ICE3A4565P [INFINEON]

Switching Regulator, Current-mode, 100kHz Switching Freq-Max, PZFM6, TO-220, 6 LEAD;
ICE3A4565P
型号: ICE3A4565P
厂家: Infineon    Infineon
描述:

Switching Regulator, Current-mode, 100kHz Switching Freq-Max, PZFM6, TO-220, 6 LEAD

局域网 开关
文件: 总28页 (文件大小:1319K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary Datasheet V1.2, 21 May 2004  
CoolSET™-F3  
ICE3A(B)0365/0565/1065/1565  
ICE3A(B)2065/2565  
ICE3A(B)3065I/4065I/4565I  
ICE3A(B)6065I/6565I  
ICE3A(B)3065P/4065P/4565P  
ICE3A(B)6065P/6565P  
Off-Line SMPS Current Mode  
Controller with integrated 650V  
Startup Cell/CoolMOS™  
Power Management & Supply  
N e v e r s t o p t h i n k i n g .  
CoolSET™-F3  
Revision History:  
2004-05-21  
Preliminary Datasheet  
Previous Version:  
Page  
Subjects (major changes since last revision)  
For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or  
the Infineon Technologies Companies and Representatives worldwide: see our webpage at http://  
www.infineon.com  
CoolMOS™, CoolSET™ are trademarks of Infineon Technologies AG.  
We Listen to Your Comments  
Any information within this document that you feel is wrong, unclear or missing at all?  
Your feedback will help us to continuously improve the quality of this document.  
Please send your proposal (including a reference to this document) to:  
mcdocu.comments@infineon.com  
Edition 2004-05-21  
Published by Infineon Technologies AG,  
St.-Martin-Strasse 53,  
D-81541 München  
© Infineon Technologies AG 1999.  
All Rights Reserved.  
Attention please!  
The information herein is given to describe certain components and shall not be considered as warranted char-  
acteristics.  
Terms of delivery and rights to technical change reserved.  
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding  
circuits, descriptions and charts stated herein.  
Infineon Technologies is an approved CECC manufacturer.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest Infin-  
eon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in  
question please contact your nearest Infineon Technologies Office.  
Infineon Technologies Components may only be used in life-support devices or systems with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
CoolSET™-F3  
Preliminary Data  
Off-Line SMPS Current Mode Controller  
with integrated 650V Startup Cell/  
CoolMOS™  
Product Highlights  
PG-DIP-8-6  
Best in class in DIP8, TO220, I2Pak packages  
Leadfree for DIP8 package  
Active Burst Mode to reach the lowest Standby Power  
Requirements < 100mW  
P-TO220-6-46  
Protection features (Auto Restart Mode) to increase  
robustness and safety of the system  
Adjustable Blanking Window for high load jumps to  
increase system reliability  
Isolated drain package for TO220/I2PAK  
Increased creepage distance for TO220/I2PAK  
Wide power class of products for various applications  
P-TO220-6-47  
Description  
Features  
The new generation CoolSET™-F3 provides Active Burst  
Mode to reach the lowest Standby Power Requirements  
<100mW at no load. As the controller is always active  
during Active Burst Mode, there is an immediate response  
on load jumps without any black out in the SMPS. In Active  
Burst Mode the ripple of the output voltage can be reduced  
<1%. Furthermore, to increase the robustness and safety  
of the system, the device enters into Auto Restart Mode in  
the cases of Overtemperature, VCC Overvoltage, Output  
Open Loop or Overload and VCC Undervoltage. By means  
of the internal precise peak current limitation, the  
dimension of the transformer and the secondary diode can  
be lowered which leads to more cost efficiency. An  
adjustable blanking window prevents the IC from entering  
Auto Restart or Active Burst Mode unintentionally during  
high load jumps. The CoolSET™-F3 family consists a wide  
power class range of products for various applications.  
650V avalanche rugged CoolMOS™ with built in  
switchable Startup Cell  
Active Burst Mode for lowest Standby Power  
@ light load controlled by Feedback signal  
Fast load jump response in Active Burst Mode  
67/100 kHz fixed switching frequency  
Auto Restart Mode for Overtemperature Detection  
Auto Restart Mode for Overvoltage Detection  
Auto Restart Mode for Overload and Open Loop  
Auto Restart Mode for VCC Undervoltage  
Blanking Window for short duration high current  
User defined Soft Start  
Minimum of external components required  
Max Duty Cycle 72%  
Overall tolerance of Current Limiting < ±5%  
Internal PWM Leading Edge Blanking  
Soft switching for low EMI  
Typical Application  
+
Converter  
Snubber  
CBulk  
DC Output  
85 ... 270 VAC  
-
CVCC  
Startup Cell  
VCC  
Drain  
Power Management  
PWM Controller  
Current Mode  
Depl-CoolMOS™  
CS  
FB  
Precise Low Tolerance Peak  
Current Limitation  
RSense  
Active Burst Mode  
Auto Restart Mode  
Control  
Unit  
GND  
SoftS  
CSoftS  
CoolSET™-F3  
Preliminary Datasheet V1.2  
3
21 May 2004  
CoolSET™-F3  
Ordering Codes  
1)  
Type  
Ordering Code  
Package  
VDS  
FOSC  
RDSon  
230VAC ±15%2)  
85-265 VAC2)  
10W  
ICE3A0365  
ICE3A0565  
ICE3A1065  
ICE3A1565  
ICE3A2065  
ICE3A2565  
Q67040-S4666-A101  
Q67040-S4665-A101  
Q67040-S4664-A101  
Q67040-S4663-A101  
Q67040-S4662-A101  
Q67040-S4667-A101  
PG-DIP-8-6  
PG-DIP-8-6  
PG-DIP-8-6  
PG-DIP-8-6  
PG-DIP-8-6  
PG-DIP-8-6  
650V  
650V  
650V  
650V  
650V  
650V  
100kHz  
100kHz  
100kHz  
100kHz  
100kHz  
100kHz  
6.45  
4.70  
2.95  
1.70  
0.92  
0.65  
22W  
25W  
32W  
42W  
57W  
68W  
12W  
16W  
20W  
28W  
33W  
ICE3B0365  
ICE3B0565  
ICE3B1065  
ICE3B1565  
ICE3B2065  
Q67040-S4636-A102  
Q67040-S4638-A102  
Q67040-S4669-A101  
Q67040-S4670-A101  
Q67040-S4671-A101  
Q67040-S4668-A101  
PG-DIP-8-6  
PG-DIP-8-6  
PG-DIP-8-6  
PG-DIP-8-6  
PG-DIP-8-6  
PG-DIP-8-6  
650V  
650V  
650V  
650V  
650V  
650V  
67kHz  
67kHz  
67kHz  
67kHz  
67kHz  
67kHz  
6.45  
4.70  
2.95  
1.70  
0.92  
0.65  
22W  
25W  
32W  
42W  
57W  
68W  
10W  
12W  
16W  
20W  
28W  
33W  
ICE3B2565  
1)  
typ @ T=25°C  
Maximum input power rating at Ta=75°C, Tj=125°C and with copper area on PCB = 6cm².  
2)  
1)  
Type  
Ordering Code  
Package  
VDS  
FOSC  
RDSon  
3.00  
2.10  
1.55  
0.95  
0.79  
230VAC ±15%2)  
125W  
85-265 VAC2)  
60W  
ICE3A3065I  
ICE3A4065I  
ICE3A4565I  
ICE3A6065I  
ICE3A6565I  
P-TO-220-6-46 650V  
P-TO-220-6-46 650V  
P-TO-220-6-46 650V  
P-TO-220-6-47 650V  
P-TO-220-6-47 650V  
100kHz  
100kHz  
100kHz  
100kHz  
100kHz  
150W  
72W  
170W  
83W  
220W  
105W  
240W  
120W  
ICE3B3065I  
ICE3B4065I  
ICE3B4565I  
ICE3B6065I  
ICE3B6565I  
P-TO-220-6-46 650V  
P-TO-220-6-46 650V  
P-TO-220-6-46 650V  
P-TO-220-6-46 650V  
P-TO-220-6-46 650V  
67kHz  
67kHz  
67kHz  
67kHz  
67kHz  
3.00  
2.10  
1.55  
0.95  
0.79  
125W  
150W  
170W  
220W  
240W  
60W  
72W  
83W  
105W  
120W  
ICE3A3065P  
ICE3A4065P  
ICE3A4565P  
ICE3A6065P  
ICE3A6565P  
P-TO-220-6-47 650V  
P-TO-220-6-47 650V  
P-TO-220-6-47 650V  
P-TO-220-6-47 650V  
P-TO-220-6-47 650V  
100kHz  
100kHz  
100kHz  
100kHz  
100kHz  
3.00  
2.10  
1.55  
0.95  
0.79  
125W  
150W  
170W  
220W  
240W  
60W  
72W  
83W  
105W  
120W  
ICE3B3065P  
ICE3B4065P  
ICE3B4565P  
ICE3B6065P  
ICE3B6565P  
P-TO-220-6-47 650V  
P-TO-220-6-47 650V  
P-TO-220-6-47 650V  
P-TO-220-6-47 650V  
