ICB2FL03G [INFINEON]

Power Factor And Fluorescent Light Controller,;
ICB2FL03G
型号: ICB2FL03G
厂家: Infineon    Infineon
描述:

Power Factor And Fluorescent Light Controller,

文件: 总58页 (文件大小:2687K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICB2FL03G  
2nd Generation FL Controller for  
Fluorescent Lamp Ballasts  
Data Sheet  
V1.1, 2012-04-10  
Preliminary  
Power Management & Multimarket  
Edition 2012-04-10  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2012 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties  
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Revision History  
Page or Item  
Subjects (major changes since previous revision)  
V1.1, 2012-04-10  
Added test condition for RthJA  
Updated package drawing  
V1.0, 2010-09-28  
First edition  
Trademarks of Infineon Technologies AG  
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™,  
CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™, EconoDUAL™,  
EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™,  
ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™,  
POWERCODE™; PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™,  
ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™,  
thinQ!™, TRENCHSTOP™, TriCore™.  
Other Trademarks  
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™,  
PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR  
development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™,  
FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG.  
FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of  
Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data  
Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of  
MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics  
Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA  
MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of  
OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF  
Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™  
of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co.  
TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™  
of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas  
Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes  
Zetex Limited.  
Last Trademarks Update 2011-11-11  
Preliminary Data Sheet  
3
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Table of Contents  
Table of Contents  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
2nd Generation FL-Controller for Fluorescent Lamp Ballasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
1
Pin Configuration and Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
PG-DSO-16-20 Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Pin Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
1.1  
1.2  
1.3  
2
2.1  
2.2  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Typical Application Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Normal Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Operating Levels from UVLO to Soft Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Operating Levels from Soft Start to Run Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Filament Detection during Start-Up and Run Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Start-Up with broken Low Side Filament . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Low Side Filament Detection during Run Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Start-Up with Broken High Side Filament . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
PFC Preconverter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Discontinuous Conduction and Critical Conduction Mode Operation . . . . . . . . . . . . . . . . . . . . . . . 23  
PFC Bus Voltage Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Bus Overvoltage and PFC Open Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Bus Voltage 95 % and 75 % Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
PFC Structure of Mixed Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
THD Correction via ZCD Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Detection of End-of-Life and Rectifier Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Detection of End of Life 1 (EOL1) – Lamp Overvoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Detection of End of Life 2 (EOL2) – Rectifier Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Detection of Capacitive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Capacitive Load 1 (Idling Detection – Current Mode Preheating) . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Capacitive Load 2 (Overcurrent / Operation below Resonance) . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Adjustable Self-adapting Dead Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Emergency Lighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Short-term PFC Bus Undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Long-term PFC Bus Undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Built-in Customer Test Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Preheating Test Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Skip the Preheating Phase – Set RTPH Pin to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
IC Remains in Preheating Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Deactivation of the Filament Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Built-in Customer Test Mode (Clock Acceleration) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Enabling of the Clock Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Starting the Chip with Accelerated Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
2.2.1  
2.2.2  
2.3  
2.3.1  
2.3.2  
2.3.3  
2.4  
2.4.1  
2.4.2  
2.4.2.1  
2.4.2.2  
2.4.3  
2.4.4  
2.5  
2.5.1  
2.5.2  
2.6  
2.6.1  
2.6.2  
2.6.3  
2.7  
2.7.1  
2.7.2  
2.8  
2.8.1  
2.8.1.1  
2.8.1.2  
2.8.2  
2.8.3  
2.8.3.1  
2.8.3.2  
3
State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Features during Different Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Operating Flow of the Start-Up Procedure into Run Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Auto Restart and Latched Fault Condition Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
3.1  
3.2  
3.3  
Preliminary Data Sheet  
4
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Table of Contents  
4
Protection Functions Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
5
5.1  
5.2  
5.3  
5.3.1  
5.3.2  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Power Supply Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
PFC Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
PFC Current Sense (PFCCS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
PFC Zero Current Detection (PFCZCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
PFC Bus Voltage Sense (PFCVS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
PFC PWM Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
PFC gate Drive (PFCGD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Inverter Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Low Side Current Sense (LSCS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Low Side Gate Drive (LSGD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Inverter Control Run (RFRUN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Inverter Control Preheating (RFPH, RTPH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Restart after Lamp Removal (RES) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Lamp Voltage Sense (LVS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
High Side Gate Drive (HSGD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Timer Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Built-In Customer Test Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
5.3.2.1  
5.3.2.2  
5.3.2.3  
5.3.2.4  
5.3.2.5  
5.3.3  
5.3.3.1  
5.3.3.2  
5.3.3.3  
5.3.3.4  
5.3.3.5  
5.3.3.6  
5.3.3.7  
5.3.3.8  
5.3.3.9  
6
Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Schematic Ballast 54W T5 Single Lamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Bill of Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Multi Lamp Ballast Topologies (Series Connection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
6.1  
6.2  
6.3  
7
Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
7.1  
Outline Dimensions of PG-DSO-16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Preliminary Data Sheet  
5
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
List of Figures  
List of Figures  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Figure 8  
Figure 9  
Typical Application Circuit of Ballast for a Single Fluorescent Lamp . . . . . . . . . . . . . . . . . . . . . . . . 8  
PG-DSO-16-20 Package (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Application Circuit of Ballast for a Single Fluorescent Lamp (FL). . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Typical Startup Procedure in Run Mode (in Normal Operation) . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Typical Startup Procedure in Run Mode (in Normal Operation) . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Typical Variation of Operating Frequency during Startup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Lamp Voltage versus Frequency during the different Startup Phases . . . . . . . . . . . . . . . . . . . . . . 18  
Start-Up with Open Low Side Filament. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Restart from Open Low Side Filament . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 10 Open Low Side Filament Run Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 11 Restart from Open LS Filament . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 12 Start-Up with Open High Side Filament . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 13 Restart from Open High Side Filament. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 14 Operating Frequency and ON Time versus Power in DCM and CritCM Operation . . . . . . . . . . . . 23  
Figure 15 PFC Bus Voltage Operating Level and Error Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 16 Structure of the Mixed Digital and Analog Control of the PFC Preconverter . . . . . . . . . . . . . . . . . 25  
Figure 17 THD Optimization using adjustable Pulse Width Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 18 End of Life and Rectifier Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 19 End of Life (EOL1) Detection, Lamp Voltage versus AC LVS Current . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 20 End of Life (EOL2) Detection, Lamp Voltage versus DC LVS Current. . . . . . . . . . . . . . . . . . . . . . 28  
Figure 21 Capacitive and Inductive Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 22 Capacitive Mode 1 Operation without Load during Run Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 23 Capacitive Mode 2 – Operation with Overcurrent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 24 Dead Time of ON and OFF of the Half-Bridge Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 25 BUS Voltage Drop below 75% (rated Bus Voltage) for t < 800 ms during RUN Mode. . . . . . . . . . 31  
Figure 26 BUS Voltage Drop below 75% (rated Bus Voltage) for t > 800 ms during RUN Mode. . . . . . . . . . 32  
Figure 27 Start-Up WITH Preheating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 28 Start-Up WITHOUT Preheating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 29 Start-Up WITH Preheating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 30 Start-Up WITHOUT Preheating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 31 Deactivation via RES PIN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 32 Deactivation via LVS PIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 33 Clock Acceleration (Built in Customer Test Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 34 Monitoring Features during Different Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 35 Operating Flow during Start-Up Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 36 Operating Process during Start-Up Mode and Handling of Fault Conditions . . . . . . . . . . . . . . . . . 39  
Figure 37 Application Circuit of Ballast for Single Fluorescent Lamp Voltage Mode Preheating . . . . . . . . . . 54  
Figure 38 Bill of Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 39 Application Circuit of Ballast for two Fluorescent Lamps Voltage Mode Preheating . . . . . . . . . . . 56  
Figure 40 Package Outline with Creepage Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Preliminary Data Sheet  
6
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
List of Tables  
List of Tables  
Table 1  
Table 2  
Table 3  
Pin Configuration for PG-DSO-16-20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Specified Acceleration Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Protection Functions Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Preliminary Data Sheet  
7
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
2nd Generation FL-Controller for Fluorescent Lamp Ballasts  
Product Highlights  
Lowest count of external components  
650 V half-bridge driver with coreless transformer technology  
Supports Customer In-Circuit Test Mode for reduced tester time  
Supports multi-lamp designs (series connection)  
Integrated digital timers up to 40 seconds  
Numerous monitoring and protection features for highest reliability  
Very high accuracy of frequencies and timers over the whole temperature range  
Very low standby losses  
PFC Features  
Discontinuous mode PFC for load range 0 to 100%  
Integrated digital compensation of PFC control loop  
Improved compensation for low THD of AC input current, also in DCM operation  
Adjustable PFC current limitation  
Lamp Ballast Inverter Features  
Adjustable detection of overload and rectifier effect (EOL)  
Detection of capacitive load operation  
Improved ignition control allows operation close to the magnetic saturation of the lamp inductors  
Restart with skipped preheating on short interruptions of line voltage (for emergency lighting)  
Parameters adjustable by resistors only  
Pb-free lead plating; RoHS-compliant  
PFCZCD  
HSGD  
HSVCC  
PFCGD  
VIN  
HSGND  
PFCVS  
LSGD  
PFCCS  
LSCS  
Figure 1  
Typical Application Circuit of Ballast for a Single Fluorescent Lamp  
Description  
The FL controller ICB2FL03G is designed to control fluorescent lamp ballast, including a discontinuous mode  
Power Factor Correction (PFC), lamp inverter control and a high-voltage level shift half-bridge driver.  
The control concept covers requirements for T5 lamp ballasts for single and multi-lamp designs (series connection  
supported). ICB2FL03G is based on the 2nd-generation FL controller technology, is easy to use and simple to  
design in. This makes the ICB2FL03G a basis for cost-effective solutions for fluorescent lamp ballasts with high  
