ICL5102HV [INFINEON]

Integrated two-stage PFC + LLC/LCC resonant half-bridge controller for LED drivers in DSO-19 package;
ICL5102HV
型号: ICL5102HV
厂家: Infineon    Infineon
描述:

Integrated two-stage PFC + LLC/LCC resonant half-bridge controller for LED drivers in DSO-19 package

功率因数校正
文件: 总34页 (文件大小:1827K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICL5102HV PFC + Resonant Half-Bridge  
Controller for LED Drivers  
2nd Generation  
Datasheet  
Rev1.2  
Features  
Integrated two stage combination controller allows for reduced number of external components, optimizes  
Bill of Materials (BOM) and form factor.  
PFC controller with Critical Conduction Mode (CrCM) + Discontinuous Conduction Mode (DCM)  
Resonant Half-Bridge (HB) controller with fixed or variable switching frequency control  
Maximum 500 KHz HB switching frequency and soft-start frequency up to 1.3 MHz  
Resonant HB Burst Mode (BM) ensures power limitation and low standby power < 300mW.  
Supports universal AC input voltage (90 to 480 Vrms) nominal  
Excellent system efficiency up to 94%  
THD optimization ensures Low harmonic distortion (Total Harmonic Distortion (THD) < 5%) down to 30%  
nominal load.  
Integrated High Side MOSFET driver  
Comprehensive set of protection features with auto-restart reaction:  
Input brown-out protection  
PFC bus over-voltage protection  
PFC over-current protection  
Output over-voltage protection (OVP)  
Output over-current/short circuit protection (OCP)  
Output over-power/over-load protection (OPP)  
Capacitive mode protection  
External over-temperature protection (OTP)  
Potential applications  
Offline LED Drivers for commercial and industrial lighting up to 350 W  
High density AC/DC power supply  
Product validation  
Product Type  
Package  
ICL5102HV  
PG-DSO-19  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 1 of 34  
V 1.2  
2019-04-01  
 
 
 
ICL5102HV PFC + Resonant Half-Bridge Controller  
2nd Generation  
Description  
The ICL5102HV is a highly integrated multi-mode (CrCM and DCM) PFC and resonant HB combination controller.  
The integration of PFC and HB into a single controller enables reduction of external components and optimizes  
performance by harmonized operation of the two stages.  
The two-stage approach divides the PFC responsibilities from the output current regulations functions. This  
ensures low variation in the output voltage and current and allows for low THD, high power factor and a greater  
ability to withstand AC line perturbations. The multi-mode operation of PFC converter provides excellent  
efficiency over the whole load range.  
Resonant HB converter supports both LLC and LCC topologies with fixed or variable switching frequency control  
for highest efficiency and the BM enables the low standby power consumption.  
A comprehensive set of protection features with auto-restart ensures the highest safety and reliability of the  
components and overall system.  
The following Figure shows a typical LED driver application using ICL5102HV with PFC+LCC topology:  
Figure 1  
ICL5102HV Typical Application with PFC+LCC Topology  
Table of contents  
Features ........................................................................................................................................ 1  
Potential applications..................................................................................................................... 1  
Product validation.......................................................................................................................... 1  
Description .................................................................................................................................... 2  
Table of contents............................................................................................................................ 2  
1
2
Pin Configuration and Description ........................................................................................... 4  
Functional Block Diagram ....................................................................................................... 6  
3
3.1  
3.2  
Functional Description............................................................................................................ 7  
IC Power Up .............................................................................................................................................7  
Multi-Mode PFC Controller......................................................................................................................7  
Datasheet  
2 of 34  
V 1.2  
2019-04-  
01  
 