P-TO-220-6-47 650V  
67kHz  
67kHz  
67kHz  
67kHz  
67kHz  
3.00  
2.10  
1.55  
0.95  
0.79  
125W  
150W  
170W  
220W  
240W  
60W  
72W  
83W  
105W  
120W  
1)  
typ @ T=25°C  
Maximum practical continuous input power in an open frame design at Ta=75°C, Tj=125°C and Rth=2.7K/W.  
2)  
Preliminary Datasheet V1.2  
4
21 May 2004  
CoolSET™-F3  
Page  
Preliminary Data  
Table of Contents  
1
Pin Configuration and Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
Pin Configuration with PG-DIP-8-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
Pin Configuration with P-TO220-6-46 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
Pin Configuration with P-TO220-6-47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
Pin Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
1.1  
1.2  
1.3  
1.4  
2
Representative Blockdiagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
3
3.1  
3.2  
3.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Startup Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
PWM Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
PWM-Latch FF1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Gate Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Current Limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Leading Edge Blanking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Propagation Delay Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Adjustable Blanking Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Active Burst Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Entering Active Burst Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Working in Active Burst Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Leaving Active Burst Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Protection Mode (Auto Restart Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.4  
3.4.1  
3.4.2  
3.4.3  
3.5  
3.5.1  
3.5.2  
3.6  
3.6.1  
3.6.2  
3.6.2.1  
3.6.2.2  
3.6.2.3  
3.6.3  
4
4.1  
4.2  
4.3  
4.3.1  
4.3.2  
4.3.3  
4.3.4  
4.3.5  
4.3.6  
4.3.7  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
Supply Section 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
Supply Section 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Internal Voltage Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
PWM Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Current Limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
CoolMOS™ Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
5
Outline Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Preliminary Datasheet V1.2  
5
21 May 2004  
CoolSET™-F3  
Pin Configuration and Functionality  
Preliminary Data  
1
Pin Configuration and Functionality  
1.2 Pin Configuration with P-TO220-6-46  
1.1  
Pin Configuration with PG-DIP-8-6  
Pin  
1
Symbol Function  
Pin  
Symbol Function  
650V1) Depl-CoolMOS™ Drain  
Drain  
1
2
3
SoftS  
FB  
Soft-Start  
Feedback  
3
CS  
Current Sense/  
650V1) Depl-CoolMOS™ Source  
CS  
Current Sense/  
650V1) Depl-CoolMOS™ Source  
4
5
6
7
GND  
VCC  
SoftS  
FB  
Controller Ground  
Controller Supply Voltage  
Soft-Start  
650V1) Depl-CoolMOS™ Drain  
650V1) Depl-CoolMOS™ Drain  
4
5
Drain  
Drain  
Feedback  
6
7
N.C.  
VCC  
GND  
Not Connected  
1)  
Controller Supply Voltage  
Controller Ground  
at Tj = 110°C  
8
1)  
at Tj = 110°C  
Package P-TO220-6-46  
Package PG-DIP-8-6  
SoftS  
FB  
1
8
7
6
5
GND  
VCC  
N.C  
1
2
3
4
5
6
7
2
CS  
3
4
Drain  
Drain  
Figure 1  
Note: Pin  
package.  
Pin Configuration PG-DIP-8-6(top view)  
Figure 2 Pin Configuration P-TO220-6-46(top view)  
4
and are shorted within the DIP  
5
Preliminary Datasheet V1.2  
6
21 May 2004  
CoolSET™-F3  
Preliminary Data  
Pin Configuration and Functionality  
1.3 Pin Configuration with P-TO220-6-47  
1.4  
Pin Functionality  
SoftS (Soft Start & Auto Restart Control)  
The SoftS pin combines the functions of Soft Start  
during Start Up and error detection for Auto Restart  
Mode. These functions are implemented and can be  
adjusted by means of an external capacitor at SoftS to  
ground. This capacitor also provides an adjustable  
blanking window for high load jumps, before the IC  
enters into Auto Restart Mode.  
Pin  
1
Symbol Function  
650V1) Depl-CoolMOS™ Drain  
Drain  
3
CS  
Current Sense/  
650V1) Depl-CoolMOS™ Source  
4
5
6
7
GND  
VCC  
SoftS  
FB  
Controller Ground  
Controller Supply Voltage  
Soft-Start  
FB (Feedback)  
The information about the regulation is provided by the  
FB Pin to the internal Protection Unit and to the internal  
PWM-Comparator to control the duty cycle. The FB-  
Signal controls in case of light load the Active Burst  
Mode of the controller.  
Feedback  
1)  
at Tj = 110°C  
CS (Current Sense)  
The Current Sense pin senses the voltage developed  
on the series resistor inserted in the source of the  
integrated Depl-CoolMOS™. If CS reaches the internal  
threshold of the Current Limit Comparator, the Driver  
output is immediately switched off. Furthermore the  
current information is provided for the PWM-  
Comparator to realize the Current Mode.  
Package P-TO220-6-47  
Drain (Drain of integrated Depl-CoolMOS™)  
Pin Drain is the connection to the Drain of the internal  
Depl-CoolMOSTM  
.
VCC (Power supply)  
The VCC pin is the positive supply of the IC. The  
operating range is between 8.5V and 21V.  
GND (Ground)  
1
2
3
4
5
6
7
The GND pin is the ground of the controller.  
Figure 3 Pin Configuration P-TO220-6-47(top view)  
Preliminary Datasheet V1.2  
7
21 May 2004  
CoolSET™-F3  
Preliminary Data  
Representative Blockdiagram  
2
Representative Blockdiagram  
s
n
2
f
Figure 4  
Representative Blockdiagram  
Preliminary Datasheet V1.2  
8
21 May 2004  
CoolSET™-F3  
Preliminary Data  
Functional Description  
3.2  
Power Management  
3
Functional Description  
All values which are used in the functional description  
are typical values. For calculating the worst cases the  
min/max values which can be found in section 4  
Electrical Characteristics have to be considered.  
VCC  
Drain  
Startup Cell  
3.1  
Introduction  
CoolSET™-F3 is the further development of the  
CoolSET™-F2 to meet the requirements for the lowest  
Standby Power at minimum load and no load  
conditions. A new fully integrated Standby Power  
concept is implemented into the IC in order to keep the  
application design easy. Compared to CoolSET™-F2  
no further external parts are needed to achieve the  
lowest Standby Power. An intelligent Active Burst  
Mode is used for this Standby Mode. After entering this  
mode there is still a full control of the power conversion  
by the secondary side via the same optocoupler that is  
used for the normal PWM control. The response on  
load jumps is optimized. The voltage ripple on Vout is  
minimized. Vout is further on well controlled in this  
mode.  
Depl-CoolMOS™  
Power Management  
Undervoltage Lockout  
15V  
Internal Bias  
8.5V  
6.5V  
Voltage  
Reference  
Auto Restart Mode  
Active Burst Mode  
The usually external connected RC-filter in the  
feedback line after the optocoupler is integrated in the  
IC to reduce the external part count.  
T1  
Furthermore a high voltage Startup Cell is integrated  
into the IC which is switched off once the Undervoltage  
Lockout on-threshold of 15V is exceeded. This Startup  