reliability. Figure 1 shows a typical application circuit of ballast for a single fluorescent T8 lamp with current mode  
preheating.  
Preliminary Data Sheet  
8
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Pin Configuration and Functionality  
1
Pin Configuration and Functionality  
1.1  
Pin Configuration  
Table 1  
Pin Configuration for PG-DSO-16-20  
Pin  
1
Symbol  
LSGD  
LSCS  
Function  
Low side gate drive (inverter)  
Low side current sense (inverter)  
Supply voltage  
2
3
VCC  
4
GND  
Low side ground  
5
PFCGD  
PFCCS  
PFCZCD  
PFCVS  
RFRUN  
RFPH  
RTPH  
LVS  
PFC gate drive  
6
PFC current sense  
7
PFC zero current detector  
PFC voltage sense  
8
9
Set R for run frequency  
Set R for preheat frequency  
Set R for preheating time  
Lamp voltage sense  
Restart after lamp removal  
High side ground  
10  
11  
12  
13  
14  
15  
16  
RES  
HSGND  
HSVCC  
HSGD  
High side supply voltage  
High side gate drive (inverter)  
1.2  
PG-DSO-16-20 Package  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
LSGD  
LSCS  
HSGD  
HSVCC  
HSGND  
RES  
VCC  
GND  
PFCGD  
PFCCS  
PFCZCD  
PFCVS  
LVS  
RTPH  
RFPH  
RFRUN  
PG-DSO-16 (150mil)  
Figure 2  
PG-DSO-16-20 Package (top view)  
Preliminary Data Sheet  
9
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Pin Configuration and Functionality  
1.3  
Pin Functionality  
LSGD (low-side gate drive, pin 1)  
The gate of the low-side MOSFET in a half-bridge inverter topology is controlled by this pin. There is an active  
L-level during UVLO (under voltage lockout) and limitation of the max H-level at 11.0 V during normal operation.  
In order to turn on the MOSFET softly (with a reduced diDRAIN/dt); the gate voltage typically rises within 245 ns from  
L-level to H-level. The fall time of the gate voltage is less than 50 ns in order to turn off quickly. This measure  
produces different switching speeds during turn-on and turn-off as it is usually achieved with a diode parallel to a  
resistor in the gate drive loop. It is recommended to use a resistor of typically 10 between drive pin and gate in  
order to avoid oscillations and in order to shift the power dissipation of discharging the gate capacitance into this  
resistor. The dead time between the LSGD signal and HSGD signal is self-adapting between 1.05 µs and 2.1 µs.  
LSCS (low-side current sense, pin 2)  
This pin is directly connected to the shunt resistor which is located between the source terminal of the low-side  
MOSFET of the inverter and ground.  
Internal clamping structures and filtering measures allow for sensing the source current of the low-side inverter  
MOSFET without additional filter components.  
The first threshold is 0.8 V. If this threshold is exceeded for longer than 500 ns during preheat or run mode, an  
inverter overcurrent is detected and causes a latched shutdown of the IC. The ignition control is activated if the  
sensed slope at the LSCS pin reaches typically 205 mV/µs ± 25 mV/µs and exceeds the 0.8 V threshold. This  
stops the frequency decrease and waits for ignition. The ignition control is now continuously monitored by the  
LSCS PIN. The ignition control is designed to handle choke operation in saturation during ignition in order to  
reduce the choke size.  
If the sensed current signal exceeds a second threshold of 1.6 V for longer than 500 ns during start-up, soft start,  
ignition mode and pre-run, the IC changes over into latched shutdown.  
There are further thresholds active at this pin during run mode that detect capacitive mode operation. An initial  
threshold at 50 mV needs to sense a positive current during the second 50 % on-time of the low-side MOSFET for  
proper operation (cap. load 1). A second threshold of -50mV senses the current before the high-side MOSFET is  
turned on. A voltage level below this threshold indicates faulty operation (cap. load 2). Finally a third threshold at  
2.0 V senses even short overcurrent during turn-on of the high-side MOSFET, typical for reverse recovery currents  
of a diode (cap. load 2). If any of these three comparator thresholds indicates incorrect operating conditions for  
longer than 620 µs (cap. load 2) or 2500 ms (cap. load 1) in run mode, the IC turns off the gates and changes into  
fault mode due to detected capacitive mode operation (non-zero voltage switching).  
The threshold of -50 mV is also used to adjust the dead time between turn-off and turn-on of the half-bridge drivers  
in a range of 1.05 µs to 2.1 µs during all operating modes.  
Vcc (supply voltage, pin 3)  
This pin provides the power supply of the ground related section of the IC. There is a turn-on threshold at 14.0 V  
and an UVLO threshold at 10.6 V. The upper supply voltage level is 17.5 V. There is an internal zener diode  
clamping VCC at 16.3 V (at IVCC = 2 mA typically). The maximum zener current is internally limited to 5 mA. An  
external zener diode is required for higher current levels. Current consumption during UVLO and during fault mode  
is less than 170 µA. A ceramic capacitor close to the supply and GND pin is required in order to act as a low-  
impedance power source for gate drive and logic signal currents. In order to skip preheating after short  
interruptions to the mains supply it is necessary to feed the start-up current (160 µA) from the bus voltage. Note:  
for external VCC supply, see notes in the flowchart (Section 3.3).  
Preliminary Data Sheet  
10  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Pin Configuration and Functionality  
GND (ground, pin 4)  
This pin is connected to ground and represents the ground level of the IC for supply voltage, gate drive and sense  
signals.  
PFCGD (PFC gate drive, pin 5)  
This pin controls the gate of the MOSFET in the PFC preconverter designed in boost topology. There is an active  
L-level during UVLO and limitation of the max H-level at 11.0 V during normal operation. In order to turn on the  
MOSFET softly (with a reduced diDRAIN/dt), the gate drive voltage rises within 245 ns from L-level to H-level. The  
fall time of the gate voltage is less than 50 ns in order to turn off quickly.  
A resistor of typically 10 between the drive pin and gate is recommended in order to avoid oscillations and in  
order to shift the power dissipation of discharging the gate capacitance into this resistor.  
The PFC section of the IC controls a boost converter as a PFC preconverter in discontinuous conduction mode  
(DCM). Control usually starts with gate drive pulses with a fixed on-time of typically 4.0 µs at VACIN = 230 V,  
increasing up to 24 µs and with an off-time of 47 µs. As soon as sufficient zero current detector (ZCD) signals are  
available, the operation mode changes from fixed frequency operation to operation with variable frequency. The  
PFC works in critical conduction mode operation (CritCM) when rated and / or medium load conditions are present.  
This means triangular-shaped currents in the boost converter choke without gaps and variable operating  
frequency. During low loads (detected by an internal compensator) operation is in discontinuous conduction mode  
(DCM) – i.e., triangular-shaped currents in the boost converter choke with gaps when reaching the zero current  
level and variable operating frequency in order to avoid steps in the consumed line current.  
PFCCS (PFC current sense, pin 6)  
The voltage drop across a shunt resistor located between the source of the PFC MOSFET and GND is sensed  
with this pin. If the level exceeds a threshold of 1.0 V for longer than 200 ns, the PFC gate drive is turned off as  
long as the zero current detector (ZCD) enables a new cycle. If no ZCD signal is available within 52 µs after turn-off  
of the PFC gate drive, a new cycle is initiated from an internal start-up timer.  
PFCZCD (PFC zero current detector, pin 7)  
This pin senses the point of time when the current through boost inductor becomes zero during off-time of the PFC  
MOSFET in order to initiate a new cycle.  
The moment of interest appears when the voltage of the separate ZCD winding changes from the positive to  
negative level, which represents a voltage of zero at the inductor windings and therefore the end of current flow  
from the lower input voltage level to the higher output voltage level. There is a threshold with hysteresis – for  
increasing level 1.5 V, for decreasing level 0.5 V – which detects the change in inductor voltage.  
A resistor, connected between ZCD winding and pin 7, limits the sink and source current of the sense pin when  
the voltage of the ZCD winding exceeds the internal clamping levels (6.3 V and -2.9 V typically @ 5 mA) of the IC.  
If the sensed voltage level of the ZCD winding is not sufficient (e.g. during start-up), an internal start-up timer will  
initiate a new cycle every 52 µs after turn-off of the PFC gate drive. The source current flowing out of this pin during  
the on-time of the PFC-MOSFET indicates the voltage level of the AC supply voltage. During low input voltage  
levels the on-time of the PFC-MOSFET is increased in order to minimize gaps in the line current during zero  
crossing of the line voltage and improve the THD (Total Harmonic Distortion) of the line current. Optimization of  
the THD is possible by trimming of the resistor between this pin and the ZCD winding.  
PFCVS (PFC voltage sense, pin 8)  
The intermediate circuit voltage (bus voltage) at the smoothing capacitor is sensed by a resistive divider at this  
pin. The internal reference voltage for rated bus voltage is 2.5 V. There are further thresholds at 0.3125 V (12.5 %  
of the rated bus voltage) for the detection of open control loop, at 1.875 V (75 % of the rated bus voltage) for the  
detection of undervoltage, and at 2.725 V (109 % of the rated bus voltage) for the detection of overvoltage. The  
Preliminary Data Sheet  
11  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Pin Configuration and Functionality  
overvoltage threshold operates with a hysteresis of 100 mV (4 % of the rated bus voltage). For the detection of  
successful start-up, the bus voltage is sensed at 95 % (2.375 V). It is recommended to use a small capacitor  
between this pin and GND as a spike suppression filter.  
In run mode, a PFC overvoltage stops the PFC gate drive within 5 µs. As soon as the bus voltage is less than  
105 % of the rated level, the gate drives are enabled again. If the overvoltage lasts for longer than 625 ms, inverter  
overvoltage is detected and the inverter turns off the gate drives also. This causes powerdown and powerup when  
V
BUS < 109 %.  
A bus undervoltage (VBUS > 75 %) or inverter overvoltage during run mode is handled as a fault U. In this situation  
the IC changes into powerdown mode and generates a delay of 100 ms by an internal timer. Then startup  
conditions are checked and if valid, a further startup is initiated. If startup conditions are not valid, a further delay  
of 100 ms is generated.  
This procedure is repeated a maximum of seven times. If startup is successful within these seven cycles, the  
situation is interpreted as a short interruption of the mains supply and the preheating is skipped. Any further startup  
attempt is initiated to include the preheating.  
RFRUN (set R for run frequency, pin 9)  
A resistor from this pin to ground sets the operating frequency of the inverter during run mode. The typical run  
frequency range is 20 kHz to 120 kHz. The set resistor R_RFRUN can be calculated, based on the run frequency  
fRUN according to the equation:  
5108 ΩHz  
RFRUN  
=
fRUN  
RFPH (set R for preheat frequency, pin 10)  
A resistor from this pin to ground, together with the resistor at pin 9, sets the operating frequency of the inverter  
during preheating mode. The typical preheating frequency range is from the run frequency (as a minimum) to  
150 kHz. The set resistor R_RFPH can be calculated, based on the preheating frequency fPH and the resistor  
R
RFRUN according to the equation:  
RRFRUN  
fPH RRFRUN  
5108 ΩHz  
RRFPH  
=
1  
RTPH (set R for preheating time, pin 11)  
A resistor from this pin to ground sets the preheating time of the inverter during preheating mode. A set resistor  
range from zero to 25 kcorresponds to a range of preheating times from zero to 2500 ms subdivided into 127  
steps, as expressed below:  
tPr eHeating  
RRTPH  
=
ms  
100  
kΩ  
LVS (lamp voltage sense, pin 12)  
Before startup this pin senses a current fed from the rectified line voltage via resistors through the high-side  
filaments of the lamp for detection of an inserted lamp.  
Preliminary Data Sheet  
12  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Pin Configuration and Functionality  
The sensed current fed into the LVS pin has to exceed 12 µA typically at a voltage level of 6.0 V at the LVS pin.  
The reaction on the high side filament detection is mirrored at the RES pin (see pin 13). In addition, the detection  
of available mains supply after an interruption is sensed by this pin. Together with the RES pin, the IC can monitor  
the lamp removal of one lamp path (series connection of lamps is possible). If the functionality of this pin is not  
required, it can be disabled by connecting this pin to ground.  
During run mode the lamp voltage is monitored with this pin by sensing a current proportional to the lamp voltage  
via resistors. An overload is indicated by an excessive lamp voltage. If the peak-to-peak lamp voltage causes a  
peak-to-peak current above a threshold of 210 µAPP for longer than 620 µs, a fault EOL1 (end-of-life) is assumed.  
If the DC current at the LVS pin exceeds a threshold of ±42 µA for longer than 2500 ms, a fault EOL2 (rectifier  
effect) is assumed. The levels of AC sense current and DC sense current can be set separately by an external RC  
network. Note that in the case of deactivation of the LVS PIN, reactivation starts when the voltage at the LVS pin  
exceeds VLVSEnable1 in RUN Mode.  
RES (restart, pin 13)  
A source current flowing out of this pin via resistor and filament to ground monitors the existence of the low-side  
filament of the fluorescent lamp for restart after lamp removal. A capacitor from this pin directly to ground  
eliminates a superimposed AC voltage that is generated as a voltage drop across the low-side filament. With a  
second sense resistor, the filament of a parallel lamp can be included in the lamp removal sensing. Note that  
during startup the chip supply voltage Vcc has to be below 14.0 V before VRES reaches the filament detection level.  
During typical start-up with connected filaments of the lamp a current source IRES3 (-21.3 µA) is active as long as  
V
CC > 10.6 V and VRES < VRES1 (1.6 V). An open low-side filament is detected when VRES > VRES1. Such a condition  