 
ICL5102HV PFC + Resonant Half-Bridge Controller  
2nd Generation  
3.2.1  
Control Scheme..................................................................................................................................7  
PFC Soft-start ................................................................................................................................8  
PFC Multi-Mode Control................................................................................................................8  
PFC THD Correction ....................................................................................................................10  
PFC Bus voltage Sensing..................................................................................................................10  
Input voltage sensing.......................................................................................................................11  
PFC Inductor Peak Current limitation .............................................................................................11  
PFC Protection features...................................................................................................................11  
PFC Bus Under-voltage Protection.............................................................................................12  
PFC Bus Over-voltage Protection Level 1...................................................................................12  
PFC Bus Over-voltage Protection Level 2...................................................................................12  
PFC Open Control Loop Protection............................................................................................12  
PFC Inductor Over-current Protection .......................................................................................12  
Input Brown-out Protection .......................................................................................................13  
Resonant Half-Bridge Controller ..........................................................................................................13  
Control Scheme................................................................................................................................13  
HB Frequency Control via CCO...................................................................................................13  
HB Controller Frequency Setting................................................................................................14  
HB Soft-Start Control via TCO ....................................................................................................15  
HB Burst Mode operation ...........................................................................................................16  
HB Self-Adaptive Dead Time............................................................................................................17  
HB Protection Features....................................................................................................................18  
HB Over-Current Protection Level 1 (OCP1)...............................................................................18  
HB Over-Current Protection Level 2 (OCP2)...............................................................................18  
HB Output Over-Voltage Protection...........................................................................................19  
HB Capacitive Mode Protection..................................................................................................19  
Other Protection Features ....................................................................................................................20  
External Over-Temperature Protection (OTP) ................................................................................20  
3.2.1.1  
3.2.1.2  
3.2.1.3  
3.2.2  
3.2.3  
3.2.4  
3.2.5  
3.2.5.1  
3.2.5.2  
3.2.5.3  
3.2.5.4  
3.2.5.5  
3.2.5.6  
3.3  
3.3.1  
3.3.1.1  
3.3.1.2  
3.3.1.3  
3.3.1.4  
3.3.2  
3.3.3  
3.3.3.1  
3.3.3.2  
3.3.3.3  
3.3.3.4  
3.4  
3.4.1  
4
ICL5102HV Operation Flow Chart ............................................................................................22  
5
5.1  
5.2  
5.3  
Electrical Characteristics .......................................................................................................23  
Package Characteristics........................................................................................................................23  
Absolute Maximum Ratings ..................................................................................................................23  
Operating Conditions............................................................................................................................24  
DC Electrical Characteristics.................................................................................................................25  
Power Supply Characteristics..........................................................................................................25  
PFC Stage Characteristics................................................................................................................26  
HB Stage Characteristics..................................................................................................................28  
5.4  
5.4.1  
5.4.2  
5.4.3  
6
Package Dimensions..............................................................................................................32  
Revision history.............................................................................................................................33  
Datasheet  
01  
3 of 34  
V 1.2  
2019-04-  
ICL5102HV PFC + Resonant Half-Bridge Controller  
2nd Generation  
Pin Configuration and Description  
1
Pin Configuration and Description  
ICL5102HV pin assignments and basic pin description are shown below in the Figure 2 and Table 1.  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
LSGD  
LSCS  
N.C.  
HSGD  
HSVCC  
HSGND  
3
VCC  
4
GND  
5
PFCGD  
PFCCS  
PFCZCD  
PFCVS  
N.C.  
6
OVP  
BO  
7
8
OTP  
BM  
N.C.  
9
10  
RF  
PG-DSO-19-1 (300mil)  
Figure 2  
Pinning of ICL5102HV  
Pin Definitions and Functions  
Table 1  
Name  
LSGD  
Pin  
Type  
Function  
HB low side gate driver  
1
O
Output for directly driving the HB low side MOSFET via a resistor  
LSCS  
2
I
HB current sense  
Connected to an external shunt resistor and the source of the HB low side  
MOSFET  
VCC  
3
4
5
6
7
I
Positive power supply  
IC power supply  
GND  
-
Ground  
IC Ground  
PFCGD  
PFCCS  
PFCZCD  
O
I
PFC gate driver  
Output for directly driving the PFC MOSFET via a resistor  
PFC current sense  
Connected to an external shunt resistor and the source of the PFC MOSFET  
PFC zero-crossing detection  
I
Connected to the PFC auxiliary winding via a resistor for PFC inductor current  
zero-crossing detection  
PFCVS  
8
I
PFC bus voltage sense  
Connected to a high impedance resistor divider from the PFC controller output  
for bus voltage sensing  
N.C.  
RF  
9
-
I
Not Connected  
10  
HB minimum switching frequency setting  
Connected via an external resistor to GND for HB minimum switching  
frequency setting  
Datasheet  
01  
4 of 34  
V 1.2  
2019-04-  
 
