input-only pin. Digital levels.  
Output. Digital levels.  
I/O is a bidirectional input/output signal.  
Input. Analog levels.  
Power  
Ground  
Not Usable  
Not Connected  
I/O  
AI  
PWR  
GND  
NU  
NC  
Data Sheet  
12  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Pin Configuration  
6
$$ ꢀ 0IN ꢁꢁꢂ  
0IN ꢂꢇꢂ ꢀ 6$$  
0IN ꢂꢇꢇ ꢀ 6$$  
6$$ ꢀ 0IN ꢁꢁꢇ  
633 ꢀ 0IN ꢁꢁꢈ  
6$$ ꢀ 0IN ꢁꢁꢉ  
633 ꢀ 0IN ꢁꢁꢊ  
6## ꢀ 0IN ꢁꢂꢁ  
6## ꢀ 0IN ꢁꢂꢇ  
633 ꢀ 0IN ꢁꢂꢈ  
6)$ꢂ ꢀ 0IN ꢁꢂꢉ  
633 ꢀ 0IN ꢁꢂꢊ  
.# ꢀ 0IN ꢁꢇꢁ  
6$$ ꢀ 0IN ꢁꢁꢃ  
6$$ ꢀ 0IN ꢁꢁꢄ  
6$$ ꢀ 0IN ꢁꢁꢅ  
6## ꢀ 0IN ꢁꢁꢆ  
633 ꢀ 0IN ꢁꢂꢂ  
6## ꢀ 0IN ꢁꢂꢃ  
644 ꢀ 0IN ꢁꢂꢄ  
2%3%4 ꢀ 0IN ꢁꢂꢅ  
.# ꢀ 0IN ꢁꢂꢆ  
0IN ꢂꢇꢃ ꢀ 6$$  
0IN ꢂꢇꢈ 633  
0IN ꢂꢇꢄ ꢀ 6$$  
0IN ꢂꢇꢅ ꢀ 6$$  
0IN ꢂꢇꢆ ꢀ 6##  
0IN ꢂꢃꢂ ꢀ 633  
0IN ꢂꢃꢃ ꢀ 6##  
0IN ꢂꢃꢄ ꢀ 644  
0IN ꢂꢃꢅ ꢀ 4%34  
0IN ꢂꢃꢆ ꢀ .#  
0IN ꢂꢇꢉ ꢀ 6$$  
0IN ꢂꢇꢊ 633  
0IN ꢂꢃꢁ ꢀ 6##  
0IN ꢂꢃꢇ 6##  
0IN ꢂꢃꢈ ꢀ 633  
0IN ꢂꢃꢉ ꢀ 6)$ꢁ  
0IN ꢂꢃꢊ ꢀ 633  
0IN ꢂꢈꢁ ꢀ .#  
633  
6
33  
0IN ꢁꢇꢂ  
0IN ꢂꢈꢂ ꢀ  
0IN ꢂꢈꢇ 3.ꢁ  
0.ꢁ 0IN ꢁꢇꢇ  
0.ꢁ 0IN ꢁꢇꢃ  
0.ꢂ ꢀ 0IN ꢁꢇꢄ  
633 ꢀ 0IN ꢁꢇꢅ  
0.ꢇ ꢀ 0IN ꢁꢇꢆ  
0.ꢃ ꢀ 0IN ꢁꢃꢂ  
633 ꢀ 0IN ꢁꢃꢃ  
0.ꢈ ꢀ 0IN ꢁꢃꢄ  
0.ꢄ ꢀ 0IN ꢁꢃꢅ  
633 ꢀ 0IN ꢁꢃꢆ  
0.ꢂꢃ ꢀ 0IN ꢁꢈꢂ  
633 ꢀ 0IN ꢁꢈꢃ  
.# ꢀ 0IN ꢁꢈꢄ  
633 ꢀ 0IN ꢁꢈꢅ  
0.ꢂꢇ ꢀ 0IN ꢁꢈꢆ  
0.ꢉ ꢀ 0IN ꢁꢄꢂ  
633 ꢀ 0IN ꢁꢄꢃ  
0.ꢅ ꢀ 0IN ꢁꢄꢄ  
0.ꢊ ꢀ 0IN ꢁꢄꢅ  
633 ꢀ 0IN ꢁꢄꢆ  
0.ꢆ ꢀ 0IN ꢁꢉꢂ  
0.ꢂꢁ ꢀ 0IN ꢁꢉꢃ  
633 ꢀ 0IN ꢁꢉꢄ  
0.ꢂꢂ ꢀ 0IN ꢁꢉꢅ  
0IN ꢂꢈꢃ ꢀ 3.ꢁ  
0IN ꢂꢈꢄ ꢀ 3.ꢂ  
0IN ꢂꢈꢅ ꢀ 633  
0IN ꢂꢈꢆ ꢀ 3.ꢇ  
0IN ꢂꢄꢂ ꢀ 3.ꢃ  
0IN ꢂꢄꢃ ꢀ 633  
0IN ꢂꢄꢄ ꢀ 3.ꢈ  
0IN ꢂꢄꢅ ꢀ 3.ꢄ  
0IN ꢂꢄꢆ ꢀ 633  
0IN ꢂꢉꢂ ꢀ 3.ꢂꢃ  
0IN ꢂꢉꢃ ꢀ 633  
0IN ꢂꢉꢄ ꢀ .#  
0IN ꢂꢉꢅ ꢀ 633  
0IN ꢂꢉꢆ ꢀ 3.ꢂꢇ  
0IN ꢂꢅꢂ ꢀ 3.ꢉ  
0IN ꢂꢅꢃ ꢀ 633  
0IN ꢂꢅꢄ ꢀ 3.ꢅ  
0IN ꢂꢅꢅ ꢀ 3.ꢊ  
0IN ꢂꢅꢆ ꢀ 633  
0IN ꢂꢊꢂ ꢀ 3.ꢆ  
0IN ꢂꢊꢃ ꢀ 3.ꢂꢁ  
0IN ꢂꢊꢄ ꢀ 633  
633 0IN ꢁꢇꢈ  
0IN ꢂꢈꢈ 633  
&
2
/
.
4
3
)
"
!
#
+
3
)
0.ꢂ 0IN ꢁꢇꢉ  
0IN ꢂꢈꢉ 3.ꢂ  
0.ꢇ 0IN ꢁꢇꢊ  
0IN ꢂꢈꢊ 3.ꢇ  
633 0IN ꢁꢃꢁ  
0IN ꢂꢄꢁ 633  
0.ꢃ 0IN ꢁꢃꢇ  
0IN ꢂꢄꢇ 3.ꢃ  
0.ꢈ 0IN ꢁꢃꢈ  
0IN ꢂꢄꢈ 3.ꢈ  
633 0IN ꢁꢃꢉ  
0IN ꢂꢄꢉ 633  
$
%
$
%
0IN ꢂꢄꢊ 3.ꢄ  
0IN ꢂꢉꢁ 3.ꢂꢃ  
0.ꢄ 0IN ꢁꢃꢊ  
0.ꢂꢃ 0IN ꢁꢈꢁ  
633 0IN ꢁꢈꢇ  
0IN ꢂꢉꢇ 633  
.# 0IN ꢁꢈꢈ  
0IN ꢂꢉꢈ .#  
633 0IN ꢁꢈꢉ  
0IN ꢂꢉꢉ 633  
0.ꢂꢇ 0IN ꢁꢈꢊ  
0IN ꢂꢉꢊ 3.ꢂꢇ  
633 0IN ꢁꢄꢁ  
0IN ꢂꢅꢁ 633  
0.ꢉ 0IN ꢁꢄꢇ  
0IN ꢂꢅꢇ 3.ꢉ  
0.ꢅ 0IN ꢁꢄꢈ  
0IN ꢂꢅꢈ 3.ꢅ  
0IN ꢂꢅꢉ 633  
0IN ꢂꢅꢊ 3.ꢊ  
633 0IN ꢁꢄꢉ  
0.ꢊ 0IN ꢁꢄꢊ  
0.ꢆ 0IN ꢁꢉꢁ  
0IN ꢂꢊꢁ 3.ꢆ  
633 0IN ꢁꢉꢇ  
0IN ꢂꢊꢇ 633  
0.ꢂꢁ 0IN ꢁꢉꢈ  
0IN ꢂꢊꢈ 3.ꢂꢁ  
0.ꢂꢂ 0IN ꢁꢉꢉ  
0IN ꢂꢊꢉ 3.ꢂꢂ  
0IN ꢂꢊꢅ  
ꢀ 3.ꢂꢂ  
633 0IN ꢁꢉꢊ  
0IN ꢂꢊꢊ 633  
633 ꢀ 0IN ꢁꢉꢆ  
03ꢁ ꢀ 0IN ꢁꢅꢂ  
03ꢂ ꢀ 0IN ꢁꢅꢃ  
633 ꢀ 0IN ꢁꢅꢄ  
03ꢇ ꢀ 0IN ꢁꢅꢅ  
03ꢃ ꢀ 0IN ꢁꢅꢆ  
0IN ꢂꢊꢆ ꢀ 633  
0IN ꢂꢆꢂ  
0IN ꢂꢆꢁ 33ꢁ  
0IN ꢂꢆꢇ 633  
03ꢁ 0IN ꢁꢅꢁ  
ꢀ 33ꢁ  
633 0IN ꢁꢅꢇ  
0IN ꢂꢆꢃ ꢀ 33ꢂ  
0IN ꢂꢆꢄ ꢀ 633  
0IN ꢂꢆꢅ ꢀ 33ꢇ  
0IN ꢂꢆꢆ ꢀ 33ꢃ  
03ꢂ 0IN ꢁꢅꢈ  
0IN ꢂꢆꢈ 33ꢂ  
03ꢇ 0IN ꢁꢅꢉ  
0IN ꢂꢆꢉ 33ꢇ  
633 0IN ꢁꢅꢊ  
0IN ꢂꢆꢊ 633  
03ꢃ 0IN ꢁꢊꢁ  
0IN ꢇꢁꢁ 33ꢃ  
0IN ꢁꢊꢂ  
0IN ꢇꢁꢂ  
633  
03ꢈ ꢀ 0IN ꢁꢊꢃ  
0IN ꢁꢊꢄ  
ꢀ 633  
0IN ꢇꢁꢃ ꢀ 33ꢈ  
0IN ꢇꢁꢄ  
03ꢈ 0IN ꢁꢊꢇ  
0IN ꢇꢁꢇ 33ꢈ  
633 0IN ꢁꢊꢈ  
0IN ꢇꢁꢈ 633  
633  
.# ꢀ 0IN ꢁꢊꢅ  
0IN ꢁꢊꢆ  
ꢀ 633  
0IN ꢇꢁꢅ ꢀ .#  
0IN ꢇꢁꢆ  
ꢀ 633  
.# 0IN ꢁꢊꢉ  
0IN ꢇꢁꢉ .#  
0IN ꢇꢁꢊ 633  
0IN ꢇꢂꢁ 33ꢆ  
633 0IN ꢁꢊꢊ  
633  
03ꢆ 0IN ꢁꢆꢁ  
03ꢆ ꢀ 0IN ꢁꢆꢂ  
03ꢄ ꢀ 0IN ꢁꢆꢃ  
633 ꢀ 0IN ꢁꢆꢄ  
03ꢉ ꢀ 0IN ꢁꢆꢅ  
0IN ꢇꢂꢂ ꢀ 33ꢆ  
0IN ꢇꢂꢃ ꢀ 33ꢄ  
0IN ꢇꢂꢄ ꢀ 633  
0IN ꢇꢂꢅ ꢀ 33ꢉ  
633 0IN ꢁꢆꢇ  
0IN ꢇꢂꢇ 633  
03ꢄ 0IN ꢁꢆꢈ  
0IN ꢇꢂꢈ 33ꢄ  
03ꢉ 0IN ꢁꢆꢉ  
0IN ꢇꢂꢉ 33ꢉ  
633 0IN ꢁꢆꢊ  
0IN ꢇꢂꢊ 633  
0IN ꢁꢆꢆ  
0IN ꢇꢂꢆ  
03ꢅ ꢀ  
633 ꢀ 0IN ꢂꢁꢂ  
0IN ꢂꢁꢃ  
ꢀ 33ꢅ  
0IN ꢇꢇꢂ ꢀ 633  
0IN ꢇꢇꢃ  
03ꢅ 0IN ꢂꢁꢁ  
0IN ꢇꢇꢁ 33ꢅ  
03ꢊ 0IN ꢂꢁꢇ  
0IN ꢇꢇꢇ 33ꢊ  
03ꢊ ꢀ  
.# ꢀ 0IN ꢂꢁꢄ  
0IN ꢂꢁꢅ  
ꢀ 33ꢊ  
0IN ꢇꢇꢄ ꢀ .#  
0IN ꢇꢇꢅ  
633 0IN ꢂꢁꢈ  
0IN ꢇꢇꢈ 633  
0IN ꢇꢇꢉ .#  
0IN ꢇꢇꢊ 3#+  
.# 0IN ꢂꢁꢉ  
633  
ꢀ 633  
6$$ 0IN ꢂꢁꢊ  
6$$ ꢀ 0IN ꢂꢁꢆ  
6$$ ꢀ 0IN ꢂꢂꢂ  
6$$ ꢀ 0IN ꢂꢂꢃ  
6$$ ꢀ 0IN ꢂꢂꢄ  
0IN ꢇꢇꢆ ꢀ 3#+  
0IN ꢇꢃꢂ ꢀ 6$$  
0IN ꢇꢃꢃ ꢀ 6$$  
0IN ꢇꢃꢄ ꢀ 6$$  
633 0IN ꢂꢂꢁ  
0IN ꢇꢃꢁ 633  
6$$ 0IN ꢂꢂꢇ  
0IN ꢇꢃꢇ 6$$  
633 0IN ꢂꢂꢈ  
0IN ꢇꢃꢈ 633  
6$$ 0IN ꢂꢂꢉ  
0IN ꢇꢃꢉ 6$$  
0IN ꢂꢂꢅ  
0IN ꢇꢃꢅ  
644  
644  
3!ꢇ 0IN ꢂꢂꢊ  
0IN ꢇꢃꢊ 6$$30$  
0IN ꢇꢈꢁ 3!ꢂ  
3$! ꢀ 0IN ꢂꢂꢆ  
0IN ꢇꢃꢆ 3!ꢁ  
-004ꢁꢂꢆꢁ  
3#, 0IN ꢂꢇꢁ  
Figure 1  
Pin Configuration for FBDIMM (240 pin)  
Data Sheet  
13  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
FB-DIMM Input/Output Functional Description  
3
FB-DIMM Input/Output Functional Description  
Table 6  
Symbol  
FB-DIMM Input/Output Functional Description  
Type Polarity Function  
Channel Signals  
SCK, SCK  
Input  
Differential System Clock Input  
PN[13:0], PN[13:0] Output Differential Primary Northbound Data  
PS[9:0], PS[9:0]  
SN[13:0], SN[13:0] Input  
Input  
Differential Primary Southbound Data  
Differential Secondary Northbound Data  
SS[9:0], SS[9:0]  
SMB Bus Signals  
SA[2:0]  
Output Differential Secondary Southbound Data  
Input  
I/O  
SPD Address, also used to select the DIMM number in the AMB  
SPD Data. A resistor must be connected from the SDA bus line to  
VDDSPD on the system planar to act as a pull-up.  
SDA  
SCL  
Input  
SPD Clock  
Miscellaneous Signals  
RESET  
VID[1:0]  
TEST  
Input  
Input  
Analog + 0.9 V  
Active Low AMB Reset Signal  
Voltage ID. Both pins shall be NC in case of VDD = 1.8 V, VCC = 1.5 V  
DRAM VREF Margin Test. Do not connect on the system planar.  
Power / Ground  
VDD  
VCC  
Supply + 1.8 V  
Supply + 1.5 V  
Supply + 3.3 V  
DDR2 DRAM Power  
AMB Core Power  
SPD Power  
VDDSPD  
Data Sheet  
14  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Block Diagrams  
4
Block Diagrams  
3ꢀ  
$ꢈ  
#3  
$ꢀ  
#3  
$ꢆ  
$ꢇ  
$ꢄ  
$ꢅ  
#3  
$13ꢈ  
$13  
$13ꢀ  
$13ꢀ  
$13ꢂ  
$13  
$13ꢆ  
$13ꢆ  
$13  
$13  
$13ꢈ  
$13  
$13  
$13ꢃꢅ  
$-ꢊ2$13  
.5ꢊ2$13  
)ꢊ/ ꢀ  
$-ꢊ2$13  
.5ꢊ2$13  
)ꢊ/ ꢀ  
$13ꢃꢉ  
$-ꢊ2$13  
.5ꢊ2$13  
)ꢊ/ ꢀ  
#"ꢀ  
#"ꢃ  
#"ꢁ  
#"ꢉ  
#"ꢆ  
#"ꢇ  
#"ꢄ  
#"ꢅ  
$1ꢀ  
$1ꢃ  
$1ꢁ  
$1ꢉ  
$1ꢆ  
$1ꢇ  
$1ꢄ  
$1ꢅ  
$1ꢉꢁ  
$1ꢉꢉ  
$1ꢉꢆ  
$1ꢉꢇ  
$1ꢉꢄ  
$1ꢉꢅ  
$1ꢉꢈ  
$1ꢉꢂ  
)ꢊ/ ꢃ  
)ꢊ/ ꢃ  
)ꢊ/ ꢃ  
)ꢊ/ ꢁ  
)ꢊ/ ꢁ  
)ꢊ/ ꢁ  
)ꢊ/ ꢉ  
)ꢊ/ ꢉ  
)ꢊ/ ꢉ  
)ꢊ/ ꢆ  
)ꢊ/ ꢆ  
)ꢊ/ ꢆ  
)ꢊ/ ꢇ  
)ꢊ/ ꢇ  
)ꢊ/ ꢇ  
)ꢊ/ ꢄ  
)ꢊ/ ꢄ  
)ꢊ/ ꢄ  
)ꢊ/ ꢅ  
)ꢊ/ ꢅ  
)ꢊ/ ꢅ  
$ꢃ  
$ꢁ  
$ꢉ  
%ꢀ  
#3  
$13  
#3  
$13  
3#,  
3$!  
!ꢀ  
3#,  
3$!  
3!ꢀ  
3!ꢃ  
3!ꢁ  
633  
$13ꢃ  
$13ꢃ  
$13ꢃꢀ  
$13ꢇ  
$13ꢇ  
$13ꢃꢆ  
$13  
$13  
$-ꢊ2$13  
.5ꢊ2$13  
)ꢊ/ ꢀ  
$-ꢊ2$13  
.5ꢊ2$13  
)ꢊ/ ꢀ  
!ꢃ  
!ꢁ  
$1ꢈ  
$1ꢂ  
$1ꢆꢀ  
$1ꢆꢃ  
$1ꢆꢁ  
$1ꢆꢉ  
$1ꢆꢆ  
$1ꢆꢇ  
$1ꢆꢄ  
$1ꢆꢅ  
70  
)ꢊ/ ꢃ  
)ꢊ/ ꢃ  
$1ꢃꢀ  
$1ꢃꢃ  
$1ꢃꢁ  
$1ꢃꢉ  
$1ꢃꢆ  
$1ꢃꢇ  
)ꢊ/ ꢁ  
)ꢊ/ ꢁ  
)ꢊ/ ꢉ  
)ꢊ/ ꢉ  
644  
6##  
4ERMINATORS  
)ꢊ/ ꢆ  
)ꢊ/ ꢆ  
)ꢊ/ ꢇ  
)ꢊ/ ꢇ  
!-"  
)ꢊ/ ꢄ  
)ꢊ/ ꢄ  
6$$ꢍ30$  
6$$6$$1  
62%&  
6$$ꢌ 30$ꢍ !-"  
)ꢊ/ ꢅ  
)ꢊ/ ꢅ  
6$$6$$1ꢌ 3$2!-S $ꢀ ꢋ $ꢈꢍ!-"  
62%&ꢌ 3$2!-S $ꢀ ꢋ $ꢈ  
633ꢌ 3$2!-S $ꢀ ꢋ $ꢈ  
#3  
$13  
#3  
$13  
$13ꢄ  
$13ꢄ  
$13ꢃꢇ  
$13ꢁ  
$13ꢁ  
$13ꢃꢃ  
$13  
$13  
633  
$-ꢊ2$13  
.5ꢊ2$13  
)ꢊ/ ꢀ  
$-ꢊ2$13  
.5ꢊ2$13  
)ꢊ/ ꢀ  
$1ꢆꢈ  
$1ꢆꢂ  
$1ꢇꢀ  
$1ꢇꢃ  
$1ꢇꢁ  
$1ꢇꢉ  
$1ꢇꢆ  
$1ꢇꢇ  
$1ꢃꢄ  
$1ꢃꢅ  
$1ꢃꢈ  
$1ꢃꢂ  
$1ꢁꢀ  
$1ꢁꢃ  
$1ꢁꢁ  
$1ꢁꢉ  
)ꢊ/ ꢃ  
)ꢊ/ ꢃ  
)ꢊ/ ꢁ  
)ꢊ/ ꢁ  
)ꢊ/ ꢉ  
)ꢊ/ ꢉ  
0.ꢀꢋ0.ꢃꢉ  
0.ꢀꢋ0.ꢃꢉ  
03ꢀꢋ03ꢂ  
03ꢀꢋ03ꢂ  
3.ꢀꢋ3.ꢃꢉ  
3.ꢀꢋ3.ꢃꢉ  
33ꢀꢋ33ꢂ  
33ꢀꢋ33ꢂ  
!-"  
)ꢊ/ ꢆ  
)ꢊ/ ꢆ  
)ꢊ/ ꢇ  
)ꢊ/ ꢇ  
)ꢊ/ ꢄ  
)ꢊ/ ꢄ  
)ꢊ/ ꢅ  
)ꢊ/ ꢅ  
$1ꢀꢋ$1ꢄꢉ  
#"ꢀꢋ#"ꢅ  
$13ꢀꢋ$13ꢃꢅ  
$13ꢀꢋ$13ꢈ  
3ꢀ  
#+%ꢀ  
#3ꢌ 3$2!-S $ꢀꢋ$ꢈ  
#+%ꢌ 3$2!-S $ꢀꢋ$ꢈ  
#3  
$13  
#3  
$13  
$13ꢉ  
$13ꢉ  
$13ꢃꢁ  
$13ꢅ  
$13ꢅ  
$13ꢃꢄ  
$13  
$13  
$-ꢊ2$13  
.5ꢊ2$13  
)ꢊ/ ꢀ  
$-ꢊ2$13  
.5ꢊ2$13  
)ꢊ/ ꢀ  
3#,  
3$!  
3!ꢀꢋ3!ꢁ  
/$4  
/$4ꢌ 3$2!-S $ꢀꢋ$ꢈ  
"!ꢀꢋ"!Nꢌ 3$2!-S $ꢀꢋ$ꢈ  
!ꢀꢋ!Nꢌ 3$2!-S $ꢀꢋ$ꢈ  
2!3ꢌ 3$2!-S $ꢀꢋ$ꢈ  
#!3ꢌ 3$2!-S $ꢀꢋ$ꢈ  
7%ꢌ 3$2!-S $ꢀꢋ$ꢈ  
#+ꢊ#+ꢌ 3$2!- $ꢀꢋ$ꢈ  
"!ꢀꢋ"!ꢁ  
!ꢀꢋ!N  
2!3  
$1ꢁꢆ  
$1ꢁꢇ  
$1ꢁꢄ  
$1ꢁꢅ  
$1ꢁꢈ  
$1ꢁꢂ  
$1ꢉꢀ  
$1ꢉꢃ  
$1ꢇꢄ  
$1ꢇꢅ  
$1ꢇꢈ  
$1ꢇꢂ  
$1ꢄꢀ  
$1ꢄꢃ  
$1ꢄꢁ  
$1ꢄꢉ  
)ꢊ/ ꢃ  
)ꢊ/ ꢃ  
)ꢊ/ ꢁ  
)ꢊ/ ꢁ  
2%3%4  
#!3  
)ꢊ/ ꢉ  
)ꢊ/ ꢉ  
7%  
)ꢊ/ ꢆ  
)ꢊ/ ꢆ  
3#+ꢊ3#+  
#+ꢊ#+  
)ꢊ/ ꢇ  
)ꢊ/ ꢇ  
)ꢊ/ ꢄ  
)ꢊ/ ꢄ  
)ꢊ/ ꢅ  
)ꢊ/ ꢅ  
-0"4ꢀꢁꢂꢀ  
Figure 2  
Block Diagram Raw Card A FB-DIMM ECC (x72, 1Rank, x8)  
Notes  
2. There are two physical copies of each address,  
command, control, clock  
3. All address, command, control, clock have  
termination resitors to VTT  
1. DQ to I/O wiring may be changed within a byte  
Data Sheet  
15  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Block Diagrams  
644  
6##  
4ERMINATORS  
!-"  
6$$6$$1  
62%&  
6$$6$$1ꢌ 3$2!-S $ꢀ ꢋ $ꢂꢇꢍ!-"  
62%&ꢌ 3$2!-S $ꢀ ꢋ $ꢂꢇ  
6$$ꢍ30$  
633  
6$$ꢌ 30$ꢍ !-"  
633ꢌ 3$2!-S $ꢀ ꢋ $ꢂꢇ  
633  
633ꢌ 3$2!-S $ꢀ ꢋ $ꢂꢇ  
0.ꢀꢋ0.ꢂꢁ  
0.ꢀꢋ0.ꢂꢁ  
03ꢀꢋ03ꢉ  
03ꢀꢋ03ꢉ  
$1ꢀꢋ$1ꢆꢁ  
#"ꢀꢋ#"ꢇ  
$13ꢀꢋ$13ꢂꢇ  
$13ꢀꢋ$13ꢈ  
3#,  
3.ꢀꢋ3.ꢂꢁ  
3ꢀ  
3ꢂ  
!-"  
3.ꢀꢋ3.ꢂꢁ  
33ꢀꢋ33ꢉ  
33ꢀꢋ33ꢉ  
3ꢀ  
$ꢀ  
$ꢂ  
$ꢃ  
$ꢁ  
$ꢄ  
$ꢉ  
#3  
#3  
#3ꢌ 3$2!-S $ꢀꢋ$ꢈ  
$13ꢀ  
$13ꢀ  
$13ꢉ  
$13  
$13  
$13  
$13  
#+%ꢀ  
3ꢂ  
#+%ꢌ 3$2!-S $ꢀꢋ$ꢈ  
#3ꢌ 3$2!-S $ꢉꢋ$ꢂꢇ  
#+%ꢌ 3$2!-S $ꢉꢋ$ꢂꢇ  
/$4ꢌ 3$2!-S $ꢀꢋ$ꢂꢇ  
"!ꢀꢋ"!Nꢌ 3$2!-S $ꢀꢋ$ꢂꢇ  
!ꢀꢋ!Nꢌ 3$2!-S $ꢀꢋ$ꢂꢇ  
2!3ꢌ 3$2!-S $ꢀꢋ$ꢂꢇ  
#!3ꢌ 3$2!-S $ꢀꢋ$ꢂꢇ  
7%ꢌ 3$2!-S $ꢀꢋ$ꢂꢇ  
#+ꢊ#+ꢌ 3$2!- $ꢀꢋ$ꢂꢇ  
$-ꢊ2$13  
.5ꢊ2$13  
)ꢊ/ ꢀ  
$-ꢊ2$13  
.5ꢊ2$13  
)ꢊ/ ꢀ  
#+%ꢂ  
/$4  
$1ꢀ  
$1ꢂ  
$1ꢃ  
$1ꢁ  
$1ꢄ  
$1ꢅ  
$1ꢆ  
$1ꢇ  
3$!  
3!ꢀꢋ3!ꢃ  
"!ꢀꢋ"!ꢃ  
!ꢀꢋ!N  
2!3  
)ꢊ/ ꢂ  
)ꢊ/ ꢂ  
)ꢊ/ ꢃ  
)ꢊ/ ꢃ  
)ꢊ/ ꢁ  
)ꢊ/ ꢁ  
2%3%4  
#!3  
)ꢊ/ ꢄ  
)ꢊ/ ꢄ  
7%  
)ꢊ/ ꢅ  
)ꢊ/ ꢅ  
3#+ꢊ3#+  
#+ꢊ#+  
)ꢊ/ ꢆ  
)ꢊ/ ꢆ  
)ꢊ/ ꢇ  
)ꢊ/ ꢇ  
$ꢂꢀ  
#3  
$ꢅ  
$ꢆ  
$ꢇ  
$ꢈ  
$ꢂꢄ  
$ꢂꢅ  
$ꢂꢆ  
$ꢂꢇ  
#3  
$13  
#3  
#3  
$13ꢂ  
$13ꢂ  
$13ꢂꢀ  
$13  
$13  
$13ꢅ  
$13ꢅ  
$13ꢂꢄ  
$13  
$13  
$13  
$13  
$13  
%ꢀ  
$-ꢊ2$13  
.5ꢊ2$13  
)ꢊ/ ꢀ  
$-ꢊ2$13  
$-ꢊ2$13  
.5ꢊ2$13  
)ꢊ/ ꢀ  
$-ꢊ2$13  
.5ꢊ2$13  
)ꢊ/ ꢀ  
3#,  
3$!  
!ꢀ  
3#,  
.5ꢊ2$13  
3$!  
$1ꢈ  
$1ꢉ  
)ꢊ/ ꢀ  
3!ꢀ  
$1ꢄꢀ  
$1ꢄꢂ  
$1ꢄꢃ  
$1ꢄꢁ  
$1ꢄꢄ  
$1ꢄꢅ  
$1ꢄꢆ  
$1ꢄꢇ  
)ꢊ/ ꢂ  
)ꢊ/ ꢂ  
3!ꢂ  
)ꢊ/ ꢂ  
)ꢊ/ ꢂ  
!ꢂ  
$1ꢂꢀ  
$1ꢂꢂ  
$1ꢂꢃ  
$1ꢂꢁ  
$1ꢂꢄ  
$1ꢂꢅ  
)ꢊ/ ꢃ  
)ꢊ/ ꢃ  
3!ꢃ  
)ꢊ/ ꢃ  
)ꢊ/ ꢃ  
!ꢃ  
70  
)ꢊ/ ꢁ  
)ꢊ/ ꢁ  
)ꢊ/ ꢁ  
)ꢊ/ ꢁ  
633  
)ꢊ/ ꢄ  
)ꢊ/ ꢄ  
)ꢊ/ ꢅ  
)ꢊ/ ꢆ  
)ꢊ/ ꢇ  
)ꢊ/ ꢄ  
)ꢊ/ ꢄ  
)ꢊ/ ꢅ  
)ꢊ/ ꢅ  
)ꢊ/ ꢅ  
)ꢊ/ ꢆ  
)ꢊ/ ꢆ  
)ꢊ/ ꢆ  
)ꢊ/ ꢇ  
)ꢊ/ ꢇ  
)ꢊ/ ꢇ  
$ꢂꢂ  
#3  
#3  
$13  
#3  
$13  
#3  
$13  
$13ꢃ  
$13ꢃ  
$13ꢂꢂ  
$13  
$13  
$13ꢆ  
$13ꢆ  
$13ꢂꢅ  
$13  
$13  
$13  
$-ꢊ2$13  
.5ꢊ2$13  
)ꢊ/ ꢀ  
$-ꢊ2$13  
.5ꢊ2$13  
)ꢊ/ ꢀ  
$-ꢊ2$13  
.5ꢊ2$13  
)ꢊ/ ꢀ  
$-ꢊ2$13  
.5ꢊ2$13  
)ꢊ/ ꢀ  
$1ꢂꢆ  
$1ꢂꢇ  
$1ꢂꢈ  
$1ꢂꢉ  
$1ꢃꢀ  
$1ꢃꢂ  
$1ꢃꢃ  
$1ꢃꢁ  
$1ꢄꢈ  
$1ꢄꢉ  
$1ꢅꢀ  
$1ꢅꢂ  
$1ꢅꢃ  
$1ꢅꢁ  
$1ꢅꢄ  
$1ꢅꢅ  
)ꢊ/ ꢂ  
)ꢊ/ ꢂ  
)ꢊ/ ꢂ  
)ꢊ/ ꢂ  
)ꢊ/ ꢃ  
)ꢊ/ ꢃ  
)ꢊ/ ꢃ  
)ꢊ/ ꢃ  
)ꢊ/ ꢁ  
)ꢊ/ ꢁ  
)ꢊ/ ꢁ  
)ꢊ/ ꢁ  
)ꢊ/ ꢄ  
)ꢊ/ ꢄ  
)ꢊ/ ꢄ  
)ꢊ/ ꢄ  
)ꢊ/ ꢅ  
)ꢊ/ ꢅ  
)ꢊ/ ꢅ  
)ꢊ/ ꢅ  
)ꢊ/ ꢆ  
)ꢊ/ ꢆ  
)ꢊ/ ꢆ  
)ꢊ/ ꢆ  
)ꢊ/ ꢇ  
)ꢊ/ ꢇ  
)ꢊ/ ꢇ  
)ꢊ/ ꢇ  
$ꢂꢃ  
#3  
#3  
$13  
#3  
$13  
#3  
$13  
$13ꢁ  
$13ꢁ  
$13ꢂꢃ  
$13  
$13  
$13ꢇ  
$13ꢇ  
$13ꢂꢆ  
$13  
$13  
$13  
$-ꢊ2$13  
.5ꢊ2$13  
)ꢊ/ ꢀ  
$-ꢊ2$13  
.5ꢊ2$13  
)ꢊ/ ꢀ  
$-ꢊ2$13  
.5ꢊ2$13  
)ꢊ/ ꢀ  
$-ꢊ2$13  
.5ꢊ2$13  
)ꢊ/ ꢀ  
$1ꢃꢄ  
$1ꢃꢅ  
$1ꢃꢆ  
$1ꢃꢇ  
$1ꢃꢈ  
$1ꢃꢉ  
$1ꢁꢀ  
$1ꢁꢂ  
$1ꢅꢆ  
$1ꢅꢇ  
$1ꢅꢈ  
$1ꢅꢉ  
$1ꢆꢀ  
$1ꢆꢂ  
$1ꢆꢃ  
$1ꢆꢁ  
)ꢊ/ ꢂ  
)ꢊ/ ꢂ  
)ꢊ/ ꢂ  
)ꢊ/ ꢂ  
)ꢊ/ ꢃ  
)ꢊ/ ꢃ  
)ꢊ/ ꢃ  
)ꢊ/ ꢃ  
)ꢊ/ ꢁ  
)ꢊ/ ꢁ  
)ꢊ/ ꢁ  
)ꢊ/ ꢁ  
)ꢊ/ ꢄ  
)ꢊ/ ꢄ  
)ꢊ/ ꢄ  
)ꢊ/ ꢄ  
)ꢊ/ ꢅ  
)ꢊ/ ꢅ  
)ꢊ/ ꢅ  
)ꢊ/ ꢅ  
)ꢊ/ ꢆ  
)ꢊ/ ꢆ  
)ꢊ/ ꢆ  
)ꢊ/ ꢆ  
)ꢊ/ ꢇ  
)ꢊ/ ꢇ  
)ꢊ/ ꢇ  
)ꢊ/ ꢇ  
$ꢂꢁ  
#3  
#3  
$13  
#3  
$13  
#3  
$13  
$13ꢄ  
$13ꢄ  
$13ꢂꢁ  
$13  
$13  
$13ꢈ  
$13ꢈ  
$13ꢂꢇ  
$13  
$13  
$13  
$-ꢊ2$13  
.5ꢊ2$13  
)ꢊ/ ꢀ  
$-ꢊ2$13  
.5ꢊ2$13  
)ꢊ/ ꢀ  
$-ꢊ2$13  
.5ꢊ2$13  
)ꢊ/ ꢀ  
$-ꢊ2$13  
.5ꢊ2$13  
)ꢊ/ ꢀ  
$1ꢁꢃ  
$1ꢁꢁ  
$1ꢁꢄ  
$1ꢁꢅ  
$1ꢁꢆ  
$1ꢁꢇ  
$1ꢁꢈ  
$1ꢁꢉ  
#"ꢀ  
#"ꢂ  
#"ꢃ  
#"ꢁ  
#"ꢄ  
#"ꢅ  
#"ꢆ  
#"ꢇ  
)ꢊ/ ꢂ  
)ꢊ/ ꢂ  
)ꢊ/ ꢂ  
)ꢊ/ ꢂ  
)ꢊ/ ꢃ  
)ꢊ/ ꢃ  
)ꢊ/ ꢃ  
)ꢊ/ ꢃ  
)ꢊ/ ꢁ  
)ꢊ/ ꢁ  
)ꢊ/ ꢁ  
)ꢊ/ ꢁ  
)ꢊ/ ꢄ  
)ꢊ/ ꢄ  
)ꢊ/ ꢄ  
)ꢊ/ ꢄ  
)ꢊ/ ꢅ  
)ꢊ/ ꢅ  
)ꢊ/ ꢅ  
)ꢊ/ ꢅ  
)ꢊ/ ꢆ  
)ꢊ/ ꢆ  
)ꢊ/ ꢆ  
)ꢊ/ ꢆ  
)ꢊ/ ꢇ  
)ꢊ/ ꢇ  
)ꢊ/ ꢇ  
)ꢊ/ ꢇ  
-0"4ꢀꢁꢀꢀ  
Figure 3  
Block Diagram Raw Card B FB-DIMM ECC (x72, 2Ranks, x8)  
Notes  
2. There are two physical copies of each address,  
command, control and clock  
3. All address, command, control, clock have  
termination resitors to VTT  
1. DQ to I/O wiring may be changed within a byte  
Data Sheet  
16  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Block Diagrams  
3ꢀ  
$ꢂꢄ  
$ꢀ  
$ꢂ  
$ꢃ  
$ꢁ  
$ꢄ  
$ꢅ  
$ꢆ  
$ꢇ  
#3  
$13  
#3  
#3  
#3  
#3  
#3  
#3  
#3  
#3  
#3  
#3  
#3  
#3  
#3  
#3  
$13ꢂꢄ  
$13ꢂꢄ  
$1ꢄꢄ  
$1ꢄꢅ  
$1ꢄꢆ  
$1ꢄꢇ  
633  
$13ꢀ  
$13ꢀ  
$1ꢀ  
$1ꢂ  
$1ꢃ  
$1ꢁ  
633  
$13  
$13  
)ꢊ/ ꢀ  
)ꢊ/ ꢂ  
)ꢊ/ ꢃ  
)ꢊ/ ꢁ  
$-  
$13ꢇ  
$13ꢇ  
$1ꢅꢆ  
$1ꢅꢇ  
$1ꢅꢈ  
$1ꢅꢉ  
633  
$13  
$13  
)ꢊ/ ꢀ  
)ꢊ/ ꢂ  
)ꢊ/ ꢃ  
)ꢊ/ ꢁ  
$-  
$13  
)ꢊ/ ꢀ  
)ꢊ/ ꢂ  
)ꢊ/ ꢃ  
)ꢊ/ ꢁ  
$-  
$ꢈ  
$ꢂꢅ  
#3  
$13ꢂ  
$13ꢂ  
$1ꢈ  
$13  
$13  
)ꢊ/ ꢀ  
)ꢊ/ ꢂ  
)ꢊ/ ꢃ  
)ꢊ/ ꢁ  
$-  
$13ꢂꢅ  
$13ꢂꢅ  
$1ꢅꢃ  
$1ꢅꢁ  
$1ꢅꢄ  
$1ꢅꢅ  
633  
$13  
$13  
)ꢊ/ ꢀ  
)ꢊ/ ꢂ  
)ꢊ/ ꢃ  
)ꢊ/ ꢁ  
$-  
$13ꢈ  
$13ꢈ  
#"ꢀ  
#"ꢂ  
#"ꢃ  
#"ꢁ  
633  
$13  
$13  
)ꢊ/ ꢀ  
)ꢊ/ ꢂ  
)ꢊ/ ꢃ  
)ꢊ/ ꢁ  
$-  
$1ꢉ  
$1ꢂꢀ  
$1ꢂꢂ  
633  
$ꢉ  
$ꢂꢆ  
#3  
$13  
$13  
)ꢊ/ ꢀ  
)ꢊ/ ꢂ  
)ꢊ/ ꢃ  
)ꢊ/ ꢁ  
$-  
$13ꢉ  
$13ꢉ  
$1ꢄ  
$1ꢅ  
$1ꢆ  
$1ꢇ  
633  
$13  
$13  
)ꢊ/ ꢀ  
)ꢊ/ ꢂ  
)ꢊ/ ꢃ  
)ꢊ/ ꢁ  
$-  
$13ꢂꢆ  
$13ꢂꢆ  
$1ꢆꢀ  
$1ꢆꢂ  
$1ꢆꢃ  
$1ꢆꢁ  
633  
$13  
$13  
)ꢊ/ ꢀ  
)ꢊ/ ꢂ  
)ꢊ/ ꢃ  
)ꢊ/ ꢁ  
$-  
$13ꢃ  
$13ꢃ  
$1ꢂꢆ  
$1ꢂꢇ  
$1ꢂꢈ  
$1ꢂꢉ  
633  
$ꢂꢀ  
$ꢂꢂ  
$ꢂꢃ  
$ꢂꢁ  
$ꢂꢇ  
%ꢀ  
#3  
3#,  
3$!  
!ꢀ  
3#,  
3$!  
3!ꢀ  
3!ꢂ  
3!ꢃ  
633  
$13ꢁ  
$13ꢁ  
$1ꢃꢄ  
$1ꢃꢅ  
$1ꢃꢆ  
$1ꢃꢇ  
633  
$13  
$13  
)ꢊ/ ꢀ  
)ꢊ/ ꢂ  
)ꢊ/ ꢃ  
)ꢊ/ ꢁ  
$-  
$13ꢂꢀ  
$13ꢂꢀ  
$1ꢂꢃ  
$1ꢂꢁ  
$1ꢂꢄ  
$1ꢂꢅ  
633  
$13  
$13  
)ꢊ/ ꢀ  
)ꢊ/ ꢂ  
)ꢊ/ ꢃ  
)ꢊ/ ꢁ  
$-  
$13ꢂꢇ  
$13ꢂꢇ  
#"ꢄ  
$13  
$13  
)ꢊ/ ꢀ  
)ꢊ/ ꢂ  
)ꢊ/ ꢃ  
)ꢊ/ ꢁ  
$-  
!ꢂ  
#"ꢅ  
!ꢃ  
70  
#"ꢆ  
#"ꢇ  
633  
0.ꢀꢍ0.ꢂꢁ  
0.ꢀꢍ0.ꢂꢁ  
03ꢀꢍ03ꢉ  
03ꢀꢍ03ꢉ  
3.ꢀꢍ3.ꢂꢁ  
3.ꢀꢍ3.ꢂꢁ  
33ꢀꢍ33ꢉ  
33ꢀꢍ33ꢉ  
!-"  
$13ꢄ  
$13ꢄ  
$1ꢁꢃ  
$1ꢁꢁ  
$1ꢁꢄ  
$1ꢁꢅ  
633  
$13  
$13  
)ꢊ/ ꢀ  
)ꢊ/ ꢂ  
)ꢊ/ ꢃ  
)ꢊ/ ꢁ  
$-  
$13  
$13  
)ꢊ/ ꢀ  
)ꢊ/ ꢂ  
)ꢊ/ ꢃ  
)ꢊ/ ꢁ  
$-  
$13ꢂꢂ  
$13ꢂꢂ  
$1ꢃꢀ  
$1ꢃꢂ  
$1ꢃꢃ  
$1ꢃꢁ  
633  
$1ꢀꢍ$1ꢆꢁ  
#"ꢀꢍ#"ꢇ  
$13ꢀꢍ$13ꢂꢇ  
$13ꢀꢍ$13ꢂꢇ  
3ꢀ  
#+%ꢀ  
#3ꢋ 3$2!-S $ꢀꢍ$ꢂꢇ  
#+%ꢋ 3$2!-S $ꢀꢍ$ꢂꢇ  
3#,  
3$!  
3!ꢀꢍ3!ꢃ  
/$4  
/$4ꢋ 3$2!-S $ꢀꢍ$ꢂꢇ  
"!ꢀꢍ"!Nꢋ 3$2!-S $ꢀꢍ$ꢂꢇ  
!ꢀꢍ!Nꢋ 3$2!-S $ꢀꢍ$ꢂꢇ  
2!3ꢋ 3$2!-S $ꢀꢍ$ꢂꢇ  
#!3ꢋ 3$2!-S $ꢀꢍ$ꢂꢇ  
7%ꢋ 3$2!-S $ꢀꢍ$ꢂꢇ  
#+ꢊ#+ꢋ 3$2!- $ꢀꢍ$ꢂꢇ  
$13ꢅ  
$13ꢅ  
$1ꢄꢀ  
$1ꢄꢂ  
$1ꢄꢃ  
$1ꢄꢁ  
633  
$13  
$13  
)ꢊ/ ꢀ  
)ꢊ/ ꢂ  
)ꢊ/ ꢃ  
)ꢊ/ ꢁ  
$-  
$13ꢂꢃ  
$13ꢂꢃ  
$1ꢃꢈ  
$1ꢃꢉ  
$1ꢁꢀ  
$1ꢁꢂ  
633  
$13  
$13  
)ꢊ/ ꢀ  
)ꢊ/ ꢂ  
)ꢊ/ ꢃ  
)ꢊ/ ꢁ  
$-  
"!ꢀꢍ"!ꢃ  
!ꢀꢍ!N  
2!3  
2%3%4  
#!3  
7%  
3#+ꢊ3#+  
#+ꢊ#+  
644  
6##  
4ERMINATORS  
!-"  
$13ꢆ  
$13ꢆ  
$1ꢄꢈ  
$1ꢄꢉ  
$1ꢅꢀ  
$1ꢅꢂ  
633  
$13  
$13  
)ꢊ/ ꢀ  
)ꢊ/ ꢂ  
)ꢊ/ ꢃ  
)ꢊ/ ꢁ  
$-  
$13ꢂꢁ  
$13ꢂꢁ  
$1ꢁꢆ  
$1ꢁꢇ  
$1ꢁꢈ  
$1ꢁꢉ  
633  
$13  
$13  
)ꢊ/ ꢀ  
)ꢊ/ ꢂ  
)ꢊ/ ꢃ  
)ꢊ/ ꢁ  
$-  
6$$ꢌ30$  
6$$6$$1  
62%&  
6$$ꢋ 30$ꢌ !-"  
6$$6$$1ꢋ 3$2!-S $ꢀ ꢍ $ꢂꢇꢌ!-"  
62%&ꢋ 3$2!-S $ꢀ ꢍ $ꢂꢇ  
633  
633ꢋ 3$2!-S $ꢀ ꢍ $ꢂꢇ  
-0"4ꢀꢁꢂꢀ  
Figure 4  
Block Diagram Raw Card C FB-DIMM ECC (×72, 1Rank, ×4)  
Notes  
2. There are two physical copies of each address,  
command, control and clock  
3. All address, command, control, clock have  
termination resitors to VTT  
1. DQ to I/O wiring may be changed within a nibble  
Data Sheet  
17  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Block Diagrams  
%ꢀ  
0.ꢀꢋ0.ꢃꢁ  
0.ꢀꢋ0.ꢃꢁ  
03ꢀꢋ03ꢆ  
644  
3.ꢀꢋ3.ꢃꢁ  
3.ꢀꢋ3.ꢃꢁ  
33ꢀꢋ33ꢆ  
03ꢀꢋ03ꢆ  
33ꢀꢋ33ꢆ  
!-"  
!-"  
3#,  
3$!  
!ꢀ  
3#,  
3$!  
3!ꢀ  
3!ꢃ  
3!ꢂ  
633  
$1ꢀꢋ$1ꢇꢁ  
#"ꢀꢋ#"ꢈ  
$13ꢀꢋ$13ꢃꢈ  
$13ꢀꢋ$13ꢃꢈ  
3#,  
3ꢀ  
#3ꢌ 3$2!-S $ꢀꢋ$ꢃꢈ  
#+%ꢌ 3$2!-S $ꢀꢋ$ꢃꢈ  
#3ꢌ 3$2!-S $ꢃꢄꢋ$ꢁꢊ  
#+%ꢌ 3$2!-S $ꢃꢄꢋ$ꢁꢊ  
/$4ꢌ 3$2!-S $ꢀꢋ$ꢁꢊ  
"!ꢀꢋ"!Nꢌ 3$2!-S $ꢀꢋ$ꢁꢊ  
!ꢀꢋ!Nꢌ 3$2!-S $ꢀꢋ$ꢁꢊ  
2!3ꢌ 3$2!-S $ꢀꢋ$ꢁꢊ  
#!3ꢌ 3$2!-S $ꢀꢋ$ꢁꢊ  
7%ꢌ 3$2!-S $ꢀꢋ$ꢁꢊ  
#+ꢅ#+ꢌ 3$2!- $ꢀꢋ$ꢁꢊ  
#+%ꢀ  
3ꢃ  
4ERMINATORS  
!ꢃ  
#+%ꢃ  
/$4  
6##  
!ꢂ  
70  
!-"  
6$$ꢍ30$  
6$$6$$1  
62%&  
3$!  
3!ꢀꢋ3!ꢂ  
"!ꢀꢋ"!ꢂ  
!ꢀꢋ!N  
2!3  
6$$ꢌ 30$ꢍ !-"  
6$$6$$1ꢌ 3$2!-S $ꢀ ꢋ $ꢁꢊꢍ!-"  
62%&ꢌ 3$2!-S $ꢀ ꢋ $ꢁꢊ  
2%3%4  
#!3  
7%  
-0"4ꢀꢁꢂꢀ  
633  
3#+ꢅ3#+  
#+ꢅ#+  
633ꢌ 3$2!-S $ꢀ ꢋ $ꢁꢊ  
633  
3ꢀ  
3ꢃ  
$13ꢆ  
$13ꢆ  
$1ꢉ  
$13ꢀ  
$13ꢀ  
$1ꢀ  
$ꢀ  
$ꢃ  
$ꢂ  
$ꢁ  
$ꢉ  
$ꢊ  
$ꢇ  
$ꢈ  
$ꢄ  
$ꢃꢄ  
$ꢆ  
$ꢂꢈ  
$13 $13 $- #3  
$13 $13 $- #3  
$13 $13 $- #3  
$13 $13 $- #3  
)ꢅ/ ꢀ  
)ꢅ/ ꢃ  
)ꢅ/ ꢂ  
)ꢅ/ ꢁ  
)ꢅ/ ꢀ  
)ꢅ/ ꢃ  
)ꢅ/ ꢂ  
)ꢅ/ ꢁ  
)ꢅ/ ꢀ  
)ꢅ/ ꢃ  
)ꢅ/ ꢂ  
)ꢅ/ ꢁ  
)ꢅ/ ꢀ  
)ꢅ/ ꢃ  
)ꢅ/ ꢂ  
)ꢅ/ ꢁ  
$1ꢊ  
$1ꢃ  
$1ꢇ  
$1ꢈ  
$1ꢂ  
$1ꢁ  
$13ꢃ  
$13ꢃ  
$1ꢄ  
$1ꢆ  
$1ꢃꢀ  
$1ꢃꢃ  
$13ꢃꢀ  
$13ꢃꢀ  
$1ꢃꢂ  
$1ꢃꢁ  
$1ꢃꢉ  
$1ꢃꢊ  
$ꢃꢀ  
$ꢃꢃ  
$ꢃꢂ  
$ꢃꢁ  
$ꢃꢉ  
$ꢃꢊ  
$ꢃꢇ  
$ꢃꢈ  
$ꢂꢄ  
$ꢂꢆ  
$ꢁꢀ  
$ꢁꢃ  
$ꢁꢂ  
$ꢁꢁ  
$ꢁꢉ  
$ꢁꢊ  
$ꢃꢆ  
$13 $13 $- #3  
$13 $13 $- #3  
$13 $13 $- #3  
$13 $13 $- #3  
)ꢅ/ ꢀ  
)ꢅ/ ꢃ  
)ꢅ/ ꢂ  
)ꢅ/ ꢁ  
)ꢅ/ ꢀ  
)ꢅ/ ꢃ  
)ꢅ/ ꢂ  
)ꢅ/ ꢁ  
)ꢅ/ ꢀ  
)ꢅ/ ꢃ  
)ꢅ/ ꢂ  
)ꢅ/ ꢁ  
)ꢅ/ ꢀ  
)ꢅ/ ꢃ  
)ꢅ/ ꢂ  
)ꢅ/ ꢁ  
$13ꢂ  
$13ꢂ  
$1ꢃꢇ  
$1ꢃꢈ  
$1ꢃꢄ  
$1ꢃꢆ  
$13ꢃꢃ  
$13ꢃꢃ  
$1ꢂꢀ  
$1ꢂꢃ  
$1ꢂꢂ  
$1ꢂꢁ  
$ꢂꢀ  
$13 $13 $- #3  
$13 $13 $- #3  
$13 $13 $- #3  
$13 $13 $- #3  
)ꢅ/ ꢀ  
)ꢅ/ ꢃ  
)ꢅ/ ꢂ  
)ꢅ/ ꢁ  
)ꢅ/ ꢀ  
)ꢅ/ ꢃ  
)ꢅ/ ꢂ  
)ꢅ/ ꢁ  
)ꢅ/ ꢀ  
)ꢅ/ ꢃ  
)ꢅ/ ꢂ  
)ꢅ/ ꢁ  
)ꢅ/ ꢀ  
)ꢅ/ ꢃ  
)ꢅ/ ꢂ  
)ꢅ/ ꢁ  
$13ꢃꢂ  
$13ꢃꢂ  
$1ꢂꢄ  
$1ꢂꢆ  
$1ꢁꢀ  
$1ꢁꢃ  
$13ꢁ  
$13ꢁ  
$1ꢂꢉ  
$1ꢂꢊ  
$1ꢂꢇ  
$1ꢂꢈ  
$ꢂꢃ  
$13 $13 $- #3  
$13 $13 $- #3  
$13 $13 $- #3  
$13 $13 $- #3  
)ꢅ/ ꢀ  
)ꢅ/ ꢃ  
)ꢅ/ ꢂ  
)ꢅ/ ꢁ  
)ꢅ/ ꢀ  
)ꢅ/ ꢃ  
)ꢅ/ ꢂ  
)ꢅ/ ꢁ  
)ꢅ/ ꢀ  
)ꢅ/ ꢃ  
)ꢅ/ ꢂ  
)ꢅ/ ꢁ  
)ꢅ/ ꢀ  
)ꢅ/ ꢃ  
)ꢅ/ ꢂ  
)ꢅ/ ꢁ  
$13ꢃꢁ  
$13ꢃꢁ  
$1ꢁꢇ  
$1ꢁꢈ  
$1ꢁꢄ  
$1ꢁꢆ  
$13ꢉ  
$13ꢉ  
$1ꢁꢂ  
$1ꢁꢁ  
$1ꢁꢉ  
$1ꢁꢊ  
$ꢂꢂ  
$13 $13 $- #3  
$13 $13 $- #3  
$13 $13 $- #3  
$13 $13 $- #3  
)ꢅ/ ꢀ  
)ꢅ/ ꢃ  
)ꢅ/ ꢂ  
)ꢅ/ ꢁ  
)ꢅ/ ꢀ  
)ꢅ/ ꢃ  
)ꢅ/ ꢂ  
)ꢅ/ ꢁ  
)ꢅ/ ꢀ  
)ꢅ/ ꢃ  
)ꢅ/ ꢂ  
)ꢅ/ ꢁ  
)ꢅ/ ꢀ  
)ꢅ/ ꢃ  
)ꢅ/ ꢂ  
)ꢅ/ ꢁ  
$13ꢊ  
$13ꢊ  
$1ꢉꢀ  
$1ꢉꢃ  
$1ꢉꢂ  
$1ꢉꢁ  
$13ꢃꢉ  
$13ꢃꢉ  
$1ꢉꢉ  
$1ꢉꢊ  
$1ꢉꢇ  
$1ꢉꢈ  
$ꢂꢁ  
$13 $13 $- #3  
$13 $13 $- #3  
$13 $13 $- #3  
$13 $13 $- #3  
)ꢅ/ ꢀ  
)ꢅ/ ꢃ  
)ꢅ/ ꢂ  
)ꢅ/ ꢁ  
)ꢅ/ ꢀ  
)ꢅ/ ꢃ  
)ꢅ/ ꢂ  
)ꢅ/ ꢁ  
)ꢅ/ ꢀ  
)ꢅ/ ꢃ  
)ꢅ/ ꢂ  
)ꢅ/ ꢁ  
)ꢅ/ ꢀ  
)ꢅ/ ꢃ  
)ꢅ/ ꢂ  
)ꢅ/ ꢁ  
$13ꢇ  
$13ꢇ  
$1ꢉꢄ  
$1ꢉꢆ  
$1ꢊꢀ  
$1ꢊꢃ  
$13ꢃꢊ  
$13ꢃꢊ  
$1ꢊꢂ  
$1ꢊꢁ  
$1ꢊꢉ  
$1ꢊꢊ  
$ꢂꢉ  
$13 $13 $- #3  
$13 $13 $- #3  
$13 $13 $- #3  
$13 $13 $- #3  
)ꢅ/ ꢀ  
)ꢅ/ ꢃ  
)ꢅ/ ꢂ  
)ꢅ/ ꢁ  
)ꢅ/ ꢀ  
)ꢅ/ ꢃ  
)ꢅ/ ꢂ  
)ꢅ/ ꢁ  
)ꢅ/ ꢀ  
)ꢅ/ ꢃ  
)ꢅ/ ꢂ  
)ꢅ/ ꢁ  
)ꢅ/ ꢀ  
)ꢅ/ ꢃ  
)ꢅ/ ꢂ  
)ꢅ/ ꢁ  
$13ꢈ  
$13ꢈ  
$1ꢊꢇ  
$1ꢊꢈ  
$1ꢊꢄ  
$1ꢊꢆ  
$13ꢃꢇ  
$13ꢃꢇ  
$1ꢇꢀ  
$1ꢇꢃ  
$1ꢇꢂ  
$1ꢇꢁ  
$ꢂꢊ  
$13 $13 $- #3  
$13 $13 $- #3  
$13 $13 $- #3  
$13 $13 $- #3  
)ꢅ/ ꢀ  
)ꢅ/ ꢃ  
)ꢅ/ ꢂ  
)ꢅ/ ꢁ  
)ꢅ/ ꢀ  
)ꢅ/ ꢃ  
)ꢅ/ ꢂ  
)ꢅ/ ꢁ  
)ꢅ/ ꢀ  
)ꢅ/ ꢃ  
)ꢅ/ ꢂ  
)ꢅ/ ꢁ  
)ꢅ/ ꢀ  
)ꢅ/ ꢃ  
)ꢅ/ ꢂ  
)ꢅ/ ꢁ  
$13ꢃꢈ  
$13ꢃꢈ  
#"ꢉ  
$13ꢄ  
$13ꢄ  
#"ꢀ  
$ꢂꢇ  
$13 $13 $- #3  
$13 $13 $- #3  
$13 $13 $- #3  
$13 $13 $- #3  
)ꢅ/ ꢀ  
)ꢅ/ ꢃ  
)ꢅ/ ꢂ  
)ꢅ/ ꢁ  
)ꢅ/ ꢀ  
)ꢅ/ ꢃ  
)ꢅ/ ꢂ  
)ꢅ/ ꢁ  
)ꢅ/ ꢀ  
)ꢅ/ ꢃ  
)ꢅ/ ꢂ  
)ꢅ/ ꢁ  
)ꢅ/ ꢀ  
)ꢅ/ ꢃ  
)ꢅ/ ꢂ  
)ꢅ/ ꢁ  
#"ꢊ  
#"ꢃ  
#"ꢇ  
#"ꢂ  
#"ꢈ  
#"ꢁ  
Figure 5  
Block Diagram Raw Card H FB-DIMM ECC (×72, 2Ranks, ×4)  
Notes  
3. There are four physical copies of each clock  
4. All address, command, control, clock have  
termination resitors to VTT  
1. DQ to I/O wiring may be changed within a nibble  
2. There are two physical copies of each address,  
command and control  
Data Sheet  
18  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Basic Functionality  
5
Basic Functionality  
5.1  
Advanced Memory Buffer Overview  
The Advanced Memory Buffer (AMB) reference design complies with the FB-DIMM Architecture and Protocol  
Specification (Jedec standard pending).  
5.2  
Advanced Memory Buffer Functionality  
5.2.1  
Advanced Memory Buffer  
The Advanced Memory Buffer will perform the following  
FB-DIMM channel functions:  
Detects errors on the channel and reports them to  
the host memory controller.  
Support the FB-DIMM configuration register set as  
defined in the register chapters.  
Supports channel initialization procedures as  
defined in the initialization chapter of the FB-DIMM  
Architecture and Protocol Specification to align the  
clocks and the frame boundaries, verify channel  
connectivity, and identify AMB DIMM position.  
Supports the forwarding of southbound and  
northbound frames, servicing requests directed to a  
specific AMB or DIMM, as defined in the protocol  
chapter, and merging the return data into the  
northbound frames.  
Acts as DRAM memory buffer for all read, write, and  
configuration accesses addressed to the DIMM.  
Provides a read buffer FIFO and a write buffer  
FIFO.  
Supports an SMBus protocol interface for access to  
the AMB configuration registers.  
Provides logic to support MEMBIST and IBIST  
Design for Test functions.  
Provides a register interface for the thermal sensor  
and status indicator.  
If the AMB resides on the last DIMM in the channel,  
the AMB initializes northbound frames.  
Functions as a repeater to extend the maximum  
length of FB-DIMM Links.  
5.2.2  
Transparent Mode for DRAM Test Support  
In this mode, the Advanced Memory Buffer will provide  
lower speed tester access to DRAM pins through the  
FB-DIMM I/O pins. This allows the tester to send an  
arbitrary test pattern to the DRAMs. Transparent mode  
only supports a maximum DRAM frequency equivalent  
to DDR2 400. Transparent mode functionality:  
Reconfigures FB-DIMM inputs from differential high  
speed link receivers to two single ended lower  
speed receivers (~200 MHz)  
These inputs directly control DDR2  