will prevent the start-up of the IC. In addition, the comparator threshold is set to VRES2 (1.3 V) and the current  
source changes to IRES4 (-17.7 µA). The system is then waiting for a voltage level lower than VRES2 at the RES pin  
to indicate a connected low-side filament, which will enable the start-up of the IC.  
An open high-side filament is detected when there is no sink current ILVSSINK (< 12 µA typ.) into the LVS pin before  
the VCC start-up threshold is reached. Under these conditions the current source at the RES pin is IRES1 (-42.6 µA)  
as long as VCC > 10.6 V and VRES < VRES1 (1.6 V) and the current source is IRES2 (-35.4 µA) when the threshold  
has changed to VRES2 (1.3 V). In this way, the detection of the high-side filament is mirrored at the levels on the  
RES pin.  
There is a further threshold of 3.2 V active at the RES pin during run mode. If the voltage level rises above this  
threshold for longer than 620 µs, the IC changes over into latched fault mode.  
In any case of fault detection with different reaction times the IC turns off the gate drives and changes into  
powerdown mode with a current consumption of 170 µA max. An internal timer generates a delay time of 200 ms  
before start-up conditions are checked again. As soon as start-up conditions are valid, a second start-up attempt  
is initiated. If this second attempt fails, the IC remains in latched fault mode until a reset is generated by UVLO or  
lamp removal. The RES PIN can be deactivated by setting the PIN to GND (durable).  
HSGND (high-side ground, pin 14)  
This pin is connected to the source terminal of the high-side MOSFET, which is also the node of the high-side and  
low-side MOSFET. This pin represents the floating ground level of the high-side driver and the high-side supply.  
HSVCC (high-side supply voltage, pin 15)  
This pin provides the power supply of the high-side ground-related section of the IC. An external capacitor between  
pins 14 and 15 acts like a floating battery, which has to be recharged cycle by cycle via the high-voltage diode  
from low-side supply voltage during on-time of the low-side MOSFET. There is a UVLO threshold with hysteresis  
that enables the high-side section at 10.4 V and disables it at 8.6 V.  
Preliminary Data Sheet  
13  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Functional Description  
HSGD (high-side gate drive, pin 16)  
The gate of the high-side MOSFET in a half-bridge inverter topology is controlled by this pin. There is an active  
L-level during UVLO and limitation of the max H-level at 11.0 V during normal operation. The switching  
characteristics are the same as described for LSGD (pin 1). It is recommended to use a resistor of about 10 Ω  
between the drive pin and gate in order to avoid oscillations and in order to shift the power dissipation of  
discharging the gate capacitance into this resistor. The dead time between LSGD signal and HSGD signals is  
self-adapting between 1.05 µs and 2.1 µs (typically).  
2
Functional Description  
This section describes applications and functionality of the chip.  
2.1  
Typical Application Circuitry  
The schematic shown in Figure 3 shows a typical application for a T5 single fluorescent lamp. It is designed for  
universal input voltage from 90 VAC up to 270 VAC. The following sections explain the components in reference to  
this schematic.  
R41  
R35  
R42 R43 R44  
R34  
L1  
L101 D1...4  
C1  
C40  
R45  
R13  
R14  
R15  
D5  
L2  
PFCZCD  
PFCGD  
Q2  
Q3  
R26  
HSGD  
C17  
R1  
R2  
HSVCC  
Q1  
C15  
90 ...  
HSGND  
R16  
C24  
C14  
R27  
270 VAC  
C10  
PFCVS  
PFCCS  
LSGD  
LSCS  
R11  
R12  
C2  
C16  
R36  
D6  
D7  
D8  
R18  
C11 R20  
R30  
C19  
D9  
R21R22R23  
C13  
DR12  
R25  
C12  
Figure 3  
Application Circuit of Ballast for a Single Fluorescent Lamp (FL)  
2.2  
Normal Startup  
This section describes the basic operation flow (8 phases) from the UVLO (Under Voltage Lock Out) into run mode  
without any error detection. For detailed information see Section 2.2.1 and Section 2.2.2. Figure 4 shows the 8  
different phases during a typical start from UVLO (phase 1, Figure 4) to run mode (phase 8, Figure 4) and then  
into normal operation (no failure detected).  
If the AC line input is switched ON, the VCC voltage rises to the UVLO threshold VCC = 10.6 V (no IC activity during  
UVLO). If VCC exceeds the first threshold of VCC = 10.6 V, the IC starts the first level of detection activity, the high  
and low side filament detection during the start-up hysteresis (phase 2, Figure 4).  
Preliminary Data Sheet  
14  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Functional Description  
Frequency /  
Lamp Voltage  
135 kHz  
100 kHz  
Frequency  
6
1
2
3
4
5
7
8
50 kHz  
42 kHz  
Lamp Voltage  
60ms  
35ms  
80ms  
0 - 2500ms  
40 - 237ms  
625ms  
11ms  
Mode /  
Time  
0 kHz  
Rated BUS  
Voltage VBUS  
100 %  
95 %  
Rated BUS Voltage  
30 %  
Mode /  
Time  
Chip Supply  
Voltage VCC  
VCC = 17.5 V  
VCC = 14.0 V  
Chip Supply Voltage  
V
CC = 10.6 V  
VCC = 0 V  
Mode /  
Time  
Run Mode  
into normal Operation  
UVLO  
Monitoring Start UpSoft Start Preheating  
Pre-Run  
Ignition  
Figure 4  
Typical Startup Procedure in Run Mode (in Normal Operation)  
Followed at the end of the start-up hysteresis (phase 2, Figure 4) VCC > 14.0 V and before phase 3 is active, a  
second level of detection activity senses for 130 µs (propagation delay of the IC) whether the bus voltage is  
between 12.5 % and 105 %. If the previous bus voltage conditions are fulfilled and the filaments are detected, the  
IC starts the operation with an internally fixed startup frequency of typically 135 kHz (all gates are active). If the  
bus voltage reaches a level of 95 % of the rated bus voltage within 80 ms at the latest (phase 3, Figure 4), the IC  
enters the soft start phase. During soft start (phase 4 , Figure 4), the start-up frequency shifts from 135 kHz down  
to the set preheating frequency (Section 2.2.2). In the soft start phase, the lamp voltage rises and the chip supply  
voltage reaches its working level from 10.6 V < VCC < 17.5 V. After the soft start has finished, the IC enters the  
preheating mode (phase 5, Figure 4) for preheating the filaments (adjustable time) in order to extend the life cycle  
of the FL filaments. On finishing preheating, the controller starts ignition (phase 6, Figure 4). During the ignition  
phase, the frequency decreases from the set preheating frequency down to the set operation frequency  
(adjustable, see Section 2.2.2). If ignition is successful, the IC enters the pre-run mode (phase 7, Figure 4).  
This mode is provided in order to prevent a malfunction of the IC due to an unstable system – e.g., the lamp  
parameters are not in a steady state condition. After finishing the 625 ms pre-run phase, the IC switches over to  
the run mode (phase 8, Figure 4) with complete monitoring.  
Preliminary Data Sheet  
15  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Functional Description  
2.2.1  
Operating Levels from UVLO to Soft Start  
This section describes the operating flow from phase 1 (UVLO) to phase 4 (soft start) in detail. The control of the  
ballast is able to start the operation within less than 100 ms (IC in active mode). This is achieved by a small start-  
up capacitor (about 1 µF C12 and C13 – fed by start-up resistors R11 and R12 in Figure 3) and the low current  
consumption during the UVLO (IVCC = 130 µA – phase 1, Figure 5) and start-up hysteresis (IVCC = 160 µA – defines  
the start-up resistors – phase 2, Figure 5) phases. The chip supply stage of the IC is protected against overvoltage  
via an internal Zener clamping network, which clamps the voltage at 16.3 V and allows a current of 2.5 mA. For  
clamping currents above 2.5 mA, an external Zener diode (D9, Figure 3) is required.1)  
Frequency /  
Lamp Voltage  
Frequency  
135 kHz  
100 kHz  
Lamp Voltage  
VBUS  
100 %  
95 %  
30 %  
VCC  
17.5 V  
16.0 V  
14.0 V  
10.6 V  
1
2
3
4
UVLO  
Monitoring  
Start Up  
Soft Start  
IVCC  
< 6.0 mA + IGate  
< 160 µA  
130 µA  
VRES  
1.6 V  
- 21.3 µA  
IRES  
ILVS  
< 210µApp  
> 18 µA  
Figure 5  
Typical Startup Procedure in Run Mode (in Normal Operation)  
1) IGate depends on MOSFET  
Preliminary Data Sheet  
16  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Functional Description  
If VCC exceeds the 10.6 V level and stays below 14.0 V (start-up hysteresis – phase 2, Figure 5), the IC checks  
whether the lamps are assembled by detecting a current across the filaments.  
The low side filaments are checked from a source current of typical IRES3 = - 21.3 µA flowing out of pin 13 RES  
(Figure 5 IRES). This current produces a voltage drop of VRES < 1.6 V (filament is ok) at the low side filament sense  
resistor (R 36 in Figure 3), connected to GND (via low side filament). An open low side filament is detected (see  
Section 2.3.2), when the voltage at the RES pin exceeds the VRES > 1.6 V threshold (Figure 5 VRES).  
The high side filaments are checked by a current of ILVS > 12 µA typically via resistors R41, R42, R43 and R44  
(Figure 3) into the LVS pin 12 (for a single lamp operation). An unused LVS pin has to be disabled via connection  
to GND. An open high side filament is detected (see Section 2.3.3) when there is no sink current into the LVS pin.  
This causes a higher source current out of the RES pin (typically 42.6 µA / 35.4 µA) in order to exceed VRES  
>
1.6 V. In the case of defective filaments, the IC keeps monitoring until an adequate current from the RES or the  
LVS pin is present (e.g. in case of removal of a defective lamp).  
When VCC exceeds the 14.0 V threshold – by the end of the start-up hysteresis in phase 2 , Figure 5 – the IC waits  
for 130 µs and senses the bus voltage. If the rated bus voltage is in the corridor of 12.5 % < VBUSrated < 105 %, the  
IC powers up the system and enters phase 3 (Figure 5 VBUSrated > 95 % sensing); if not, the IC initiates a UVLO  
until the chip supply voltage falls below VCC < 10.6 V. As soon as the condition for a power-up is fulfilled, the IC  
starts the inverter gate operation with an internal fixed start-up frequency of 135 kHz. The PFC gate drive starts  
with a delay of approx. 300 µs. Next, the bus voltage will be checked for a rated level above 95 % for a duration  
of 80 ms (phase 3, Figure 5). When leaving phase 3, the IC enters the soft start phase and shifts the frequency  
from the internal fixed start-up frequency of 135 kHz down to the set preheating frequency – e.g. fRFPH = 100 kHz.  
2.2.2  
Operating Levels from Soft Start to Run Mode  
This section describes the operating flow from phase 5 (preheating mode) to phase 8 (run mode) in detail. In order  
to extend the lifetime of the filaments, the controller enters – after the soft start phase – the preheating mode  
(phase 5, Figure 6). The preheating frequency is set by resistors R22 pin RFPH to GND in combination with R21  
(Figure 3) typ. 100 kHz e.g. R22 = 8.2 kin parallel to R21 = 11.0 k(see Figure 3, RFRUN pin). The preheating  
time can be selected by the programming resistor (R23 in Figure 3) at pin RTPH from 0 ms up to 2500 ms  
(phase 5, Figure 6).  
135kHz  
f , V  
Frequency  
65kHz  
50kHz  
6
3
4
5
7
8
40kHz  
Lamp Voltage  
t
10ms  
0-2500ms  
40-237ms 625ms  
Ignition Pre-Run  
Normal Operation  
Run  
Start-Up  
Softstart  
Preheating  
VLSCS  
0.8 V  
Softstart proceeds in 15 steps à 650µs according ΔfPH = (135kHz - fPH)/ 15steps.  
Ignition proceeds in 127 steps à 324µs according ΔfIGN = (fPH - fRUN)/ 127steps.  
Preheating Frequency with 8.7 kResistor from PIN RFPH to GND  
RUN Frequency with a 12.0 kResistor from PIN RFRUN to GND  
Figure 6  
Typical Variation of Operating Frequency during Startup  
17  
Preliminary Data Sheet  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Functional Description  
During ignition (phase 6, Figure 6), the operating frequency of the inverter is shifted downward in ttyp = 40 ms  
(tmax = 237 ms) to the run frequency set by a resistor (R21 in Figure 3) at pin RFRUN to GND (typically 45 kHz  
with an 11.0 kresistor). During this frequency shifting, the voltage and current in the resonant circuit will rise  
when the operation is close to the resonant frequency with increasing voltage across the lamp. The ignition control  
is activated if the sensed slope at the LSCS pin reaches typically 205 mV/µs ± 25 mV/µs and exceeds the 0.8 V  
threshold. This stops the decrease of the frequency and waits for ignition. The ignition control is now continuously  
monitored by the LSCS pin. The maximum duration of the ignition procedure is limited to 237 ms. If there is no  
ignition within this time frame, the ignition control is disabled and the IC changes over into the latched fault mode.  
Furthermore, in order to reduce the size of the lamp choke, the ignition control is designed to operate with a lamp  
choke in magnetic saturation during ignition. For operation in magnetic saturation during ignition; the voltage at  
the shunt at the LSCS pin 2 has to be VLSCS = 0.75 V when the ignition voltage is reached. If ignition is successful,  
the IC enters the pre-run mode (phase 7, Figure 6). The pre-run mode is a safety mode in order to prevent a  
malfunction of the IC due to an unstable system – e.g., the lamp parameters are not in a steady state condition.  
After 625 ms pre-run mode, the IC changes to the run mode (phase 8, Figure 6). The run mode monitors the  
complete system regarding bus over- and undervoltage, open loop, overcurrent of PFC and / or inverter, lamp  
overvoltage (EOL1) and rectifier effect (EOL2) (see Section 2.5) and capacitive loads 1 and 2 (see Section 2.6).  
Figure 8 shows the lamp voltage versus the frequency during the different phases from preheating to the run  
mode. The lamp voltage rises by the end of the preheating phase with decreasing frequency (e.g., 100 kHz to  
50 kHz) up to, for example, 700 V during ignition. After ignition, the lamp voltage drops down to its working level  
with continuous decreasing of the frequency (Figure 8) down to its working level e.g. 45 kHz (set by a resistor at  
the RFRUN pin to ground). After decreasing of the frequency stops, the IC enters the pre-run mode.  
Lamp Voltage vs Frequency @ different Modes  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
IGNITION  
Operation without Load  
Operation with Load  
PRE Run  
and  
RUN Mode  
After  
IGNITION  
Pre Heating  
0
10000  
100000  
Frequency [Hz]  
After Ignition  
Before Ignition  
Figure 7  
Lamp Voltage versus Frequency during the different Startup Phases  
Preliminary Data Sheet  
18  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Functional Description  
2.3  