 
ICL5102HV PFC + Resonant Half-Bridge Controller  
2nd Generation  
Pin Configuration and Description  
Name  
N.C.  
BM  
Pin  
11  
Type  
Function  
-
I
Not Connected  
12  
Burst Mode (BM) enter/exit switching frequency setting  
Connected to an opto-coupler and to the RF pin with an external resistor for  
BM enter/exit setting  
OTP  
BO  
13  
14  
15  
I
I
I
Over Temperature Protection (OTP)  
Connected to an external Negative Temperature Coefficient thermistor (NTC)  
for external over temperature protection  
Brown in/out detection  
Connected to the rectified input voltage via an external resistor for input  
brown in/out detection  
OVP  
Output Over Voltage Protection (OVP)  
Connected to the HB auxiliary winding via a resistor divider and diode for OVP  
of the secondary output voltage  
-
16  
17  
-
-
Creepage Distance  
HSGND  
High side ground  
Ground for floating high side driver of HB  
High side VCC power supply  
HSVCC  
18  
I
Power supply of the high side floating driver of HB, supplied via bootstrap  
circuit  
HSGD  
N.C.  
19  
20  
O
-
High side floating gate driver  
Output for directly driving the HB floating high side MOSFET via a resistor.  
Not Connected  
The ICL5102HV pin connection schematic is shown in the following Figure 3:  
Figure 3  
ICL5102HV Pin Connection  
Datasheet  
5 of 34  
V 1.2  
2019-04-  
01  
 
ICL5102HV PFC + Resonant Half-Bridge Controller  
2nd Generation  
Functional Block Diagram  
2
Functional Block Diagram  
Figure 4  
ICL5102HV Functional Block Diagram  
Datasheet  
01  
6 of 34  
V 1.2  
2019-04-  
ICL5102HV PFC + Resonant Half-Bridge Controller  
2nd Generation  
Functional Description  
3
Functional Description  
Functional description section provides an overview of the integrated functions. It includes:  
ICL5102HV power up  
Multi-mode PFC controller  
Resonant HB controller  
The parameters and equations are based on typical values at TA = 25 °C. The correlated minimum and maximum  
values are shown in the electrical characteristics in chapter 5.  
3.1  
IC Power Up  
ICL5102HV has four power supply pins: VCC, GND, HSVCC and HSGND:  
Normal start-up operation of ICL5102HV requires a positive voltage at pin VCC higher than the turn-on  
threshold VCC_on. After the ICL5102HV is active, the Vcc voltage should remain between the VCC_on and VCC_off  
Once the voltage drops below VCC_off, under-voltage lock out (UVLO) will occur and IC operation is disabled.  
.
HSVCC and HSGND power pins are the power supply for the integrated floating high side driver, usually  
derived using an external boot strap circuit. The high side driver is active after the voltage between pin HSVCC  
and HSGND is higher than the turn-on threshold VHSVCC_on. Once this voltage drops below VHSVCC_off in the normal  
operation, the high side driver is disabled.  
3.2  
Multi-Mode PFC Controller  
The PFC controller ensures high power quality by maximizing the power factor (PF) and minimizing Total  
Harmonic Distortion (THD). It is designed in a boost topology to provide a constant high DC voltage for the HB  
controller.  
3.2.1  
Control Scheme  
During normal to heavy load conditions, PFC bus voltage regulation is achieved using CrCM with a constant on-  
time control. The PFC MOSFET on-time is proportional to the PFC output power and determined by the PFC choke  
inductance LPFC, the input voltage Vin_rms, the applied PFC load PO_PFC and the PFC converter efficiency ηPFC. This is  
given by:  
2 ∗ 푂_푃퐹퐶 ∗ 퐿푃퐹퐶  
표푛_푃퐹퐶  
=
ꢁ  
∗ ɳ푃퐹퐶  
푖푛_푟푚푠  
ICL5102HV PFC controller has an integrated PI compensator which calculates the PFC on-time according to the  
error between the value at PFCVS pin and the reference value VPFC_ref = 2.5 V. A notch filter before the compensator  
filters out the double AC line frequency ripple in the bus voltage and stabilizes the controller loop.  
To support light load condition, DCM is implemented for efficient operation.  
Datasheet  
01  
7 of 34  
V 1.2  
2019-04-  
ICL5102HV PFC + Resonant Half-Bridge Controller  
2nd Generation  
Functional Description  
3.2.1.1  
PFC Soft-start  
After the voltage at pin VCC is higher than the threshold VCC_on, PFC controller will initiate a soft-start to minimize  
the stress on the input filter, PFC MOSFET, PFC choke and diode when the following conditions are fulfilled:  
Brown-in: the voltage at Brown-Out pin (BO) must be higher than VBO_in = 1.4 V  
PFC open-loop not detected: the voltage at pin PFCVS must be higher than VPFCVSUV2 = 12.5%*VPFC_ref = 0.31 V  
PFC output over-voltage not detected: the voltage at pin PFCVS must be lower than VPFCVSUV2 = 105%* VPFC_ref  
2.63 V  
=
Other protections (e.g. OTP or OVP) not present  
ICL5102HV PFC soft-start is implemented by increasing PFC MOSFET on-time from tPFC_on_initial to tPFC_on_max = 22 us  
every 280 us. The initial PFC on-time tPFC_on_initial is dependent on the input voltage sensed at the BO pin. Once the  
voltage at pin PFCVS reaches the threshold VPFC_UV2 = 95%* VPFC_ref = 2.375V, soft-start is completed. At this time  
normal operation on-time control takes place via the integrated PI compensator.  
3.2.1.2  
PFC Multi-Mode Control  
During CrCM operation of the PFC, the PFC MOSFET is turned on with a constant on-time throughout the  
complete AC half cycle and the off-time is varying depending on the instantaneous value of the input AC voltage  
amplitude. Therefore, the switching frequency is changing within each AC half cycle with the lowest switching  
frequency at the peak of the AC input voltage and the highest switching frequency near the zero-crossings. As  
shown in the Figure 5, a new switching cycle starts with a tiny delay after the inductor current reaches zero.  
Figure 5  
Switching Cycle of ICL5102HV Critical Conduction Mode PFC  
PFC CrCM is ideal for full and heavy load conditions, where the constant on-time is large. As load decreases  
and/or the input AC input peak voltage increases towards the magnitude of the PFC output bus voltage, on-times  
reduces (switching frequency increases), and PFC switching losses increase. This results in poor efficiency at  
light load and/or high AC line conditions.  
To help minimize switching losses during this condition and to optimize light load efficiency, the ICL5102HV PFC  
controller switches from CrCM to DCM mode. This transition occurs once the PFC MOSFET on-time reduces below  
1 us. In DCM operation, the switching frequency can be further reduced by skipping switching cycles once the  
PFC inductor current reaches zero. As shown in the Figure 6, the inserted delay is the switching time (from PFC  
gate on until the PFC inductor current decreases to zero) multiplied with an internal factor. Once the PFC on-time  
increases to 4 us in the DCM operation, ICL5102HV will switch back to CrCM. The transferred power is regulated  
Datasheet  
01  
8 of 34  
V 1.2  
2019-04-  
 