Cell is part of the integrated Depl-CoolMOS™. The  
external startup resistor is no longer necessary as this  
Startup Cell is connected to the Drain. Power losses  
are therefore reduced. This increases the efficiency  
under light load conditions drastically.  
SoftS  
Power Management  
Figure 5  
The Undervoltage Lockout monitors the external  
supply voltage VVCC. When the SMPS is plugged to the  
main line the internal Startup Cell is biased and starts  
to charge the external capacitor CVCC which is  
connected to the VCC pin. This VCC charge current  
which is provided by the Startup Cell from the Drain pin  
is 1.05mA. When VVCC exceeds the on-threshold  
VCCon=15V the internal voltage reference and bias  
circuit are switched on. Then the Startup Cell is  
switched off by the Undervoltage Lockout and therefore  
no power losses present due to the connection of the  
Startup Cell to the Drain voltage. To avoid uncontrolled  
ringing at switch-on a hysteresis is implemented. The  
switch-off of the controller can only take place after  
Active Mode was entered and VVCC falls below 8.5V.  
The Soft-Start capacitor is also used for providing an  
adjustable blanking window for high load jumps. During  
this time window the overload detection is disabled.  
With this concept no further external components are  
necessary to adjust the blanking window.  
An Auto Restart Mode is implemented in the IC to  
reduce the average power conversion in the event of  
malfunction or unsafe operating condition in the SMPS  
system. This feature increases the system’s  
robustness and safety which would otherwise lead to a  
destruction of the SMPS. Once the malfunction is  
removed, normal operation is automatically initiated  
after the next Start Up Phase.  
The maximum current consumption before the  
controller is activated is about 160µA.  
The internal precise peak current limitation reduces the  
costs for the transformer and the secondary diode. The  
influence of the change in the input voltage on the  
power limitation can be avoided together with the  
When VVCC falls below the off-threshold VCCoff=8.5V the  
internal reference is switched off and the Power Down  
reset let T1 discharging the soft-start capacitor CSoftS at  
pin SoftS. Thus it is ensured that at every startup cycle  
the voltage ramp at pin SoftS starts at zero.  
integrated  
Propagation  
Delay  
Compensation.  
Therefore the maximum power is nearly independent  
on the input voltage which is required for wide range  
SMPS. There is no need for an extra over-sizing of the  
SMPS, e.g. the transformer or the secondary diode.  
The internal Voltage Reference is switched off if Auto  
Restart Mode is entered. The current consumption is  
then reduced to 300µA.  
Preliminary Datasheet V1.2  
9
21 May 2004  
CoolSET™-F3  
Preliminary Data  
Functional Description  
Once the malfunction condition is removed, this block maximum charge current in the very first stage when  
will then turn back on. The recovery from Auto Restart VSoftS is below 1V, is limited to 1.32mA.  
Mode does not require disconnecting the SMPS from  
the AC line  
When Active Burst Mode is entered, the internal Bias is  
switched off in order to reduce the current consumption  
VSoftS  
to below 1.05mA while keeping the Voltage Reference  
active as this is necessary in this mode.  
max. Startup Phase  
5.4V  
4V  
3.3  
Startup Phase  
1V  
max. Soft Start Phase  
6.5V  
3.25k  
DCmax  
t
R
T2  
SoftS  
DC  
1
T3  
1V  
DC  
2
SoftS  
C
SoftS  
Soft Start  
Soft-Start  
t1  
t2 t  
Comparator  
Gate Driver  
C7  
&
Figure 7  
Startup Phase  
G7  
By means of this extra charge stage, there is no delay  
in the beginning of the Startup Phase when there is still  
no switching. Furthermore Soft Start is finished at 4V to  
have faster the maximum power capability. The duty  
cycles DC1 and DC2 are depending on the mains and  
the primary inductance of the transformer. The  
limitation of the primary current by DC2 is related to  
VSoftS = 4V. But DC1 is related to a maximum primary  
current which is limited by the internal Current Limiting  
with CS = 1V. Therefore the maximum Startup Phase  
is divided into a Soft Start Phase until t1 and a phase  
from t1 until t2 where maximum power is provided if  
demanded by the FB signal.  
C2  
4V  
0.85V  
CS  
x3.7  
PWM OP  
Soft Start  
Figure 6  
At the beginning of the Startup Phase, the IC provides  
a Soft Start duration whereby it controls the maximum  
primary current by means of a duty cycle limitation. A  
signal VSoftS which is generated by the external  
capacitor CSofts in combination with the internal pull up  
resistor RSoftS, determines the duty cycle until VSoftS  
exceeds 4V.  
When the Soft Start begins, CSoftS is immediately  
charged up to approx. 1V by T2. Therefore the Soft  
Start Phase takes place between 1V and 4V. Above  
VSoftsS = 4V there is no longer duty cycle limitation  
DCmax which is controlled by comparator C7 since  
comparator C2 blocks the gate G7 (see Figure 6). This  
Preliminary Datasheet V1.2  
10  
21 May 2004  
CoolSET™-F3  
Preliminary Data  
Functional Description  
3.4.3  
Gate Driver  
3.4  
PWM Section  
0.72  
PWM Section  
Oscillator  
Duty Cycle  
max  
VCC  
PWM-Latch  
Clock  
1
Gate  
Soft Start  
FF1  
Comparator  
CoolMOS™  
Gate Driver  
&
S
R
1
PWM  
Comparator  
Q
G8  
G9  
Gate Driver  
Current  
Limiting  
Figure 9  
Gate Driver  
The driver-stage is optimized to minimize EMI and to  
provide high circuit efficiency. This is done by reducing  
the switch on slope when exceeding the internal  
CoolMOS™ threshold. This is achieved by a slope  
control of the rising edge at the driver’s output (see  
Figure 10).  
Gate  
Figure 8  
3.4.1  
PWM Section  
Oscillator  
The oscillator generates  
switching frequency of ICE3Axx65x is fOSC = 100kHz  
and for ICE3Bxx65x fOSC 67kHz. resistor, a  
a fixed frequency. The  
(internal) VGate  
=
A
capacitor and a current source and current sink which  
determine the frequency are integrated. The charging  
and discharging current of the implemented oscillator  
capacitor are internally trimmed, in order to achieve a  
very accurate switching frequency. The ratio of  
controlled charge to discharge current is adjusted to  
reach a maximum duty cycle limitation of Dmax=0.72.  
ca. t = 130ns  
5V  
t
3.4.2  
PWM-Latch FF1  
The oscillator clock output provides a set pulse to the  
PWM-Latch when initiating the external Power Switch  
conduction. After setting the PWM-Latch can be reset  
by the PWM comparator, the Soft Start comparator or  
the Current-Limit comparator. In case of resetting, the  
driver is shut down immediately.  
Figure 10  
Gate Rising Slope  
Thus the leading switch on spike is minimized. When  
the integrated CoolMOS™ is switched off, the falling  
shape of the driver is slowed down when reaching 2V  
to prevent an overshoot below ground. Furthermore the  
driver circuit is designed to eliminate cross conduction  
of the output stage. During powerup when VCC is  
below the undervoltage lockout threshold VVCCoff, the  
output of the Gate Driver is low to disable power  
transfer to the seconding side.  
Preliminary Datasheet V1.2  
11  
21 May 2004  
CoolSET™-F3  
Preliminary Data  
Functional Description  
3.5.1  
Leading Edge Blanking  
3.5  