Filament Detection during Start-Up and Run Mode  
The low and high side filament detection is sensed via the RES and the LVS pins. The low side filament detection  
during start-up and run mode is detected via the RES pin only. An open high side filament during start-up will be  
sensed via the LVS and the RES pins.  
2.3.1  
Start-Up with broken Low Side Filament  
A source current of IRES3 = -21.3 µA from the RES pin (13) monitors the existence of a low side filament during a  
start-up (also in run mode). In the case of an open low side filament during the start-up hysteresis (10.6 V < VCC  
< 14.0 V) a capacitor (C19 in Figure 3) will be charged up via IRES3 = -21.3 µA. When the voltage at the RES pin  
(13) exceeds VRES1 = 1.6 V, the controller prevents a power up and clamps the RES voltage internally at VRES  
= 5.0 V. The gate drives of the PFC and inverter stage do not start working.  
VCC  
Start UP with open LOW Side Filament  
17.5 V  
16.0 V  
Chip Supply Voltage  
14.0 V  
10.6 V  
Time  
Time  
Start Up  
Hysteresis  
UVLO  
VRES  
5.0 V  
No Power UP  
1.6 V  
1.3 V  
IRES  
21.3µA  
17.7µA  
Time  
Time  
VLamp  
Figure 8  
Start-Up with Open Low Side Filament  
Restart from open LOW Side Filament  
17.5 V  
16.0 V  
Chip Supply Voltage  
PFC Gate Drive  
10.0 V  
Time  
Time  
Timer t = 100ms  
VRES  
5.0 V  
Latch Mode  
1.6 V  
1.3 V  
Power UP into RUN Mode  
1
2
3
IRES  
21.3µA  
17.7µA  
Time  
Time  
VLamp  
Figure 9  
Restart from Open Low Side Filament  
Preliminary Data Sheet  
19  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Functional Description  
The IC comparators are then set to a threshold of VRES1 = 1.3 V and to IRES4 = - 17.7µA, the controller waits until  
the voltage at the RES pin drops below VRES1 = 1.3 V.  
When a filament is present (Figure 9, section 2), the voltage drops below 1.3 V and the value of the source current  
out of the RES pin is set from IRES4 = -17.7 µA up to IRES3 = -21.3 µA. The controller then powers up the system,  
including soft start and preheating, into the run mode.  
2.3.2  
Low Side Filament Detection during Run Mode  
In the case of an open low side filament during run mode, the current flowing out of the RES pin IRES3 = -21.3 µA  
charges up the capacitor C19 in Figure 3. If the voltage at the RES pin exceeds the VRES3 = 3.2 V threshold, the  
controller detects an open low side filament and stops the gate drives after a delay of t = 620 µs of an internal timer.  
Open LOW Side Filament during Run Mode  
VCC / VPFCGD  
17.5 V  
16.0 V  
Chip Supply Voltage  
PFC Gate Drive  
10.0 V  
Time  
Time  
VRES  
5.0 V  
3.2 V  
1.6 V  
1.3 V  
Latch Mode  
IRES  
21.3µA  
17.7µA  
Time  
Time  
VLamp  
Delay t = 620µs  
Figure 10 Open Low Side Filament Run Mode  
Restart from open LOW Side Filament  
17.5 V  
16.0 V  
Chip Supply Voltage  
PFC Gate Drive  
10.0 V  
Time  
Time  
Timer t = 100ms  
VRES  
5.0 V  
Latch Mode  
1.6 V  
1.3 V  
Power UP into RUN Mode  
1
2
3
IRES  
21.3µA  
17.7µA  
Time  
Time  
VLamp  
Figure 11 Restart from Open LS Filament  
Preliminary Data Sheet  
20  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Functional Description  
A restart is initiated when a filament is detected e.g. in the case of a lamp removal. If a filament is present  
(Figure 11, section 2), the voltage drops below 1.3 V and the value of the source current flowing out of the RES  
pin is set from IRES4 = -17.7 µA up to IRES3 = -21.3 µA. The controller powers up the system, including soft start and  
preheating, into the run mode (Figure 11, section 3).  
2.3.3  
Start-Up with Broken High Side Filament  
An open high side filament during the start-up hysteresis (10.6 V < VCC < 14.0 V) is detected when the current into  
the LVS pin 12 is below ILVS = 12 µA (typically). In that case, the current flowing out of the RES pin 13 rises up to  
IRES1 = -42.6 µA. This causes the voltage at the RES pin to cross VRES1 = 1.6 V. The source current is now set to  
IRES2 = -35.4 µA and another threshold of VRES2 = 1.3 V is active. The controller prevents a power-up (see  
Figure 12), and the gate drives of the PFC and inverter stage do not start working.  
VCC  
Start UP with OPEN HIGH Side Filament  
17.5 V  
16.0 V  
Chip Supply Voltage  
14.0 V  
10.6 V  
Time  
Time  
Start Up  
Hysteresis  
VRES  
UVLO  
2.0 V  
1.6 V  
1.3 V  
No Power UP  
IRES  
IRES  
42.6µA  
35.4µA  
21.3µA  
17.7µA  
Time  
ILVS  
12µA  
VLamp  
ILVS  
Time  
Time  
Figure 12 Start-Up with Open High Side Filament  
Preliminary Data Sheet  
21  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Functional Description  
VCC  
Restart from open HIGH Side Filament  
17.5 V  
16.0 V  
Chip Supply Voltage  
14.0 V  
10.6 V  
Time  
VRES  
No Power Up  
2.0 V  
1.6 V  
1.3 V  
Power UP (into RUN Mode)  
IRES  
Time  
Time  
42.6µA  
35.4µA  
IRES  
21.3µA  
17.7µA  
ILVS  
12µA  
ILVS  
VLamp  
Time  
Time  
Figure 13 Restart from Open High Side Filament  
When the high side filament is present, e.g. insertion of a lamp, the current of the active LVS pin exceeds ILVS  
>
12 µA (typically), the RES current drops from IRES2 = -35.4 µA down to IRES4 = -17.7 µA (Figure 13). The controller  
then senses the low side filament. If a low side filament is also present, and the controller drops (after a short delay  
due to a capacitor at the RES pin) below VRES2 = 1.3 V, the RES current is set to IRES3 = -21.3 µA, and the controller  
powers up the system.  
Preliminary Data Sheet  
22  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Functional Description  
2.4  
PFC Preconverter  
2.4.1  
Discontinuous Conduction and Critical Conduction Mode Operation  
The digitally controlled PFC preconverter starts with an internally fixed ON time of typically tON = 4.0 µs and a  
variable frequency. The ON time is increased every 280 µs (typical) up to a maximum ON time of 24 µs. The  
control switches practically immediately from the discontinuous conduction mode (DCM) to critical conduction  
mode (CritCM) as soon as a sufficient ZCD signal becomes available. The frequency range in CritCM is 22 kHz  
to 500 kHz depending on the power (Figure 14), with a variation of the ON time from 24 µs > tON > 0.5µs.  
Discontinuous Conduction Mode (DCM) <> Critical Condution Mode (CritCM)  
1000,00  
100,00  
10,00  
1,00  
100,00  
Frequency @ CritCM Operation  
Frequency @ DCM Operation  
10,00  
Nominal Load  
ON Time Hysteresis  
PRE HEATING  
Light Load  
ON Time @ CritCM Operation  
Increasing Power  
1,00  
ON Time @ DCM Operation  
Decreasing Power  
0,10  
ON Time Hysteresis  
in RUN MODE  
0,01  
0,10  
100,00  
0,01  
0,10  
1,00  
10,00  
Normalized Output Power [%]  
Frequency CritCM Ton DCM  
Frequency DCM  
Ton CritCM  
Figure 14 Operating Frequency and ON Time versus Power in DCM and CritCM Operation  
For lower loads (POUTNorm < 8 % from the normalized load1)) the control operates in discontinuous conduction mode  
(DCM) with an ON time from 4.0 µs and increasing OFF time. The frequency during DCM is variable in a range  
from 144 kHz down to typically 22 kHz @ 0.1 % load (Figure 14). With this control method, the PFC converter  
enables stable operation from 100 % load down to 0.1 %. Figure 14 shows the ON time range in DCM and CritCM  
(Critical Conduction Mode) operation. In the overlapping area of CritCM and DCM there is a hysteresis of the ON  
time which causes a negligible frequency change.  
2.4.2  
PFC Bus Voltage Sensing  
Overvoltage, open loop, bus 95 % and undervoltage states (Figure 15) of the PFC bus voltage are sensed at the  
PFCVS pin via the network R14, R15, R20 and C11 – Figure 3 (C11 acts as a spike suppression filter).  
1) Normalized power @ low line input voltage and maximum load  
Preliminary Data Sheet  
23  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Functional Description  
2.4.2.1  
Bus Overvoltage and PFC Open Loop  
The bus voltage loop control is completely integrated (Figure 16) and provided by an 8-bit sigma/delta A/D  
converter with a typical sampling rate of 280 µs and resolution of 4 mV/bit. After leaving phase 2 (monitoring), the  
IC starts power-up (VCC > 14.0 V). After power-up, the IC senses the bus voltage below 12.5 % (open loop) or  
above 105 % (bus overvoltage) for 130 µs. In the case of bus overvoltage (VBUSrated > 109 %) or open loop  
(VBUSrated < 12.5 %) in phases 3 to 8, the IC shuts off the gate drives of the PFC within 5 µs or 1 µs respectively.  
In this case, the PFC restarts automatically when the bus voltage is within the corridor (12.5 % < VBUSrated < 105 %)  
again. Is the bus voltage valid after 130 µs, the bus voltage sensing is set to 12.5 % < VBUSrated < 109 %. If these  
thresholds are exceeded for longer than 1 µs (open loop) or 5 µs (overvoltage), the PFC gate drive stops working  
until the voltage drops below 105 % or exceeds the 12.5 % level. If the bus overvoltage (> 109 %) lasts for longer  
than 625 ms in run mode, the inverter gates also shut off and a power-down with complete restart is attempted  
(Figure 15).  
Rated BUS  
6
Voltage VBR  
1
2
3
4
5
7
8
VPFCVS = 2.725V  
VPFCVS = 2.625V  
BUS Over Voltage: Stops PFC Gate Drive within 5µs Auto Restart when VBR < 109% / t > 625ms PD VBR < 105% Æ Fault U  
109 %  
105 %  
Typical rated Bus Voltage Level  
VPFCVS = 2.500V  
100 %  
95 %  
V
PFCVS = 2.375V  
V
PFCVS = 1.875V  
75 %  
30 %  
Under Voltage V BR < 75%  
t < 800ms AR without Preheating  
t > 800ms AR with Preheating  
VPFCVS = 0.313V  
12.5 %  
0%  
PFC Open Loop / keeps all Gate Drives within 1µs Auto Restart / t > 1µs Stops PFC FET till VBR > 12.5%Æ AR  
Mode /  
Time  
VCC < 10.6 VVCC < 14.1 V  
60ms 35ms  
VBUS>95%  
80ms  
Preheating  
0 - 2500ms  
Ignition  
Pre-Run  
625ms  
Soft Start  
11ms  
Run Mode into normal Operation  
40 - 237ms  
130µs  
AR = Auto Restart  
ERROR Corridor  
PD = Power Down  
CbC = Cycle by Cycle  
Figure 15 PFC Bus Voltage Operating Level and Error Detection  
2.4.2.2  
Bus Voltage 95 % and 75 % Sensing  
When the rated bus voltage is in the corridor of 12.5 % < VBUSrated < 109 %, the IC will check whether the bus  
voltage exceeds the 95 % threshold (Figure 15, phase 3) within 80 ms before entering the soft start phase 4.  
Another threshold is activated when the IC enters the run mode (phase 8). If the rated bus voltage drops below  
75 % for longer than 84 µs, a power-down with a complete restart is attempted when a counter exceeds 800 ms.  
In the case of short-term bus undervoltage (the bus voltage reaches its working level in run mode before exceeding  
typically 800 ms (min. 500 ms)) the IC skips phases 1 to 5 and starts with ignition (see Section 2.7.1 for conditions  
for emergency lighting). The internal reference level of the bus voltage sense VPFCVS is 2.5 V (100 % of the rated  
bus voltage) with a high accuracy. A surge protection is activated in the case of a rated bus voltage of VBUS  
>
109 % and a low side current sense voltage of VLSCS > 1.6 V in pre-run mode, or VLSCS > 0.8 V in run mode for  
longer than 500 ns.  
Preliminary Data Sheet  
24  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Functional Description  
2.4.3  
PFC Structure of Mixed Signals  
A digital NOTCH filter eliminates the input voltage ripple independently of the mains frequency. A subsequent error  
amplifier with PI characteristic ensures stable operation of the PFC preconverter (Figure 16).  
Over Voltage  
109%  
Open Loop  
12.5%  
PFCGD  
PFCVS  
Σ∆-ADC  
Notch Filter  
PI Loop Control  
PWM  
Gate Drive  
PFCCS  
Under Voltage  
75%  
Over Current  
1V ± 5.0%  
ZCD Start Up  
1.5V / 0.5V  
Bus Voltage  
95%  
PFCZCD  
THD  
Correction  
Int. Reference  
VPFCVS = 2.5 V  
Clock 870 kHz  
Figure 16 Structure of the Mixed Digital and Analog Control of the PFC Preconverter  
The zero current detection (ZCD) is sensed by the PFCZCD pin via R13 (Figure 3). Notification of finished current  
flow during demagnetization is required in CritCM and in DCM also. The input is equipped with a special filtering  
system, including blanking of typically 500 ns and a large hysteresis of typically 0.5 V and 1.5 V VPFCZCD  
(Figure 16).  
2.4.4  
THD Correction via ZCD Signal  
An additional feature is the THD correction (Figure 16). In order to optimize the improved THD (especially in the  
zones A shown in Figure 17 ZCD @ AC Input Voltage), there is a possibility to extend the pulse width of the gate  
signal (blue part of the PFC gate signal in Figure 17) with the variable PFC ZCD resistor (see resistor R13 in  
Figure 3) in addition to the gate signal controlled by the VPFCVS signal (gray part of the PFC gate signal in  
Figure 17).  
Preliminary Data Sheet  
25  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Functional Description  
ZCD @ AC Input Voltage  
ZCD @ DC Input Voltage  
Rectified  
AC Input Voltage  
DC Input Voltage  
A
B
A
0
0
Voltage at  
ZCD-Winding  
PFC Gate  
Drive Voltage  
0
PFC gate signal (gray) controlled by the VPFCVS  
PFC gate signal (blue) controlled by the ZCD  
Figure 17 THD Optimization using adjustable Pulse Width Extension  
In the case of DC input voltage (see DC input voltage in Figure 17), the pulse width gate signal is fixed as a  
combination of the gate signal controlled by the VPFCVS pin (gray) and the additional pulse width signal controlled  
by the ZCD pin (blue) shown in Figure 17 ZCD @ DC input voltage.  
The PFC current limitation at pin PFCCS interrupts the ON time of the PFC MOSFET if the voltage drop at the  
shunt resistors R18 (Figure 3) exceeds VPFCCS = 1.0 V (Figure 16). This interrupt will restart after the next  
sufficient signal from ZCD becomes available (Auto Restart). The first value of the resistor can be calculated by  
the ratio of the PFC mains choke and ZCD winding by the bus voltage and a current of typically 1.5 mA (see  
equation below for a good practical value of resistance of ZCD). An adjustment of the ZCD resistor causes an  
optimized THD.  
N
ZCD *VBUS  
NPFC  
RZCD  
=
1.5mA  
2.5  
Detection of End-of-Life and Rectifier Effect  
Two effects are present by End of Life (EOL): lamp overvoltage (EOL1) and a rectifier effect (EOL2).  
After ignition (see 1 in Figure 18), the lamp voltage breaks down to its run voltage level with decreasing frequency.  
On reaching the run frequency, the IC enters the pre-run mode for 625 ms. During this period, the EOL detection  
is still disabled. In the subsequent run mode (2 in Figure 18) the detection of EOL1 (lamp overvoltage; see 3,  
Figure 18) and EOL2 (rectifier effect; see 4, Figure 18) is enabled completely.  
Preliminary Data Sheet  
26  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Functional Description  
Lamp voltage  
Pos. Ignition Level  
Pos. AC Level  
for EOL1 Detection  
1
2
3
4
Positive DC Level  
for EOL2 Detection  