ICL5102HV PFC + Resonant Half-Bridge Controller  
2nd Generation  
Functional Description  
both in CrCM and DCM operation. The on-time hysteresis between the two modes (overlapped area) ensures the  
smooth mode change as shown in the Figure 7.  
Figure 6  
ICL5102HV PFC Mode Change from CrCM to DCM  
Figure 7  
ICL5102HV Operating Frequency and On-Time in CrCM and DCM  
Datasheet  
01  
9 of 34  
V 1.2  
2019-04-  
 
ICL5102HV PFC + Resonant Half-Bridge Controller  
2nd Generation  
Functional Description  
3.2.1.3  
PFC THD Correction  
The input AC current becomes most distorted in the area when zero-crossings of AC input voltage occurs. In order  
to ensure the sinusoidal current waveform in this area, the ICL5102HV extends the PFC on-time dynamically up  
to two times of PFC maximum on-time according to the instantaneous value of the input voltage amplitude. The  
detection of AC input voltage zero-crossings is realized through the PFC auxiliary winding. When the voltage  
across the PFC auxiliary winding after PFC MOSFET turns-off reaches the maximum value, AC zero-crossings is  
detected. The concept of THD correction is shown in the following Figure 8.  
Figure 8  
PFC THD Correction  
3.2.2  
PFC Bus voltage Sensing  
The PFC output bus voltage is scaled down using a resistor divider and sensed at the pin PFCVS pin as shown in  
the Figure 9. A good quality ceramic filter capacitor should be placed as close as possible at the pin to filter any  
high frequency switching noise. This filter capacitor ensures no false PFC bus voltage protections are triggered  
due to noise perturbations.  
Figure 9  
ICL5102HV PFC Bus Voltage Sensing  
Datasheet  
01  
10 of 34  
V 1.2  
2019-04-  
 