Command/Address and input data that is replicated  
to all DRAMs  
Uses low speed direct drive FB-DIMM outputs to  
bypass high speed Parallel/Serial circuitry and  
provide test results back to tester  
5.2.3  
DDR2 SDRAM  
Supports DDR2 at speeds of 533, 667 MT/s  
Supports 512Mb devices in x4 and x8  
configurations  
72-bit DDR2 SDRAM memory array  
Data Sheet  
19  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Basic Functionality  
5.3  
Advanced Memory Buffer Block Diagram  
3OUTHBOUND  
$ATA )N  
3OUTHBOUND  
$ATA /UT  
ꢃꢀXꢅ  
ꢃꢀXꢅ  
2EF #LOCK  
ꢃXꢅ  
$ATA -ERGE  
0,,  
2%ꢂ4IME  
2EꢂSYNCH  
0)3/  
$8  
2ESET  
2ESET  
#ONTROL  
ꢃꢀXꢃꢅ  
ꢃꢀXꢃꢅ  
-58  
,INK )NIT 3-  
)NIT  
AND #ONTROL  
AND #32S  
4HERMAL  
3ENSOR  
PATTERNS  
)")34  
$2!- #LOCK  
$2!- #LOCK  
FAILOVER  
#OMMAND  
$ECODER ꢇ  
#2# #HECK  
,!) ,OGIC  
$2!- #MD  
ꢅꢈ  
ꢅꢈ  
$2!-  
!DDRESS ꢇ  
#OMMAND  
-58  
-58  
#-$ /UT  
$2!-  
INTERFACE  
$$2 3TATE #ONTROLLER AND  
#32S  
$2!-  
!DDRESS ꢇ  
#OMMAND  
#ORE #ONTROLLER  
AND #32S  
7RITE $ATA  
&)&/  
$ATA /UT  
$ATA )N  
ꢉꢅ ꢊ ꢃꢋXꢅ  
$2!-  
$ATA ꢇ 3TROBS  
%XTERNAL -%-")34  
$$2 #ALIBRATION  
3YNC ꢇ )DLE 0ATTERN  
$ATA #2#  
." ,!) "UFFER  
'ENERATOR  
'EN  
ꢇ 2EAD &)&/  
)")34  
,!)  
#ONTROLLER  
,INK )NIT 3-  
AND #ONTROL  
AND #32S  
-58  
FAILOVER  
3-"53  
3-BUS  
#ONTROLLER  
ꢃꢄXꢃꢅ  
$8  
ꢃꢄXꢆXꢅX  
0)3/  
2EꢂSYNCH  
2%ꢂ4IME  
$ATA -ERGE  
.ORTHBOUND  
$ATA /UT  
.ORTHBOUND  
$ATA )N  
ꢃꢄXꢅ  
ꢃꢄXꢅ  
-0"4ꢀꢁꢁꢀ  
Figure 6  
Block Diagram Advanced Memory Buffer FBDIMM ECC  
Note:Figure is a conceptual Block Diagram of the Advanced Memory Bufferis data flow and clock domains.  
Data Sheet  
20  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Basic Functionality  
5.4  
Interfaces  
Figure 7 illustrates the Advanced Memory Buffer and host memory controller or an adjacent FB-DIMM. The  
all of its interfaces. They consist of two FB-DIMM links, DDR2 channel supports direct connection to the DDR2  
one DDR2 channel and an SMBus interface. Each FB- SDRAMs on a Fully Buffered DIMM.  
DIMM link connects the Advanced Memory Buffer to a  
-EMORY )NTERFACE  
." &"$  
." &"$  
IN ,INK  
OUT ,INK  
0RIMARY OR (OST  
$IRECTION  
3ECONDARY OR TO  
OPTIONAL NEXT &"$  
3" &"$  
IN ,INK  
3" &"$  
OUT ,INK  
!-"  
3-"  
-0"4ꢀꢁꢂꢀ  
Figure 7  
Block Diagram Advanced Memory Buffer Interface  
Interface Topology  
The FB-DIMM channel uses a daisy-chain topology to drives the data to the next DIMM until the last DIMM  
provide expansion from a single DIMM per channel to receives the data. The last DIMM in the chain initiates  
up to 8 DIMMs per channel. The host sends data on the the transmission of data in the direction of the host  
southbound link to the first DIMM where it is received (a.k.a. northbound). On the northbound data path each  
and redriven to the second DIMM. On the southbound DIMM receives the data and re-drives the data to the  
data path each DIMM receives the data and again re- next DIMM until the host is reached.  
(OST  
3OUTHBOUND  
.OURTHBOUND  
!-"  
!-"  
!-"  
!-"  
NꢃC  
NꢃC  
-0"4ꢀꢁꢂꢀ  
Figure 8  
Block Diagram FBDIMM Channel Soutbound and Northbound Paths  
Data Sheet  
21  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Basic Functionality  
5.5  
High-Speed Differential Point-to-Point Link (at 1.5 V) Interfaces  
The Advanced Memory Buffer supports one FB-DIMM multiplexes in any read return data or status  
Channel consisting of two bidirectional link interfaces information that is generated internally. Data and  
using highspeed differential point-to-point electrical commands sent to the DRAMs travel southbound on 10  
signaling. The southbound input link is 10 lanes wide primary differential signal line pairs. Data received from  
and carries commands and write data from the host the DRAMs and status information travel northbound  
memory controller or the adjacent DIMM in the host on 14 primary differential pairs. Data and commands  
direction. The southbound output link forwards this sent to the adjacent DIMM upstream are repeated and  
same data to the next FB-DIMM. The northbound input travel further southbound on 10 secondary differential  
link is 14 lanes wide and carries read return data or pairs. Data and status information received from the  
status information from the next FB-DIMM in the chain adjacent DIMM upstream travel further northbound on  
back towards the host. The northbound output link 14 secondary differential pairs.  
forwards this information back towards the host and  
5.5.1  
DDR2 Channel  
The DDR2 channel on the Advanced Memory Buffer delays between read data/check-bit strobe lanes on a  
supports direct connection to DDR2 SDRAMs. The given channel can differ. Each strobe can be calibrated  
DDR2 channel supports two ranks of eight banks with by hardware state machines using write/read trial and  
16 row/column request, 64 data, and eight check-bit error. Hardware aligns the read data and check-bits to  
signals. There are two copies of address and command a single core clock. The Advanced Memory Buffer  
signals to support DIMM routing and electrical provides four copies of the command clock phase  
requirements. Four transfer bursts are driven on the references (CLK[3:0]) and write data/check-bit strobes  
data and check-bit lines at 800 MHz. Propagation (DQSs) for each DRAM nibble.  
5.5.2  
SMBus Slave Interface  
The Advanced Memory Buffer supports an SMBus Memory Buffer may be a requirement to boot and to set  
interface to allow system access to configuration link strength, frequency and other parameters needed  
registers independent of the FB-DIMM link. The to insure robust configurations. It is also required for  
Advanced Memory Buffer will never be a master on the diagnostic support when the link is down. The SMBus  
SMBus, only a slave. Serial SMBus data transfer is address straps located on the DIMM connector are  
supported at 100 kHz. SMBus access to the Advanced used by the unique ID.  
5.5.3  
Channel Latency  
FB-DIMM channel latency is measured from the time a based on the point-to-point interconnection of buffer  
read request is driven on the FB-DIMM channel pins to components between DIMMs, memory requests are  
the time when the first 16 bytes (2nd chunk) of read required to travel through N-1 buffers before reaching  
completion data is sampled by the memory controller. the Nth buffer. The result is that a 4 DIMM channel  
When not using the Variable Read Latency capability, configuration will have greater idle read latency  
the latency for a specific DIMM on a channel is always compared to a 1 DIMM channel configuration. The  
equal to the latency for any other DIMM on that Variable Read Latency capability can be used to  
channel. However, the latency for each DIMM in a reduce latency for DIMMs closer to the host. The idle  
specific configuration with some number of DIMMs latencies listed in this section are representative of  
installed may not be equal to the latency for each FB- what might be achieved in typical AMB designs. Actual  
DIMM in a configuration with some different number of implementations with latencies less than the values  
DIMMs installed. As more DIMMs are added to the listed will have higher application performance and vice  
channel, additional latency is required to read from versa.  
each DIMM on the channel. Because the channel is  
Data Sheet  
22  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Basic Functionality  
5.5.4  
Peak Theoretical Channel Throughput  
An FB-DIMM channel transfers read completion data command clock. A DRAM burst of 8 transfers from a  
on the Northbound data connection. 144 bits of data single channel, or a burst of 4 from two lock-step  
are transferred for every Northbound data frame. This channels provides a total of 72 bytes of data (64 bytes  
matches the 18-byte data transfer of an ECC DDR plus 8 bytes ECC). When the frame rate matches the  
DRAM in a single DRAM command clock. A DRAM DRAM command clock, the Southbound command and  
burst of 8 from a single channel or a DRAM burst of four data connection will exhibit one half the peak  
from two lockstepped channels provides a total of 72 theoretical throughput of a single DRAM channel. For  
bytes of data (64 bytes plus 8 bytes ECC). The FB- example, when using DDR2 533 DRAMs, the peak  
DIMM frame rate matches the DRAM command clock theoretical bandwidth of the Southbound command and  
because of the fixed 6:1 ratio of the FB-DIMM channel data connection is 2.133 GB/sec. The total peak  
clock to the DRAM command clock. Therefore, the theoretical throughput for a single FB-DIMM channel is  
Northbound data connection will exhibit the same peak defined as the sum of the peak theoretical throughput  
theoretical throughput as a single DRAM channel. For of the Northbound data connection and the  
example, when using DDR2 533 DRAMs, the peak Southbound command and data connection. When the  
theoretical bandwidth of the Northbound data frame rate matches the DRAM command clock, this is  
connection is 4.267 GB/sec. Write data is transferred equal to 1.5 times the peak theoretical throughput of a  
on the Southbound command and data connection, via single DRAM channel. For example, when using DDR2  
Command+Wdata frames. 72 bits of data are 533 DRAMs, the peak theoretical throughput of a single  
transferred for every Command+Wdata frame. Two DDR2-533 channel would be 4.267 GB/sec, while the  
Command+Wdata frames match the 18-byte data peak theoretical throughput of the entire FB-DIMM  
transfer of an ECC DDR DRAM in a single DRAM PC4200F channel would be 6.4GB/sec.  
5.6  
Hot-add  
The FB-DIMM channel does not provide a mechanism controller to initialize the newly added DIMM(s) and  
to automatically detect and report the addition of a new perform a Hot-Add Reset to bring them into the channel  
DIMM south of the currently active last DIMM. It is timing domain. It should be noted that the power to the  
assumed the system will be notified through some DIMM socket must be removed before a “hot-add”  
means of the addition of one or more new DIMMs so DIMM is inserted or removed. Applying or removing the  
that specific commands can be sent to the host power to a DIMM socket is a system platform function.  
5.7  
Hot-remove  
In order to accomplish removal of DIMMs the host must appropriate outputs are disabled the system can  
perform a Fast Reset sequence targeted at the last coordinate the procedure to remove power in  
DIMM that will be retained on the channel. The Fast preparation for physical removal of the DIMM if needed.  
Reset re-establish the appropriate last DIMM so that It should be noted that the power to the DIMM socket  
the Southbound Tx outputs of the last active DIMM and must be removed before a “hot-add” DIMM is inserted  
the Southbound and Northbound outputs of the DIMMs or removed. Applying or removing the power to a DIMM  
beyond the last active DIMM are disabled. Once the socket is a system platform function.  
5.8  
Hot-replace  
Hot replace of DIMM is accomplished through combining the Hot-Remove and Hot-Add process.  
Data Sheet  
23  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Electrical Characteristics  
6
Electrical Characteristics  
6.1  
Operating Conditions  
Table 7  
Absolute Maximum Ratings  
Symbol Parameter  
Values  
Unit Note  
Min  
Max  
1)  
VIN,  
VOUT  
Voltage on any pin relative to –0.3  
VSS  
Voltage on VCC pin relative to –0,3  
VSS  
Voltage on VDD pin relative to –0.5  
VSS  
Voltage on VTT pin relative to –0.5  
VSS  
1.75  
1.75  
2.3  
V
1)  
1)  
1)  
1)  
VCC  
VDD  
VTT  
V
V
2.3  
V
TSTG  
Storage Temperature  
–55  
+100  
°C  
1) Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This  
is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the  
operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended  
periods may affect reliability.  
Table 8  
Operating Temperature Range  
Symbol Parameter  
Values  
Unit Note  
Min  
0
Max  
+95  
1)2)3)4)  
TCASE  
TCASE  
DRAM Component Case  
°C  
Temperature Range  
1)  
AMB Component Case  
Temperature Range  
0
+110  
°C  
1) Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This  
is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the  
operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended  
periods may affect reliability.  
2) Within the DRAM Component Case Temperature range all DRAM specification will be supported.  
3) Self-Refresh period is hard-coded in the DRAMs and therefore it is imperative that the system ensures the DRAM is below  
85C case temperature before initiating self-refresh operation.  
4) Above 85C DRAM case temperature the Auto-Refresh command interval has to be reduced to tREFI = 3.9 µs.  
Table 9  
Supply Voltage Levels and DC Operating Conditions  
Parameter  
Symbol  
Limit Values  
Unit  
Notes  
min.  
1.46  
1.7  
nom.  
1.5  
1.8  
max.  
1.45  
1.9  
AMB Supply Voltage  
DRAM Supply Voltage  
VCC  
VDD  
V
V
Data Sheet  
24  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Electrical Characteristics  
Table 9  
Supply Voltage Levels and DC Operating Conditions  
Parameter  
Symbol  
Limit Values  
Unit  
Notes  
min.  
0.48 × VDD  
nom.  
0.50 × VDD  
max.  
0.52 × VDD  
3.6  
VDDSPD  
0.8  
+0.5  
+90  
+5  
Termination Voltage  
VTT  
V
EEPROM Supply Voltage  
DC Input Logic High(SPD)  
DC Input Logic Low(SPD)  
VDDSPD  
VIH(DC)  
VIL(DC)  
3.0  
2.1  
1.0  
3.3  
V
V
V
V
V
µΑ  
1)  
1)  
2)  
1)  
2)  
3)  
DC Input Logic High(RESET) VIH(DC)  
DC Input Logic Low(RESET)  
Leakage Current (RESET)  
Leakage Current (Link)  
VIL(DC)  
IL  
IL  
–90  
–5  
µΑ  
1) applies for SMB and SPD Bus Signals  
2) applies for AMB CMOS Signal RESET  
3) for all other AMB related DC parameters, please refer to the High Speed Differential Link Interface Specifications  
Table 10  
Parameter  
Timing Parameters  
Symbol  
Min.  
Typ.  
Max.  
4
Units Notes  
EI Assertion Pass-Thru Timing tEI Propagatet  
clks  
EI Deassertion Pass-Thru  
Timing  
EI Assertion Duration  
FBD Cmd to DDR Clk out that  
latches Cmd  
tEID  
Bitlock  
clks  
2
1)2)  
3)  
tEI  
100  
clks  
ns  
8.1  
FBD Cmd to DDR Write  
DDR Read to FBD (last DIMM)  
Resample Pass-Thru time  
ResynchPass-Thru time  
Bit Lock Interval  
TBD  
5.0  
1.075  
2.075  
ns  
ns  
ns  
ns  
frames  
frames  
4)  
1)  
1)  
tBitLock  
tFrameLock  
119  
154  
Frame Lock Interval  
1) Defined in FB-DIMM Architecture and Protocol Spec  
2) Clocks defined as core clocks = 2x SCK input  
3) @ DDR2-667 - measured from beginning of frame at southbound input to DDR clock output that latches the first command  
of a frame to the DRAMs  
4) @ DDR2-667 - measured from latest DQS input to AMB to start of matching data frame at northbound FB-DIMM outputs  
Data Sheet  
25  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Electrical Characteristics  
Table 11  
Environmental Parameters  
Parameter  
Operating Temperature  
Symbol  
TOPR  
HOPR  
TSTG  
HSTG  
PBAR  
PBAR  
Rating  
Units  
Notes  
1)  
See Note  
10 to 90  
-50 to +100  
5 to 95  
3050  
14240  
2)  
2)  
2)  
2)  
2)  
Operating Humidity (relative)  
Storage Temperature  
Storage Humidity (without condensation)  
Barometric pressure (operating)  
Barometric pressure (storage)  
%
°C  
%
m
m
1) The designer must meet the case temperature specifications for individual module components.  
2) Stresses greater than those listed may cause permanent damage to the device. This is a stress rating only and the device  
funcional operation at or above the conditions indicated is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect reliability.  
Data Sheet  
26  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Current Specification and Conditions  
7
Current Specification and Conditions  
Table 12  
IDD Measurement Conditions  
Parameter  
Idle Current, single or last DIMM  
L0 state, idle (0 BW)  
Symbol  
ICC_Idle_0  
IDD_Idle_0  
Primary channel enabled, Secondary channel disabled  
CKE high. Command and address lines stable.  
DRAM clock active  
Idle Current, first DIMM  
L0 state, idle (0 BW)  
ICC_Idle_1  
IDD_Idle_1  
Primary and Secondary channels enabled.  
CKE high. Command and address lines stable.  
DRAM clock active  
Idle Current, DRAM power down  
.L0 state, idle (0 BW)  
ICC_Idle_2  
IDD_Idle_2  
Primary and Secondary channels enabled.  
CKE high. Command and address lines floated.  
DRAM clock active, ODT and CKE driven low.  
DRAM is in Precharge Power Down Mode  
Active Power  
ICC_Active_1  
IDD_Active_1  
L0 state  
50% DRAM BW, 67% read, 33% write.  
Primary and Secondary channels enabled.  
DRAM clock active, CKE high.  
Active Power, data pass through  
L0 state  
ICC_Active_2  
IDD_Active_2  
50% DRAM BW to downstream DIMM, 67% read, 33% write.  
Primary and Secondary channels enabled.  
CKE high. Command and address lines stable.  
DRAM clock active.  
Channel Standby  
ICC_LOs  
Average power over 42 frames where the channel enters and exits L0s IDD_LOs  
DRAMs Idle (0 BW).  
CKE low. Command and address lines floated.  
Dram clocks active, ODE and CKE driven low.  
DRAM is in Precharge Power Down Mode  
Training  
ICC_Training  
IDD_Training  
Primary and Secondary channels enabled.  
100% toggle on all channels lanes.  
DRAMs idle (0 BW).  
CKE high. Command and address lines stable.  
DRAM clock active.  
Notes  
1. Primary channel Drive strength at 100 % with De-emphasis at -6.5 dB  
2. Secondary channel drive strength at 60 % with De-emphasis at -3 dB when enabled.  
Data Sheet  
27  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
ICC/IDD Conditions  
3. Address and Data fields provide a 50 % toggle rate on DRAM data and link lanes.  
4. Burst Length = 4.  
5. 10 lanes southbound and 14 lanes northbound are enabled and active (12 lanes NB if non-ECC DIMM).  
6. Modeled with 27 termination for command, address, and clocks, and 47 termination for control.  
7. Termination is referenced to VTT = VDD / 2.  
8
ICC/IDD Conditions  
In the following tabel you can finde the Measurement Conditions and Power Supply Currents  
Table 13 ICC/IDD Specification for HYS72T[64/128/256]xxxHF-3-A  
Product Type  
Unit Note  
Speed Grade  
PC2-5300F PC2-5300F PC2-5300F PC2-5300F PC2-5300F  
4-4-4  
Max.  
1.7  
0.4  
3.3  
2.5  
0.4  
4.5  
2.3  
0.05  
3.5  
3.3  
0.9  
6.6  
2.6  
0.4  
4.6  
1.1  
0.05  
1.7  
4-4-4  
Max.  
1.7  
0.8  
4
2.5  
0.8  
5.2  
2.3  
0.09  
3.6  
3.3  
1.7  
8
2.6  
0.8  
5.3  
1.1  
0.09  
1.8  
3.9  
0.8  
7.3  
4-4-4  
Max.  
1.7  
0.8  
4
4-4-4  
Max.  
1.7  
1.5  
5.3  
2.5  
1.5  
6.5  
2.3  
0.18  
3.8  
3.3  
2.6  
9.6  
2.6  
1.5  
6.6  
1.1  
0.18  
2
4-4-4  
Max.  
1.7  
1.5  
5.3  
2.5  
1.5  
6.5  
2.3  
0.18  
3.8  
3.3  
2.6  
9.6  
2.6  
1.5  
6.6  
1.1  
0.18  
2
Symbol  
ICC_Idle_0  
IDD_Idle_0  
PIdle_0  
ICC_Idle_1  
IDD_Idle_1  
PIdle_1  
ICC_Idle_2  
IDD_Idle_2  
PIdle_2  
ICC_Active_1  
IDD_Active_1  
PActive_1  
ICC_Active_2  
IDD_Active_2  
PActive_2  
ICC_LOs  
A
A
W
A
A
W
A
A
W
A
A
W
A
A
W
A
A
W
A
A
VCC= 1.5V  
VCC= 1.8V  
Total power  
VCC= 1.5V  
VCC= 1.8V  
Total power  
VCC= 1.5V  
VCC= 1.8V  
Total power  
2.5  
0.8  
5.2  
2.3  
0.09  
3.6  
3.3  
1.3  
7.3  
2.6  
0.8  
5.3  
1.1  
0.09  
1.8  
3.9  
0.8  
7.3  
VCC= 1.5V  
1)  
V = 1.8V  
CC  
Total power  
VCC= 1.5V  
VCC= 1.8V  
Total power  
VCC= 1.5V  
VCC= 1.8V  
Total power  
VCC= 1.5V  
VCC= 1.8V  
Total power  
IDD_Los  
PLOs  
ICC_Training  
IDD_Training  
P_Training  
3.9  
0.4  
6.6  
3.9  
1.5  
8.6  
3.9  
1.5  
8.6  
W
1) For 1 Rank modules: n × 0.5 × (2/3 × IDD4R + 1/3 × IDD4W + IDD3N ) For 2 Rank modules: n × 0.5 × (2/3 × IDD4R + 1/3  
× IDD4W + IDD3N )+ n × IDD3N where n = number of components/rank  
Data Sheet  
28  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
ICC/IDD Conditions  
Table 14  
ICC/IDD Specification for HYS72T[64/129/256]xxxHF-3.7-A  
Product Type  
Unit Note  
Speed Grade PC2-4200F  
PC2-4200F  
PC2-4200F  
PC2-4200F  
PC2-4200F  
Symbol  
Max.  
Max.  
Max.  
Max.  
Max.  
ICC_Idle_0  
1.6  
1.6  
1.6  
1.6  
1.6  
A
VCC=  
1.5V  
IDD_Idle_0  
PIdle_0  
0.3  
2.9  
2.3  
0.3  
4
0.6  
3.5  
2.3  
0.6  
4.5  
2.2  
0.09  
3.5  
3.1  
1.2  
6.8  
2.5  
0.6  
4.8  
1
0.6  
3.5  
2.3  
0.6  
4.5  
2.2  
0.09  
3.5  
3.1  
1
1.1  
4.4  
2.3  
1.1  
5.4  
2.2  
0.17  
3.6  
3.1  
2
1.1  
4.4  
2.3  
1.1  
5.4  
2.2  
0.17  
3.6  
3.1  
2
A
VCC=  
1.8V  
W
A
Total  
power  
ICC_Idle_1  
IDD_Idle_1  
PIdle_1  
VCC=  
1.5V  
A
VCC=  
1.8V  
W
A
Total  
power  
ICC_Idle_2  
IDD_Idle_2  
PIdle_2  
2.2  
0.05  
3.4  
3.1  
0.6  
5.7  
2.5  
0.3  
4.3  
1
VCC=  
1.5V  
A
VCC=  
1.8V  
W
A
Total  
power  
ICC_Active_1  