Current Limiting  
VSense  
PWM Latch  
FF1  
V
csth  
tLEB = 220ns  
Current Limiting  
Propagation-Delay  
Compensation  
Vcsth  
Leading  
Edge  
C10  
C12  
Blanking  
220ns  
t
PWM-OP  
&
Figure 12  
Leading Edge Blanking  
G10  
Each time when the external Power Switch is switched  
on, a leading edge spike is generated due to the  
primary-side capacitances and secondary-side rectifier  
reverse recovery time. This spike can cause the gate  
drive to switch off unintentionally. To avoid a premature  
termination of the switching pulse, this spike is blanked  
out with a time constant of tLEB = 220ns. During this  
time, the gate drive will not be switched off.  
0.257V  
1pF  
10k  
Active Burst  
Mode  
D1  
CS  
Current Limiting Block  
3.5.2  
Propagation Delay Compensation  
In case of overcurrent detection, the switch-off of the  
external Power Switch is delayed due to the  
propagation delay of the circuit. This delay causes an  
overshoot of the peak current Ipeak which depends on  
the ratio of dI/dt of the peak current (see Figure 13).  
Figure 11  
There is a cycle by cycle Current Limiting realized by  
the Current-Limit comparator C10 to provide an  
overcurrent detection. The source current of the  
external Power Switch is sensed via an external sense  
resistor RSense . By means of RSense the source current  
is transformed to a sense voltage VSense which is fed  
into the pin CS. If the voltage VSense exceeds the  
internal threshold voltage Vcsth the comparator C10  
immediately turns off the gate drive by resetting the  
PWM Latch FF1. A Propagation Delay Compensation  
is added to support the immediate shut down without  
delay of the Power Switch in case of Current Limiting.  
The influence of the AC input voltage on the maximum  
output power can thereby be avoided.  
Signal1  
IOvershoot2  
Signal2  
tPropagation Delay  
ISense  
Ipeak2  
Ipeak1  
ILimit  
IOvershoot1  
To prevent the Current Limiting from distortions caused  
by leading edge spikes a Leading Edge Blanking is  
integrated in the current sense path for the  
comparators C10, C12 and the PWM-OP.  
t
Figure 13  
Current Limiting  
The output of comparator C12 is activated by the Gate  
G10 if Active Burst Mode is entered. Once activated the  
current limiting is thereby reduced to 0.257V. This  
voltage level determines the power level when the  
Active Burst Mode is left if there is a higher power  
demand.  
The overshoot of Signal2 is bigger than of Signal1 due  
to the steeper rising waveform. This change in the  
slope is depending on the AC input voltage.  
Propagation Delay Compensation is integrated to limit  
the overshoot dependency on dI/dt of the rising primary  
current. That means the propagation delay time  
between exceeding the current sense threshold Vcsth  
and the switch off of the external Power Switch is  
compensated over temperature within a wide range.  
Preliminary Datasheet V1.2  
12  
21 May 2004  
CoolSET™-F3  
Preliminary Data  
Functional Description  
Current Limiting is now possible in a very accurate way.  
3.6  
Control Unit  
E.g. Ipeak = 0.5A with RSense = 2. Without Propagation  
Delay Compensation the current sense threshold is set  
to a static voltage level Vcsth=1V. A current ramp of  
dI/dt = 0.4A/µs, that means dVSense/dt = 0.8V/µs, and a  
The Control Unit contains the functions for Active Burst  
Mode and Auto Restart Mode. The Active Burst Mode  
and the Auto Restart Mode are combined with an  
Adjustable Blanking Window which is depending on the  
external Soft Start capacitor. By means of this  
Adjustable Blanking Window, the IC avoids entering  
into these two modes accidentally. Furthermore it also  
provides a certain time whereby the overload detection  
is delayed. This delay is useful for applications which  
normally works with a low current and occasionally  
require a short duration of high current.  
propagation delay time of i.e. tPropagation  
=180ns  
Delay  
leads then to an Ipeak overshoot of 12%. By means of  
propagation delay compensation the overshoot is only  
about 2% (see Figure 14).  
with compensation  
without compensation  
V
1,3  
1,25  
1,2  
3.6.1  
Adjustable Blanking Window  
1,15  
1,1  
SoftS  
1,05  
1
6.5V  
0,95  
0,9  
RSoftS  
5k  
0
0,2  
0,4  
0,6  
0,8  
1
1,2  
1,4  
1,6  
1,8  
2
V
dVSense  
dt  
µs  
4.4V  
1
S1  
Figure 14  
Overcurrent Shutdown  
G2  
The Propagation Delay Compensation is realized by  
means of a dynamic threshold voltage Vcsth (see Figure  
15). In case of a steeper slope the switch off of the  
driver is earlier to compensate the delay.  
C3  
VOSC  
5.4V  
max. Duty Cycle  
Auto  
&
G5  
4.8V  
Restart  
Mode  
C4  
off time  
Active  
Burst  
Mode  
VSense  
Vcsth  
t
Propagation Delay  
&
FB  
G6  
C5  
1.32V  
Signal1  
Signal2  
Control Unit  
t
Figure 15  
Dynamic Voltage Threshold Vcsth  
Figure 16  
Adjustable Blanking Window  
VSoftS is clamped at 4.4V by the closed switch S1 after  
the SMPS is settled. If overload occurs VFB is  
exceeding 4.8V. Auto Restart Mode can’t be entered as  
the gate G5 is still blocked by the comparator C3. But  
after VFB has exceeded 4.8V the switch S1 is opened  
Preliminary Datasheet V1.2  
13  
21 May 2004  
CoolSET™-F3  
Preliminary Data  
Functional Description  
via the gate G2. The external Soft Start capacitor can The Active Burst Mode is located in the Control Unit.  
now be charged further by the integrated pull up Figure 17 shows the related components.  
resistor RSoftS. The comparator C3 releases the gates  
G5 and G6 once VSofts has exceeded 5.4V. Therefore 3.6.2.1  
Entering Active Burst Mode  
there is no entering of Auto Restart Mode possible  
The FB signal is always observed by the comparator  
C5 if the voltage level falls below 1.32V. In that case the  
switch S1 is released which allows the capacitor CSoftS  
to be charged starting from the clamped voltage level  
at 4.4V in normal operating mode. If VSoftS exceeds  
5.4V the comparator C3 releases the gate G6 to enter  
the Active Burst Mode. The time window that is  
generated by combining the FB and SoftS signals with  
gate G6 avoids a sudden entering of the Active Burst  
Mode due to large load jumps. This time window can be  
during this charging time of the external capacitor  
SoftS. The same procedure happens to the external  
C
Soft Start capacitor if a low load condition is detected  
by comparator C5 when VFB is falling below 1.32V.  
Only after VSoftS has exceeded 5.4V and VFB is still  
below 1.32V Active Burst Mode is entered.  
3.6.2  
The controller provides Active Burst Mode for low load  
conditions at VOUT Active Burst Mode increases  
Active Burst Mode  
adjusted by the external capacitor CSoftS  
.
.
significantly the efficiency at light load conditions while  
supporting a low ripple on VOUT and fast response on  
load jumps. During Active Burst Mode which is  
controlled only by the FB signal the IC is always active  
and can therefore immediately response on fast  
changes at the FB signal. The Startup Cell is kept  
switched off to avoid increased power losses for the  
self supply.  
After entering Active Burst Mode a burst flag is set and  
the internal bias is switched off in order to reduce the  
current consumption of the IC down to approx. 1.05mA.  