 
ICL5102HV PFC + Resonant Half-Bridge Controller  
2nd Generation  
Functional Description  
3.2.3  
Input voltage sensing  
As shown in the Figure 10, the AC input voltage is sensed at the BO pin with a resistor divider which scales down  
the full wave rectified AC line voltage. A smooth capacitor CBO with a high ohmic resistor RBO1 are strongly  
recommended direct after the full wave rectifier diodes so that the peak value of AC input voltage is sensed. As  
the peak value of AC input voltage is not distorted when the input current is near zero (e.g. in case of brown-out)  
compared to the RMS value.  
Figure 10  
ICL5102HV Input Voltage Sensing  
The voltage at the BO pin which represents the peak voltage of the AC input has feed-forward control on the PFC  
converter.  
It decides the initial on-time of the initial PFC soft-start.  
In the light load condition, the PFC on-time is dependent on the input voltage.  
The brown-in and brown-out are implemented by sensing the voltage at BO pin. The conditions are defined as  
following:  
Brown-in: the voltage at pin BO is higher than VBO_in = 1.4 V.  
Brown-out: the voltage at pin BO is lower than VBO_out = 1.2 V in the normal operation.  
3.2.4  
PFC Inductor Peak Current limitation  
The PFC inductor peak current through the PFC MOSFET is monitored via the PFC shunt resistor RPFCCS to limit the  
maximum power through the PFC inductor, MOSFET and the freewheeling diode. Once the voltage across the  
shunt resistor exceeds the over-current threshold VPFC_OCP1 = 1.0 V for longer than the blanking time (including  
propagation delay) tPFC_OCP1_blanking = 200 ns, the PFC MOSFET is turned off immediately. The next PFC switching  
cycle will be initialized on either PFC ZCD or maximum period time out. This peak current limitation is active in  
every switching cycle.  
3.2.5  
PFC Protection features  
Protections features are triggered if fault conditions are present longer than the blanking time. The controller  
may continue operation after exceeding protection threshold because of blanking time as shown in Figure 11.  
Datasheet  
01  
11 of 34  
V 1.2  
2019-04-  
 
ICL5102HV PFC + Resonant Half-Bridge Controller  
2nd Generation  
Functional Description  
Figure 11  
Excess of threshold due to Blanking Time  
3.2.5.1  
PFC Bus Under-voltage Protection  
PFC bus under-voltage is monitored at the PFCVS pin.  
In the normal operation, the PFCVS pin voltage is sensed and compared to the under-voltage threshold VPFC_UV1  
= 75%* VPFC_ref = 1.88 V. Once the pin voltage is below this threshold for longer than the blanking time, PFC stops  
switching and ICL5102HV will enter auto-restart.  
3.2.5.2  
PFC Bus Over-voltage Protection Level 1  
PFC bus over-voltage level 1 is monitored at the PFCVS pin.  
The PFCVS pin voltage is sensed and compared to the over-voltage threshold VPFC_OV1 = 109%* VPFC_ref = 2.73 V. Once  
the pin voltage is above this threshold, PFC will stop switching within 5 us. As long as the pin voltage drops below  
VPFC_OV = 105%* VPFC_ref = 2.63 V, PFC resumes operation.  
3.2.5.3  
PFC Bus Over-voltage Protection Level 2  
PFC bus over-voltage level 2 is monitored at the PFCVS pin.  
The PFCVS pin voltage is sensed and compared to the over-voltage threshold VPFC_OV2 = 115%* VPFC_ref = 2.88 V. Once  
the pin voltage is above this threshold for longer than the blanking time, both PFC and HB stop switching and  
ICL5102HV will enter auto-restart.  
3.2.5.4  
PFC Open Control Loop Protection  
PFC control loop open is monitored at the PFCVS pin.  
The PFCVS pin voltage is sensed and compared to the under-voltage threshold VPFC_UV2 = 12.5%* VPFC_ref = 0.31 V.  
In the normal operation, once the pin voltage is below this threshold for longer than the blanking time, both  
PFC and HB stop switching and ICL5102HV will enter auto-restart.  
In the IC power up phase, if the pin voltage is below this threshold, ICL5102HV will not start-up.  
3.2.5.5  
PFC Inductor Over-current Protection  
PFC inductor over-current is monitored at the PFCCS pin.  
The voltage across the PFC current sense shunt resistor is sensed at the PFCCS pin and compared to the over-  
current threshold VPFC_OCP1 = 1.0 V. Once the pin voltage is above this threshold for longer than the blanking time  
tPFC_OCP1_blanking = 200 ns, the PFC MOSFET is turned off in the current switching cycle.  
Datasheet  
01  
12 of 34  
V 1.2  
2019-04-  
ICL5102HV PFC + Resonant Half-Bridge Controller  
2nd Generation  
Functional Description  
3.2.5.6  
Input Brown-out Protection  
Input brown-out is monitored at the BO pin.  
The BO pin voltage is sensed and compared to the brown-out threshold VBO_out = 1.2V.  
In the normal operation, once the pin voltage is below this threshold for longer than the blanking time  
tblanking_BO = 50ms, both PFC and HB stop switching and ICL5102HV will enter auto-restart. Once the pin  
voltage is higher than VBO_in = 1.4V, normal operation starts (brown-in).  
In the IC power up phase, if the pin voltage is below this threshold, ICL5102HV will not start-up.  
3.3  
Resonant Half-Bridge Controller  
Resonant Half-Bridge (HB) topologies reduce losses and switching noise in the converter compared to traditional  
“Hard Switching” topologies. This is accomplished by soft commutation in a sinusoidal manner and zero voltage  
switching (ZVS) of HB MOSFETs.  
Soft commutation of the power devices allows for increased converter operating switching frequency and  
smaller sizes of the passive components such as transformers and filters. ICL5102HV provides the independent  
control of resonant HB (e.g. LLC or LCC) for constant voltage (CV) or constant current (CC) output. It supports  
both fixed and variable switching frequency control.  
3.3.1  
Control Scheme  
The ICL5102HV resonant HB control is realized through a TCO (Time Controlled Oscillator) in the soft-start phase  
and a current controlled oscillator (CCO) in the regulated normal operation. During light load operation the  
ICL5102HV will enter Burst Mode (BM) to maximize light-load efficiency. This is described as following:  
HB switching frequency control via the Current Controlled Oscillator (CCO)  
HB controller frequency setting  
Soft-start control via a Time Controlled Oscillator (TCO)  
HB Burst Mode (BM) operation  
3.3.1.1  
HB Frequency Control via CCO  
During normal operation, ICL5102HV HB controller uses CCO to determine the switching frequency. The  
switching frequency is determined by current IRF that flows out of the RF pin. The RF pin maintains a constant  
voltage of VRF = 2.5 V. This voltage together with the voltage at pin VBM, resistors RBM and RRF, and the opto-coupler  
define the current flowing out of the RF pin as shown in the following formula and Figure 12:  
푅퐹  
푅퐹 = 퐼1 + 퐼= 퐼퐵푀 + 퐼푂푃  
+
푅퐹  
Figure 12  
ICL5102HV RF Pin Current Definition  
Datasheet  
13 of 34  
V 1.2  
2019-04-  
01  
 