IDD_Active_1  
PActive_1  
ICC_Active_2  
IDD_Active_2  
PActive_2  
ICC_LOs  
VCC=  
1.5V  
1)  
A
V =  
CC  
1.8V  
6.5  
2.5  
0.6  
4.8  
1
8.3  
2.5  
1.1  
5.7  
1
8.3  
2.5  
1.1  
5.7  
1
W
A
Total  
power  
VCC=  
1.5V  
A
VCC=  
1.8V  
W
A
Total  
power  
VCC=  
1.5V  
IDD_Los  
0.05  
0.09  
0.09  
0.17  
0.17  
A
VCC=  
1.8V  
Data Sheet  
29  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Termination Current  
Table 14  
ICC/IDD Specification for HYS72T[64/129/256]xxxHF-3.7-A  
Product Type  
Unit Note  
Speed Grade PC2-4200F  
PC2-4200F  
PC2-4200F  
PC2-4200F  
PC2-4200F  
Symbol  
Max.  
Max.  
Max.  
Max.  
Max.  
PLOs  
1.6  
1.7  
1.7  
1.8  
1.8  
W
A
Total  
power  
ICC_Training  
IDD_Training  
P_Training  
3.7  
0.3  
6.1  
3.7  
0.6  
6.6  
3.7  
0.6  
6.6  
3.7  
1.1  
7.5  
3.7  
1.1  
7.5  
VCC=  
1.5V  
A
VCC=  
1.8V  
W
Total  
power  
1) For 1 Rank modules: n × 0.5 × (2/3 × IDD4R + 1/3 × IDD4W + IDD3N ) For 2 Rank modules: n × 0.5 × (2/3 × IDD4R + 1/3  
× IDD4W + IDD3N )+ n × IDD3N where n = number of components/rank  
9
Termination Current  
Internal signals are terminated on the DIMM through address and clocks and 47 ohm for control. The VTT  
resistors to an external power supply VTT = VDD / 2. power supply must be able to source and sink these  
Modeled with 27 Ohm termination for command, currents:  
Table 15  
VTTCurrents  
Description  
Symbol  
ITT1  
ITT2  
Typ.  
500  
500  
Max.  
700  
700  
Unit  
mA  
mA  
Idle Current, DRAM Power Down (conditions TBD)  
Active Power, 50% DRAM BW (conditions TBD)  
Power Partitioning  
Power dissipation of AMB (VCC.AMB) plus power conditions which may be different from the actual  
dissipation of DRAMs (VDD.DRAM) plus termination application. Actual system power consumption is a  
power (VTT = 0.9 V) have to be added up to obtain the mixture of the above depending on access pattern,  
total power consumption of the FB-DIMM. The above number of DIMMs, number of Ranks per DIMM and  
numbers are given for specific standardized test duty factor of each rank and DIMM on the channel.  
Data Sheet  
30  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
High-Speed Differential Point-to-Point Link Interface  
10  
High-Speed Differential Point-to-Point Link Interface  
The following specifications define the High-Speed them into a serialized bit-stream. This FB-DIMM link is  
Differential Point-to-Point Signaling Link for FB- being specified to operate from 3.2 to 4.8 Gb/s. The  
DIMMD, operating at the AMB supply voltage of 1.5 V specifications are defined for three distinct bit-rates of  
that is provided at the DIMM connector. The link operation: 3.2 Gb/s (PC2-4200F), 4.0 Gb/s (PC2-  
consists of a transmitter and a receiver and the 5300F) and 4.8 Gb/s (PC2-6400F). The link utilizes a  
interconnect in between them. The transmitter sends derived clock approach and transmitter de-emphasis to  
serialized bits into a lane and the receiver accepts the compensate for channel loss characteristics.  
electrical signals of the serialized bits and transforms  
10.1  
Differential Signaling  
A Differential Signal is defined by taking the voltage (VDIFF = VD+ - VD-). The Common Mode Voltage  
difference between two conductors. In this (VCM) is defined as the average or mean voltage  
specification, a differential signal or differential pair is present on the same differential pair (VCM = [VD++  
comprised of a voltage on a positive conductor, VD+, VD-]/2). This documentís electrical specifications often  
and a negative conductor, VD-. The differential voltage refer to peak-to-peak measurements or peak  
(VDIFF) is defined as the difference of the positive measurements, which are defined by the following 5  
conductor voltage and the negative conductor voltage equations:  
1. VDIFFp-p = (2*max|VD+ - VD-|) (This applies to a symmetric differential swing)  
2. VDIFFp-p = (max|VD+ - VD-| {VD+ > VD-} + max|VD+ - VD-| {VD+ < VD-}) (This applies to an asymmetric  
differential swing.)  
3. VDIFFp = (max|VD+ - VD-|) (This applies to a symmetric differential swing)  
4. VDIFFp = (max|VD+ - VD-| {VD+ > VD-}) or (max|VD+ - VD-| {VD+ < VD-}) which ever is greater (This applies  
to an asymmetric differential swing.)  
5. VCMp = (max|VD+ + VD-|/2)  
Note: The maximum value is calculated on a per unit kHz. AC is defined as all frequency components at or  
interval evaluation. The maximum function as above Fdc = 30 kHz. These definitions pertain to all  
described is implicit for all peak-to-peak and peak voltage and current specifications. An example  
equations throughout the rest of this chapter, and thus waveform is shown in Figure 1-2. In this waveform the  
a max function will not appear in any following differential peak-peak signal is approximately 0.6 V, the  
representations of these equations. In this section, DC differential peak signal is approximately 0.3 V and the  
is defined as all frequency components below Fdc = 30 common mode is approximately 0.25 V.  
ꢀꢅꢊꢀꢀꢀ  
ꢀꢅꢉꢊꢀꢀ  
ꢀꢅꢉꢀꢀꢀ  
ꢀꢅꢈꢊꢀꢀ  
ꢀꢅꢈꢀꢀꢀ  
$ ꢂ  
$ ꢃ  
6OLT  
ꢀꢅꢇꢊꢀꢀ  
ꢀꢅꢇꢀꢀꢀ  
ꢀꢅꢄꢊꢀꢀ  
ꢀꢅꢄꢀꢀꢀ  
ꢀꢅꢀꢊꢀꢀ  
ꢀꢅꢀꢀꢀꢀ  
ꢄꢅꢆ  
ꢄꢅꢋ  
ꢇꢅꢄ  
ꢇꢅꢇ  
ꢇꢅꢈ  
ꢇꢅꢉ  
4IME IN NS  
-0%4ꢀꢀꢁꢀ  
Figure 9  
Sample Differental Signal FB-DIMMUnit Interval (UI)  
31  
Data Sheet  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
High-Speed Differential Point-to-Point Link Interface  
Average time interval between voltage transitions of a intentional frequency modulation of the source clock  
signal. This is the same as the period of the FB-DIMM negligible. The UI will be different depending on the  
link bit-rate clock. Given a <...1010...> between voltage data rate of operation. UI=312.5ps (PC2-4200F),  
transitions, over a time interval long enough to make all UI=250ps (PC2-5300F), UI=208ps (PC2-6400F).  
10.1.1  
Transition Density in Transmitted Signals  
The FB-DIMM link doesn’t prescribe encoding. Density_min is: 6 transitions per 512 bits: FB-DIMM at  
However the link bit stream needs to maintain a 3.2 Gb/s, 4.0 Gb/s and 4.8 Gb/s. The prescribed  
minimum transition density. The transition density is minimum is required to enable phase tracking of the  
defined as the number of transitions that occurs either received data by the receiver while at the same time  
from 0 to 1 or from 1 to 0 within any bit stream of a minimize the overhead requirements.  
prescribed length. The minimum prescribed Transition-  
10.1.2  
Jitter and Bit Error Rate  
Jitter is defined as the deviation in the edges of a approximated as Gaussian and can be used to  
sequence of data bits from their ideal timing positions. estimate the bit error rate (BER) of the link. In this  
This deviation can be in phase, period or duty cycle. document the allocation to random jitter and  
Jitter is further categorized into random jitter and deterministic jitter has not been separately specified.  
deterministic jitter. The total jitter is the convolution of The total jitter must support a maximum BER of 10 -16.  
the probability density for all the independent jitter The methods for measuring BER compliance are still  
sources. The random jitter magnitude can be being evaluated.  
10.1.3  
De-Emphasis  
De-emphasis is the engineering term used to describe interference (ISI) due to the difference in loss across  
the technique of utilizing a voltage swing reduction of the frequency band where the main energy of the  
non-transition bits. Figure 1-3 shows an example of a transmitted bit patterns is located. De-emphasis must  
de-emphasized differential signal. De-emphasis is be implemented when multiple bits of the same polarity  
different from pre-emphasis in that non-transition bits are output in succession. Subsequent bits are driven at  
are reduced in voltage as opposed to an increase in a differential voltage level below the first bit and  
voltage swing for transition bits with pre-emphasis. De- individual bits are always driven at the full voltage level,  
emphasis is included to minimize Inter-symbol for normal operation.  
$ ꢂ  
$ ꢃ  
-0%4ꢀꢀꢁꢀ  
Figure 10 De-Emphasis  
10.1.4  
Electrical Idle (EI)  
The condition when both conductors of a differential primarily used in power saving and inactive states (i.e.  
pair are at 0 volt (grounded) level. Electrical idle is DISABLE).  
Data Sheet  
32  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
High-Speed Differential Point-to-Point Link Interface  
10.1.5  
Reference Clock  
The reference clock network consists of the clock the chips at both ends of the link. The reference clock  
generator and the clock buffer that drives the PLL of signal meets the High-Speed Current Steering Logic  
any front-end transmitter or receiver. The same (HCSL) specification.  
reference clock shall be transmitted to the front-end of  
10.2  
High Speed Serial Link Reference Clocks (SCK, SCK)  
To reduce jitter and allow for future silicon fabrication Logic) clocks are used. The nominal single-ended  
process changes, HCSL (High-Speed Current Steering swing for each clock is 0 to 0.7 V.  
3#+ ꢃ  
3#+ ꢄ  
4PERIOD  
-044ꢀꢁꢀꢂ  
Figure 11 Differental Reference Clock Waveform  
The reference clock frequency is 1/24 of the link data reference clock is unspecified. However, in order to  
rate, e.g. 166.67 MHz for a data rate of 4.0Gb/s. The limit the jitter difference between TX and RX there is an  
reference clock pair is routed point-to-point to each upper limit for the phase difference between data and  
DIMM on the system board. The FB-DIMM channel reference clock at the RX, called the transport delay,  
utilizes mesochronous clocking, i.e. the phase T1).  
relationship between TX reference clock and RX  
10.3  
Spread Spectrum Clocking (SSC)  
Spread Spectrum Clock (SSC) with up to -0.5% down a modulation rate in the range between 30 kHz and 33  
spread in frequency shall be supported. The frequency kHz. The modulation profile of SSC shall be able to  
of the clock and therefore bit rate can be modulated provide optimal or close to optimal EMI reduction.  
from 0% to -0.5% of the nominal data rate/frequency, at Typical profiles include Triangular or Hershey profile.  
10.4  
Reference Clock Input Specifications  
Table 16  
Parameter  
Reference Clock Input Specifications  
Symbol  
Values  
Min.  
133.33  
Unit  
Notes  
Max.  
200.00  
700  
1)2)  
3)  
Reference clock frequency  
Rise time, Fall time  
fSCK  
Tsck-rise  
Tsck-fall  
MHz  
psec  
175  
Voltage high  
Voltage low  
VSCK-high  
VSCK-low  
VCross-abs  
VCross-rel  
TSCK-Rise-Fall-Match  
TSCK-Dutycycle  
II_CK  
660  
-150  
250  
850  
mV  
mV  
mV  
4)  
Absolute crossing point  
Relative crossing point  
% mismatch between rise and fall times  
Duty cycle of referance clock  
Clock leakage current  
Clock input capacitance  
550  
5)4)  
Calculated Calculated  
-
40  
-10  
0.5  
10  
60  
10  
2
%
%
uA  
pF  
6)7)  
7)  
CI_CK  
Data Sheet  
33  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
High-Speed Differential Point-to-Point Link Interface  
Table 16  
Parameter  
Reference Clock Input Specifications  
Symbol  
Values  
Min.  
-0.25  
Unit  
Notes  
Max.  
0.25  
5
8)  
Clock input capacitance delta  
Transport delay  
CI_CK(D)  
T1  
pF  
ns  
Periods  
ps  
9)10)  
11)  
Phase Jitter Sample Size  
Reference clock jitter, filtered  
Reference clock deterministic jitter  
NSAMPLE  
TREF-JITTER  
TREF-DJ  
1016  
12)13)  
40  
TBD  
ps  
1) 133MHz for PC2-4200, 166MHz for PC2-5300 and 200MHz for PC2-6400.  
2) Measured with SSC disabled.  
3) Measured differentially through the range of 0.175V to 0.525V.  
4) The crossing point must meet the absolute and relative crossing point specification simultaneously.  
5) VCross_rel_(min) and VCross_rel_(max) are derived using the following calculation: Min = 0.5 (Vhavg - 0.710) + 0.250; and Max = 0.5  
(Vhavg - 0.710) + 0.550, where Vhavg is the average of VSCK-highm  
6) Measured with a single-ended input voltage of 1V.  
7) Applies to Reference Clocks SCK and SCK.  
8) Differance between SCK and SCK input  
9) T1 = |Tdatapath - Tclockpath| (excluding PLL loop delays). This parameter is not a direct clock output parameter but it  
indirectly determines the clock output parameter TREF-JITTER.  
10) The net transport delay is the difference in time of flight between associated data and clock paths. The data path is defined  
from the reference clock source, through the TX, to data arrival at the data sampling point in the RX. The clock path is  
defined from the reference clock source to clock arrival at the same sampling point. See Figure 3-3. The path delays are  
caused by copper trace routes, on-chip routing, on-chip buffering, etc. They include the time-of-flight of interpolators or  
other clock adjustment mechanisms. They do *not* include the phase delays caused by finite PLL loop bandwidth because  
these delays are modeled by the PLL transfer functions.  
11) Direct measurement of phase jitter records over 1016 periods is impractical. It is expected that the jitter will be measured  
over a smaller, yet statistically significant, sample size and the total jitter at 1016 samples extrapolated from an estimate  
of the sigma of the random jitter components.  
12) Measured with SSC enabled on reference clock generator.  
13) As measured after the phase jitter filter. This number is separate from the receiver jitter budget that is defined by the TRX-  
Total-MIN parameters.  
10.5  
Differential Transmitter Output Specifications  
This specification defines a differential current mode Min(specified later). The eye diagrams must be valid for  
driver with a three different TX voltage swing modes at least NMIN-UI-TX consecutive UIs (specified in Table 3-  
(large, regular and small). The AMBs supports all three 3). An appropriate average transmitter UI must be used  
voltage swing modes. The specification defines several as the interval for measuring the eye diagram. The eye  
de-emphasis settings for each voltage swing. Each diagram is created using all edges of the NMIN-UI-TX  
setting is defined as a separate differential eye diagram consecutive UIs. The eye diagrams shall be measured  
that must be met for the transmitter. Figure 3-4 defines by observing a continuous TBD pattern at the pin of the  
the eye heights for the large, regular and small voltage device for the non de-emphasized eye and by  
swing. The no de-emphasis voltages are for a transition observing a continuous TBD pattern at the pin of the  
bit while the other voltages are for a de-emphasized bit. device for the deemphasized eye. The transmitter  
All eye diagrams must be aligned in time using the jitter output eye is referenced to VSS and all transmitter  
median to locate the center of the eye diagram. All eyes terminations must be referenced to VSS .  
must meet the minimum timing requirement of TTX-Total-  
Data Sheet  
34  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
High-Speed Differential Point-to-Point Link Interface  
648ꢃ$)&& ꢄ ꢀM6  
ꢅ$ꢆ $ꢂ #ROSSING 0OINTꢇ  
648ꢃ$)&& ꢄ ꢀM6  
ꢅ$ꢆ $ꢂ #ROSSING 0OINTꢇ  
648 $)&&P PMIN  
;$%ꢂEMPHASIZED "ITS=  
648 $)&&P P  
648ꢂ%QꢂMIN,T ꢈ 648ꢂ%Q$)&&PꢂPꢂMIN ꢈ 648ꢂ%QꢂMAX,T  
648 $)&&P PMAX  
448ꢂ4OTALꢂMIN  
-0%4ꢀꢀꢁꢀ  
Figure 12 Differential requirement minimum transmitter output eye specifications shown with and  
without de-emphasis  
0ULSE MIN 3PECꢂ  
4X 4OTAL MIN  
-0%4ꢀꢀꢁꢀ  
Figure 13 Illustrates the transmitter timing specifications  
$ ꢂ  
4X MIN 6DIFF PꢂP  
4X MIN 6DIFF PꢂP  
ꢃ.O $EꢂEMPHASISꢄ  
ꢃ$EꢂEMPHASISꢄ  
$ ꢅ  
-0%4ꢀꢁꢀꢀ  
Figure 14 Illustrates the de-emphasized string of patterns at the output of a transmitter  
Data Sheet  
35  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
High-Speed Differential Point-to-Point Link Interface  
Table 17  
Differential Transmitter Output Specifications  
Parameter  
Symbol  
Values  
Unit Comments  
Min. Max.  
Differential peak-to-peak output voltage VTX-DIFFp-p_L  
for large voltage swing  
900 1300 mV see Equation (1)  
Measured as Note1)  
Differential peak-to-peak output voltage VTX-DIFFp-p_R  
for regular voltage swing  
Differential peak-to-peak output voltage VTX-DIFFp-p_S  
for small voltage swing  
800  
520  
mV see Equation (1)  
Measured as Note1)  
mV see Equation (1)  
Measured as Note1)  
DC common code output voltage for  
large voltage swing  
VTX-CM_L  
375 mV see Equation (2)  
Measured as Note1)  
DC common code output voltage for  
small voltage swing  
VTX-CM_S  
135 280 mV see Equation (2)  
Measured as Note1)  
See also Note2)  
1)3)4)  
De-emphasized differential output  
voltage ratio for -3.5 dB de-emphasis  
De-emphasized differential output  
voltage ratio for -6.0 dB de-emphasis  
VTX-DE-3.5-Ratio  
VTX-DE-6.0-Ratio  
-3.0 -4.0 dB  
1)2)3)  
-5.0 -7.0 dB  
AC peak-to-peak common mode output VTX-CM-ACp-p-L  
voltage for large swing  
90  
80  
70  
mV see Equation (7)  
Measured as Note1)  
See also Note5)  
mV see Equation (7)  
Measured as Note1)  
See also Note5)  
AC peak-to-peak common mode output VTX-CM-ACp-p-R  
voltage for regular swing  
AC peak-to-peak common mode output VTX-CM-ACp-p-S  
voltage for small swing  
mV see Equation (7)  
Measured as Note1)  
See also Note5)  
6)  
Maximum single-ended voltage in EI  
condition DC + AC  
Maximum single-ended voltage in EI  
condition DC + AC  
Maximum peak-to-peak differential  
voltage in EI condition  
Single-ended voltage (w.r.t. VSS) on  
D+/D-  
VTX-IDLE-SE  
VTX-IDLE-SE-DC  
VTX-IDLE-DIFFp-p  
VTX-SE  
50  
20  
40  
mV  
6)  
mV  
mV  
1)7)  
-75  
750 mV  
1)8)  
Mimimum TX eye width, 3.2 and  
4.0Gb/s  
Mimimum TX eye width 4.8Gb/s  
TTX-Eye-MIN  
TTX-Eye-MIN4.8  
0.7  
UI  
UI  
1)8)  
TBD  
1)8)9)  
Maximum TX deterministic jitter,3.2 and TTX-DJ-DD  
4.8 Gb/s  
0.2  
UI  
1)8)9)  
10)  
Maximum TX deterministic jitter, 4.8  
Gb/s  
TTX-DJ-DD-4.8  
TBD UI  
UI  
Instantaneous puls width  
TTX -PULSE  
0.85  
Differential TX outout rise/fall time  
TTX-RISE TTX-FALL 30  
90  
ps  
Given by 20 % - 80 % voltage  
levels. Measured as Note1)  
Mismatch between rise and fall times  
Data Sheet  
TTX-RF-MISMATCH  
20  
ps  
36  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
High-Speed Differential Point-to-Point Link Interface  
Table 17  
Differential Transmitter Output Specifications (cont’d)  
Parameter  
Symbol  
Values  
Min. Max.  
8
Unit Comments  
Differential return loss  
RLTX-DIFF  
RLTX-CM  
dB Measured over 0.1 GHz to 2.4  
GHz. See also Note11)  
Common mode return loss  
6
dB Measured over 0.1 GHz to 2.4  
GHz. See also Note11)  
12)  
Transmitter termination impender  
D+/D- TX Impedance difference  
RTX  
RTX-MATCH-DC  
41  
55  
4%  
see Equation (4)  
Bounda are applied separately to  
high and low output voltages  
states  
13)15)  
Lane-to lane skew at TX  
LTX-SKEW 1  
LTX-SKEW 2  
100+ ps  
3UI  
100+ ps  
2UI  
240 ps  
120 ps  
14)15)  
Lane-to lane skew at TX  
16)  
16)  
Maximum TX Drift (resync mode)  
Maximum TX Drift (resample mode  
only)  
TTX-Drift-RESYNC  
TTX-Drift-RESAMPLE  
17)  
BER  
Bir Error Ratio 10-12  
1) Specified at the package pins into a timing and voltage compliance test load as shown in Figure 4-2 and in steps outlined  
in 4.1.2.1. Common-mode measurements to be performed using a 101010 pattern.  
2) The transmitter designer should not artifically elevate the common mode in order to meet this specification.  
3) This is the ratio of the VTX-DIFFp-p of the second and following bits after a transition divided by the VTX-DIFFp-p of the first bit  
after a transition.  
4) De-emphasis shall be disabled in the calibration state.  
5) Includes all sources of AC common mode noise  
6) Single-ended voltages below that value that are simultaneously detected on D+ and D- are interpreted as the Electrical Idle  
condition.  
7) The maximum value is specified to be at least (VTX-DIFFp-pL/4 ) + VTX-CML + (VTX-CM-ACp-p/2).  
8) This number does not include the effects of SSC or reference clock jitter.  
9) Defined as the expected maximum jitter for the given probability as measured in the system (TJ), les the unbounded jitter.  
10) Puls width measure at 0V differential.  
11) One of the components that contribute to the deterioration of the return loss is the ESD structure wich needs to be carefully  
designed  
12) The termination small signal resistance; tolerance across voltages from 100 mV to 400 mV shall not exceed +/- 5 W with  
regard to the average of the values measured at 100 mV and 400 mV for that pin.  
13) Lane to Lane skew at the Transmitter pins for an end component.  
14) Lane to Lane skew at the Transmitter pins for an intermediate component (assuming zero Lane to Lane skew at the  
Receiver pins of the incoming PORT).  