In this Off State Phase the IC is no longer self supplied  
so that therefore CVCC has to provide the VCC current  
(see Figure 18). Furthermore gate G11 is then released  
to start the next burst cycle once VFB has 3.4V  
exceeded.  
It has to be ensured by the application that the VCC  
remains above the Undervoltage Lockout Level of 8.5V  
to avoid that the Startup Cell is accidentally switched  
on. Otherwise power losses are significantly increased.  
The minimum VCC level during Active Burst Mode is  
depending on the load conditions and the application.  
The lowest VCC level is reached at no load conditions  
SoftS  
6.5V  
RSoftS  
5k?  
Internal Bias  
4.4V  
at VOUT  
.
3.6.2.2  
Working in Active Burst Mode  
S1  
Current  
After entering the Active Burst Mode the FB voltage  
rises as VOUT starts to decrease due to the inactive  
PWM section. Comparator C6a observes the FB signal  
if the voltage level 4V is exceeded. In that case the  
internal circuit is again activated by the internal Bias to  
start with switching. As now in Active Burst Mode the  
gate G10 is released the current limit is only 0.257V to  
reduce the conduction losses and to avoid audible  
noise. If the load at VOUT is still below the starting level  
for the Active Burst Mode the FB signal decreases  
down to 3.4V. At this level C6b deactivates again the  
internal circuit by switching off the internal Bias. The  
gate G11 is released as after entering Active Burst  
Mode the burst flag is set. If working in Active Burst  
Mode the FB voltage is changing like a saw tooth  
between 3.4V and 4V (see Figure 18).  
Limiting  
&
C3  
G10  
5.4V  
4.8V  
C4  
Active  
Burst  
C5  
&
G6  
Mode  
FB  
1.32V  
4.0V  
3.4V  
C6a  
C6b  
3.6.2.3  
Leaving Active Burst Mode  
&
The FB voltage immediately increases if there is a high  
load jump. This is observed by comparator C4. As the  
current limit is ca. 26% during Active Burst Mode a  
certain load jump is needed that FB can exceed 4.8V.  
At this time C4 resets the Active Burst Mode which also  
G11  
Control Unit  
Figure 17  
Active Burst Mode  
Preliminary Datasheet V1.2  
14  
21 May 2004  
CoolSET™-F3  
Preliminary Data  
Functional Description  
blocks C12 by the gate G10. Maximum current can now 3.6.3  
Protection Mode (Auto Restart Mode)  
be provided to stabilize VOUT  
.
In order to increase the SMPS system’s robustness  
and safety, the IC provides the Auto Restart Mode as a  
protection feature. The Auto Restart Mode is entered  
upon detection of the following faults in the system:  
V
FB  
Entering Active  
Burst Mode  
Leaving Active  
Burst Mode  
VCC Overvoltage  
Overtemperature  
Overload  
Open Loop  
VCC Undervoltage  
Short Optocoupler  
4.80V  
4.00V  
3.40V  
1.32V  
VSoftS  
t
Blanking Window  
SoftS  
6.5V  
Control Unit  
RSoftS  
5.40V  
CSoftS  
5k  
VCC  
4.40V  
C1  
&
G1  
4.4V  
Spike  
17V  
Blanking  
VCS  
t
t
t
t
t
8.0us  
C11  
4.0V  
Thermal Shutdown  
T >140°C  
j
Current limit level during  
Active Burst Mode  
1.00V  
S1  
0.257V  
4.8V  
5.4V  
&
Auto Restart  
Mode  
C4  
C3  
FB  
V
G5  
VCC  
Voltage  
Reference  
8.5V  
Figure 19  
Auto Restart Mode  
The VCC voltage is observed by comparator C1 if 17V  
is exceeded. The output of C1 is combined with both  
the output of C11 which checks for SoftS<4.0V, and the  
output of C4 which checks for FB>4.8V. Therefore the  
overvoltage detection is can only active during Soft  
Start Phase(SoftS<4.0V) and when FB signal is  
outside the operating range > 4.8V. Therefore any  
small voltage overshoots of VVCC during normal  
operating cannot trigger the Auto Restart Mode.  
IVCC  
7.2mA  
1.05mA  
VOUT  
In order to ensure system reliability and prevent any  
false activation, a blanking time is implemented before  
the IC can enter into the Auto Restart Mode. The output  
of the VCC overvoltage detection is fed into a spike  
blanking with a time constant of 8.0µs.  
Max. Ripple < 1%  
The other fault detection which can result in the Auto  
Restart Mode and has this 8.0µs blanking time is the  
Overtemperature detection. This block checks for a  
junction temperature of higher than 140°C for  
malfunction operation.  
Figure 18  
Signals in Active Burst Mode  
Preliminary Datasheet V1.2  
15  
21 May 2004  
CoolSET™-F3  
Preliminary Data  
Functional Description  
Once the Auto Restart Mode is entered, the internal  
Voltage Reference is switched off in order to reduce the  
current consumption of the IC as much as possible. In  
this mode, the average current consumption is only  
300µA as the only working block is the Undervoltage  
Lockout(UVLO) which controls the Startup Cell by  
switching on/off at VVCCon/VVCCoff  
.
As there is no longer a self supply by the auxiliary  
winding, VCC starts to drop. The UVLO switches on the  
integrated Startup Cell when VCC falls below 8.5V. It  
will continue to charge VCC up to 15V whereby it is  
switched off again and the IC enters into the Start Up  
Phase.  
As long as all fault conditions have been removed, the  
IC will automatically power up as usual with switching  
cycle at the GATE output after Soft Start duration. Thus  
the name Auto Restart Mode.  
Other fault detections which are active in normal  
operation is the sensing for Overload, Open Loop and  
VCC undervoltage conditions. In the first 2 cases, FB  
will rise above 4.8V which will be observed by C4. At  
this time, S1 is released such that VSoftS can rise from  
its earlier clamp voltage of 4.4V. If VSoftS exceeds 5.4V  
which is observed by C3, Auto Restart Mode is entered  
as both inputs of the gate G5 are high.  
This charging of the Soft Start capacitor from 4.4V to  
5.4V defines a blanking window which prevents the  
system from entering into Auto Restart Mode un-  
intentionally during large load jumps. In this event, FB  
will rise close to 6.5V for a short duration before the  
loop regulates with FB less than 4.8V. This is the same  
blanking time window as for the Active Burst Mode and  
can therefore be adjusted by the external CSoftS  
.
In the case of VCC undervoltage, ie. VCC falls below  
8.5V, the IC will be turn off with the Startup Cell  
charging VCC as described earlier in this section. Once  
VCC is charged above 15V, the IC will start a new  
startup cycle. The same procedure applies when the  
system is under Short Optocoupler fault condition, as it  
will lead to VCC undervoltage.  
Preliminary Datasheet V1.2  
16  
21 May 2004  
CoolSET™-F3  
Preliminary Data  
Electrical Characteristics  
4
Electrical Characteristics  
Note: All voltages are measured with respect to ground (Pin 8). The voltage levels are valid if other ratings are  
not violated.  
4.1  
Absolute Maximum Ratings  
Note: Absolute maximum ratings are defined as ratings, which when being exceeded may lead to destruction  
of the integrated circuit. For the same reason make sure, that any capacitor that will be connected to pin 7  
(VCC) is discharged before assembling the application circuit.  
Parameter  
Symbol  
Limit Values  
Unit  
Remarks  
min.  
max.  
Drain Source Voltage  
ICE3Axx65/xx65I/xx65P  
ICE3Bxx65/xx65I/xx65P  
VDS  
-
650  
V
Tj=110°C  
Avalanche energy,  
repetitive tAR limited by  
max. Tj=150°C1)  
ICE3x0365  
ICE3x0565  
ICE3x1065  
ICE3x1565  
ICE3x2065  
ICE3x2565  
EAR1  
EAR2  
EAR3  
EAR4  