ICL5102HV PFC + Resonant Half-Bridge Controller  
2nd Generation  
Functional Description  
The CCO of ICL5102HV HB controller is defined linearly with the constant slew rate CFC as shown in Figure 13:  
퐹퐶 = 400 퐾퐻푧/ꢄ퐴  
Figure 13  
CCO of ICL5102HV in Normal Operation  
3.3.1.2  
HB Controller Frequency Setting  
Both TCO and CCO of ICL5102HVHV operate based on the defined minimum and maximum HB operating  
frequency.  
Minimum HB operating frequency fHB_min:  
It is defined in the HB resonant tank calculation to prevent HB operation in the capacitive region where  
reverse gain occurs and HB MOSFETs ZVS is lost. ICL5102HV HB controller operates with fHB_min if the minimum  
current IRF_min flows out of the RF pin according to the CCO:  
ꢅ퐵_푚푖푛 = ꢃ퐹퐶 ∗ 퐼푅퐹_푚푖푛  
This minimum current occurs when the opto-coupler is off IOP = 0 and the voltage of the pin is clamped at  
VBM_max = 2.25 V:  
푅퐹 푅퐹 퐵푀_푚푎푥  
푅퐹_푚푖푛  
=
+
푅퐹  
퐵푀  
Maximum HB operating frequency fHB_max  
:
ICL5102HV HB controller increases the HB operating frequency as the output load reduces. However above  
the maximum operating frequency fHB_max the output power cannot be reduced furthermore and HB controller  
enters BM. According to the CCO, fHB_max is defined with the maximum current IFR_max  
:
ꢅ퐵_푚푎푥 = ꢃ퐹퐶 ∗ 퐼푅퐹_푚푎푥  
ICL5102HV enters BM when the voltage at BM pin is VBM_entry = 0.75V:  
푅퐹 퐵푀_푒푛ꢆ푟푦  
푅퐹  
푅퐹_푚푎푥  
=
+
푅퐹  
퐵푀  
The minimum and maximum HB operating frequencies must fulfill the following condition:  
ꢅ퐵_푚푎푥 < 7 ∗ ꢅ퐵_푚푖푛  
Both minimum and maximum HB operating frequencies are set together by the external resistors RBM and RRF as  
shown in the Figure 12.  
Datasheet  
01  
14 of 34  
V 1.2  
2019-04-  
 