15) This is a static skew. An FB-DIMM component is not allowed to change its lane to lane phase relationship after initialization.  
16) Measured from the reference clock edge to the center of the output eye. This specification must be met across specified  
voltage and temperature ranges for a single component. Drift rate change is significantly below the tracking capability of  
the reciver.  
17) BER per differential lane.  
VTX DIFFp p = 2 × VTX D+ VTX D  
(1)  
(2)  
VTX CM = DC(avg)of ( VTX D+ + VTX D- 2)  
Data Sheet  
37  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
High-Speed Differential Point-to-Point Link Interface  
VTX CM AC = ((Max VTX D+ + VTX D- ) ⁄ 2) ((Min VTX D+ + VTX D- ) ⁄ 2)  
(3)  
(4)  
R
TX-D+ RTX-D-  
-------------------------------------------  
RTX Match DC = 2 ×  
R
TX-D+ + RTX-D-  
10.6  
Differential Receiver Input Specifications  
The receiver definition starts from the input pin of the receiver end package and therefore includes the package  
and the receiver end chip.  
10.6.1  
Receiver Input Compliance Eye Specification  
Following the specification of the transmitter, the NMIN-UI-RX consecutive UIs. An appropriate average  
receiver is specified in terms of the minimum input eye transmitter UI must be used as the interval for  
that must be maintained at the input to the receiver, and measuring the eye diagram. The eye diagram is  
under which the receiver must function at the specified created using all edges of the NMIN-UI-TX consecutive  
data rates. The receiver eye is referenced to VSS and UIs. The eye diagrams shall be measured by observing  
all input terminations at receiver must be referenced to a continuous TBD pattern at the pin of the device.  
VSS. This input eye must be maintained for at least  
628ꢃ$)&& ꢄ ꢀM6  
ꢅ$ꢆ $ꢂ #ROSSING 0OINTꢇ  
628ꢃ$)&& ꢄ ꢀM6  
ꢅ$ꢆ $ꢂ #ROSSING 0OINTꢇ  
628ꢂ$)&&PꢂPꢂMIN  
428ꢂ4OTALꢂMIN  
-0%4ꢀꢁꢁꢀ  
Figure 15 Required receiver input eye (differential) showing minimum voltage and timing Spec.  
Table 18  
Parameter  
Differential Receiver Input Specifications  
Symbol  
Values  
Min.  
Unit  
Comments  
Max.  
Differential peak-to-peak input voltage  
VRX-DIFFp-p  
170  
TBD  
mV  
mV  
mV  
mV  
mV  
mV  
see Equation (5)  
Measured as Note1)  
2)3)  
Maximum single-ended voltage for EI  
condition  
Maximum single-ended voltage for EI  
condition(DC only)  
Maximum peak-to-peak differental  
voltage for EI condition  
Single ended voltage (w.r.t. VSS) on  
D+/D-  
Single-pulse peak differential input  
voltage  
Amplitude ratio between adjacent  
symbols  
VRX-IDLE_SE  
75  
2)3)  
3)  
VRX-IDLE_SE_DC  
VRX-IDLE-DIFFp-p  
VRX-SE  
50  
65  
4)  
-300  
85  
900  
4)5)  
4)6)  
VRX-DIFF-PULSE  
VRX-DIFF-ADJ-Ratio  
TBD  
Data Sheet  
38  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
High-Speed Differential Point-to-Point Link Interface  
Table 18  
Parameter  
Differential Receiver Input Specifications  
Symbol  
Values  
Min.  
Unit  
Comments  
Max.  
0.4  
4)7)8)  
Maximum RX inherent timing error, 3.2  
and 4.0 Gb/s  
Maximum RX inherent timing error,  
4.8Gb/s  
Maximum RX inherent deterministic  
timing error, 3.2 and 4.0 Gb/s  
TRX-TJ-MAX  
TRX-TJ-MAX4.8  
VRX-DJ-DD  
UI  
UI  
UI  
UI  
UI  
UI  
ps  
mV  
4)7)8)  
4)7)8)9)  
4)7)8)9)  
4)5)  
TBD  
0.3  
Maximum RX inherent deterministic  
timing error, 4.8 Gb/s  
Single-puls width at zero-voltage  
crossing  
VRX-DJ-DD-4.8  
TRX-PW-ZC  
TBD  
0.55  
0.2  
50  
4)5)  
Single-puls width at minimum-level  
crossing  
TRX-PW-ML  
Differential RX input rise/fall time  
TRX-RISE,TRX-  
Given by 20 % -  
80 % voltage levels.  
see Equation (6)  
Measure as Note1),  
See also Note10)  
FALL,  
Common mode of the input voltage  
VRX-CM  
120  
400  
AC peak-to-peak common mode of input VRX-CM-ACp-p  
270  
45  
mV  
%
see Equation (7)  
voltage  
Note1)  
11)  
Ratio of VRX-CM-ACp-p to minimum VRX-DIFFp- VRX-CM-EH-Ratop  
p
Differential return loss  
RLRX-DIFF  
9
dB  
Measured over 0.1  
GHz to 2.4 GHz. See  
also Note12)  
Common mode return loss  
RRX-CM  
6
dB  
Measured over 0.1  
GHz to 2.4 GHz. See  
also Note 12)  
13)  
RX termination impendance  
D+/D- RX impendance difference  
Lane-to-lane PCB skew at Rx  
RRX  
RRX-Match-DC  
LRX-PCB-SKEW  
41  
55  
4
6
%
UI  
see Equation (8)  
Lane to Lane skew at  
the Receiver that  
must be tolerated.  
See also Note14)  
15)  
Minimum RX Drift Tolerance  
Minimum data tracking 3 dB bandwidth  
Electrical idle entry datect time  
TRX-DRIFT  
FTRK  
TEI-ENTRY-  
400  
0.2  
ps  
MHz  
ns  
16)  
17)  
60  
DETECT  
Electrical idle exit datect time  
Bit Error Ratio  
TEI-ENTRY-  
DETECT  
30  
ns  
18)  
BER  
10-12  
1) Specified at the package pins into a timing and voltage compliant test setup. Note that signal levels at the pad will be lower  
than at the pin.  
2) Single-ended voltages below that value that are simultaneously detected on D+ and D- are interpreted as the Electrical Idle  
condition. Worst-case margins are determined for the case with transmitter using small voltage swing.  
Data Sheet  
39  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
High-Speed Differential Point-to-Point Link Interface  
3) Multiple lanes need to detect the EI condition before the device can act upon the EI detection.  
4) Specified at the package pins into a timing and voltage compliance test setup.  
5) See Figure 3-8 and Figure 3-9. The single-pulse mask provides sufficient symbol energy for reliable RX reception. Each  
symbol must comply with both the single-pulse mask and the cumulative eyemask.  
6) See Figure 3-10. The relative amplitude ratio limit between adjacent symbols prevents excessive intersymbol interference  
in the Rx. Each symbol must comply with the peak amplitude ratio with regard to both the preceding and subsequent  
symbols.  
7) This number does not include the effects of SSC or reference clock jitter.  
8) This number includes setup and hold of the RX sampling flop.  
9) Defined as the dual-dirac deterministic timing error.  
10) Allows for 15 mV DC offset between transmit and receive devices.  
11) The received differential signal must satisfy both this ratio as well as the absolute maximum AC peaktopeak common mode  
specification. For example, if VRX-DIFFp-p is 200 mV, the maximum AC peak-to peak common mode is the lesser of (200 mV  
* 0.45 = 90 mV) and VRX-CM-AC-p-p .  
12) One of the components that contribute to the deterioration of the return loss is the ESD structure which needs to be carefully  
designed.  
13) The termination small signal resistance; tolerance across voltages from 100 mV to 400 mV shall not exceed +/- 5 W with  
regard to the average of the values measured at 100 mV and at 400 mV for that pin.  
14) This number represents the lane-to-lane skew between TX and RX pins and does not include the transmitter output skew  
from the component driving the signal to the receiver. This is one component of the end-to-end channel skew in the AMB  
specification.  
15) Measured from the reference clock edge to the center of the input eye. This specification must be met across specified  
voltage and temperature ranges for a single component. Drift rate of change is significantly below the tracking capability of  
the receiver.  
16) This bandwidth number assumes the specified minimum data transition density. Maximum jitter at 0.2 MHz is 0.05 UI, see  
Section 4 for full jitter tolerance mask.  
17) The specified time includes the time required to forward the EI entry condition.  
18) BER per differential lane. Refer to Section 4 for a complete definition of Bit Error Ratio.  
VRX DIFFp p = 2 × VRX-D+ VRX-D-  
(5)  
(VRX CM = DC(avg)of VRX D+ + VRX D- ) ⁄ 2  
(6)  
(7)  
VRX CM AC = ((Max VRX D+ + VRX D- ) ⁄ 2)((Min VRX D+ + VRX D- ) ⁄ 2)  
R
RX-D+ RRX-D-  
--------------------------------------------  
RRX Match DC = 2 ×  
(8)  
R
RX-D+ + RRX-D-  
Data Sheet  
40  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Channel Initialization  
11  
Channel Initialization  
The FB-DIMM channel initialization process generally Disable), Training, Testing, and Polling states in order  
follows the top to bottom sequence of state transitions to transition the AMBs into the active channel L0 state.  
shown in the high level AMB Initialization Flow diagram The value in parenthesis in each state bubble indicates  
in Figure 3-4. The host must sequence the AMB the condition/activity of the links during these states.  
devices through the Disable, Calibrate, (back to  
0OWERꢂUP  
$ISABLE  
4RAINING ꢃ43/ꢅ  
4ESTING ꢃ43ꢄꢅ  
0OLLING ꢃ43ꢆꢅ  
#ONFIG ꢃ43ꢁꢅ  
#ALIBRATE ꢃꢄ|Sꢅ  
,/ ꢃFRAMESꢅ  
,/S ꢃ%ꢄꢅ  
2ECALIBRATE ꢃ./0Sꢅ  
-0&4ꢀꢀꢁꢀ  
Figure 16 Flow Chart AMB Initialization  
11.1  
RESET Signal  
The RESET signal acts as a hardware reset and technology defines any DRAM specific mechanisms. If  
immediately puts the AMB into a known state. The AMB the DRAMs were in self refresh prior to RESET being  
Initialization FSM is put into the Disable state and the asserted, they will remain in self refresh through the  
NB Tx outputs are put into Electrical Idle regardless of hardware reset. The host must wait until the power and  
the state of the NB Rx inputs. All ’sticky’ bits are set to the reference clock to the AMBs have been stable for  
their default values. The CKE signals to the DRAM greater than or equal to 1ms before transitioning the  
devices are driven inactive to turn off the DRAM output channel out of the Disable state. The relationship  
drivers. DRAM specific mechanisms in the AMB may between supply voltage, reference clock and the  
generate additional signal transitions to the DRAM RESET signal is defined in the AMB Buffer  
devices to make sure that they do not hang in an Specification  
unknown state. The AMB specification for each DRAM  
11.1.1  
Inband Control ‘Signals’  
There are no dedicated control signals implemented on characteristics are exploited to deliver inband control  
an FB-DIMM channel. Two different channel information on the FB-DIMM channel wires when no  
Data Sheet  
41  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Channel Initialization  
clock timing has been established between the host ground to receive inband control information. Clock  
and the AMBs: Electrical Idle (EI): During normal Training Violation: During normal channel operation the  
channel operation the Tx outputs are enabled and a southbound bit lanes contain a minimum number of  
differential voltage is present on each bit lane. In transitions every tClkTrain frames to keep the clock  
Electrical Idle the Tx outputs source insignificant tracking circuits on each bit lane locked to the data  
current and the termination resistors at the receiver pull stream. It is the absence of these periodic bit lane  
both signals of the differential pair to ground. The Rx transitions that is used by the host to communicate  
inputs can detect if both differential inputs are near control information..  
11.2  
Channel Initialization Sequence  
The host controller sequences the FB-DIMM channel times before reporting a failure to the system. It is  
through the initialization sequence. The AMB devices undesirable to continuously drive high frequency  
on each DIMM monitor in-band signals from the host signals into un-terminated transmission lines because  
and use events and patterns on these signals to of the EMI that is generated and the power that is  
transition from one state to another. If the channel fails wasted. To avoid this the host must return to the  
to initialize properly the host may transition the channel Disable state if the channel does not properly initialize.  
back to the Disable state and try again a number of  
11.2.1  
Firmware Transition Control  
The channel initialization and configuration sequence initialization and configuration process be controlled by  
may be controlled by a hardware state machine or firmware. It is recommended that implementation  
directed by firmware. To provide a flexible mechanism specific control registers be included in the host to allow  
for dealing with a variety of FB-DIMM channel failure firmware to step through the initialization steps and  
conditions it is recommended that the channel perform the following functions:  
Put the SB Tx outputs into Electrical Idle.  
Drive SB Tx outputs to all ones.  
Detect if the NB port is receiving Electrical Idle.  
Drive TS0 patterns with an arbitrary AMB_ID value.  
Receive TS0 patterns and read the returned AMB_ID value  
Drive TS1 patterns with an arbitrary AMB_ID value and with a sequence of electrical stress test patterns on  
each bit lane. Registers to hold an arbitrary 24 bits of Test Parameter values are recommended.  
Receive TS1 electrical stress test patterns and check the patterns.  
Test the NB bit lanes and report NB test results.  
Drive TS2 patterns.  
Receive TS2 patterns and determine the round trip channel delay.  
Drive TS3 patterns with channel configuration values.  
Receive TS3 patterns and check the returned values.  
Set the Last_AMB_ID value.  
Set the Hot_Add_AMB_ID value  
Set the Fast_Reset_Flag value.  
Set the Recalibrate_Duration value.  
Set the L0s_Duration value.  
Transition the channel to the L0 state and send the first Sync command.  
11.2.2  
AMB Internal State Variables  
A number of internal flags and timers are referenced in to describe internal AMB state that may or may not be  
the following sections. These flags and timers are visible in defined AMB registers. These flags and timers  
implementation specific and included in the state tables include:  
Last_AMB_Flag - set in the last AMB to enable unique properties of the AMB in this position.  
Data Sheet  
42  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Channel Initialization  
First_Sync_Received_Flag - set to disable further initialization of the Idle/Alert Frame LFSR.  
Idle/Alert Frame LFSR - a counter in each AMB used to generate Idle and Alert frames on the NB channel.  
Alert_Flag - a flag that indicated that this AMB detected an error and is or was generating NB Alert frames.  
Recalibrate_Timer - a timer that keeps track of how long the AMB has been in the Recalibrate state.  
L0s_Timer - a timer that keeps track of how long the AMB has been in the L0s state.  
11.2.3  
Disable State  
The channel is forced into the Disable state during outputs into Electrical Idle. The host must not put the  
hardware reset. The host may put the channel into the channel into the Disable state from the L0 state until  
Disable state at any time and from any other state other any DRAM write operations have had time to complete.  
than L0s by putting the three least significant Tx Channel initialization always starts in the Disable state.  
11.2.4  
Training State  
The host drives a repetitive series of TS0 patterns to filled with an alternating 1010 pattern to align the clock  
transition the AMBs from the Disable state to the trackers with the incoming data stream. The sequence  
Training state and to perform initial link training. The generally has logic zeroes in the even bit positions and  
host may detect that the last AMB has acquired frame logic ones in the odd bit positions. The beginning of the  
lock when TS0 patterns are received on the required sequence is identified by the header pattern shown in  
number of inputs. Bit patterns in TS0 are used to the table below and is used to establish the alignment  
perform bit lock and frame lock. The pattern is mostly of the serial data onto frame boundaries.  
11.2.5  
Testing State  
The host drives a TS1 pattern to transition the AMBs send an arbitrary number of TS1 patterns to test the  
from the Training state to the Testing state and may channel.  
11.2.6  
Polling State  
The host drives a TS2 pattern to transition the AMBs pattern to each intermediate AMB to test if it has  
from the Testing state to the Polling state. The host aligned its northbound merge data timing to the timing  
sends a continuous stream of TS2 patterns to the last of the last AMB and can properly merge its data into the  
AMB to determine the round trip latency of the channel. northbound data stream.  
The host may subsequently and optionally send a TS2  
11.2.7  
Config State  
The TS3 training sequence is used to communicate the channel configuration to the AMBs in the Config state. On  
exit transitions to L0 state if 4 consecutive NOP frames are received.  
Data Sheet  
43  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Channel Protocol  
12  
Channel Protocol  
The host performs all of the scheduling of the and facilitates the use of two or more FB-DIMM  
southbound and northbound data paths. The FB channels in lock stepped configurations. The host  
DIMMs do not initiate any northbound traffic but instead sends commands and data to the DIMMs in 120-bit  
respond to commands provided by the host. This southbound frames. Similarly the DIMMs return data to  
protocol style results in a memory channel that has the host in 168-bit northbound frames.  
deterministic behavior (in the absence of error events)  
12.1  
Southbound Frames  
After initialization the host communicates with the normal and fail-over. In normal mode the southbound  
AMBs on the channel using southbound frames of link is full width and has a stronger CRC code. In fail-  
information containing commands and data. There are over mode the southbound link is reduced in width by  
two modes of operation of the southbound channel, one bit and uses a weaker CRC code.  
12.1.1  
Normal Southbound Frames  
Normal southbound frames consist of 12 transfers of command type and is protected by 22-bits of CRC  
data delivered on 10 southbound bit lanes. Each frame information.  
contains 72-bits of data, 24-bits of command, 2-bits of  
12.1.2  
Fail-over Southbound Frames  
Fail-over southbound frames consist of 12 transfers of fail-over mode and the CRC code size is reduced in this  
data delivered on 9 southbound bit lanes. The most mode.  
significant bit lane is not available to carry CRC bits in  
12.1.3  
Command Frame Format  
The Command frame contains up to three independent each command specify which DIMM should execute  
commands that can be executed in parallel by separate the command.  
DIMMs and in some cases by the same DIMM. Bits in  
12.1.3.1 Command Frame with Data Format  
Specific commands, such as configuration register commands to deliver a data payload with information  
write commands, may need to deliver data to the AMB that cannot be encoded in the command itself.  
devices. The Command frame is used by these  
12.1.3.2 Command+Wdata Frame Format  
The Command+Wdata frame is used to deliver write payload is not examined by the AMB. The write data is  
data to write FIFO structures on each DIMM for future loaded into the write FIFO on the DIMM from 3  
transfer to the DRAM devices. The content of the data consecutive Command+Wdata frames.  
12.1.4  
Southbound Commands  
There are two categories of southbound commands.  
DRAM commands and channel commands.  
12.1.4.1 DRAM Commands  
DRAM commands are generated by the host to access has access to the DRAM devices as if the devices were  
the DRAM devices behind each AMB buffer. The host directly connected to the host. The AMB decodes the  
Data Sheet  
44  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Channel Protocol  
DRAM commands and generates the control signals to each ECC DIMM. Non-ECC memory DIMMs support  
the DRAM devices. The command delivery on the the Data Mask function. Write accesses transfer the  
DRAM address and control signals (excluding CKE) data from the write data FIFO located inside the AMB  
use 1n command timing. 1n command timing means device on the DIMM. A register instructs the AMB when  
that the commands are present on the DRAM pins for a to drive the data after the Write command. The DDR2  
single clock cycle. DRAM Read and Write commands specific Off-Chip Driver (OCD) impedance Adjust  
always transfer complete bursts of data determined by command also transfers data from the write data FIFO  
the Burst Length field programmed into the DRAM to the DRAM devices. The host is responsible for  
MRS registers. A burst length of 4 will transfer 36 bytes memory ordering, FB-DIMM channel scheduling, and  
and a burst length of 8 will transfer 72 bytes to/from error handling.  
Available DRAM CommandsB  
Activate  
Write  
Read  
Precharge All  
Precharge Single  
Auto Refresh  
Enter Self Refresh  
Enter Power Down  
Exit Self Refresh and Exit Power Down  
12.1.4.2 Channel Commands  
Channel commands include the Sync command, register read and write commands, and miscellaneous  