0
t
Negative DC Level  
for EOL2 Detection  
t
Neg. AC Level  
for EOL 1 Detection  
Neg. Ignition Level  
EOL2  
Rectifier Effect  
EOL1  
Lamp Overvoltage  
Ignition  
Normal Operation  
Figure 18 End of Life and Rectifier Effect  
2.5.1  
Detection of End of Life 1 (EOL1) – Lamp Overvoltage  
The event of EOL1 is detected by measuring the positive and negative peak levels of the lamp voltage via an AC  
current fed into the pin LVS (Figure 19). This AC current is fed into the LVS pins via the network R41, R42, R43,  
R44 and the low pass filter C40 and R45 – see Figure 3. If the sensed AC current exceeds 210 µAPP for longer  
than 620 µs, the status of end-of-life (EOL1) is detected (lamp overvoltage/overload; see Figure 19 LVSAC  
current). The EOL1 fault results in a latched power-down mode (after trying a single restart). The controller  
continuously monitors the status until the EOL1 status changes – e.g. a new lamp is inserted.  
Lamp Voltage  
Pos. AC Level  
for EOL1 Detection  
3
2
0
t
Neg. AC Level  
for EOL1 Detection  
EOL1  
Lamp Overvoltage  
LVSAC Current  
Normal Operation  
105µAPeak  
3
2
t
0
- 105µAPeak  
t = 620 µs  
EOL1 Detection  
Figure 19 End of Life (EOL1) Detection, Lamp Voltage versus AC LVS Current  
Preliminary Data Sheet  
27  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Functional Description  
2.5.2  
Detection of End of Life 2 (EOL2) – Rectifier Effect  
The rectifier effect (EOL2) is detected by measuring the positive and negative DC levels of the lamp voltage via a  
current fed into the LVS pin (Figure 20). This current is fed into the LVS pin via the network R41, R42, R43 and  
R44 (see Figure 3). If the sensed DC current exceeds ± 42 µA (Figure 20 LVSDC current) for longer than  
2500 ms, the status of end-of-life (EOL2) is detected. The EOL2 fault results in a latched power-down mode (after  
trying a single restart) and the controller is continuously monitoring. The insertion of a new lamp or an interruption  
of the input voltage resets the status of the IC.  
Lamp Voltage  
2
4
Pos. DC Level  
for EOL2 Detection  
0
t
Neg. DC Level  
for EOL2 Detection  
EOL2  
Rectifier Effect  
Normal Operation  
LVSDC Current  
42 µA  
0
t
- 42 µA  
EOL2 Detection  
t = 2500 ms  
Figure 20 End of Life (EOL2) Detection, Lamp Voltage versus DC LVS Current  
2.6  
Detection of Capacitive Load  
In order to prevent a malfunction in the area of capacitive load (see Figure 21) during run mode due to certain  
deviations from the normal load (e.g. harmed lamp, sudden break of the lamp tube …), the IC has three integrated  
thresholds – sensed only via the LSCS (pin 2). The controller distinguishes between two different states of  
capacitive load: detection of working without load (idling detection, CapLoad 1) and working with short overcurrent  
(CapLoad 2). This state (CapLoad 2) affects operation below the resonance in the capacitive load area  
(Figure 23). In both cases, the IC results in a latched power-down mode after a single restart. After latching the  
power-down mode, the controller continuously monitors the input voltage and lamp filaments, and restarts after  
interruption of the input voltage or insertion of a new lamp.  
Preliminary Data Sheet  
28  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Functional Description  
Lamp Voltage vs Frequency @ different Modes  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
Area of Inductive  
Load Behavior  
IGNITION  
Area of Capacitive  
Load Behavior  
Load  
PRE Run  
and  
RUN Mode  
After  
IGNITION  
Pre Heating  
0
10000  
100000  
Frequency [Hz]  
After Ignition  
Before Ignition  
Figure 21 Capacitive and Inductive Operation  
2.6.1  
Capacitive Load 1 (Idling Detection – Current Mode Preheating)  
A capacitive load 1 operation (idling) is detected when the voltage at the LSCS pin is below +50 mV during the  
second 50 % ON time of the low side MOSFET (see capacitive load 1 (idling) in Figure 22). If this status is present  
for longer than 2500 ms, the controller triggers a latched power-down mode after trying a single restart. The  
controller keeps monitoring the status continuously until an adequate load is present (e.g. lamp removal); then the  
IC changes to normal operation.  
Capacitive Load 1 Operation (Ballast with Current Mode Preheating)  
Normal Operation  
Capacitive Load 1 (Idling)  
VDSLS  
VDSLS  
IDSLS  
IDSLS  
VGateHS  
VGateHS  
VGateLS  
VLSCS  
VGateLS  
VLSCS  
2nd 50%  
2nd 50%  
ON Time  
ON Time  
+ 50 mV  
+ 50 mV  
tCAPLOAD 1  
tCAPLOAD 2  
tCAPLOAD 1  
Figure 22 Capacitive Mode 1 Operation without Load during Run Mode  
Preliminary Data Sheet 29  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Functional Description  
2.6.2  
Capacitive Load 2 (Overcurrent / Operation below Resonance)  
A capacitive load 2 operation is detected if the voltage at the LSCS pin drops below a second threshold of  
LSCS = –50 mV directly before the high side MOSFET is turned on or exceeds a third threshold of VLSCS = 2.0 V  
V
during ON switching of the high side MOSFET. If this overcurrent is present for longer than 620 µs, the IC triggers  
a latched power-down mode after trying a single restart. The controller keeps monitoring the status continuously  
until an adequate load is present e.g. a new lamp is inserted; then the IC changes to normal operation.  
Normal Operation  
Capacitive Load 2 (Over Current)  
VDSLS  
VDSLS  
IDSLS  
IDSLS  
VGateHS  
VGateHS  
VGateLS  
VGateLS  
VLSCS  
VLSCS  
+ 2.0 V  
+ 2.0 V  
- 50 mV  
- 50 mV  
tCAPLOAD 2  
tCAPLOAD 2  
Figure 23 Capacitive Mode 2 – Operation with Overcurrent  
2.6.3  
Adjustable Self-adapting Dead Time  
The dead time between the turn OFF and turn ON of the half-bridge drivers is adjustable (C16, see Figure 3) and  
is detected via a second threshold (–50 mV) of the LSCS voltage. The range of the dead time adjustment is 1.05 µs  
up to 2.1 µs during all operating modes. The start of the dead time measurement is the OFF switching of the high  
side MOSFET. The end of the dead time measurement is when VLSCS drops for longer than typically 200 ns  
(internal fixed propagation delay) below –50 mV. This time will be stored (stored dead time) and the low side gate  
driver switches ON. The high side gate driver turns ON again after OFF switching of the low side switch and the  
stored dead time.  
Normal Operation in RUN Mode  
VDSLS  
VLSCS  
VLSCS = -50mV  
END of Dead Time  
Measurement  
Gate LS  
Gate HS  
Dead Time  
Dead Time  
START of Dead Time  
Measurement  
200 ns  
Propagation Delay  
Stored Dead Time  
Stored Dead Time  
Figure 24 Dead Time of ON and OFF of the Half-Bridge Drivers  
Preliminary Data Sheet 30  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Functional Description  
2.7  
Emergency Lighting  
Line interruptions (bus voltage drops) are detected by the PFCVS. If the rated PFC bus voltage drops below  
BUSRated < 75 % during run mode, the controller detects PFC bus undervoltage. In order to meet the emergency  
V
lighting standards, the controller distinguishes between two different states of PFC bus undervoltage: short- and  
a long-term PFC bus undervoltage. A timer increases the time as long as bus undervoltage is present. Short-term  
bus undervoltage is detected if the timer value stays below t < 800 ms typical (500 ms min.) after the bus voltage  
reaches the nominal level again. This causes a restart without preheating (emergency standard of VDE0108) –  
see Figure 25. If the timer exceeds t > 800 ms, the controller forces a complete restart of the system due to long-  
term bus undervoltage (Figure 26).  
2.7.1  
Short-term PFC Bus Undervoltage  
Short-term PFC bus undervoltage (Figure 25) is detected if the duration of the undervoltage does not exceed  
800 ms (timer stays below t < 800 ms, see Figure 25). In that case, the PFC and inverter drivers are immediately  
switched off and the controller continuously monitors the status of the bus voltage in a latched power-down mode  
(ICC < 170 µA). If the signal at the LVS pin exceeds 18 µA and the rated bus voltage is above 12.5 % while the  
timer is below t < 800 ms, the controller restarts from power up without preheating. The timer resets to 0 when  
entering run mode.  
Bus Voltage Drop for t < 800 ms  
Restart without Preheating  
Interrupt for  
t < 800 ms  
VBUSRated  
100%  
75%  
Power Down  
Mode  
RUN Mode  
Pre Run  
Run Mode  
VCC  
16V  
ICC  
< 6 mA +  
IQGate  
< 6 mA + IQGate  
< 160 µA  
Timer  
t = 800ms  
IPreheating  
VLamp  
Figure 25 BUS Voltage Drop below 75% (rated Bus Voltage) for t < 800 ms during RUN Mode  
Preliminary Data Sheet  
31  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Functional Description  
2.7.2  
Long-term PFC Bus Undervoltage  
If the duration of the bus undervoltage exceeds t > 800 ms (see Figure 26), the controller forces an undervoltage  
lockout (UVLO). The chip supply voltage drops below VCC = 10.6 V and the chip supply current is below ICC  
< 130 µA. When the Vcc voltage exceeds the 10.6 V threshold again, the IC current consumption is below ICC  
< 160 µA. In that case, the controller resets the timer and restarts with the full start-up procedure, including  
monitoring, power-up, start-up, soft start, preheating, ignition, pre-run and run modes, as shown in Figure 26.  
Bus Voltage Drop for t > 800 ms  
Restart with full Start Procedure  
VBUSRated  
Interrupt for t> 800 ms  
95%  
75%  
RUN Mode  
Power Down Mode  
Run Mode  
VCC  
16V  
UVLO @ 10.6V  
ICC  
< 6 mA +  
IGate  
< 6 mA + IGate  
<160 µA  
< 160 µA  
t = 800ms  
Timer  
IPreheating  
VLamp  
Figure 26 BUS Voltage Drop below 75% (rated Bus Voltage) for t > 800 ms during RUN Mode  
2.8  
Built-in Customer Test Mode Operation  
In order to decrease the final ballast testing time for customers, the 2nd generation of ballast IC supports an  
integrated built-in Customer Test Mode and several functions to disable some features and states of the IC.  
2.8.1  
Preheating Test Mode  
This feature forces the IC to stay in the preheating mode (see Section 2.8.1.2) or to start ignition immediately  
without any preheating (see Section 2.8.1.1). A resistor at this pin defines the duration of the preheating phase.  
Normally, the preheating phase is in a range of 0 ms up to 2500 ms set via a resistor RRTPH = 0 up to 25 kfrom  
the RTPH pin to GND. The preheating phase is skipped when the RTHP pin is set to GND. If the signal at this pin  
is VRTPH > 5.0 V, the IC remains in the preheating mode.  
Preliminary Data Sheet  
32  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Functional Description  
2.8.1.1  
Skip the Preheating Phase – Set RTPH Pin to GND  
Figure 27 shows a standard start-up with a preheating time set via resistor at the RTPH pin 11 to GND (e.g. 8.2 kꢀ  
– this is equal to a preheating phase of approx. 820 ms). The preheating phase can be skipped by setting the  
RTPH pin 11 directly to GND. In this case, ignition takes place directly after the soft start phase (see Figure 28).  
VCC  
Standard Start UP with Pre Heating  
17.5 V  
16.0 V  
Chip Supply Voltage  
14.0 V  
10.6 V  
Time  
Time  
Start Up  
Hysteresis  
UVLO  
VRTPH  
5.0 V  
Duration of Pre Heating  
is set by Resistor only  
2.5 V  
VLSGD  
10.0 V  
Time  
Time  
VLamp  
PRE HEATING  
t = 820 ms when using  
R
RTPH = 8.2kOhm  
Figure 27 Start-Up WITH Preheating  
VCC  
Start UP without Pre Heating  
17.5 V  
16.0 V  
Chip Supply Voltage  
14.0 V  
10.6 V  
Time  
Start Up  
UVLO  
Hysteresis  
VRTPH  
5.0 V  
2.5 V  
Set RTPH Resistor to GND  
Time  
VLSGD  
10.0 V  
Time  
Time  
VLamp  
INGNITION directly  
Figure 28 Start-Up WITHOUT Preheating  
Preliminary Data Sheet  
33  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Functional Description  
2.8.1.2  
IC Remains in Preheating Phase  
This feature gives the customer the flexibility to align the preheating frequency to the filament power in the  
preheating phase. Figure 29 shows a standard start-up with the set preheating time of, for example, 820 ms with  
an 8.2 kresistor at the RTPH pin 11. To force the IC to remain in preheating, the voltage level at the RTPH pin 11  
has to be set to 5.0 V. The duration of this 5.0 V signal defines the time of the preheating (see IPreHeat in Figure 30).  
VCC  
17.5 V  
16.0 V  
Chip Supply Voltage  
14.0 V  
10.6 V  
Time  
Start Up  
UVLO  
VRTPH  
Hysteresis  
5.0 V  
2.5 V  
Duration is set by  
Resistor only  
Time  
Time  
IPreHeat  
Preheating  
t = 820 ms when using  
RRTPH = 8.2kOhm  
VLamp  
IGNITION  
Time  
Figure 29 Start-Up WITH Preheating  
VCC  
17.5 V  
16.0 V  
Chip Supply Voltage  
14.0 V  
10.6 V  
Time  
Start Up  
UVLO  
VRTPH  
Hysteresis  
Set by external 5.0V Signal  
IC remains in Preheating  
NO Ignition  
5.0 V  
2.5 V  
Time  
Time  
IPreHeat  
VLamp  
Time  
Figure 30 Start-Up WITHOUT Preheating  
Preliminary Data Sheet  
34  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Functional Description  
2.8.2  
Deactivation of the Filament Detection  
In order to deactivate the filament detection of the low or high side filament, set the RES pin 13 or the LVS pin to  
GND. In this case, the IC starts up in normal operation without checking the filaments – e.g. when using an  
equivalent lamp resistive load instead of a load.  
VCC  
17.5 V  
16.0 V  
Chip Supply Voltage  
14.0 V  
10.6 V  
Time  
Time  
Start Up  
Hysteresis  
UVLO  
VRES  
5.0 V  
1.6 V  
1.3 V  
RES PIN set to GND  
VLSGD  
10V  
Time  
Time  
VLamp  
Figure 31 Deactivation via RES PIN  
VCC  
17.5 V  
16.0 V  
Chip Supply Voltage  
14.0 V  
10.6 V  
Time  
Start Up  
UVLO  
VRES  
Hysteresis  
5.0 V  
LVS PIN set to GND  
1.6 V  
1.3 V  
Time  
VLSGD  
10V  
Time  
Time  
VLamp  
Figure 32 Deactivation via LVS PIN  
Figure 31 shows the deactivation of the low and high side filament via set the RES pin 13 to GND. Figure 32  
shows the deactivation of the high side filament detection via set the LVS pin to GND.  
Note:An unused LVS pin has to be set to GND.  
Preliminary Data Sheet  
35  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Functional Description  
2.8.3  
Built-in Customer Test Mode (Clock Acceleration)  
The built-in customer test mode, supported by this IC, saves testing time for customers in terms of ballast end test.  
In this mode, the IC accelerates the internal clock in order to reduce the time of the 4 different procedures by the  
following factors (see Table 2).  
Table 2  
Phase  
Specified Acceleration Factors  
Duration for Test [ms]  
625  
Acceleration Factor  
Nominal Duration [ms]  
Preheating  
4
2
2500 (max)  
237  
Time Out Ignition  
Pre Run Mode  
EOL2  
118.5  
41.7  
41.7  
15  
60  
625  
2500  
2.8.3.1  
Enabling of the Clock Acceleration  