EAR5  
EAR6  
-
-
-
-
-
-
-
tbd  
mJ  
mJ  
mJ  
mJ  
mJ  
mJ  
mJ  
0.01  
0.07  
tbd  
0.40  
tbd  
ICE3x3065I EAR7  
tbd  
ICE3x3065P  
ICE3x4065I EAR8  
ICE3x4065P  
-
-
-
-
tbd  
tbd  
tbd  
tbd  
mJ  
mJ  
mJ  
mJ  
ICE3x4565I EAR9  
ICE3x4565P  
ICE3x6065I EAR10  
ICE3x6065P  
ICE3x6565I EAR11  
ICE3x6565P  
Preliminary Datasheet V1.2  
17  
21 May 2004  
CoolSET™-F3  
Preliminary Data  
Electrical Characteristics  
Parameter  
Symbol  
Limit Values  
Unit  
Remarks  
min.  
max.  
0.3  
0.5  
1
Avalanche current,  
repetitive tAR limited by  
max. Tj=150°C  
ICE3x0365  
ICE3x0565  
ICE3x1065  
ICE3x1565  
ICE3x2065  
ICE3x2565  
IAR1  
IAR2  
IAR3  
IAR4  
IAR5  
IAR6  
-
-
-
-
-
-
-
A
A
A
A
A
A
A
1.5  
2
2.5  
tbd  
ICE3x3065I IAR7  
ICE3x3065P  
ICE3x4065I IAR8  
ICE3x4065P  
-
-
-
-
tbd  
tbd  
tbd  
tbd  
A
A
A
A
ICE3x4565I IAR9  
ICE3x4565P  
ICE3x6065I IAR10  
ICE3x6065P  
ICE3x6565I IAR11  
ICE3x6565P  
1)  
Repetitive avalanche causes additional power losses that can be calculated as PAV=EAR*f  
Preliminary Datasheet V1.2  
18  
21 May 2004  
CoolSET™-F3  
Preliminary Data  
Electrical Characteristics  
Parameter  
Symbol  
Limit Values  
Unit  
Remarks  
min.  
max.  
Thermal Resistance  
Junction-Ambient  
ICE3x0365  
ICE3x0565  
ICE3x1065  
ICE3x1565  
ICE3x2065  
ICE3x2565  
RthJA1  
90  
K/W  
PG-DIP-8-6  
ICE3x3065I RthJA2  
ICE3x4065I  
ICE3x4565I  
ICE3x6065I  
ICE3x6565I  
103  
82  
K/W  
K/W  
P-TO220-6-46  
Free standing without  
heatsink  
ICE3x3065P RthJA3  
ICE3x4065P  
ICE3x4565P  
P-TO220-6-47  
Free standing without  
heatsink  
ICE3x6065P  
ICE3x6565P  
Thermal Resistance  
Junction-Case  
ICE3x3065I RthJC1  
ICE3x3065P  
3.30  
3.08  
2.94  
2.79  
2.75  
K/W  
K/W  
K/W  
K/W  
K/W  
P-TO220-6-46  
P-TO220-6-47  
ICE3x4065I RthJC2  
ICE3x4065P  
P-TO220-6-46  
P-TO220-6-47  
ICE3x4565I RthJC3  
ICE3x4565P  
P-TO220-6-46  
P-TO220-6-47  
ICE3x6065I RthJC4  
ICE3x6065P  
P-TO220-6-46  
P-TO220-6-47  
ICE3x6565I RthJC5  
ICE3x6565P  
P-TO220-6-46  
P-TO220-6-47  
VCC Supply Voltage  
FB Voltage  
VVCC  
VFB  
VSoftS  
VCS  
Tj  
-0.3  
-0.3  
-0.3  
-0.3  
-40  
-55  
-
22  
V
6.5  
6.5  
6.5  
150  
150  
3
V
SoftS Voltage  
V
CS Voltage  
V
Junction Temperature  
Storage Temperature  
° C  
° C  
kV  
Controller & CoolMOS™  
Human body model1)  
TS  
ESD Capability(incl. Drain Pin)  
VESD  
1)  
According to EIA/JESD22-A114-B (discharging a 100pF capacitor through a 1.5kseries resistor)  
Preliminary Datasheet V1.2  
19  
21 May 2004  
CoolSET™-F3  
Preliminary Data  
Electrical Characteristics  
4.2  
Operating Range  
Note: Within the operating range the IC operates as described in the functional description.  
Parameter  
Symbol  
Limit Values  
Unit  
Remarks  
min.  
max.  
VCC Supply Voltage  
VVCC  
VVCCoff  
20  
V
Junction Temperature of  
Controller  
TjCon  
-25  
130  
150  
°C  
° C  
Max value limited due to thermal  
shut down of controller  
Junction Temperature of  
CoolMOS™  
TjCoolMOS  
-25  
4.3  
Characteristics  
4.3.1  
Supply Section 1  
Note: The electrical characteristics involve the spread of values within the specified supply voltage and junction  
temperature range TJ from – 25 ° C to 130 ° C. Typical values represent the median values, which are  
related to 25°C. If not otherwise stated, a supply voltage of VCC = 15 V is assumed.  
Parameter  
Symbol  
Limit Values  
Unit  
Test Condition  
min.  
typ.  
max.  
Start Up Current  
IVCCstart  
-
160  
220  
µA  
VVCC =14V  
VCC Charge Current  
IVCCcharge1 0.55  
1.05  
0.88  
0.2  
1.60  
-
mA  
mA  
µA  
VVCC = 0V  
VVCC =14V  
IVCCcharge2  
-
-
Leakage Current of  
IStartLeak  
50  
VVCC=16V, VDrain = 450V  
at Tj=100°C  
Start Up Cell and CoolMOS  
Supply Current with  
Inactive Gate  
IVCCsup1  
-
-
5.5  
7.0  
-
mA  
Supply Current in  
Auto Restart Mode with  
Inactive Gate  
IVCCrestart  
300  
µA  
IFB = 0  
ISofts = 0  
Supply Current in  
Active Burst Mode  
with Inactive Gate  
IVCCburst1  
IVCCburst2  
-
-
1.05  
0.95  
1.25  
1.15  
mA  
mA  
VVCC =15V  
VFB = 3.7V, VSoftS = 4.4V  
VVCC = 9.5V  
VFB = 3.7V, VSoftS = 4.4V  
VCC Turn-On Threshold  
VCC Turn-Off Threshold  
VCC Turn-On/Off Hysteresis  
VVCCon  
VVCCoff  
VVCChys  
14.2  
8.0  
-
15.0  
8.5  
6.5  
15.8  
9.0  
-
V
V
V
Preliminary Datasheet V1.2  
20  
21 May 2004  
CoolSET™-F3  
Preliminary Data  
Electrical Characteristics  
4.3.2  
Supply Section 2  
Parameter  
Symbol  
Limit Values  
max.  
Unit  
Test Condition  
min.  
typ.  
5.3  
5.2  
5.4  
5.4  
5.7  
5.4  
6.1  
5.8  
6.9  
6.2  
7.9  
6.9  
tdb  
Supply Current  
with Active Gate  
ICE3A0365  
ICE3B0365  
ICE3A0565  
ICE3B0565  
ICE3A1065  
ICE3B1065  
ICE3A1565  
ICE3B1565  
ICE3A2065  
ICE3B2065  
ICE3A2565  
ICE3B2565  
IVCCsup2  
IVCCsup2  
IVCCsup2  
IVCCsup2  
IVCCsup2  
IVCCsup2  
IVCCsup2  
IVCCsup2  
IVCCsup2  
IVCCsup2  
IVCCsup2  
IVCCsup2  
IVCCsup2  
-
-
-
-
-
-
-
-
-
-
-
-
-
6.8  
6.7  
6.9  
6.9  
7.2  
6.9  
7.6  
7.3  
8.4  
7.7  
9.4  
8.4  
tdb  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VSoftS = 4.4V  
IFB = 0  
Supply Current  
with Active Gate  
ICE3A3065I  
ICE3A3065P  
VSoftS = 4.4V  
IFB = 0  
ICE3B3065I  
ICE3B3065P  
IVCCsup2  
IVCCsup2  
IVCCsup2  
IVCCsup2  
IVCCsup2  
IVCCsup2  
IVCCsup2  
IVCCsup2  
IVCCsup2  
-
-
-
-
-
-
-
-
-
tdb  
tdb  
tdb  
tdb  
tdb  
tdb  
tdb  
tdb  
6.8  
tdb  
tdb  
tdb  
tdb  
tdb  
tdb  
tdb  
tdb  
8.3  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
ICE3A4065I  
ICE3A4065P  
ICE3B4065I  
ICE3B4065P  
ICE3A4565I  
ICE3A4565P  
ICE3B4565I  
ICE3B4565P  
ICE3A6065I  
ICE3A6065P  
ICE3B6065I  
ICE3B6065P  
ICE3A6565I  
ICE3A6565P  
ICE3B6565I  
ICE3B6565P  
Preliminary Datasheet V1.2  
21  
21 May 2004  
CoolSET™-F3  
Preliminary Data  
Electrical Characteristics  
4.3.3  
Internal Voltage Reference  
Parameter  
Symbol  
Limit Values  
Unit  
Test Condition  
min.  
typ.  
max.  
6.63  
Trimmed Reference Voltage  
VREF  
6.37  
6.50  
V
measured at pin FB  
IFB = 0  
4.3.4  
PWM Section  
Parameter  
Symbol  
Limit Values  
Unit  
Test Condition  
min.  
92  
typ.  
100  
100  
max.  
Fixed Oscillator  
Frequency  
ICE3Axx65  
ICE3Axx65I  
ICE3Axx65P  
fOSC1  
fOSC2  
108  
106  
kHz  
kHz  
94  
Tj = 25°C  
Tj = 25°C  
VFB < 0.3V  
Fixed Oscillator  
Frequency  
ICE3Bxx65  
ICE3Bxx65I  
ICE3Bxx65P  
fOSC1  
fOSC2  
61  
63  
67  
67  
73  
71  
kHz  
kHz  
Max. Duty Cycle  
Min. Duty Cycle  
PWM-OP Gain  
Dmax  
Dmin  
0.67  
0
0.72  
-
0.77  
-
AV  
3.5  
-
3.7  
0.85  
0.7  
3.9  
Voltage Ramp Max Level  
VMax-Ramp  
VFBmin  
-
-
V
V
VFB Operating Range Min Level  
0.3  
VFB Operating Range Max level  
VFBmax  
-
-
4.75  
V
CS=1V, limited by  
Comparator C41)  
FB Pull-Up Resistor  
SoftS Pull-Up Resistor  
1)  
RFB  
16  
39  
20  
50  
27  
62  
kΩ  
kΩ  
RSoftS  
Design characteristic (not meant for production testing)  
Preliminary Datasheet V1.2  
22  
21 May 2004  
CoolSET™-F3  
Preliminary Data  
Electrical Characteristics  
4.3.5  
Control Unit  
Parameter  
Symbol  
Limit Values  
Unit  
Test Condition  
min.  
typ.  
max.  
Deactivation Level for SoftS  
Comparator C7 by C2  
VSoftSC2  
3.85  
4.00  
4.15  
4.57  
5.60  
-
V
VFB > 5V  
Clamped VSoftS Voltage during  
Normal Operating Mode  
VSoftSclmp 4.23  
4.40  
5.40  
1.3  
V
VFB = 4V  
Activation Limit of  
Comparator C3  