ICL5102HV PFC + Resonant Half-Bridge Controller  
2nd Generation  
Functional Description  
3.3.1.3  
HB Soft-Start Control via TCO  
ICL5102HV HB controller initializes a soft-start at power up after the bus voltage reaches 75% of nominal value  
(when the VSPFC pin reaches the VPFC_UV1 = 75%*VPFC_ref = 1.88 V). During soft-start, the HB switching frequency  
reduces with respect to the elapsed time (time controlled oscillator), which is shown in Figure 14:  
Figure 14  
TCO for Half-Bridge Soft-start  
The complete HB soft-start takes maximum 7 ms and is divided into three time phases in which the frequency  
reduction has different slew rate:  
Soft-start phase I  
o
o
The maximum duration of soft-start phase I is tHB_SS1 = 624 us.  
The HB soft-start phase I begins with the switching frequency fHB_ss0, which is defined as:  
(
)
ꢅ퐵_푠푠ꢇ = 4 ∗ 푚푎푥 푚푖푛 + 푚푖푛  
o
o
The maximum possible soft-start start frequency is fHB_ss_start_max = 1300 KHz.  
The HB soft-start phase I ends with the switching frequency fHB_ss1, which is defines as:  
(
)
ꢅ퐵_푠푠1 = 2.6 ∗ 푚푎푥 푚푖푛 + 푚푖푛  
Soft-start phase II  
o
o
o
The maximum duration of soft-start phase II is tHB_SS2 = 2.5 ms.  
The HB soft-start phase II begins with the switching frequency fHB_ss1  
.
The HB soft-start phase II ends with the maximum switching frequency fHB_max  
.
Soft-start phase III  
o
o
o
The maximum duration of soft-start phase III is tHB_SS3 = 3.75 ms.  
The HB soft-start phase III begins with the switching frequency fHB_max  
The HB soft-start phase III ends with the minimum switching frequency fHB_min  
.
.
The voltage at the BM pin is clamped to 0.75 V during soft-start phase I and phase II. Therefore the current flowing  
out of the RF pin is constant and the HB switching frequency is only determined by the TCO.  
In the soft-start phase III, the voltage at BM pin is ramped up from 0.75 V to 2.25 V and the current flowing out of  
the RF pin reduces accordingly. In the meantime, as the secondary side output voltage approaches the target  
value, the current flowing through the opto-coupler primary side begins to increase. Once the current through  
Datasheet  
15 of 34  
V 1.2  
2019-04-  
01  
 
ICL5102HV PFC + Resonant Half-Bridge Controller  
2nd Generation  
Functional Description  
opto-coupler IOP is equal to the current I1 through the resistor RBM so that the current IBM = 0 (see Figure 12), the  
soft-start is terminated and the CCO will takes over the control from the TCO.  
During soft-start operation, if the voltage at the LSCS pin is greater than the threshold 0.8V, the HB controller will  
stop reducing the switching frequency. The switching frequency reduction resumes once the voltage drops  
below the threshold.  
3.3.1.4  
HB Burst Mode operation  
ICL5102HV HB controller will enter the BM as the transferred power to output is greater than the output load  
demands although the HB is operated at the maximum switching frequency fHB_max. It is recommended to put  
ICL5102 into BM in standby (dim-to-off) mode for lowest input standby power.  
Figure 15  
HB BM Control  
As shown in the Figure 15, the BM control is implemented by the sensing the voltage VBM at pin BM:  
BM entry:  
During normal operation, once the BM pin voltage is lower than VHB_BM_Entry = 0.75V for longer than  
VHB_BM_Entry_blanking = 10ms, ICL5102HV will first initialize a soft-off by increasing the HB switching frequency from  
fHB_max to fHB_BM. After fHB_BM is reached, both PFC and HB switching are stopped and ICL5102HV is in sleep mode.  
4
( )  
푚푎푥 푚푖푛 + 푚푖푛  
ꢅ퐵_퐵푀  
=
3
BM burst-on:  
During sleep mode, the BM pin voltage VBM increases as the output voltage drops. ICL5102HV will activate both  
PFC and HB stages once VBM = 2.25V is reached.  
The ICL5102HV HB controller turns on with a switching frequency of fHB_BM and steadily decreases it to fHB_max  
to initialize a soft-on. After soft-on, the switching frequency continues to decrease until the BM power  
limitation is active.  
BM power limitation:  
Datasheet  
01  
16 of 34  
V 1.2  
2019-04-  
 