The clock acceleration (Built-in Customer Test Mode) is activated when the chip supply voltage exceeds VCC  
> 14.0 V and the voltages at the run and preheating frequency pins are set to VRFRUN = VRFPH = 5.0 V (± 5 %) –  
see Figure 33. A RES pin voltage of VRES > 3.5 V up to 5.0 V (± 5 %) prevents a power-up of the IC, the IC remains  
in a mode before powering up as long as the voltage at the RES pin is VRES > 3.5 V up to 5.0 V (± 5 %) – no power-  
up.  
Note:After the activation of the clock acceleration mode, the voltage level of 5.0 V at the run and preheating  
frequency pins (VRFRUN = VRFPH) can be released.  
2.8.3.2  
Starting the Chip with Accelerated Clock  
In order to start the IC with an accelerated clock, set the voltage at the RES pin to GND (VRES = 0 V), see  
Figure 33. The IC powers up the system and starts working with an accelerated clock. The duration of the different  
modes are accelerated by the factors shown in Table 2.  
Accelerated  
Ign. Time OUT  
by Factor 2  
Accelerated  
Pre Heating  
by Factor 4  
Propagation  
Delay  
IC Powers UP  
Accelerated  
Pre RUN  
by Factor 15  
Filament  
Detection  
IC Remains  
in Power UP  
VCC  
Accelerated  
EOL2  
VCCNom  
by Factor 60  
in Run Mode  
14.0 V  
10.6 V  
Enabling of  
Clock  
Acceleration  
Time  
Time  
VRFRUN  
5.0 V  
2.5 V  
VRFPH  
5.0 V  
2.5 V  
Starting the Chip with  
an accelerated Clock  
Time  
Time  
VRES  
3.5 V  
Figure 33 Clock Acceleration (Built in Customer Test Mode)  
Preliminary Data Sheet 36  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
State Diagram  
3
State Diagram  
3.1  
Features during Different Operating Modes  
10.6V < Vcc < 17.5V;  
I_RES= 21.3µA; f= F_RUN  
Mains Switch turned on; 0V < Vcc < 10.6V; I_VCC < 130µA; I_RES= 0µA  
10.6V < Vcc < 14.0V; I_VCC < 160µA; I_RES= 21.3µA  
Vcc > 14.0V & Filament detected; 12,5%< VBUS <105% => Start  
after 130µs  
F_START= 135kHz as long as VBUS < 95%  
10.6V < Vcc < 17.5V  
f= F_RUN  
10.6V < Vcc < 17.5V  
VBUS > 95%  
F_START > f > F_PH  
10.6V < Vcc < 17.5V  
f= F_PH  
10.6V < Vcc < 17.5V  
F_PH > f > F_RUN  
Typ. 60ms Typ. 35ms 0...80ms  
10ms  
0...2500ms  
Preheating  
40...237ms  
Ignition  
625ms  
Pre-Run Run  
UVLO  
Monitoring Start-up Softstart  
enabled PFC 5µs  
enabled Inv 625ms  
U
enabled PFC  
BUS Overvoltage > 109%  
BUS Overvoltage > 105%  
BUS Undervoltage < 95%  
enabled PFC enabled PFC  
enabled PFC  
enabled PFC  
A
A
U
U
N
F
F
F
F
F
enabled 130µs  
enabled  
enabled 84µs  
BUS Undervoltage < 75%  
BUS Open Loop < 12,5%  
enabled PFC 5µs  
enabled Inv 625ms  
enabled 200ns  
Threshold 1.0V  
enabled 500ns  
Threshold 0.8V  
enabled PFC  
enabled  
enabled PFC  
enabled  
enabled PFC  
enabled  
enabled PFC  
enabled  
enabled PFC  
enabled  
Overcurrent PFC  
Overcurrent Inverter  
Capacitive Load 2  
EOL 1, Overload  
enabled 1,6V enabled 1,6V  
enabled 0,8V  
enabled 1,6V  
enabled 1,6V  
enabled 620µs  
enabled 620µs  
enabled 2,5s  
enabled 2,5s  
EOL 2, Rectifier Effect  
Capacitive Load 1  
A
N
U
F
= Auto Restart  
= No Fault  
= Undervoltage  
Fault: 10.6V < Vcc < 17.5V; I_VCC < 170µA; I_RES= 21.3µA  
disabled by Lamp Removal or UVLO  
F= A single Restart is possible after delay of 200ms by internal Timer  
Minimum  
Duration  
of Effect  
= Fault, a single Restart  
Figure 34 Monitoring Features during Different Operating Modes  
Preliminary Data Sheet  
37  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
State Diagram  
3.2  
Operating Flow of the Start-Up Procedure into Run Mode  
UVLO  
Vcc < 10.6V  
Icc < 130µA  
Vcc < 10.6V  
Vcc > 10.6V  
Monitoring  
Vcc > 10.6V  
Icc < 160µA  
Vcc > Vccon(14.0V)  
& Filament detected  
Power-up  
Gate Drives off  
14.1V < Vcc  
See  
VBUS < 12,5%  
or VBUS > 105%  
Timing and Handling of  
Fault Conditions  
Icc approx 6.0mA  
after 130µs  
& VBUS > 12,5%  
& VBUS< 105%  
Start-up  
Inverter Gates on  
PFC Gate on  
See  
Protection  
Functions  
17.5V> Vcc >10.6V  
f_Inv = f_START  
Fault  
17.5V> Vcc >10.6V  
Icc < 170µA  
VBUS > 95%  
within 80ms  
Gate Drives off  
Softstart  
17.5V> Vcc >10.6V  
f_START=> f_PH  
after 10ms  
after 10ms  
& Flag Skip Preheat  
= Reset  
& Flag Skip Preheat = Set  
// Reset Flag  
Skip Preheat  
& Counter Skip PH //  
Preheat  
17.5V> Vcc >10.6V  
f = f_PH  
after t_PH= 0...2500ms  
Time set by R_TPH  
Ignition*  
Timeout 237ms  
17.5V> Vcc >10.6V  
f_PH => f_RUN  
f_Inv= f_RUN within  
t_IGN= 40...237ms  
Pre-Run  
17,5V> Vcc >10.6V  
f = f_RUN  
Reduced Monitoring  
after  
t_PRERUN= 625ms  
Run  
* NOTE:  
Ignition will reset the  
Flag Skip Preheating  
17.5V> Vcc >10.6V  
f = f_RUN  
Complete Monitoring  
Figure 35 Operating Flow during Start-Up Procedure  
Preliminary Data Sheet  
38  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
State Diagram  
3.3  
Auto Restart and Latched Fault Condition Mode  
Fault U  
BUS Voltage  
Fault A  
Fault F  
Fault, single Restart  
Auto Restart  
BUS Undervoltage  
(VBUS < 75%  
during Run Mode  
for t > 84µs);  
BUS Overvoltage  
(VBUS > 109%  
for t > 625ms);  
Open Filament LS;  
Inverter Overcurrent;  
Capacitive Load 1;  
Capacitive Load 2;  
Timeout Ignition;  
Surge;  
Time OUT Start Up  
(VBUS < 95% for t >  
80 ms)  
EOL 1 (Overload);  
EOL 2 (Rectifier Effect);  
Increment  
Fault Counter  
NOTE  
Set Flag  
Skip Preheat  
to Set Flag Skip Preheat:  
When using external Vcc  
Supply, no reset of Set Flag  
Skip Preheat. 1st Restart  
without Preheating while  
Vcc > UVLO. When LVS  
deactivated or not from Line.  
INVERTER and PFC Gate OFF  
Only at Inverter Over current PFC Gate  
OFF appr. 150µs Delayed  
Power down Icc< 160µA  
Gate drives off  
Power down  
Icc < 160µA  
Wait 200ms  
Delay Timer A  
Wait 100ms  
Delay Timer A  
Increment  
Counter Skip PH  
Fault Counter  
< 2  
Y
N
Counter  
Skip Preheat  
>7?  
Reset  
Fault Counter  
Y
N
Wait for  
Lamp Removal  
Start  
Start-up  
Gate drives off  
IC remains  
in active mode  
Lamp removed  
for min 100ms  
Inverter Gates on  
PFC Gate on  
17.5V> Vcc >10.6V  
f_Inv = f_START  
NOTE  
For external Vcc  
Supply, set Vcc  
below UVLO.  
Lamp inserted &  
Wait for  
Lamp inserted  
Lamp  
inserted?  
ILVSSink > 12µA typ.  
N
N
Y
Y
Lamp inserted  
for min 100ms  
Wait for  
UVLO  
N
t > 80ms?  
from Power-Up  
N
VBUS > 95%?  
Reset  
Flag Skip Preheat  
& Counter Skip PH  
Vcc > 14.0V?  
Vcc < 10.6V?  
Y
Y
N
N
Fault A  
Timeout 80ms  
Start-up  
Y
Y
End  
Start-up  
Note:  
Fault Counter reset  
after 40s in Run Mode  
Reset of Flag Skip  
Power-up  
Gate Drives off  
UVLO  
Reset all Latches  
Preheat after Ignition  
Figure 36 Operating Process during Start-Up Mode and Handling of Fault Conditions  
Preliminary Data Sheet  
39  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Protection Functions Matrix  
4
Protection Functions Matrix  
Table 3  
Protection Functions Matrix  
Characteristics of Fault  
Operating Mode Detection Active  
Consequence  
Description of Fault  
Supply voltage Vcc < 14.0 V Below start-  
before power-up up threshold  
S
S
S
S
F
1µs  
5µs  
X
Prevents power-up  
Supply voltage Vcc < 10.6 V Below UVLO  
after power-up threshold  
X
X
X
X
X
X
X
X
X
X
X
Power-down, reset  
failure latch  
Current into LVS pin < 12µA Open  
100µs  
100µs  
620µs  
1µs  
Prevents power-up  
(typ.) before power-up  
filament HS  
Voltage at RES pin > 1.6 V Open  
Prevents power-up  
before power-up  
filament LS  
Voltage at RES pin > 3.2 V Open  
Power down, latched  
fault mode, 1 restart  
filament LS  
Bus voltage < 12.5% of rated Open loop  
S
N
U
U
X
Keep Gate drives off, re-  
start after Vcc hysteresis  
level 10 µs after power-up  
detection  
Bus voltage < 12.5 %  
of rated level  
Open loop  
detection  
1µs  
X
X
X
X
X
X
X
X
Stops PFC FET until  
VBUS > 12.5%  
Bus voltage < 12.5%  
of rated level  
Shut-down  
option  
625ms  
84µs  
Power down, restart  
when VBUS> 12.5%  
Bus voltage < 75%  
of rated level  
Under-  
voltage  
Power down, 100ms  
delay, restart, skip pre-  
heating max 7 times  
add. shut down delay 120µs  
Bus voltage < 95% of rated Timeout max  
level during start-up start-up time  
A
S
N
U
F
F
F
F
80ms  
5µs  
X
X
Power down, 200ms  
delay, restart  
Bus voltage > 105% of rated Over-  
level 10µs after power-up voltage  
X
Keep Gate drives off, re-  
start after Vcc hysteresis  
Bus voltage > 109% of rated PFC  
5µs  
X
X
X
X
X
X
X
X
X
X
Stops PFC FET until  
VBUS< 105%  
level in active operation  
overvoltage  
Bus voltage > 109% of rated Inverter  
625ms  
620µs  
2500ms  
2500ms  
620µs  
Power down, restart  
when VBUS<105%  
level in active operation  
overvoltage  
+/- peak level of lamp voltage EOL 1  
at pin LVS above threshold overvoltage  
Power down, latched  
fault mode, 1 restart  
DC level of lamp voltage  
above +/- threshold  
EOL 2  
rect. effect  
Power down, latched  
fault mode, 1 restart  
Capacitive load 1  
Cap load 1  
idling  
Power down, latched  
fault mode, 1 restart  
Capacitive load 2,  
Cap. load 2  
Power down, latched  
fault mode, 1 restart  
operation below resonance overload  
Preliminary Data Sheet  
40  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Protection Functions Matrix  
Table 3  
Protection Functions Matrix (cont’d)  
Characteristics of Fault  
Operating Mode Detection Active  
Consequence  
Description of Fault  
Run frequency cannot be  
achieved  
Timeout  
ignition  
F
N
N
F
F
A
237ms  
200ns  
200ns  
500ns  
500ns  
500ns  
X
Power down, latched  
fault mode, 1 restart  
Voltage at PFCCS pin > 1.0V PFC  
overcurrent  
X
X
X
X
X
X
X
X
X
X
X
X
Stops on-time of PFC  
FET immediately  
Voltage at LSCS pin > 0.8V Inverter  
current lim  
Activates ignition control  
Voltage at LSCS pin > 0.8V Inverter  
overcurrent  
Power down, latched  
fault mode, 1 restart  
Voltage at LSCS pin > 1.6V Inverter  
overcurrent  
X
X
X
Power down, latched  
fault mode, 1 restart  
Inverter overcurrent  
& VBUS > 109% (Surge)  
Surge  
Power-down, restart  
when VBUS < 109 %  
After jump into latched fault mode F wait  
Reset of failure latch in run mode after  
200ms A single restart attempt after delay of internal timer  
40s Reset of failure latch by UVLO or 40 s in run mode  
S = Start-up condition, N = No fault, A = Auto restart , U = Undervoltage  
F = Fault with a single restart; a second F leads to a latched fault  
Note: All values @ typical 50 Hz mains frequency  
Preliminary Data Sheet  
41  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Electrical Characteristics  
5
Electrical Characteristics  
All voltages without the high side signals are measured with respect to ground (pin 4). The high side voltages are  
measured with respect to pin 17. The voltage levels are valid if other ratings are not violated.  
5.1  
Absolute Maximum Ratings  
Absolute maximum ratings are defined as ratings, which when exceeded may lead to destruction of the integrated  
circuit. For the same reason, ensure that any capacitor to be connected to pin 3 (VCC) or pin 15 (HSVCC) is  
discharged before assembling the application circuit.  
Parameter  
Symbol  
Limit Values  
Unit  
Remarks  
min.  
–5  
max.  
LSCS Voltage  
VLSCS  
6
3
V
mA  
V
LSCS Current  
ILSCS  
–3  
LSGD Voltage  
VLSGD  
–0.3  
–75  
–50  
–0.3  
–5  
Vcc+0.3  
5
Internally clamped to 11 V  
LSGD Peak Source Current  
LSGD Peak Sink Current  
VCC Voltage  
ILSGDsomax  
ILSGDsimax  
VVCC  
mA < 500 ns  
400  
18.0  
5
mA < 100 ns  
V
VCC Zener Clamp Current  
PFCGD Voltage  
PFCGD Peak Source Current  
PFCGD Peak Sink Current  
PFCCS Voltage  
IVCCzener  
VPFCGD  
IPFCGDsomax  
IPFCGDsimax  
VPFCCS  
IPFCCS  
mA IC in Power Down Mode  
–0.3  
–150  
–100  
–5  
Vcc+0.3  
5
V
mA < 500 ns  
700  
6
mA < 100 ns  
V
PFCCS Current  
–3  
3
mA  
PFCZCD Voltage  
PFCZCD Current  
PFCVS Voltage  
VPFCZCD  
IPFCZCD  
VPFCVS  
VRFRUN  
VRFPH  
–3  
6
V
–5  
5
mA  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–6  
5.3  
5.3  
5.3  
5.3  
5.3  
7
V
RFRUN Voltage  
RFPH Voltage  
V
V
RTPH Voltage  
VRTPH  
V
RES Voltage  
VRES  
V
LVS Voltage  
VLVS  
V
LVS Current1  
ILVS_1  
–1  
1
mA IC in Power Down Mode  
mA IC in active Mode  
LVS Current2  
ILVS_2  
–3  
3
HSGND Voltage  
HSGND Voltage Transient  
HSVCC Voltage  
HSGD Voltage  
VHSGND  
dVHSGND/dt  
VHSVCC  
VHSGD  
–650  
–40  
–0.3  
–0.3  
650  
40  
V
V/ns  
V
Referring to GND1)  
18.0  
Referring to HSGND  
VHSVCC  
+
V
Internally clamped to 11V  
0.3  
HSGD Peak Source Current  
HSGD Peak Sink Current  
Junction Temperature  
IHSGDsomax  
IHSGDsimax  
TJ  
–75  
0
0
mA < 500 ns  
mA < 100 ns  
°C  
400  
150  
–25  
Preliminary Data Sheet  
42  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Electrical Characteristics  
Parameter  
Symbol  
Limit Values  
Unit  
Remarks  
min.  
–55  
max.  
150  
1
Storage Temperature  
TS  
°C  
W
Maximum Power Dissipation  
PTOT  
PG_DSO-16-20  
amb=25°C  
K/W PG_DSO-16-20  
PCB area > 30mmx20mm  
K/W PG_DSO-16-20  
PCB area > 30mmx20mm  
K/W PG_DSO-16-20  
PCB area > 30mmx20mm  
Wave Soldering2)  
T
Thermal Resistance (2 Chips)  
Thermal Resistance (HS Chip)  
Thermal Resistance (LS Chip)  
RthJA  
120  
240  
240  
RthJAHS  
RthJALS  
Soldering Temperature Wave  
Soldering Temperature Reflow  
ESD Capability HBM  
260  
3)  
°C  
°C  
kV  
kV  
V
Reflow Soldering  
VESD_HBM  
VESD_CDM  
VPFCVS95  
2
1
Human Body Model4)  
Charged Device Model5)  
ESD Capability CDM  
Rated Bus Voltage (95%)  
2.33  
2.43  
1) Limitation due to voltage capability in end test  
2) According to JESD22A111  
3) According to J-STD-020D  
4) According to EIA/JESD22-A114-B  
5) According to JESD22-C101  
Preliminary Data Sheet  
43  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Electrical Characteristics  
5.2  
Operating Range  
The IC operates as described in the functional description once the values listed here lie within the operating  
range.  
Parameter  
Symbol  
Limit Values  
Unit  
Remarks  
min.  
VHSVCCOff  
–650  
VVCCOff  
VVCCOff  
–4  
max.  
17.5  
650  
17.5  
18.0  
5
HSVCC Supply Voltage  
HSGND Voltage  
VHSVCC  
VHSGND  
VVCC  
V
V
V
V
V
V
V
Referring to HSGND  
Referring to GND1)  
TJ = 25°C  
VCC Voltage @ 25°C  
VCC Voltage @ 125°C  
LSCS Voltage Range  
PFCVS Voltage Range  
PFCCS Voltage Range  
PFZCD Current Range  
LVS Voltage Range  
VVCC  
TJ = 125°C  
VLSCS  
VPFCVS  
VPFCCS  
IPFCZCD  
VLVS  
In active mode  
0
4
–4  
5
In active mode  
–3  
3
62)  
mA In active mode  
V
–6  
3)  
LVS Current Range  
ILVS  
210  
2.5  
150  
0
µA  
IC Power Down Mode  
LVS Current Range  
ILVS  
–2.5  
FRUN  
–500  
0
mA IC active mode  
kHz  
RFPH Frequency  
FRFPHrange  
IRFPH  
RFPH Source Current Range  
RTPH Voltage Range  
Junction Temperature  
Adjustable Preheating Freq.  
Adjustable Run Frequency  
Adjustable Preheating Time  
Set Resistor for Run Feq.  
Set Resistor for Preheat Feq.  