miscellaneous DRAM commands, configuration maintenance commands.  
Available Channel Commands  
Channel NOP  
Sync  
Soft Channel Reset  
Write Config Register  
Read Config Register  
DRAM CKE per DIMM  
DRAM CKE per Rank  
Debug  
12.1.4.3 CKE Control Commands  
Two versions of the CKE control command allows for more than one of the commands targets any one DIMM  
individual rank control, where up to 4 DIMMs may be on the same DRAM clock. The Host Controller is  
targeted at once, or per DIMM control, where all 8 responsible for CKE timing with respect to the DRAM  
DIMMs can be accessed from a single command. The protocol, including the explicit Self Refresh command.  
CKE control commands will affect the CKE pins for the The AMB will not do any protocol checking. The Per  
addressed DIMM(s) with the same timing as a DRAM DIMM CKE command allows all 8 DIMMs to be targeted  
command, based on slot location. Multiple CKE by a single command. The Per Rank CKE command  
commands may be included in one frame as long as no allows for individual Rank CKE control.  
12.1.4.4 Soft Channel Reset Command  
The Soft Channel Reset command may be used to channel. In the case of a minor transient bit error a  
attempt to recover from a transient bit failure on the single or a small group of commands may be corrupted.  
Data Sheet  
45  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Channel Protocol  
The AMB will detect the corruption as a CRC error and  
will ignore the corrupted commands and report the  
error to the host with Alert frames. The host may issue  
a Soft Channel Reset command to acknowledge the  
receipt of the Alert frames and reset the command state  
of the AMBs. The Soft Channel Reset command must  
be preceded by at least 1 NOP frame and followed by  
at least 4 NOP frames. The AMB recognizes the Soft  
Channel Reset command while ignoring all others and  
resets its internal command state.  
Status return would be located if the Soft Channel  
Reset command was a Sync command.  
Discard all data content in the Write FIFO  
Reset the DIMM target Write FIFO state machine  
The host may follow the Soft Channel Reset command  
(and the 4 NOP frames) with a sequence of DRAM  
commands to clear the command state of the DRAM  
devices. The sequence may look something like this:  
1. Assert CKE to all ranks  
2. Wait the appropriate number of clocks  
3. Issue a Precharge All command to all ranks If the  
Soft Channel Reset itself is corrupted the stream of  
Alert frames will continue and the host may perform  
a Fast Reset to reinitialize the channel.  
The following actions are performed by the AMB:  
Discontinue Alert frame generation and generate  
Idle frames or forward NB traffic in the frame that a  
12.1.4.5 Sync Command  
The FB-DIMM channel periodically requires a minimum send syncs at any interval between the programmed  
number of transitions on each bit lane to maintain clock interval and 42. For example, if the host controller  
recovery synchronization. The host must periodically design can send syncs in the range of 38 to 42 frames  
send a Sync command on the channel to maintain the apart, the register would be programmed to 38. The  
required transition density. The maximum interval best power management for the AMB can be achieved  
between sync frames is 42 frames, in order to maintain by the host controller being as consistent as possible in  
clock recovery synchronization. The host controller its sync generation. Power Management within the  
must adhere to a minimum interval between sync AMB can have an impact on bandwidth capabilities in  
frames to guarantee that the AMB clock recovery some platforms. The AMB specification provides  
circuits will be adjusted. This allows the AMB to save information on the programming of this register as well  
power by switching off internal circuits between sync as the default and minimum values. Following a reset,  
commands. The AMB contains a register in which the the host may ignore the minimum sync interval up until  
host controller programs the minimum interval between the 4th sync.  
syncs which it will send. The host controller may then  
12.1.4.6 NOP Frame  
The NOP frame contains three NOP commands and is commands to send on the channel. The frame is a  
sent on the southbound link when there are no other normal Command frame format.  
12.1.4.7 Command Delivery Timing  
DRAM access latency is minimized by allowing the after the first 4 transfers of the frame have been  
command to be delivered to the DRAM immediately received.  
12.1.4.8 Concurrent Command Delivery Rules  
Commands may be issued in any combination, as long  
as they do not collide on any DRAM pin or FB-DIMM  
data slot, and follow a few additional rules below.  
DRAM Command and Address Pins  
Only one of the following commands may target a Multiple commands within this list may be issued if each  
particular DIMM in the same DRAM clock due to targets a different DIMM, as long as there is no collision  
collisions on the DRAM command and address pins. on the FB-DIMM channel northbound data bus:  
Data Sheet  
46  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Channel Protocol  
Activate, Write, Read, Precharge Single, Precharge All,  
Auto Refresh, and Enter Self Refresh.  
DRAM CKE Pins  
Only one of the following commands may target a commands may target a single DIMM, or 4 or 8 DIMMs  
particular DIMM in the same DRAM clock due to at once. When multiple DIMMs are targeted by a  
collisions on the CKE pins: Enter Self Refresh, Exit Self command, no other command affecting the CKE pins  
Refresh, DRAM CKE per DIMM, DRAM CKE per Rank, may be issued to any of the targeted DIMMs.  
and Enter Power Down. Note that DRAM CKE  
DRAM Data and Strobe Pins  
Commands cannot be issued to a DIMM that would within a DIMM. In addition, all turnaround times for the  
cause collisions on the DRAM data and strobe pins DRAM data and strobe pins must be observed.  
Northbound Data Bus  
Commands cannot be issued on the channel that would of responses must be preserved. Commands issued  
cause collisions on the Northbound data bus. following a Sync command with SD > 0 must not return  
Commands that generate data on the northbound data data before or on top of the Sync status return.  
bus are: Read, Read Config Reg, and Sync. The order  
Other Restrictions  
Only one outstanding configuration read or write Reg command following an Alert Frame. A Soft  
register transaction is allowed on the channel. A Channel Reset requires NOP commands in all other  
configuration register read begins with the command command slots in the previous DRAM clock, the current  
and ends with the data being returned to the host. A DRAM clock, and the next 4 DRAM clocks. Only one In-  
configuration write begins with the command and ends band Debug event may be sent within a DRAM clock.  
when the read data would have been returned if the The host controller is responsible for state and timing of  
command were a Read Config Reg. This is the same the CKE pins vs. DRAM commands based on the  
point that an Alert Frame would be generated if there DRAM specifications. A DRAM command and CKE  
were a CRC error on the Write Config Reg command. command may target the same DIMM on the same  
Allowing only one outstanding configuration transaction DRAM clock provided that the DRAM specifications are  
on the bus allows for proper replay of the Write Config met.  
12.1.4.9 Command Encoding  
Commands are encoded into the 24 bit of Command  
frames. For detailed command bit maps please refer to  
the AMB Buffer Specification.  
12.2  
Northbound CRC Modes  
FB-DIMM supports three northbound CRC modes to ECC coverage only 12 bit lanes: 6-bit CRC over 64-bit  
support applications that require different levels of error data payload, no fail-over The selection on the mode of  
detection. The frames contain two 72-bit or 64-bit data operation is controlled by the host and communicated  
payloads. Each data payload is protected by either a during the initialization process. Northbound CRC is  
12-bit CRC or a 6-bit CRC. The three supported only computed for Data frames. The Idle, Alert, and  
northbound CRC modes are: 14 bit lanes: 12-bit CRC Status frame types drive the upper bit lanes with a  
over 72-bit data payload, fail-over to 6-bit CRC 13 bit known data pattern. During fail-over the host simply  
lanes: 6-bit CRC over 72-bit data payload, fail-over to ignores the missing bit lanes.  
Data Sheet  
47  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Channel Protocol  
12.2.1  
Northbound Idle Frame  
Each Idle frame contains a permuting data pattern. The pattern of the Idle and Alert frames to their initial value.  
last DIMM on the channel sends this permuting data The first Idle frame follows immediately after the Status  
pattern when not sending requested data from the frame returned for the first Sync command. The  
DIMM. The content of the frame is designed to permuting data pattern is generated by a 12-bit linear-  
intentionally generate CRC errors if not in fail-over feedback shift register (LFSR) with a polynomial of x12  
mode so that the host can easily detect when an +x7 + x4 + x3 + 1. The LFSR counter cycles through  
expected Northbound Data frame with good CRC is 212-1 states (4095 frames) before the pattern is  
missing. The host does not log the CRC errors repeated. Each bit of the counter is mapped onto a  
generated by the Idle frames. Host hardware will issue corresponding northbound bit lane. The LFSR does not  
a Sync command on the channel immediately following generate an all zero data payload.  
entry into the L0 state to reset the permuting data  
12.2.2  
Northbound Alert Frame  
AMBs report detection of errors on the channel using AMB on the channel will send this permuting data  
the Northbound Alert frame. The Northbound Alert pattern after it has detected a CRC error in any  
frame contains the inverse of the Idle frame data southbound command frame. The AMB will continue to  
pattern. The host may use detection of this permuting generate Northbound Alert frames until it receives a  
data pattern to indicate that an error has occurred. An Soft Channel Reset command or a channel reset.  
12.2.3  
Northbound Data Frames  
This section defines the format of the Northbound Data is sent on the 12th, 13th, or 13th & 14th bit lanes if not  
frames. Each frame contains either two 72-bit data in fail-over mode. Each data payload has its own CRC  
payloads or two 64-bit data payloads. A CRC code is code to minimize the latency to deliver the first data  
computed across each of the 72-bit data payloads and payload to the host.  
12.2.3.1 14-bit Lane Northbound Data Frame  
This is the highest RAS mode of operation for the payload. For the mapping of the data from each of the  
northbound channel. In this mode a 12-bit CRC is DRAM devices into the Northbound Data frame please  
delivered during the transfer of each 72-bit data refer to the AMB Buffer Specification.  
12.2.3.2 13-bit Lane Fail-over Northbound Data Frame  
When the 14 lane mode has failed over to 13 lanes, the  
northbound data frame is identical to the 13 bit lane  
frame below.  
12.2.3.3 13-bit Lane Northbound Data Frame  
This is the medium RAS mode of operation for the payload. For the mapping of the data from each of the  
northbound channel. In this mode a 6-bit CRC is DRAM devices into the Northbound Data frame please  
delivered during the transfer of each 72-bit data refer to the AMB Buffer Specification.  
12.2.3.4 13-bit Lane Fail-Over Northbound Data Frame  
When 13-bit lane mode has failed over and is operating host is the only error detection available. Note that this  
on 12 lanes, each transfer consists of only the 72 bit frame format is NOT the same as the 12-bit Lane frame  
payload with no CRC. The ECC implemented by the format.  
Data Sheet  
48  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Channel Protocol  
12.2.3.5 12-bit Lane Northbound Data Frame (Non-ECC Mode)  
This is the lowest RAS mode of operation for the and the CRC code is the only form of protection. For the  
northbound channel. In this mode a 6-bit CRC is mapping of the data from each of the DRAM devices  
delivered during the transfer of each 64-bit data into the Northbound Data frame please refer to the  
payload. The data payload does not contain ECC bits AMB Buffer Specification.  
12.2.3.6 Northbound Register Data Frame  
The NB Register Data frame is used to return data in must select the appropriate bytes from the four data  
response to a Read Configuration command. The bytes delivered if fewer than four bytes are needed.  
frame always returns 32-bits of register data. The host  
12.2.3.7 Northbound Status Frame  
The Status frame is returned to the host in response to status bits could not be calculated within this  
a Sync command from the host. The status returned in mechanism. Each AMB drives all 12 bits delivered in  
the Status frame corresponds to the status of the AMB the frame for its assigned bit lane, including the  
to commands before the Sync command. Errors that alternating one/zero pattern. The AMB in the last DIMM  
are generated by commands after the Sync command position of the daisy chain initiates the northbound  
are reported in subsequent Status frames. In other Status frame and fills the bit lane corresponding to its  
words the Sync command provides a fence for status DIMM position with its status information and fills the  
reporting. Each AMB will merge its status into the remainder of the bit lanes with a zero status code and  
northbound bit stream on the appropriate bit lane. The an invalid zero parity value. This is done so that the  
northbound Status frame contains a group of status bits host may detect a missing status response if an AMB  
from each AMB. The status bits are protected by an odd misinterprets the Sync command. The host is expected  
parity bit DnSP that covers the status bits from each (but not required) to detect the status response error  
AMB individually. This is necessary because the status and reissue the Sync command to request the status  
from each AMB is merged ìon-the-flyî into the Status again. The CRC bit lanes are filled with the same fixed  
Frame by each AMB and a CRC that covers all of the pattern because the CRC is not valid in this frame type.  
12.3  
DRAM Memory Timing  
The host accesses the DRAM devices on an FB-DIMM controller must deliver commands onto the FB-DIMM  
DIMM as if they were directly connected to the host but channel exactly as the host intends the commands to  
with a few differences. First there is generally a longer be delivered to the DRAM devices. This section  
than usual delay in the return data path between the illustrates the DRAM timing on the channel. The  
DRAM and the host,and second there is a FIFO command delivery on the DRAM address and control  
mechanism in the write data path between the host and pins use 1n command timing. 1n command timing  
the DRAM. The host sends ‘RAS’ and ‘CAS’ style means that the commands are present on the DRAM  
commands directly to the DRAM devices. The pins for a single clock cycle. This allows the commands  
commands on the FB-DIMM channel are delivered to present on the channel to be forwarded to the DRAM  
the DRAM devices with a fixed delay. The host channel without timing modification.  
12.3.1  
Read Timing  
The command timing of the DRAM devices on an FB- propagation delay characteristics of the channel. For  
DIMM is identical to the timing of an individual DRAM single DIMM configurations the timing behaves similar  
device. The RAS latency, CAS latency, etc. are to a Registered SDRAM DIMM. As DIMMs are added  
controlled by the MRS values loaded into the DRAM to the channel the accumulated delay due to PCB flight  
devices. Figure 4-15 illustrates an example DRAM time and delay through intermediate AMB components  
Read operation. The data returned to the host is increases the delay in the return data path.  
delayed for an interval of time determined by the  
Data Sheet  
49  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Channel Protocol  
4ꢀ  
!#4ꢀ  
4ꢁ  
4ꢂ  
4ꢃ  
2$ꢀ  
4ꢄ  
4ꢅ  
4ꢆ  
4ꢇ  
4ꢈ  
4ꢀꢉ  
4ꢀꢀ  
4ꢀꢁ  
4ꢀꢂ  
&"$?3OUTHBOUND  
./0  
./0  
./0  
./0  
$)--ꢀ?CMD  
$)--ꢀ?$ATA  
!#4ꢀ  
2$ꢀ  
$)--ꢁ?CMD  
$)--ꢁ?$ATA  
&"$?.ORTHBOUND  
MPTTꢀꢃꢇꢉ  
Figure 17 Basic DRAM Read Data Transferes on FBD (RD)  
Back-to-back reads from different DIMMs is illustrated separateDIMMs can be returned without a dead clock  
in Figure 4-16. Unlike DDR2, the data from the between the data bursts.  
7ꢁꢀ  
7ꢂꢀ  
7ꢃꢀ  
7ꢄꢀ  
7ꢅꢀ  
7ꢆꢀ  
7ꢇꢀ  
7ꢈꢀ  
7ꢉꢀ  
7ꢁꢊꢀ  
7ꢁꢁꢀ  
7ꢁꢂꢀ  
7ꢁꢃꢀ  
)%'B6RXWKERXQGꢀ  
$&7ꢁꢀ  
$&7ꢂꢀ 5'ꢁꢀ  
5'ꢂꢀ  
123ꢀꢀ  
123ꢀ  
123ꢀ 123ꢀ  
123ꢀ 123ꢀ  
123ꢀ  
123ꢀ  
',00ꢁBFPGꢀ  
',00ꢁB'DWDꢀ  
$&7ꢁꢀ  
5'ꢁꢀ  
',00ꢂBFPGꢀ  
$&7ꢂꢀ  
5'ꢂꢀ  
',00ꢂB'DWDꢀ  
)%'B1RUWKERXQGꢀ  
PSWWꢁꢄꢉꢊꢀ  
Figure 18 Back-toback DRAM Raed Data Transferes on FBD (RD-RD)  
12.3.2  
Write Timing  
The write command timing of a DRAM device on an FB- the DRAMs when expected. Note that the Write  
DIMM is identical to the timing of an individual DRAM command may be issued before the frame holding the  
device. The Write latency is controlled by the MRS last payload of data. The figure shows the shortest time  
values loaded into the DRAM devices. Figure 4-17 between the last frame of data is driven on the  
illustrates an example DRAM Write operation. The host southbound channel and when the data can be driven  
transfers the data to be written into a write FIFO in the onto the DRAM data pins. The data can be loaded into  
AMB preceding the DRAM write transfer. The write the FIFO earlier than what is shown but will occupy an  
FIFO is used to accumulate write data in the AMB so entry in the FIFO until used. The fixed fall through time  
that the data can be transferred to the DRAM devices shown defines the just-in-time arrival of the data to  
at full burst rate during the write operation. The host meet delivery to the DRAM. This just-in-time arrival  
must be aware of the DRAM Write latency value in time allows the controller to deliver a burst of 64  
order to make sure that the write data is available in the transfers to the DRAM using the 35 deep FIFO in the  
Write FIFO early enough to be delivered to the DRAMs AMB. Writes may be followed by a Sync command that  
when expected. The AMB must be aware of the DRAM returns status information to indicate to the host that no  
Write latency value in order to deliver the write data to errors are associated with the write operation(s). The  
Data Sheet  
50  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Channel Protocol  
figure shows the earliest the Sync command can be frames. Following error detection, the host may issue  
issued and report completion of the write operations. If the Soft Channel Reset command to discard any data  
there are errors with the write command or the write in the write FIFO. This would empty the write FIFO and  
data the AMB will report the error by sending Alert put the write FIFO state machines into a known state.  
7ꢁꢀ  
7ꢂꢀ  
7ꢃꢀ  
7ꢄꢀ  
7ꢅꢀ  
7ꢆꢀ  
7ꢇꢀ  
7ꢈꢀ  
7ꢉꢀ  
7ꢁꢊꢀ  
7ꢁꢁꢀ  
7ꢁꢂꢀ  
7ꢁꢃꢀ  
)%'B6RXWKERXQGꢀ  
$&7ꢁꢀ  
123ꢀ :5ꢁꢀ 123ꢀ 123ꢀ 6<1&ꢀ  
:GDWDꢀ :GDWDꢀ :GDWDꢀ :GDWDꢀ ꢁꢊꢁꢊꢀ  
:GDWDꢀ :GDWDꢀ :GDWDꢀ :GDWDꢀ ꢊꢁꢊꢁꢀ  
123ꢀꢀ  
123ꢀ  
)L[HGꢀIDOOꢀWKURXJKꢀWLPHꢀ  
',00ꢁBFPGꢀ  
',00ꢁB'DWDꢀ  
$&7ꢁꢀ  
:5ꢁꢀ  
',00ꢂBFPGꢀ  
',00ꢂB'DWDꢀ  
)%'B1RUWKERXQGꢀ  
6WDWXVꢀ  
PSWWꢁꢅꢊꢊꢀ  
Figure 19 Basic DRAM Write Data Transferes on FBD (WR)  
12.3.2.1 Write Data FIFO  
The Write Data FIFO is a data structure that is used to Multiple bursts of data can be accumulated in the FIFO  
accumulate write data in the AMB in preparation for to amortize the read-write-read DRAM data bus  
bursting the data to the DRAM devices. The FIFO can turnaround penalty over a number of write operations.  
be filled at a maximum of half of the DRAM burst rate The DRAM Write command pulls the data from the  
but is emptied at the full DRAM burst data rate. The head of the FIFO and delivers it to the DRAM devices  
Command+Wdata frames contain a data payload of in the clock cycle determined by register settings in the  
72-bits that is loaded into the designated write FIFO. AMB. Additional data can be loaded into the FIFO while  
The Command+Wdata frames are not required to be data is being delivered to the DRAM. The depth of the  
contiguous and may be separated by an arbitrary FIFO supports a continuous burst of 64 transfers to the  
number of intervening frames. The write FIFO on each DRAM devices.  