VSoftSC3  
ISoftSstart  
5.20  
-
V
VFB > 5V  
SoftS Startup Current  
mA  
V
VSoftS = 0V  
VSoftS > 5.6V  
VSoftS > 5.6V  
Over Load & Open Loop Detection VFBC4  
Limit for Comparator C4  
4.62  
1.23  
3.85  
3.25  
16.1  
130  
-
4.80  
1.30  
4.00  
3.40  
17.1  
140  
8.0  
4.98  
1.37  
4.15  
3.55  
18.1  
150  
-
Active Burst Mode Level for  
Comparator C5  
VFBC5  
VFBC6a  
VFBC6b  
VVCCOVP  
TjSD  
V
Active Burst Mode Level for  
Comparator C6a  
V
After Active Burst  
Mode is entered  
Active Burst Mode Level for  
Comparator C6b  
V
After Active Burst  
Mode is entered  
Overvoltage Detection Limit  
Thermal Shutdown1)  
Spike Blanking  
1)  
V
VFB > 5V  
VSoftS < 4.0V  
°C  
µs  
tSpike  
The parameter is not subject to production test - verified by design/characterization  
Note: The trend of all the voltage levels in the Control Unit is the same regarding the deviation except VVCCOVP  
and VVCCPD  
4.3.6  
Current Limiting  
Parameter  
Symbol  
Limit Values  
Unit  
Test Condition  
min.  
typ.  
max.  
Peak Current Limitation  
(incl. Propagation Delay)  
Vcsth  
VCS2  
tLEB  
0.97  
1.02  
1.07  
V
dVsense / dt = 0.6V/µs  
(see Figure 15)  
Peak Current Limitation during  
Active Burst Mode  
0.232  
-
0.257  
220  
0.282  
V
Leading Edge Blanking  
-
ns  
µA  
VSoftS = 4.4V  
VCS =0V  
CS Input Bias Current  
ICSbias  
-1.0  
-0.2  
0
Preliminary Datasheet V1.2  
23  
21 May 2004  
CoolSET™-F3  
Preliminary Data  
Electrical Characteristics  
4.3.7  
CoolMOS™ Section  
Parameter  
Symbol  
Limit Values  
Unit  
Test Condition  
min.  
typ.  
max.  
Drain Source Breakdown Voltage  
ICE3Axx65/xx65I/xx65P  
ICE3Bxx65/xx65I/xx65P  
V(BR)DSS  
600  
650  
-
-
-
-
V
V
Tj = 25°C  
Tj = 110°C  
Drain Source  
On-Resistance  
ICE3A0365  
ICE3B0365  
RDSon1  
RDSon2  
RDSon3  
RDSon4  
RDSon5  
RDSon6  
RDSon7  
-
-
6.45  
12.90  
7.50  
15.00  
Tj = 25°C  
Tj = 125°C  
ICE3A0565  
ICE3B0565  
-
-
4.70  
9.40  
5.44  
10.88  
Tj = 25°C  
Tj = 125°C  
ICE3A1065  
ICE3B1065  
-
-
2.95  
5.90  
3.42  
6.84  
Tj = 25°C  
Tj = 125°C  
ICE3A1565  
ICE3B1565  
-
-
1.70  
3.40  
1.96  
3.92  
Tj = 25°C  
Tj = 125°C  
ICE3A2065  
ICE3B2065  
-
-
0.92  
1.84  
1.05  
2.10  
Tj = 25°C  
Tj = 125°C  
ICE3A2565  
ICE3B2565  
-
-
0.65  
1.30  
0.75  
1.50  
Tj = 25°C  
Tj = 125°C  
Drain Source  
On-Resistance  
ICE3A3065I  
ICE3A3065P  
ICE3B3065I  
ICE3B3065P  
-
-
3.00  
6.00  
3.47  
6.94  
Tj = 25°C  
Tj = 125°C  
ICE3A4065I  
ICE3A4065P  
ICE3B4065I  
ICE3B4065P  
RDSon8  
RDSon9  
RDSon10  
RDSon11  
-
-
2.10  
4.20  
2.43  
4.86  
Tj = 25°C  
Tj = 125°C  
ICE3A4565I  
ICE3A4565P  
ICE3B4565I  
ICE3B4565P  
-
-
1.55  
3.10  
1.80  
3.60  
Tj = 25°C  
Tj = 125°C  
ICE3A6065I  
ICE3A6065P  
ICE3B6065I  
ICE3B6065P  
0.95  
1.90  
1.10  
2.20  
Tj = 25°C  
Tj = 125°C  
ICE3A6565I  
ICE3A6565P  
ICE3B6565I  
ICE3B6565P  
-
-
0.79  
1.58  
0.91  
1.82  
Tj = 25°C  
Tj = 125°C  
Preliminary Datasheet V1.2  
24  
21 May 2004  
CoolSET™-F3  
Preliminary Data  
Electrical Characteristics  
Parameter  
Symbol  
Limit Values  
Unit  
Test Condition  
min.  
typ.  
max.  
Effective output  
capacitance,  
energy related  
ICE3A0365  
ICE3B0365  
Co(er)1  
Co(er)2  
Co(er)3  
Co(er)4  
Co(er)5  
Co(er)6  
Co(er)7  
-
3.65  
-
-
-
-
-
-
-
pF  
pF  
pF  
pF  
pF  
pF  
pF  
VDS = 0V to 480V  
ICE3A0565  
ICE3B0565  
-
-
-
-
-
-
4.75  
7.0  
ICE3A1065  
ICE3B1065  
ICE3A1565  
ICE3B1565  
11.63  
21  
ICE3A2065  
ICE3B2065  
ICE3A2565  
ICE3B2565  
29.3  
t.b.d  
Effective output  
capacitance,  
energy related  
ICE3A3065I  
ICE3A3065P  
ICE3B3065I  
ICE3B3065P  
VDS = 0V to 480V  
ICE3A4065I  
ICE3A4065P  
ICE3B4065I  
ICE3B4065P  
Co(er)8  
Co(er)9  
Co(er)10  
Co(er)11  
-
-
-
-
t.b.d  
t.b.d  
t.b.d  
t.b.d  
-
-
-
-
pF  
pF  
pF  
pF  
ICE3A4565I  
ICE3A4565P  
ICE3B4565I  
ICE3B4565P  
ICE3A6065I  
ICE3A6065P  
ICE3B6065I  
ICE3B6065P  
ICE3A6565I  
ICE3A6565P  
ICE3B6565I  
ICE3B6565P  
Rise Time  
Fall Time  
1)  
trise  
tfall  
-
-
301)  
301)  
-
-
ns  
ns  
Measured in a Typical Flyback Converter Application  
Preliminary Datasheet V1.2  
25  
21 May 2004  
CoolSET™-F3  
Preliminary Data  
Outline Dimension  
5
Outline Dimension  
PG-DIP-8-6  
(Leadfree Plastic Dual In-  
Line Outline)  
Figure 20 PG-DIP-8-6 (Leadfree Plastic Dual In-Line Outline)  
9.9  
4.4  
P-TO220-6-46  
(Isodrain I2Pak Package)  
A
+0.1  
7.5  
1.3  
-0.02  
6.6  
B
0.05  
1)  
7.62  
±0.1  
0.5  
M
0.25  
A B  
0...0.15  
2.4  
±0.1  
6 x 0.6  
±0.3  
5.3  
4 x 1.27  
±0.3  
8.4  
1) Shear and punch direction no burrs this surface  
Back side, heatsink contour  
All metal surfaces tin plated, except area of cut.  
Figure 21 P-TO220-6-46 (Isodrain I2Pak Package)  
Preliminary Datasheet V1.2  
26  
21 May 2004  
CoolSET™-F3  
Preliminary Data  
Outline Dimension  
±0.2  
9.9  
P-TO220-6-47  
(Isodrain Package)  
A
±0.2  
9.5  
4.4  
+0.1  
7.5  
6.6  
1.3  
-0.02  
B
0.05  
1)  
7.62  
0.25  
±0.1  
0.5  
M
A B  
0...0.15  
2.4  
±0.1  
6 x 0.6  
±0.3  
5.3  
4 x 1.27  
±0.3  
8.4  
1) Shear and punch direction no burrs this surface  
Back side, heatsink contour  
All metal surfaces tin plated, except area of cut.  
Figure 22 P-TO220-6-47 (Isodrain Package)  
Dimensions in mm  
Preliminary Datasheet V1.2  
27  
21 May 2004  
Total Quality Management  
Qualität hat für uns eine umfassende  
Bedeutung. Wir wollen allen Ihren  
Ansprüchen in der bestmöglichen  
Weise gerecht werden. Es geht uns also  
nicht nur um die Produktqualität –  
unsere Anstrengungen gelten  
gleichermaßen der Lieferqualität und  
Logistik, dem Service und Support  
sowie allen sonstigen Beratungs- und  
Betreuungsleistungen.  
Quality takes on an allencompassing  
significance at Semiconductor Group.  
For us it means living up to each and  
every one of your demands in the best  
possible way. So we are not only  
concerned with product quality. We  
direct our efforts equally at quality of  
supply and logistics, service and  
support, as well as all the other ways in  
which we advise and attend to you.  
Dazu gehört eine bestimmte  
Part of this is the very special attitude of  
our staff. Total Quality in thought and  
deed, towards co-workers, suppliers  
and you, our customer. Our guideline is  
“do everything with zero defects”, in an  
open manner that is demonstrated  
beyond your immediate workplace, and  
to constantly improve.  
Geisteshaltung unserer Mitarbeiter.  
Total Quality im Denken und Handeln  
gegenüber Kollegen, Lieferanten und  
Ihnen, unserem Kunden. Unsere  
Leitlinie ist jede Aufgabe mit „Null  
Fehlern“ zu lösen – in offener  
Sichtweise auch über den eigenen  
Arbeitsplatz hinaus – und uns ständig  
zu verbessern.  
Throughout the corporation we also  
think in terms of Time Optimized  
Processes (top), greater speed on our  
part to give you that decisive  
competitive edge.  
Unternehmensweit orientieren wir uns  
dabei auch an „top“ (Time Optimized  
Processes), um Ihnen durch größere  
Schnelligkeit den entscheidenden  
Wettbewerbsvorsprung zu verschaffen.  
Give us the chance to prove the best of  
performance through the best of quality  
– you will be convinced.  
Geben Sie uns die Chance, hohe  
Leistung durch umfassende Qualität zu  
beweisen.  
Wir werden Sie überzeugen.  
h t t p : / / w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