Set Resistor for Preheat Time  
Mains Frequency  
µA  
V
@ VRFPH = 2.5 V  
VRTPH  
Tj  
2.5  
125  
150  
120  
2500  
25  
–25  
FRFRUN  
20  
°C  
FRFPH  
FRFRUN  
tRTPH  
kHz Range set by RFPH  
kHz Range set by RFRUN  
0
ms  
kꢀ  
kꢀ  
kꢀ  
Hz  
Range set by RTPH  
RRFRUN  
RRFPH  
RRTPH  
fMains  
4
4
RRFRUN parallel to RRFPH  
NOTCH Filter Operation  
0
25  
45  
65  
1) Limitation due to creeping distance between the HS&LS Pins  
2) Limited by Maximum of Current Range at LVS  
3) Limited by Minimum of Voltage Range at LVS  
Preliminary Data Sheet  
44  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Electrical Characteristics  
5.3  
Characteristics  
5.3.1  
Power Supply Section  
The electrical characteristics involve the spread of values guaranteed within the specified supply voltage and  
junction temperature range TJ from –25 °C to +125 °C. Typical values represent the median values, which are  
related to 25 °C. Unless otherwise stated, a supply voltage of 15V and VHSVCC = 15 V is assumed and the IC  
operates in active mode. Furthermore, all voltages refer to GND if not otherwise stated.  
Parameter  
Symbol  
Limit Values  
Unit  
Test Conditions  
min. typ. max.  
VCC Quiescent Current1  
VCC Quiescent Current2  
VCC Supply Current 1)  
IVCCqu1  
90  
120  
4.2  
110  
130  
160  
6.0  
µA  
µA  
VVCC = VVCCOff – 0.5V  
VVCC = VVCCOn – 0.5V  
IVCCqu2  
IVCCSupply  
IVCCLatch  
mA VPFCVS > 2.725V  
VCC Supply Current in Latched  
Fault Mode  
170  
µA  
VRES = 5V  
LSVCC Turn-On Threshold  
LSVCC Turn-Off Threshold  
LSVCC Turn-On/Off Hyst.  
VVCCOn  
VVCCOff  
VVCCHys  
13.5 14.0 14.5  
10.0 10.6 11.0  
V
V
V
Hysteresis  
3.2  
3.6  
4.0  
VCC Zener Clamp Voltage  
VCC Zener Clamp Current  
High Side Leakage Current  
HSVCC Quiescent Current  
HSVCC Quiescent Current1)  
VVCCClamp  
IVCCZener  
15.5 16.3 16.9  
V
IVCC = 2mA/VRES = 5V  
2.5  
5
2
mA VVCC = 17.5V/VRES = 5V  
IHSGNDleak  
0.01  
190  
0.65  
µA  
µA  
VHSGND = 650V, VGND=0V  
VHSVCC = VHSVCCOn – 0.5V  
2)  
IHSVCCqu1  
270  
1.2  
2)  
IHSVCCqu2  
0.3  
mA VHSVCC > VHSVCCOn  
2)  
2)  
HSVCC Turn-On Threshold  
HSVCC Turn-Off Threshold  
HSVCC Turn-On/Off Hyst.  
VHSVCCOn  
VHSVCCOff  
VHSVCCHy  
GND  
9.9  
8.1  
1.4  
10.4 11.0  
V
V
V
Hysteresis  
8.6  
1.7  
9.3  
2.0  
2)  
Low Side Ground  
1) With inactive gate  
2) Referring to High Side Ground (HSGND)  
Preliminary Data Sheet  
45  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Electrical Characteristics  
5.3.2  
PFC Section  
5.3.2.1  
PFC Current Sense (PFCCS)  
Parameter  
Symbol  
Limit Values  
Unit  
Test Conditions  
min. typ. max.  
Turn – Off Threshold  
VPFCCSOff  
tPFCCSOff  
0.95  
140  
1.0  
1.05  
260  
V
Over Current Blanking +  
Propagation Delay1)  
200  
ns  
Leading Edge Blanking  
tBlanking  
180  
250  
310  
0.5  
ns  
Pulse width when VPFCCS > 1.0 V  
VPFCCS = 1.5V  
PFCCS Bias Current  
IPFCCSBias  
–0.5  
µA  
1) Propagation delay = 50 ns  
5.3.2.2  
PFC Zero Current Detection (PFCZCD)  
Parameter  
Symbol  
Limit Values  
Unit  
Test Conditions  
min. typ. max.  
Zero Crossing upper Thr.1)  
Zero Crossing lower Thr.2)  
Zero Crossing Hysteresis  
Clamping of pos. Voltages  
Clamping of neg. Voltages  
PFCZCD Bias Current  
VPFCZCDUp  
VPFCZCDLow  
VPFCZCDHys  
VPFCZCDpclp  
VPFCZCDnclp  
IPFCZCDBias  
IPFCZCDBias  
tRingsup  
1.4  
0.4  
1.5  
0.5  
1.0  
4.6  
1.6  
0.6  
V
V
V
4.1  
5.1  
V
IPFCZCDSink = 2mA  
IPFCZCDSource = –2mA  
VPFCZCD = 1.5V  
–1.7 –1.4 –1.0  
V
–0.5  
–0.5  
350  
500  
5.0  
0.5  
µA  
µA  
ns  
pAxs  
PFCZCD Bias Current  
PFCZCD Ringing Su.3) Time  
VPFCZCD = 0.5V  
500  
700  
650  
900  
Limit Value for ON Time  
Extension  
t x IZCD  
1) Turn OFF threshold  
2) Turn ON threshold  
3) Ringing Suppression Time  
Preliminary Data Sheet  
46  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Electrical Characteristics  
5.3.2.3  
PFC Bus Voltage Sense (PFCVS)  
Parameter  
Symbol  
Limit Values  
Unit  
Test Conditions  
min. typ. max.  
2.47 2.50 2.53  
2.68 2.73 2.78  
2.57 2.63 2.68  
Trimmed Reference Voltage  
Overvoltage turn Off (109%)  
Overvoltage turn On (105%)  
Overvoltage Hysteresis  
Under voltage (75%)  
VPFCVSRef  
VPFCVSRUp  
VPFCVSLow  
VPFCVSHys  
VPFCVSUV  
VPFCVSUV  
VPFCVS95  
IPFCVSBias  
V
V
V
± 1.2 %  
70  
100  
130  
mV 4 % rated bus voltage  
1.835 1.88 1.915  
0.237 0.31 0.387  
2.325 2.38 2.425  
V
V
V
Under voltage (12.5%)  
Rated Bus Voltage (95%)  
PFCVS Bias Current  
–1.0  
1.0  
µA  
VPFCVS = 2.5V  
5.3.2.4  
PFC PWM Generation  
Parameter  
Symbol  
Limit Values  
Unit  
Test Conditions  
min. typ. max.  
Initial ON – Time1)  
Max. ON – Time2)  
tPFCON_initial  
tPFCON_max  
tPFCON_min  
4.0  
µs  
µs  
ns  
VPFCZCD = 0V  
18.0 24.0 28.0  
0.45V < VPFCVS < 2.45V  
Switch Threshold from CritCM  
into DCM  
160  
270  
370  
Repetition Time1)  
tPFCRep  
tPFCOff  
47  
42  
52  
47  
57  
52  
µs  
µs  
VPFCZCD = 0V  
Off Time  
1) When missing Zero Crossing Signal  
2) At the maxima of the AC Line Input Voltage  
Preliminary Data Sheet  
47  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Electrical Characteristics  
5.3.2.5  
PFC gate Drive (PFCGD)  
Parameter  
Symbol  
Limit Values  
Unit  
Test Conditions  
min. typ. max.  
PFCGD Low Voltage  
PFCGD High Voltage  
VPFCGDLow  
0.4  
0.4  
0.7  
0.75  
0.3  
0.9  
1.1  
0.6  
V
V
IPFCGD = 5mA  
I
PFCGD = 20mA  
PFCGD = -20mA  
–0.2  
V
I
VPFCGDHigh  
10.0 11.0 11.6  
V
IPFCGD = -20mA  
PFCGD = -1mA / VVCC  
IPFCGD = -5mA / VVCC  
1)  
1)  
9.0  
8.5  
0.4  
0.3  
V
I
V
PFCGD active Shut Down  
PFCGD UVLO Shut Down  
PFCGD Peak Source Current  
PFCGD Peak Sink Current  
VPFCGASD  
VPFCGDuvlo  
IPFCGDSouce  
IPFCGDSink  
VPFCGDHigh  
0.75  
1.0  
1.1  
1.5  
V
IPFCGD = 20mA VVCC=5V  
IPFCGD = 5mA VVCC=2V  
V
2)  
3)  
–100  
500  
mA  
mA  
V
+
+
2)  
3)  
PFCGD Voltage during sink  
Current  
11.0 11.7 12.3  
IPFCGDSinkH = 3mA  
PFC Rise Time  
VPFCGDRise  
VPFCGDFall  
105  
20  
245  
45  
405  
70  
ns  
ns  
2V > VLSGD > 8V 2)  
8V > VLSGD > 2V 2)  
PFC Fall Time  
1) VVCC = VVCCOff + 0.3 V  
2) RLoad = 4and CLoad = 3.3 nF  
3) The parameter is not subject to a production test – verified by design / characterization  
Preliminary Data Sheet  
48  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Electrical Characteristics  
5.3.3  
Inverter Section  
5.3.3.1  
Low Side Current Sense (LSCS)  
Parameter  
Symbol  
Limit Values  
min. typ. max.  
Unit  
Test Conditions  
1)  
2)  
Overcurrent Shut Down Volt.  
Overcurrent Shut Down Volt.  
Duration of Overcurrent  
VLSCSOvC1  
VLSCSOvC2  
tLSCSOvC  
1.5  
0.75  
450  
30  
1.6  
0.8  
600  
50  
1.7  
0.85  
700  
73  
V
V
ns  
Capacitive Mode Det. Level 1  
Capacitive Mode Duration 1  
Capacitive Mode Det. Level 2  
Capacitive Mode Duration 2  
Capacitive Mode Det. Level 3  
Capacitive Mode Duration 3  
LSCS Bias Current  
VLSCSCap1  
tLSCSCap1  
VLSCSCap2  
tLSCSCap2  
VLSCSCap3  
tLSCSCap3  
ILSCSBias  
mV During Run Mode  
3)  
280  
2.0  
50  
ns  
1.8  
2.2  
V
ns  
During Run Mode  
4)  
–70  
-50  
280  
-27  
mV  
ns  
5)  
–1.0  
1.0  
µA  
@ VLSCS = 1.5V  
1) Overcurrent Voltage Threshold active during: Start Up, Soft start, Ignition and pre-run Mode  
2) Overcurrent Voltage Threshold active during: Preheating and Run Mode  
3) During 2nd 50% Duty Cycle of LSGD in Run Mode  
4) Active during Turn ON of the HSGD in Run Mode  
5) Active before Turn ON of the HSGD in Run Mode  
Preliminary Data Sheet  
49  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Electrical Characteristics  
5.3.3.2  
Low Side Gate Drive (LSGD)  
Parameter  
Symbol  
Limit Values  
Unit  
Test Conditions  
ILSGD = 5mA1)  
min. typ. max.  
LSGD Low Voltage  
LSGD High Voltage  
VLSGDLow  
0.4  
0.4  
0.7  
0.8  
0.2  
1.0  
1.2  
0.5  
V
V
ILSGD = 20mA1)  
–0.3  
V
ILSGD = - 20mA (Source)  
2)  
VLSGDHigh  
10.0 10.8 11.6  
V
3)  
4)  
9.0  
8.5  
0.4  
0.3  
V
V
LSGD active Shut Down  
LSGD UVLO Shut Down  
LSGD Peak Source Current  
LSGD Peak Sink Current  
LSGD Voltage during 1)  
LSGD Rise Time  
VLSGDASD  
VLSGDUVLO  
ILSGDSource  
ILSGDSink  
0.75  
1.0  
–50  
300  
11.7  
245  
35  
1.1  
1.5  
V
VCC=5V / ILSGD = 20mA1)  
VCC=2V / ILSGD = 5mA1)  
V
5)  
6)  
mA  
mA  
V
+
+
5)  
6)  
VLSGDHigh  
tLSGDRise  
tLSGDFall  
ILSGDsinkH = 3mA  
2V < VLSGD < 8V5)  
8V > VLSGD > 2V5)  
105  
20  
405  
60  
ns  
ns  
LSGD Fall Time  
1) Sink Current  
2) ILSGD = - 20mA Source Current  
3) VCCOFF + 0.3V and ILSGD = - 1mA Source Current  
4) VCCOFF + 0.3V and ILSGD = - 5mA Source Current  
5) Load: RLoad = 10and CLoad = 1nF  
6) The parameter is not subject to a production test – verified by design / characterization  
5.3.3.3  
Inverter Control Run (RFRUN)  
Parameter  
Symbol  
Limit Values  
Unit  
Test Conditions  
min.  
typ.  
max.  
Fixed Start – Up Frequency  
Duration of Soft Start  
FStartUp  
121.5 135 148.5  
kHz  
ms  
V
1)  
tSoftStart  
9
11  
2.5  
50  
13.5  
RFRUN Voltage in Run Mode  
Run Frequency  
VRFRUN  
FRFRUN  
FRFRUN1  
FRFRUN2  
FRFRUN3  
IRFRUNmax  
@ 100µA<IRFRUN<600µA  
49  
51  
kHz RRFRUN = 10kꢀ  
kHz IRFRUN = – 100 µA  
kHz IRFRUN = – 200 µA  
kHz IRFRUN = – 500 µA  
Adjustable Run Frequency  
20  
40  
100  
RFRUN max. Current Range  
–1000 – 650  
µA  
@ VRFRUN = 0V  
1) Shift Start Up Frequency to Preheating Frequency  
Preliminary Data Sheet  
50  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Electrical Characteristics  
5.3.3.4  
Inverter Control Preheating (RFPH, RTPH)  
Parameter  
Symbol  
Limit Values  
Unit  
Test Conditions  
min. typ. max.  
RFPH Voltage Preheating  
Preheating Frequency  
RFPH max. Current Range  
Current for set Preh. Time  
Preheating Time  
VRFPH  
97  
2.5  
V
VRFPH = 0V in Run Mode  
FRFPH1  
IRFPHmax  
IRTPH  
100  
103  
kHz RRFPH = RRFRUN = 10kꢀ  
–1000 – 550  
–100  
µA  
µA  
ms  
ms  
ms  
ms  
ms  
@ VRFPH = 0V  
tRTPH1  
tRTPH2  
tRTPH3  
tRTPH4  
tRTPH5  
950 1000 1050  
RRTPH1 = 10kꢀ  
RRTPH2 = 1kꢀ  
RRTPH3 = 5kꢀ  
RRTPH4 = 20kꢀ  
RRTPH5 = 25kꢀ  
50  
100  
500  
150  
2000  
2500  
5.3.3.5  
Restart after Lamp Removal (RES)  
Parameter  
Symbol  
Limit Values  
min. typ. max.  
Unit  
Test Conditions  
High Side Filament In Det.  
VRES1  
1.55  
1.25  
1.60  
1.30  
3.2  
1.65  
1.35  
V
V
UVLO, VCC < VCCON  
VRES2  
VRES3  
IRES1  
IRES2  
IRES3  
IRES4  
V
Run Mode  
RES Current Source  
–53.2 –42.6 –32.0  
–44.2 –35.4 –26.6  
–26.6 –21.3 – 16.0  
–22.1 –17.7 –13.3  
µA  
µA  
µA  
µA  
VRES = 1V ;LVS = 5µA  
VRES = 2V ;LVS = 5µA  
VRES = 1V ;LVS = 30µA  
VRES = 2V ;LVS = 30µA  
Preliminary Data Sheet  
51  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Electrical Characteristics  
5.3.3.6  
Lamp Voltage Sense (LVS)  
Parameter  
Symbol  
Limit Values  
Unit  
Test Conditions  
min. typ. max.  
–5.0 –3.0 –2.0  
Source Current before Startup  
Enable Lamp Monitoring  
Sink Current for Lamp Det.  
Positive Clamping Voltage  
AC EOLCurrent Threshold  
Positive EOL Current Thr.  
Negative EOL Current Thr.  
ILVSSource  
VLVSEnable1  
ILVSSink  
µA  
mV  
µA  
V
VLVS = 0V  
1)  
350  
8.0  
530  
750  
12.0 18.0  
VLVS > VLVSClamp  
@ ILVS = 300µA  
VLVSClamp  
ILVSSourceAC  
ILVSDCPos  
ILVSDCNeg  
6.5  
210  
42  
190  
34  
230  
50  
µApp ILVS > ILVSEOLpp EOL 1  
µA  
µA  
ILVS > ILVSDCPos EOL 2  
ILVS > ILVSDCNeg EOL 2  
–50  
–42  
–34  
1) If VLVS < VLVSEnable1 monitoring is disabled  
5.3.3.7  
High Side Gate Drive (HSGD)  
Parameter  
Symbol  
Limit Values  
Unit  
Test Conditions  
min. typ. max.  
HSGD Low Voltage  
HSGD High Voltage  
VHSGDLow  
0.02 0.05  
0.5 1.1  
0.1  
2.5  
V
V
V
V
IHSGD = 5mA (sink)  
IHSGD = 100mA (sink)  
–0.4 –0.2 –0.05  
ILSGD = - 20mA (source)  
VHSGDHigh  
9.7  
10.5 11.2  
VCCHS=15V  
HSGD = - 20mA (source)  
CCHSOFF + 0.3V  
HSGD = - 1mA (source)  
I
7.8  
V
V
V
I
HSGD active Shut Down  
VHSGDASD  
0.05 0.22  
0.5  
VCCHS=5V  
IHSGD = 20mA (sink)  
HSGD Peak Source Current  
HSGD Peak Sink Current  
HSGD Rise Time  
IHSGDSource  
IHSGDSink  
–50  
300  
220  
mA RLoad = 10+CLoad = 1nF1)  
mA RLoad = 10+CLoad = 1nF1)  
THSGDRise  
140  
300  
ns  
2V < VLSGD < 8V  
Load = 10+CLoad = 1nF  
8V > VLSGD > 2V  
Load = 10+CLoad = 1nF  
1) The parameter is not subject to a production test – verified by design / characterization  
R
HSGD Fall Time  
THSGDFall  
20  
35  
70  
ns  
R
Preliminary Data Sheet  
52  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Electrical Characteristics  
5.3.3.8  
Timer Section  
Delay Timer 1  
tTIMER1  
tTIMER2  
tInv  
70  
74  
100  
84  
160 ms  
94 ms  
160 µs  
2.40 µs  
1.3 µs  
200 ns  
200 ns  
48 ms  
236 ms  
685 ms  
For lamp detection  
For VBUS > 95%  
Delay Timer 2  
Inverter Time  
100  
1.75  
0.8  
130  
2.1  
1.05  
Inverter Dead Time Max  
Inverter Dead Time Min  
Inverter Dead Time Max  
Inverter Dead Time Min  
Min. Duration of Ignition  
Max. Duration of Ignition  
Duration of Pre – Run  
tDeadMax  
tDeadMin  
tDeadMax  
tDeadMin  
tIgnition  
–200  
–200  
34  
40  
tNOIgnition  
tPRERUN  
197  
565  
625  
5.3.3.9  
Built-In Customer Test Mode  
Voltage at RTPH Pin  
Voltage at RTPH Pin  
Voltage at LVS  
VRTPH  
VRTPH  
VLVS  
0
V
V1)  
Preheating time = 0 ms (skipped preheating)  
IC remains in Preheating  
5.0  
0
V
Disables Lamp Voltage Sense  
Disable the Filament Detection  
Voltage at RES Pin  
VRES  
0
V
Voltage at RFPH Pin  
Voltage at RFRUN Pin  
Voltage at VCC Pin  
Voltage at RES Pin  
VRFPH  
VRFRUN  
VCC  
5.0  
5.0  
V1)  
V1)  
Built-in Customer Test Mode - Clock  
Acceleration. Decreasing time for the following  
procedures: Preheating by factor 4  
Timeout ignition by factor 2  
> 14.0 V  
VRES  
0
V
Pre-run by factor 15; EOL by 60  
1) Tolerance for this voltage is ± 5%  
Preliminary Data Sheet  
53  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Application Example  
6
Application Example  
6.1  
Schematic Ballast 54W T5 Single Lamp  
Figure 37 Application Circuit of Ballast for Single Fluorescent Lamp Voltage Mode Preheating  
Preliminary Data Sheet  
54  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Application Example  
6.2  
Bill of Material  
Figure 38 Bill of Material  
Preliminary Data Sheet  
55  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Application Example  
6.3  
Multi Lamp Ballast Topologies (Series Connection)  
PFCZCD  
PFCGD  
90 ...  
270 VAC  
HSGD  
HSVCC  
HSGND  
PFCVS  
PFCCS  
LSGD  
LSCS  
Figure 39 Application Circuit of Ballast for two Fluorescent Lamps Voltage Mode Preheating  
Preliminary Data Sheet  
56  
V1.1, 2012-04-10  
ICB2FL03G  
Controller for Fluorescent Lamp Ballasts  
Package Outline  
7
Package Outline  
7.1  
Outline Dimensions of PG-DSO-16  
Figure 40 Package Outline with Creepage Distance  
Preliminary Data Sheet  
57  
V1.1, 2012-04-10  
w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