DIMM can hold thirty-five (35) 72-bit data payloads.  
12.3.3  
Simultaneous Read and Write Data Transfers  
The FB-DIMM channel provides separate data path for devices on one FB-DIMM can be read at the same time  
read completion data and write request data. Because that write data is being written to the DRAM devices on  
each FB-DIMM contains an isolated DRAM channel another FB-DIMM.  
behind the AMB component, read data from the DRAM  
12.3.4  
DRAM Bus Segment Restrictions  
Either one or two ranks of DRAM devices may be two separate ranks to avoid electrical conflict on the  
located behind the AMB on an FB-DIMM. These DQS and DQS signals. The turnaround times for dead  
devices sit on a DRAM bus segment and must observe times such as read-to-read, read-to-write, and write-to-  
the restrictions on the usage of the bus segment. The read are DIMM layout specific and are captured in the  
DDR2 SDRAM data sheets should be referenced for SPD EEPROM on the DIMM. These parameters are  
details of the restrictions. A dead time is required readable by firmware to direct the appropriate behavior  
between read operations for DDR2 devices from the of the host controller.  
Data Sheet  
51  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Reliability, Availability and Serviceability  
13  
Reliability, Availability and Serviceability  
13.1  
Overview  
The FB-DIMM channel specification provides the command or (write) data. A Status response  
comprehensive RAS support including, error detection mechanism is provided to return to the host quick  
and frame transmission retry, error logging, error abbreviated status information from all of the AMBs  
injection, host add/remove of DIMMs, and the simultaneously. An AMB will discard any commands or  
mechanisms for in-operation test and fault recovery data received with a CRC error. For reads, the read  
using the Fast Reset capability of the channel. The data that is returned to the host with correct ECC and/or  
philosophy for FB-DIMM channel reliability is to provide CRC is the positive acknowledgement that all has  
strong error detection of channel transaction errors, transpired without error. If the host does not receive a  
and the ability to retry the transactions after automatic read return when scheduled, or if the read return  
hardware recovery. Both the northbound and contains an error, the host may reissue the read  
southbound links include fail-over mechanisms that can command or the entire read sequence, and/or send a  
keep the links running after any one wire fails with sync command to acquire error status from the AMBs.  
enough fault detection to maintain reliable operation Error free writes are silently accepted by the AMB with  
until repair. The FB-DIMM channel protects data from no response returned to the host. Write data or any  
errors using CRC codes generated by both the host commands that are received by the AMB in error will  
and the AMB. FB-DIMM provides error detection and cause the AMB to notify the host through Alert frames.  
retry mechanisms for commands and data. It further Alert frames are continuously sent until acknowledged  
provides an Alert frame reporting mechanism whereby by the host with a Soft Channel Reset command or a  
the host is made aware of errors found by an AMB in channel reset.  
13.2  
Example Error Flows  
This section gives an informal overview of error  
handling by walking through example write and read  
flows. Precise details follow in subsequent sections.  
13.2.1  
Command Error Flow  
The AMB checks for errors in all commands but cannot the host may issue a Soft Channel Reset command or  
discriminate one failed type of command from any other a Fast Reset to attempt to recover from the error. The  
type of command. All command errors are reported to AMB will close all DRAM pages and place the DRAM  
the host and all subsequent commands except Soft devices into self-refresh upon detection of the Fast  
Channel Reset are ignored. Command errors are Reset. Following the Fast Reset the host may reissue  
reported to the host by a stream of Alert frames in place all read and write transactions since the previous  
of normally returned frames. Upon receiving an Alert verified transaction completion and continue normal  
response indicating that there was a command error, operation.  
13.2.2  
Write Data Error Flow  
The AMB checks for errors in the write data by to check for link transmission errors in the write data.  
computing a 22-bit CRC covering the write data frame. CRC errors detected in the write data are reported to  
When in wire fail-over mode a 10-bit CRC is available the host the same as command errors.  
13.2.3  
Read Error Flow  
A read differs from a write primarily in that the AMB of the read data in the specified northbound data frame.  
provides a positive acknowledgement that there were If the AMB detects an error in a read command, the  
no errors with the read command through the delivery AMB discards the command and Alert frames will be  
Data Sheet  
52  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Reliability, Availability and Serviceability  
returned. Upon receiving a read return, the host verifies either be retried or the host may attempt to correct the  
that it has received the correct amount of data at the [data] error. Section 5.7 describes the algorithm in  
scheduled time, and checks the correctness of the more detail.  
data. If any of these are in error the read command may  
13.3  
Overview of Error Protection, Detection, Correction, and Logging  
FB-DIMM uses several different mechanisms for error  
protection, detection, correction, and error logging.  
Error handling elements are made up of the following:  
Southbound Commands and DataB  
a) The host computes check bits for commands -14-bit commands except the  
CRC on a per command basis. Reduced to 10-bit CRC d) Soft Channel Reset command or until the channel is  
in fail-over mode.  
reset by the host - The AMB does not evaluate any  
b) The host computes check bits for (write) data - 22-bit ECC information sent with the (DRAM) write or attempt  
CRC on a per 72-bit write burst basis. Reduced to 10- to correct any errors  
bit CRC in fail-over mode.  
e) The AMB returns error status on detected errors -  
c) The AMB detects CRC errors in southbound CRC errors are reported on the northbound link by  
commands or (write) data, and logs information on the inserting Alert frames in place of other content. - Alerts  
errors detected - Command or write data errors once continue to be sent until a Soft Channel Reset  
observed prevent the AMB from decoding any command is received or the channel is reset.  
Northbound Read Data B  
FB-DIMM supports three northbound CRC modes to Northbound CRC is only computed for Data frames.  
support applications that require different levels of error The Idle, Alert, and Status frame types drive the upper  
detection and cost. The frames contain two 72-bit or bit lanes with a known data pattern. During fail-over the  
64-bit data payloads. Each data payload is protected by host ignores the missing bit lanes and operates with  
either a 12-bit CRC or a 6-bit CRC, with reduced reduced CRC coverage.  
protection during fail-over. The three supported a) The host detects an error in the data through CRC  
northbound  
(added by the AMB when not in fail-over mode) or by  
ECC provided with the data when read from DRAM  
CRC modes are:  
14 bit lanes: 12-bit CRC over 72-bit data payload, fail- (provided by the host with the data when written to  
over to 6-bit CRC  
DRAM)  
13 bit lanes: 6-bit CRC over 72-bit data payload, fail-  
over to ECC coverage only  
- The host logs the information on errors detected  
- The host corrects the data if possible using the ECC  
included within the data  
- The host takes whatever other steps deemed prudent  
(such as reissuing the command to see if the data  
error was transient or scrubbing the DRAM location if it  
were a correctable error)  
12 bit lanes: 6-bit CRC over 64-bit data payload, no fail-  
over  
The selection on the mode of operation is controlled by  
the host and communicated during the initialization  
process as defined in the Initialization chapter.  
Northbound StatusB  
a) The AMB computes a parity bit over its own status - If there were no errors in the status return itself then  
information the host would log any error information reported  
b) The host detects an error in the northbound status through the status return and take whatever other steps  
return  
deemed prudent. As noted above, the host is the only  
agent that corrects errors in system data. However, to  
- The host logs the information on errors detected  
- The host takes whatever other steps deemed prudent provide enhanced data integrity, the host may first retry  
(such as issuing another sync command ñ up to a limit) a read request upon detecting a data error before  
Data Sheet  
53  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Reliability, Availability and Serviceability  
attempting to correct the error. Furthermore, the host host designers to determine their own memory scrub  
may choose to patrol memory, reading memory methodology. The error logging done by the AMB(s)  
locations and writing back corrected data for any errors and the host are designed to permit isolation of the  
detected. Such patrol ‘scrubbing’ is orthogonal to the error source.  
FB-DIMM error handling specification. It is left to the  
13.4  
Error Protection and Detection Methods  
13.4.1  
CRC Logic Used on Normal Southbound Frames  
See the AMB Buffer Specification for details.  
13.4.2  
Fail-over Southbound Frames  
Fail-over southbound frames consist of 12 transfers of is not available to carry CRC bits in fail-over mode, and  
data delivered on the 9 southbound bit lanes. Bit lane 9 the CRC code size is reduced in this mode.  
13.4.3  
Write and Read Data ECC Error Protection  
FB-DIMM makes provision for both read and write data complex ECC algorithms, possibly spread across  
to be protected with system defined ECC check bits per multiple channels. The mapping of the data and ECC  
data block by supporting 8 check bits per 64 data bits in bits to the DRAM components and channel bit lanes  
14 and 13 lane northbound frames. The host generates can enhance the protection provided by the ECC code  
the ECC code and passes it along with the write data to to cover DRAM device failures and channel bit lane  
the AMB. The AMB will store the ECC along with the failures. Refer to the Southbound Command+Wdata  
data in the DRAM memory. The AMB will not check the frame format and Northbound Data frame definitions for  
ECC code for errors and the host may use whatever details.  
algorithm it chooses. This allows the host to use various  
13.5  
Southbound Error Handling at the AMB  
Errors in southbound frames are handled using the Command+Wdata frame; evaluate each command  
following method:  
within a frame separately.  
a) Check for CRC errors in the command. If the AMB c) Check if the command is a Sync command. If Sync  
detects an error in the command then discard the entire then respond with Status.  
frame, and marks as faulted the commands or data d) Check if the command is targeted for this AMB then  
from the previous frame. Process as command error. process command. If the command is an  
Log the error. The first CRC error latches the error data unrecognizable command then ignore the command.  
contents. The AMB will save the 72-bits plus CRC bits The AMB is not expected to do DRAM protocol  
from the previous frame and the command plus CRC checking (e.g., looking for command conflicts such as a  
from the current frame. Enter Command Error state: write interrupting a read, etc.)  
The AMB is forced to discard [all] subsequent e) Process the next command in the command frame if  
commands until the channel is reset. Indicate error by any are left.  
returning Alert frames.  
b) Determine if the frame is a Command, or  
f) Process next frame.  
13.5.1  
Exiting Command Error State  
Once an AMB has entered the Command Error state it hardware setting of the appropriate configuration  
will no longer process commands other than the Soft register bit and returning Alert frames. The AMB will  
Channel Reset command. Indication that the AMB is in continue to operate in this mode until a Soft Channel  
the Command Error state is made manifest by the  
Data Sheet  
54  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Reliability, Availability and Serviceability  
Reset command is received or the host resets the  
channel.  
13.6  
Northbound Error Handling at the AMB  
The AMB does not evaluate the data and/or ECC error detection. An AMB does not evaluate the data  
information provided to it by the DRAM in response to and/or ECC or CRC information passing through it from  
a read command; it will forward the information AMBs further south than it.  
supplied by the DRAM unchanged with a CRC for link  
13.7  
Error Logging  
Refer to the AMB Buffer Specification  
13.8  
Fail-over Mode Operation  
During channel initialization each bit lane is tested to bit lane(s) may be used to map out the bad bit lane.  
determine if it is functioning properly. If one of the Operation with the redundant bit lane used to map out  
southbound bit lanes, northbound bit lanes, or one bit a bad bit lane is described as ‘fail-over mode.’  
lane in both directions is non-functional, the redundant  
13.8.1  
Fail-over Mode Operation on Southbound Lanes  
Without the redundant bit lane used for CRC protection within the write data payload and the optional 12-bit  
on the southbound lanes, commands continue to be CRC across each 72-bit data block, and the  
protected by the 10-bit compound checksum CRC configuration  
register  
write  
data  
(within  
a
included with each command, DRAM write data Command+Data frame) continues to be protected by a  
continues to be protected by system level ECC data 10-bit compound checksum CRC.  
13.8.2  
Fail-over Mode Operation on Northbound Lanes  
The 14-lane northbound frame provides a 12-bit CRC protection. The read data continues to be protected by  
over 72-bits of data in normal operation, and a 6- bit system level ECC data within the read data payload,  
CRC over 72-bits of data in fail-over mode. The 13-lane and the status response continues to be covered by its  
frames are without the redundant bit lane used for CRC 10-bit compound checksum CRC.  
13.9  
AMB Pass-through Functionality  
As noted earlier much of the discussion regarding AMB responses. Each AMB must maintain the compound  
behavior was from the viewpoint of having only a single checksums used on the southbound channel. As can  
AMB on the channel. FB-DIMM supports from one to be seen from the four simple steps above an AMB does  
eight DIMMs and several additional AMB components not check [for errors in] frames moving north that have  
per channel. As outlined in the protocol chapter, in been forwarded by another AMB, the frames are either  
terms of data movement an AMB is responsible for:  
discarded and replaced by frames from this AMB (if it is  
- Receiving southbound frames from the host or responsible for providing a read response), selectively  
another AMB and in general re-driving those frames to overwritten by this AMB (if this AMB is providing a  
a more southerly AMB.  
status response), or simply forwarded on to the next  
- Evaluating southbound frames for commands or data AMB or host. Because an AMB component does not  
targeted to that AMB and for checking all commands evaluate data passing northbound through it, a read  
and data for errors.  
response or Idle frame being delivered by a more  
- Receiving northbound frames from another AMB southerly AMB at the same time as this AMB is simply  
(generally) and re-driving those frames to another discarded without error notification. If a given AMB is  
northerly AMB or to the host.  
the last AMB (southern most AMB) it does not receive  
- Supplying frame content for read and status frames from the south and thus does not forward such  
Data Sheet  
55  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Reliability, Availability and Serviceability  
frames in the northerly direction. It is responsible, attention is paid to the reliability of the pass-through  
however, for always generating Idle frames whenever it logic. The logic is isolated from the rest of the internal  
is not providing a read response or status response AMB functions to ensure that the pass-through  
frame in response to a command from the host. These mechanism is functional even if other AMB functions  
frames enable easy error detection by the host have failed. This improves the reliability of the channel  
whenever a read return or status return is not provided by minimizing the amount of logic that could result in a  
by an AMB as scheduled by the host. Particular single point of failure.  
13.10  
Memory Initialization  
The AMB contains  
a memory built-in self-test DRAM devices to a known state. Refer to the FBD DFx  
(MEMBIST) engine that is used to test the DRAM specification for details.  
devices on the DIMM and initialize the contents of the  
13.11  
Thermal Trip Sensor  
The AMB is outfitted with a thermal sensor that to signal thermal warnings whenever the value of the  
measures the temperature of the AMB die. A DAC and Thermal Sensor register is higher than the Thermal Trip  
comparator mechanism driven from a Finite State register trip points. The AMB provides the warning via  
Machine in the AMB periodically adjusts its value to bits in the status response that indicates if the thermal  
indicate the temperature of the die. The temperature of condition has been exceeded. Refer to the AMB Buffer  
the AMB die can be read at any time in the Thermal Specification for details. Serial Presence Detect Codes  
Sensor register. The Thermal Trip registers can be set for FB-DIMM Modules  
Data Sheet  
56  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
SPD Codes  
14  
SPD Codes  
This chapter lists all hexadecimal byte values stored in the EEPROM of the products described in this data sheet.  
SPD stands for serial presence detect. All values with XX in the table are module specific bytes which are defined  
during production.  
List of SPD Code Tables  
“SPD Codes for 512M_T11_fbd, Table 1” on Page 57  
“SPD Codes for 512M_T11_fbd, Table 2” on Page 63  
Table 19  
SPD Codes for 512M_T11_fbd, Table 1  
Product Type  
Organization  
512 MB  
×72  
2 GByte  
×72  
1 GByte  
×72  
1 GByte  
×72  
1 Rank (×8)  
2 Ranks (×4)  
2 Ranks (×8)  
1 Rank (×4)  
Label Code  
PC2–4200F–  
444  
PC2–4200F–  
444  
PC2–4200F–  
444  
PC2–4200F–  
444  
JEDEC SPD Revision  
Byt Description  
e#  
Rev. 1.0  
HEX  
Rev. 1.0  
HEX  
Rev. 1.0  
HEX  
Rev. 1.0  
HEX  
0
1
2
3
4
5
6
7
8
SPD Size CRC / Total / Used  
SPD Revision  
92  
10  
09  
12  
44  
23  
07  
09  
00  
92  
10  
09  
12  
48  
23  
07  
10  
00  
92  
10  
09  
12  
44  
23  
07  
11  
00  
92  
10  
09  
12  
48  
23  
07  
08  
00  
Key Byte / DRAM Device Type  
Voltage Level of this Assembly  
SDRAM Addressing  
Module Physical Attributes  
Module Type  
Module Organization  
Fine Timebase (FTB) Dividend and  
Divisor  
9
Medium Timebase (MTB) Dividend  
01  
04  
0F  
20  
33  
3C  
32  
01  
04  
0F  
20  
33  
3C  
32  
01  
04  
0F  
20  
33  
3C  
32  
01  
04  
0F  
20  
33  
3C  
32  
10 Medium Timebase (MTB) Divisor  
11  
12  
13 CAS Latencies Supported  
14 CAS.MIN (min. CAS Latency Time)  
15 Write Recovery Values Supported  
(WR)  
t
t
CK.MIN (min. SDRAM Cycle Time)  
CK.MAX (max. SDRAM Cycle Time)  
t
Data Sheet  
57  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Table 19  
SPD Codes  
SPD Codes for 512M_T11_fbd, Table 1 (cont’d)  
Product Type  
Organization  
512 MB  
×72  
2 GByte  
×72  
1 GByte  
×72  
1 GByte  
×72  
1 Rank (×8)  
2 Ranks (×4)  
2 Ranks (×8)  
1 Rank (×4)  
Label Code  
PC2–4200F–  
444  
PC2–4200F–  
444  
PC2–4200F–  
444  
PC2–4200F–  
444  
JEDEC SPD Revision  
Byt Description  
e#  
Rev. 1.0  
HEX  
Rev. 1.0  
HEX  
Rev. 1.0  
HEX  
Rev. 1.0  
HEX  
16 tWR.MIN (Write Recovery Time)  
17 Write Latency Times Supported  
18 Additive Latency Times Supported  
3C  
72  
50  
3C  
1E  
3C  
72  
50  
3C  
1E  
3C  
72  
50  
3C  
1E  
3C  
72  
50  
3C  
1E  
19  
20  
t
t
RCD.MIN (min. RAS# to CAS# Delay)  
RRD.MIN (min. Row Active to Row  
Active Delay)  
21 tRP.MIN (min. Row Precharge Time)  
3C  
00  
B4  
3C  
00  
B4  
3C  
00  
B4  
3C  
00  
B4  
22  
23  
t
t