ICE3A5065I

Off-Line SMPS Current Mode Controller with integrated 650V Startup Cell/CoolMOS
INFINEON

ICE3A5065P

Off-Line SMPS Current Mode Controller with integrated 650V Startup Cell/CoolMOS
INFINEON

ICE3A5565I

Off-Line SMPS Current Mode Controller with integrated 650V Startup Cell/CoolMOS
INFINEON

ICE3A5565I

SWITCHING REGULATOR, 100kHz SWITCHING FREQ-MAX, ZIP6, ROHS COMPLIANT, TO-220, 6 LEAD
ROCHESTER

ICE3A5565P

Off-Line SMPS Current Mode Controller with integrated 650V Startup Cell/CoolMOS
INFINEON

ICE3A5565PBKSA1

Switching Regulator, Current-mode, 100kHz Switching Freq-Max, ROHS COMPLIANT, TO-220, 6 LEAD
INFINEON

ICE3A6065I

Switching Regulator, Current-mode, 100kHz Switching Freq-Max, PZFM6, TO-220, 6 LEAD
INFINEON

ICE3A6065P

Switching Regulator, Current-mode, 100kHz Switching Freq-Max, PZFM6, TO-220, 6 LEAD
INFINEON

ICE3A6565I

Switching Regulator, Current-mode, 100kHz Switching Freq-Max, PZFM6, TO-220, 6 LEAD
INFINEON

ICE3A6565P

Switching Regulator, Current-mode, 100kHz Switching Freq-Max, PZFM6, TO-220, 6 LEAD
INFINEON

ICE3AR0680JZ

Switching Controller, Current-mode, 113kHz Switching Freq-Max, BICMOS, PDIP7, GREEN, PLASTIC, DIP-7
INFINEON

ICE3AR0680JZXKLA1

Switching Controller, Current-mode, 113kHz Switching Freq-Max, BICMOS, PDIP7, GREEN, PLASTIC, DIP-7
INFINEON