ICB30L50F10NC

Proximity Inductive Sensors Standard Range, Nickel-Plated Brass Housing
CARLOGAVAZZI

ICB30L50F10NCM1

Proximity Inductive Sensors Standard Range, Nickel-Plated Brass Housing
CARLOGAVAZZI

ICB30L50F10NO

Proximity Inductive Sensors Standard Range, Nickel-Plated Brass Housing
CARLOGAVAZZI

ICB30L50F10NOM1

Proximity Inductive Sensors Standard Range, Nickel-Plated Brass Housing
CARLOGAVAZZI

ICB30L50F10PC

Proximity Inductive Sensors Standard Range, Nickel-Plated Brass Housing
CARLOGAVAZZI

ICB30L50F10PCM1

Proximity Inductive Sensors Standard Range, Nickel-Plated Brass Housing
CARLOGAVAZZI

ICB30L50F10PO

Proximity Inductive Sensors Standard Range, Nickel-Plated Brass Housing
CARLOGAVAZZI

ICB30L50F10POM1

Proximity Inductive Sensors Standard Range, Nickel-Plated Brass Housing
CARLOGAVAZZI

ICB30L50F15A2IO

ICB12, ICB18 & ICB30 IO-Link 3-wire DC
CARLOGAVAZZI

ICB30L50F15M1IO

ICB12, ICB18 & ICB30 IO-Link 3-wire DC
CARLOGAVAZZI

ICB30L50F15NC

Proximity Inductive Sensors Extended Range, Nickel-Plated Brass Housing
CARLOGAVAZZI

ICB30L50F15NCM1

Proximity Inductive Sensors Extended Range, Nickel-Plated Brass Housing
CARLOGAVAZZI