RAS and tRC Extension  
RAS.MIN (min. Active to Precharge  
Time)  
24 tRC.MIN (min. Active to Active / Refresh F0  
Time)  
F0  
A4  
01  
1E  
1E  
F0  
A4  
01  
1E  
1E  
F0  
A4  
01  
1E  
1E  
25  
t
RFC.MIN LSB (min. Refresh Recovery A4  
Time Delay)  
26 tRFC.MIN MSB (min. Refresh Recovery 01  
Time Delay)  
27  
t
WTR.MIN (min. Internal Write to Read  
1E  
Cmd Delay)  
28 tRTP.MIN (min. Internal Read to  
Precharge Cmd Delay)  
1E  
29 Burst Lengths Supported  
30 Terminations Supported  
31 Drive Strength Supported  
03  
07  
01  
82  
51  
78  
3E  
03  
07  
01  
82  
51  
78  
3E  
03  
07  
01  
82  
51  
78  
3E  
03  
07  
01  
82  
51  
78  
3E  
32  
33  
t
T
REFI (avg. SDRAM Refresh Period)  
CASE.MAX Delta / T4R4W Delta  
34 Psi(T-A) DRAM  
35 T0 (DT0) DRAM  
Data Sheet  
58  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Table 19  
SPD Codes  
SPD Codes for 512M_T11_fbd, Table 1 (cont’d)  
Product Type  
Organization  
512 MB  
×72  
2 GByte  
×72  
1 GByte  
×72  
1 GByte  
×72  
1 Rank (×8)  
2 Ranks (×4)  
2 Ranks (×8)  
1 Rank (×4)  
Label Code  
PC2–4200F–  
444  
PC2–4200F–  
444  
PC2–4200F–  
444  
PC2–4200F–  
444  
JEDEC SPD Revision  
Byt Description  
e#  
Rev. 1.0  
HEX  
Rev. 1.0  
HEX  
Rev. 1.0  
HEX  
Rev. 1.0  
HEX  
36 T2Q (DT2Q) DRAM  
37 T2P (DT2P) DRAM  
38 T3N (DT3N) DRAM  
22  
1E  
1E  
34  
22  
1E  
1E  
34  
22  
1E  
1E  
34  
22  
1E  
1E  
34  
39 T4R (DT4R) / T4R4W S Sign  
(DT4R4W) DRAM  
40 T5B (DT5B) DRAM  
41 T7 (DT7) DRAM  
42 - Not used  
80  
1E  
20  
00  
1E  
20  
00  
1E  
20  
00  
1E  
20  
00  
81 Channel Protocols Supported LSB  
82 Channel Protocols Supported MSB  
83 Back-to-Back Access Turnaround  
Time  
02  
00  
25  
02  
00  
25  
02  
00  
25  
02  
00  
25  
84 AMB Read Access Delay for DDR2- 56  
800  
85 AMB Read Access Delay for DDR2- 44  
667  
86 AMB Read Access Delay for DDR2- 3A  
533  
58  
46  
3A  
56  
44  
3A  
56  
44  
3A  
87 Psi(T-A) AMB  
30  
35  
4D  
47  
62  
4D  
00  
30  
35  
4D  
47  
62  
4D  
00  
30  
35  
4D  
47  
62  
4D  
00  
30  
35  
4D  
47  
62  
4D  
00  
88 TIdle_0 (DT Idle_0) AMB  
89 TIdle_1 (DT Idle_1) AMB  
90 TIdle_2 (DT Idle_2) AMB  
91 TActive_1 (DT Active_1) AMB  
92 TActive_2 (DT Active_2) AMB  
93 TL0s (DT L0s) AMB  
Data Sheet  
59  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Table 19  
SPD Codes  
SPD Codes for 512M_T11_fbd, Table 1 (cont’d)  
Product Type  
Organization  
512 MB  
×72  
2 GByte  
×72  
1 GByte  
×72  
1 GByte  
×72  
1 Rank (×8)  
2 Ranks (×4)  
2 Ranks (×8)  
1 Rank (×4)  
Label Code  
PC2–4200F–  
444  
PC2–4200F–  
444  
PC2–4200F–  
444  
PC2–4200F–  
444  
JEDEC SPD Revision  
Byt Description  
e#  
Rev. 1.0  
HEX  
Rev. 1.0  
HEX  
Rev. 1.0  
HEX  
Rev. 1.0  
HEX  
94 - Not used  
100  
101 AMB Personality Bytes: Pre-  
initialization (1)  
102 AMB Personality Bytes: Pre-  
initialization (2)  
103 AMB Personality Bytes: Pre-  
initialization (3)  
104 AMB Personality Bytes: Pre-  
initialization (4)  
105 AMB Personality Bytes: Pre-  
initialization (5)  
106 AMB Personality Bytes: Pre-  
initialization (6)  
107 AMB Personality Bytes: Post-  
initialization (1)  
108 AMB Personality Bytes: Post-  
initialization (2)  
109 AMB Personality Bytes: Post-  
initialization (3)  
110 AMB Personality Bytes: Post-  
initialization (4)  
111 AMB Personality Bytes: Post-  
initialization (5)  
112 AMB Personality Bytes: Post-  
initialization (6)  
113 AMB Personality Bytes: Post-  
initialization (7)  
00  
C0  
00  
00  
44  
00  
00  
40  
43  
00  
00  
6D  
04  
00  
00  
C0  
00  
00  
44  
03  
10  
48  
43  
00  
00  
6D  
04  
00  
00  
C0  
00  
00  
44  
00  
00  
40  
43  
00  
00  
6D  
04  
00  
00  
C0  
00  
00  
44  
00  
00  
40  
43  
00  
00  
6D  
04  
00  
Data Sheet  
60  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Table 19  
SPD Codes  
SPD Codes for 512M_T11_fbd, Table 1 (cont’d)  
Product Type  
Organization  
512 MB  
×72  
2 GByte  
×72  
1 GByte  
×72  
1 GByte  
×72  
1 Rank (×8)  
2 Ranks (×4)  
2 Ranks (×8)  
1 Rank (×4)  
Label Code  
PC2–4200F–  
444  
PC2–4200F–  
444  
PC2–4200F–  
444  
PC2–4200F–  
444  
JEDEC SPD Revision  
Byt Description  
e#  
Rev. 1.0  
HEX  
Rev. 1.0  
HEX  
Rev. 1.0  
HEX  
Rev. 1.0  
HEX  
114 AMB Personality Bytes: Post-  
initialization (8)  
115 AMB Manufacturers JEDEC ID Code 80  
LSB  
116 AMB Manufacturers JEDEC ID Code 89  
MSB  
117 DIMM Manufacturers JEDEC ID Code 80  
LSB  
05  
05  
80  
89  
80  
C1  
05  
80  
89  
80  
C1  
05  
80  
89  
80  
C1  
118 DIMM Manufacturers JEDEC ID Code C1  
MSB  
119 Module Manufacturing Location  
120 Module Manufacturing Date Year  
121 Module Manufacturing Date Week  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
122 Module Serial Number  
-
125  
126 Cyclical Redundancy Code LSB  
127 Cyclical Redundancy Code MSB  
128 Module Product Type, Char #1  
129 Module Product Type, Char #2  
130 Module Product Type, Char #3  
131 Module Product Type, Char #4  
132 Module Product Type, Char #5  
133 Module Product Type, Char #6  
134 Module Product Type, Char #7  
135 Module Product Type, Char #8  
136 Module Product Type, Char #9  
1F  
55  
37  
32  
54  
36  
34  
30  
30  
30  
48  
08  
FE  
37  
32  
54  
32  
35  
36  
30  
32  
30  
72  
20  
37  
32  
54  
31  
32  
38  
30  
32  
30  
CF  
11  
37  
32  
54  
31  
32  
38  
30  
32  
32  
Data Sheet  
61  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Table 19  
SPD Codes  
SPD Codes for 512M_T11_fbd, Table 1 (cont’d)  
Product Type  
Organization  
512 MB  
×72  
2 GByte  
×72  
1 GByte  
×72  
1 GByte  
×72  
1 Rank (×8)  
2 Ranks (×4)  
2 Ranks (×8)  
1 Rank (×4)  
Label Code  
PC2–4200F–  
444  
PC2–4200F–  
444  
PC2–4200F–  
444  
PC2–4200F–  
444  
JEDEC SPD Revision  
Byt Description  
e#  
Rev. 1.0  
HEX  
Rev. 1.0  
HEX  
Rev. 1.0  
HEX  
Rev. 1.0  
HEX  
137 Module Product Type, Char #10  
138 Module Product Type, Char #11  
139 Module Product Type, Char #12  
140 Module Product Type, Char #13  
141 Module Product Type, Char #14  
142 Module Product Type, Char #15  
143 Module Product Type, Char #16  
144 Module Product Type, Char #17  
145 Module Product Type, Char #18  
146 Module Revision Code  
46  
33  
2E  
37  
41  
20  
20  
20  
20  
2x  
xx  
48  
46  
33  
2E  
37  
41  
20  
20  
20  
2x  
xx  
48  
46  
33  
2E  
37  
41  
20  
20  
20  
2x  
xx  
48  
46  
33  
2E  
37  
41  
20  
20  
20  
2x  
xx  
147 Test Program Revision Code  
148 DRAM Manufacturers JEDEC ID  
Code LSB  
80  
80  
80  
80  
149 DRAM Manufacturers JEDEC ID  
Code MSB  
150 informal AMB content revision tag  
(MSB)  
151 informal AMB content revision tag  
(LSB)  
C1  
00  
05  
00  
C1  
00  
05  
00  
C1  
00  
05  
00  
C1  
00  
05  
00  
152 Not used  
-
175  
176 Blank for customer use  
FF  
FF  
FF  
FF  
-
255  
Data Sheet  
62  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Table 20  
SPD Codes  
SPD Codes for 512M_T11_fbd, Table 2  
Product Type  
Organization  
Label Code  
512 MB  
×72  
1 Rank (×8) 2 Ranks  
2 GByte  
×72  
1 GByte  
×72  
2 Ranks  
(×8)  
1 GByte  
×72  
1 Rank (×4)  
(×4)  
PC2–  
PC2–  
PC2–  
PC2–  
5300F–444 5300F–444 5300F–444 5300F–444  
JEDEC SPD Revision  
Byte# Description  
Rev. 1.0  
HEX  
92  
Rev. 1.0  
HEX  
92  
Rev. 1.0  
HEX  
92  
Rev. 1.0  
HEX  
92  
0
SPD Size CRC / Total / Used  
1
SPD Revision  
10  
10  
10  
10  
2
3
4
Key Byte / DRAM Device Type  
Voltage Level of this Assembly  
SDRAM Addressing  
09  
12  
44  
09  
12  
48  
09  
12  
44  
09  
12  
48  
5
6
Module Physical Attributes  
Module Type  
23  
07  
23  
07  
23  
07  
23  
07  
7
Module Organization  
09  
10  
11  
08  
8
9
Fine Timebase (FTB) Dividend and Divisor  
Medium Timebase (MTB) Dividend  
Medium Timebase (MTB) Divisor  
00  
01  
04  
0C  
20  
33  
30  
42  
3C  
72  
50  
30  
1E  
30  
00  
00  
01  
04  
0C  
20  
33  
30  
42  
3C  
72  
50  
30  
1E  
30  
00  
B4  
E4  
A4  
00  
01  
04  
0C  
20  
33  
30  
42  
3C  
72  
50  
30  
1E  
30  
00  
B4  
E4  
A4  
00  
01  
04  
0C  
20  
33  
30  
42  
3C  
72  
50  
30  
1E  
30  
00  
B4  
E4  
A4  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
t
t
CK.MIN (min. SDRAM Cycle Time)  
CK.MAX (max. SDRAM Cycle Time)  
CAS Latencies Supported  
CAS.MIN (min. CAS Latency Time)  
t
Write Recovery Values Supported (WR)  
tWR.MIN (Write Recovery Time)  
Write Latency Times Supported  
Additive Latency Times Supported  
t
t
RCD.MIN (min. RAS# to CAS# Delay)  
RRD.MIN (min. Row Active to Row Active Delay)  
tRP.MIN (min. Row Precharge Time)  
t
t
t
t
RAS and tRC Extension  
RAS.MIN (min. Active to Precharge Time)  
RC.MIN (min. Active to Active / Refresh Time)  
B4  
E4  
RFC.MIN LSB (min. Refresh Recovery Time Delay) A4  
Data Sheet  
63  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Table 20  
SPD Codes  
SPD Codes for 512M_T11_fbd, Table 2 (cont’d)  
Product Type  
Organization  
Label Code  
512 MB  
×72  
1 Rank (×8) 2 Ranks  
2 GByte  
×72  
1 GByte  
×72  
2 Ranks  
(×8)  
1 GByte  
×72  
1 Rank (×4)  
(×4)  
PC2–  
PC2–  
PC2–  
PC2–  
5300F–444 5300F–444 5300F–444 5300F–444  
JEDEC SPD Revision  
Byte# Description  
Rev. 1.0  
HEX  
Rev. 1.0  
HEX  
01  
1E  
1E  
Rev. 1.0  
HEX  
01  
1E  
1E  
Rev. 1.0  
HEX  
01  
1E  
1E  
26  
27  
28  
t
t
t
RFC.MIN MSB (min. Refresh Recovery Time Delay) 01  
WTR.MIN (min. Internal Write to Read Cmd Delay) 1E  
RTP.MIN (min. Internal Read to Precharge Cmd  
Delay)  
1E  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
Burst Lengths Supported  
Terminations Supported  
Drive Strength Supported  
03  
07  
01  
82  
51  
78  
4E  
2E  
1E  
26  
3E  
20  
23  
00  
03  
07  
01  
82  
51  
78  
4E  
2E  
1E  
26  
3E  
20  
23  
00  
03  
07  
01  
82  
51  
78  
4E  
2E  
1E  
26  
3E  
20  
23  
00  
03  
07  
01  
82  
51  
78  
4E  
2E  
1E  
26  
3E  
20  
23  
00  
t
REFI (avg. SDRAM Refresh Period)  
TCASE.MAX Delta / T4R4W Delta  
Psi(T-A) DRAM  
T0 (DT0) DRAM  
T2Q (DT2Q) DRAM  
T2P (DT2P) DRAM  
T3N (DT3N) DRAM  
T4R (DT4R) / T4R4W S Sign (DT4R4W) DRAM  
T5B (DT5B) DRAM  
T7 (DT7) DRAM  
42 -  
80  
Not used  
81  
82  
83  
84  
85  
86  
87  
88  
Channel Protocols Supported LSB  
Channel Protocols Supported MSB  
Back-to-Back Access Turnaround Time  
AMB Read Access Delay for DDR2-800  
AMB Read Access Delay for DDR2-667  
AMB Read Access Delay for DDR2-533  
Psi(T-A) AMB  
02  
00  
25  
56  
44  
3A  
30  
39  
02  
00  
25  
58  
46  
3A  
30  
39  
02  
00  
25  
56  
44  
3A  
30  
39  
02  
00  
25  
56  
44  
3A  
30  
39  
TIdle_0 (DT Idle_0) AMB  
Data Sheet  
64  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Table 20  
SPD Codes  
SPD Codes for 512M_T11_fbd, Table 2 (cont’d)  
Product Type  
Organization  
Label Code  
512 MB  
×72  
1 Rank (×8) 2 Ranks  
2 GByte  
×72  
1 GByte  
×72  
2 Ranks  
(×8)  
1 GByte  
×72  
1 Rank (×4)  
(×4)  
PC2–  
PC2–  
PC2–  
PC2–  
5300F–444 5300F–444 5300F–444 5300F–444  
JEDEC SPD Revision  
Byte# Description  
Rev. 1.0  
HEX  
53  
4C  
69  
53  
00  
00  
Rev. 1.0  
HEX  
53  
4C  
69  
53  
00  
00  
Rev. 1.0  
HEX  
53  
4C  
69  
53  
00  
00  
Rev. 1.0  
HEX  
53  
4C  
69  
53  
00  
00  
89  
90  
91  
92  
93  
TIdle_1 (DT Idle_1) AMB  
TIdle_2 (DT Idle_2) AMB  
TActive_1 (DT Active_1) AMB  
TActive_2 (DT Active_2) AMB  
TL0s (DT L0s) AMB  
Not used  
94 -  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
AMB Personality Bytes: Pre-initialization (1)  
AMB Personality Bytes: Pre-initialization (2)  
AMB Personality Bytes: Pre-initialization (3)  
AMB Personality Bytes: Pre-initialization (4)  
AMB Personality Bytes: Pre-initialization (5)  
AMB Personality Bytes: Pre-initialization (6)  
AMB Personality Bytes: Post-initialization (1)  
AMB Personality Bytes: Post-initialization (2)  
AMB Personality Bytes: Post-initialization (3)  
AMB Personality Bytes: Post-initialization (4)  
AMB Personality Bytes: Post-initialization (5)  
AMB Personality Bytes: Post-initialization (6)  
AMB Personality Bytes: Post-initialization (7)  
AMB Personality Bytes: Post-initialization (8)  
AMB Manufacturers JEDEC ID Code LSB  
AMB Manufacturers JEDEC ID Code MSB  
DIMM Manufacturers JEDEC ID Code LSB  
DIMM Manufacturers JEDEC ID Code MSB  
Module Manufacturing Location  
C0  
00  
00  
44  
00  
00  
40  
43  
00  
00  
6D  
04  
00  
05  
80  
89  
80  
C1  
xx  
C0  
00  
00  
44  
03  
10  
48  
43  
00  
00  
6D  
04  
00  
05  
80  
89  
80  
C1  
xx  
C0  
00  
00  
44  
00  
00  
40  
43  
00  
00  
6D  
04  
00  
05  
80  
89  
80  
C1  
xx  
C0  
00  
00  
44  
00  
00  
40  
43  
00  
00  
6D  
04  
00  
05  
80  
89  
80  
C1  
xx  
Module Manufacturing Date Year  
xx  
xx  
xx  
xx  
Data Sheet  
65  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Table 20  
SPD Codes  
SPD Codes for 512M_T11_fbd, Table 2 (cont’d)  
Product Type  
Organization  
Label Code  
512 MB  
×72  
1 Rank (×8) 2 Ranks  
2 GByte  
×72  
1 GByte  
×72  
2 Ranks  
(×8)  
1 GByte  
×72  
1 Rank (×4)  
(×4)  
PC2–  
PC2–  
PC2–  
PC2–  
5300F–444 5300F–444 5300F–444 5300F–444  
JEDEC SPD Revision  
Byte# Description  
Rev. 1.0  
HEX  
xx  
Rev. 1.0  
HEX  
xx  
Rev. 1.0  
HEX  
xx  
Rev. 1.0  
HEX  
xx  
121  
Module Manufacturing Date Week  
122 -  
125  
Module Serial Number  
xx  
xx  
xx  
xx  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
Cyclical Redundancy Code LSB  
Cyclical Redundancy Code MSB  
Module Product Type, Char #1  
Module Product Type, Char #2  
Module Product Type, Char #3  
Module Product Type, Char #4  
Module Product Type, Char #5  
Module Product Type, Char #6  
Module Product Type, Char #7  
Module Product Type, Char #8  
Module Product Type, Char #9  
Module Product Type, Char #10  
Module Product Type, Char #11  
Module Product Type, Char #12  
Module Product Type, Char #13  
Module Product Type, Char #14  
Module Product Type, Char #15  
Module Product Type, Char #16  
Module Product Type, Char #17  
Module Product Type, Char #18  
Module Revision Code  
26  
3A  
37  
32  
54  
36  
34  
30  
30  
30  
48  
46  
33  
41  
20  
20  
20  
20  
20  
20  
2x  
xx  
31  
91  
37  
32  
54  
32  
35  
36  
30  
32  
30  
48  
46  
33  
41  
20  
20  
20  
20  
20  
2x  
xx  
4B  
4F  
37  
32  
54  
31  
32  
38  
30  
32  
30  
48  
46  
33  
41  
20  
20  
20  
20  
20  
2x  
xx  
F6  
7E  
37  
32  
54  
31  
32  
38  
30  
32  
32  
48  
46  
33  
41  
20  
20  
20  
20  
20  
2x  
xx  
Test Program Revision Code  
DRAM Manufacturers JEDEC ID Code LSB  
DRAM Manufacturers JEDEC ID Code MSB  
80  
C1  
80  
C1  
80  
C1  
80  
C1  
Data Sheet  
66  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Table 20  
SPD Codes  
SPD Codes for 512M_T11_fbd, Table 2 (cont’d)  
Product Type  
Organization  
Label Code  
512 MB  
×72  
1 Rank (×8) 2 Ranks  
2 GByte  
×72  
1 GByte  
×72  
2 Ranks  
(×8)  
1 GByte  
×72  
1 Rank (×4)  
(×4)  
PC2–  
PC2–  
PC2–  
PC2–  
5300F–444 5300F–444 5300F–444 5300F–444  
JEDEC SPD Revision  
Byte# Description  
Rev. 1.0  
HEX  
00  
Rev. 1.0  
HEX  
00  
Rev. 1.0  
HEX  
00  
Rev. 1.0  
HEX  
00  
150  
informal AMB content revision tag (MSB)  
151  
152 -  
175  
informal AMB content revision tag (LSB)  
Not used  
05  
00  
05  
00  
05  
00  
05  
00  
176 -  
255  
Blank for customer use  
FF  
FF  
FF  
FF  
Data Sheet  
67  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Package Outline  
15  
Package Outline  
All Components are surface mounted on one or both pins. The AMB device in the center of the DIMM has a  
sides of the PCB and positioned on the PCB to meet metal heat spreader. It may also have a wireform clip to  
the minimum and maximum trace lengths required for keep the heat spreader in close thermal contact with  
DDR2 SDRAM signals. Bypass capacitors for DDR2 the AMB. The FB-DIMM mechanical outlines are  
SDRAM devices are located near the device power consistent with JEDEC MO-256.  
Table 21  
Raw Card Reference  
JEDEC Raw Card  
Infineon PCB  
Dimensions  
Width [mm]  
Height [mm] Thickness [mm]  
Notes  
1)  
R/C A  
R/C B  
R/C C  
R/C H  
L-DIM-240-21 Figure 20 133.35  
L-DIM-240-22 Figure 21 133.35  
L-DIM-240-23 Figure 22 133.35  
L-DIM-240-25 Figure 23 133.35  
30.35  
30.35  
30.35  
30.35  
7.6  
7.6  
7.6  
7.6  
1)  
1)  
1)  
1) Thickness includes Infineon Heatspreader. Some early production modules with Jedec Heatspreader  
may be thicker up to 8.2mm.  
Attention: Heat spreader and clip heat up during operation. When unplugging a DIMM from a system direct  
skin contact should be avoided until the heat spreader has reached room temperature.  
Attention: The clip is mechanically loaded. Do not remove. Removal of the clip may cause serious injuries.  
Attention: Any mechanical stress on the heat spreader should be avoided. Touching the heatspreader  
while plugging or unplugging the module may permanently damage the DIMM.  
Data Sheet  
68  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Package Outline  
ꢄꢈꢈꢀꢈꢅ  
ꢇꢀꢉ -!8ꢀ  
›ꢁꢀꢄ  
ꢄꢀꢄꢊ  
ꢄꢃꢁ  
›ꢁꢀꢄ  
ꢃꢀꢅ  
#
›ꢁꢀꢄ  
›ꢁꢀꢄ  
ꢁꢀꢂ  
›ꢁꢀꢄ  
›ꢁꢀꢄ  
ꢃꢀꢄꢇꢅ  
ꢄꢀꢃꢇ  
›ꢁꢀꢄ  
›ꢁꢀꢄ  
ꢅꢄ  
ꢉꢇ  
!
›ꢁꢀꢄ  
ꢄꢀꢅ  
ꢄꢃꢄ  
ꢃꢂꢁ  
"
›ꢁꢀꢄ  
ꢃꢀꢅ  
$ETAIL OF CONTACTS  
›ꢁꢀꢁꢅ  
ꢁꢀꢆ  
ꢁꢀꢄ ! " #  
"URR MAXꢀ ꢁꢀꢂ ALLOWED  
',$ꢁꢄꢁꢃꢆ  
Figure 20 Package Outline L-DIM-240-21  
Data Sheet  
69  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Package Outline  
ꢁꢉꢉꢄꢉꢆ  
ꢈꢄꢊ -!8ꢄ  
›ꢀꢄꢁ  
ꢁꢄꢁꢃ  
ꢁꢂꢀ  
›ꢀꢄꢁ  
ꢂꢄꢆ  
#
›ꢀꢄꢁ  
›ꢀꢄꢁ  
ꢀꢄꢅ  
›ꢀꢄꢁ  
›ꢀꢄꢁ  
ꢂꢄꢁꢈꢆ  
ꢁꢄꢂꢈ  
›ꢀꢄꢁ  
›ꢀꢄꢁ  
ꢆꢁ  
ꢊꢈ  
!
›ꢀꢄꢁ  
ꢁꢄꢆ  
ꢁꢂꢁ  
ꢂꢅꢀ  
"
›ꢀꢄꢁ  
ꢂꢄꢆ  
$ETAIL OF CONTACTS  
›ꢀꢄꢀꢆ  
ꢀꢄꢇ  
ꢀꢄꢁ ! " #  
"URR MAXꢄ ꢀꢄꢅ ALLOWED  
',$ꢀꢁꢀꢂꢃ  
Figure 21 Package Outline L-DIM-240-22  
Data Sheet  
70  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Package Outline  
ꢄꢈꢈꢀꢈꢅ  
ꢇꢀꢉ -!8ꢀ  
›ꢁꢀꢄ  
ꢄꢀꢄꢊ  
ꢄꢃꢁ  
›ꢁꢀꢄ  
ꢃꢀꢅ  
#
›ꢁꢀꢄ  
›ꢁꢀꢄ  
ꢁꢀꢂ  
›ꢁꢀꢄ  
›ꢁꢀꢄ  
ꢃꢀꢄꢇꢅ  
ꢄꢀꢃꢇ  
›ꢁꢀꢄ  
›ꢁꢀꢄ  
ꢅꢄ  
ꢉꢇ  
!
›ꢁꢀꢄ  
ꢄꢀꢅ  
ꢄꢃꢄ  
ꢃꢂꢁ  
"
›ꢁꢀꢄ  
ꢃꢀꢅ  
$ETAIL OF CONTACTS  
›ꢁꢀꢁꢅ  
ꢁꢀꢆ  
ꢁꢀꢄ ! " #  
"URR MAXꢀ ꢁꢀꢂ ALLOWED  
',$ꢁꢄꢁꢈꢁ  
Figure 22 Package Outline L-DIM-240-23  
Data Sheet  
71  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
Package Outline  
ꢄꢈꢈꢀꢈꢅ  
ꢇꢀꢉ -!8ꢀ  
›ꢁꢀꢄ  
ꢄꢀꢄꢊ  
ꢄꢃꢁ  
›ꢁꢀꢄ  
ꢃꢀꢅ  
#
›ꢁꢀꢄ  
›ꢁꢀꢄ  
ꢁꢀꢂ  
›ꢁꢀꢄ  
›ꢁꢀꢄ  
ꢃꢀꢄꢇꢅ  
ꢄꢀꢃꢇ  
›ꢁꢀꢄ  
›ꢁꢀꢄ  
ꢅꢄ  
ꢉꢇ  
!
›ꢁꢀꢄ  
ꢄꢀꢅ  
ꢄꢃꢄ  
ꢃꢂꢁ  
"
›ꢁꢀꢄ  
ꢃꢀꢅ  
$ETAIL OF CONTACTS  
›ꢁꢀꢁꢅ  
ꢁꢀꢆ  
ꢁꢀꢄ ! " #  
"URR MAXꢀ ꢁꢀꢂ ALLOWED  
',$ꢁꢄꢁꢂꢆ  
Figure 23 Package Outline L-DIM-240-25  
Figure 24  
Data Sheet  
72  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
DDR2 Nomencature (Component & Modules)  
16  
DDR2 Nomencature (Component & Modules)  
DDR2 DIMM Modules  
Table 22  
Example for  
Nomenclature Fields and Examples  
Field Number  
1
2
3
4
5
6
7
8
9
10  
11  
FB-DIMM  
HYS  
72  
T
64  
0
2
0
H
F
–3.7  
–A  
Table 23  
Field  
DDR2 DIMM Modules  
Description  
Values  
Coding  
Constant  
ECC  
1
2
3
4
INFINEON Modul Prefix  
Module Data Width [bit]  
DRAM Technology  
HYS  
72  
T
DDR2  
Memory Density per I/O [Mbit];  
64  
128  
256  
64 MB  
128 MB  
256 MB  
Module Density1)  
5
6
7
8
Raw Card Generation  
Number of Module Ranks  
Product Variations  
Package, Lead-Free Status  
Module Type  
0 .. 9  
0, 2  
0 .. 9  
A .. Z  
F
look up table  
1, 2  
look up table  
look up table  
FB-DIMM  
9
10  
Speed Grade  
–3.7  
–3  
–2.5  
–A  
PC2–4200F (DDR2-533)  
PC2–5300F (DDR2-667)  
PC2–6400F (DDR2-800)  
First  
11  
Die Revision  
–B  
Second  
–C  
Third  
1) Multiplying “Memory Density per I/O” with “Module Data Width” and dividing by 8 for Non-ECC and 9 for ECC modules gives  
the overall module memory density in MBytes as listed in column “Coding”.  
16.1  
DDR2 Component  
Table 24  
Example for  
Nomenclature Fields and Examples  
Field Number  
1
2
3
4
5
6
7
8
9
10  
11  
DDR2 DRAM  
HYB  
18  
T
512  
16  
0
A
C
–3.7  
Data Sheet  
73  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
HYS72T[64/128/256]0[00/20]HF–[3.7/3]  
512-Mbit DDR2 SDRAM  
Preliminary  
DDR2 Nomencature (Component & Modules)  
Table 25  
Field  
1
DDR2 Memory Components  
Description  
INFINEON  
Component Prefix  
Values  
HYB  
Coding  
Constant  
2
3
4
Interface Voltage [V]  
DRAM Technology  
Component Density [Mbit]  
18  
T
SSTL1.8  
DDR2  
256 M  
512 M  
1 Gb  
256  
512  
1G  
40  
80  
0 .. 9  
A
5+6  
Number of I/Os  
×4  
×8  
7
8
Product Variations  
Die Revision  
look up table  
First  
B
Second  
9
Package,  
Lead-Free Status  
C
FBGA,  
lead-containing  
F
–3.7  
–3  
FBGA, lead-free  
DDR2-533C  
DDR2-667D  
DDR2-800E  
10  
Speed Grade  
–2.5  
11  
N/A for Components  
Data Sheet  
74  
Rev. 0.9, 2005-04  
08122004-IISJ-Y0AE  
w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

HYS72T128000HF-3.7-A

DDR DRAM Module, 128MX72, CMOS, GREEN, DIMM-240
INFINEON

HYS72T128000HP

240-Pin Registered DDR2 SDRAM Modules
QIMONDA

HYS72T128000HP-2.5-B

240-Pin Registered DDR2 SDRAM Modules
QIMONDA

HYS72T128000HP-25F-B

240-Pin Registered DDR2 SDRAM Modules
QIMONDA

HYS72T128000HP-3-B

240-Pin Registered DDR2 SDRAM Modules
QIMONDA

HYS72T128000HP-3.7-A

240-Pin Registered DDR2 SDRAM Modules
QIMONDA

HYS72T128000HP-3.7-A

DDR DRAM Module, 128MX72, 0.5ns, CMOS, GREEN, DIMM-240
INFINEON

HYS72T128000HP-3.7-B

240-Pin Registered DDR2 SDRAM Modules
QIMONDA

HYS72T128000HP-3S-A

240-Pin Registered DDR2 SDRAM Modules
QIMONDA

HYS72T128000HP-3S-B

240-Pin Registered DDR2 SDRAM Modules
QIMONDA

HYS72T128000HR

DDR2 Registered Memory Modules
INFINEON

HYS72T128000HR

240-Pin Registered DDR2 SDRAM Modules
QIMONDA