ICL5102HV PFC + Resonant Half-Bridge Controller  
2nd Generation  
Functional Description  
The ICL5102HV activates power limitation in the BM burst-on phase once the switching frequency fHB_PL is  
reached. The transferred power in BM can be adjusted through the resistor RPL from LSCS pin to the HB low  
side MOSFET source as shown in the Figure 16. In the BM power limitation phase, the HB switching frequency  
is maintained around fHB_PL  
.
Figure 16  
ICL5102HV Burst Mode Power Limitation  
BM burst-off:  
Once current flowing through the opto-coupler (as output voltage increasing) is equal to the current I1 through  
the resistor RBM which means IBM = 0 (see Figure 12), soft-off operation is initialized by increasing the HB  
switching frequency to fHB_BM. After fHB_BM is reached, both PFC and HB stages stop switching and ICL5102HV  
enter the sleep mode.  
BM exit:  
ICL5102HV will exit the BM under 4 different conditions:  
o
During BM burst-off:  
If a sudden output load-step increase occurs during the burst-off phase (sleep mode) the voltage  
at BM pin will increase abruptly. If VBM increases from 2.0 V to 2.25 V within 400 us, ICL5102HV will  
exit the BM.  
o
During BM burst-on when power limitation is active:  
When the ICL5102HV is in the burst-on phase and power limitation is active, the voltage at BM  
pin is clamped, and cannot change quickly. Once the voltage change (increasing) ∆VBM = + 100  
mV within 8 HB switching cycles, an output load step is detected and ICL5102HV will exit BM.  
o
o
During BM burst-on when power limitation is active:  
Once the BM burst-on duration is longer than 10 ms, which means that a static load at output  
consumes more power than the BM power limitation level, ICL5102HV will exit the BM.  
During BM burst-on when power limitation is active:  
Once the BM burst-on duration is 2 times longer than the burst-off duration, which means a  
higher load at output and the BM is not efficient enough. ICL5102HV will exit the BM.  
To disable the HB BM operation, a resistor between the BM pin and the opto-coupler should be added to prevent  
the voltage at BM pin to reduce below 0.75 V.  
3.3.2  
HB Self-Adaptive Dead Time  
The dead time between ICL5102HV HB low side (LS) and high side (HS) gate driver turn-on signals is self-adaptive.  
The typical range of the dead time adjustment is between 250 and 750 ns. The dead time is measured after the  
HS gate driver is turned off until the voltage at pin LSCS drops below -50 mV. This time is then used for the dead  
time between LS and HS as shown in the Figure 17.  
Datasheet  
01  
17 of 34  
V 1.2  
2019-04-  
 
ICL5102HV PFC + Resonant Half-Bridge Controller  
2nd Generation  
Functional Description  
Figure 17  
HB Self-Adaptive Dead Time  
3.3.3  
HB Protection Features  
3.3.3.1  
HB Over-Current Protection Level 1 (OCP1)  
HB over-current level 1 is monitored at the LSCS pin.  
The voltage across the HB LSCS shunt resistor is sensed at the LSCS pin during the HB low side gate driver turning-  
on and compared to the over-current threshold VHB_OCP1 = 0.8 V. Once the voltage exceeds this threshold, the  
controller will increase the HB switching frequency cycle by cycle till the maximum switching frequency fHB_maxis  
reached. If a HB over-current event occurs (HB OCP1) beyond the blanking time tHB_OCP1_blanking = 50ms, ICL5102HV  
will enter auto-restart.  
Figure 18  
HB Over-current Protection Level 1  
3.3.3.2  
HB Over-Current Protection Level 2 (OCP2)  
HB over-current level 2 is monitored at the LSCS pin.  
Datasheet  
18 of 34  
V 1.2  
2019-04-  
01  
ICL5102HV PFC + Resonant Half-Bridge Controller  
2nd Generation  
Functional Description  
The voltage across the HB low side current sense shunt resistor is sensed at the LSCS pin during the HB low side  
gate driver turning-on and compared to the over-current threshold VHB_OCP2 = 1.6 V. Once the voltage exceeds this  
threshold for longer than the blanking time tHB_OCP2_blanking = 500ns, both PFC and HB stop switching and ICL5102HV  
will enter auto-restart.  
3.3.3.3  
HB Output Over-Voltage Protection  
HB output over-voltage is monitored at the OVP pin.  
ICL5102HV provides an independent OVP pin for the output-over voltage protection. This pin should be  
connected to the auxiliary winding of the HB transformer as shown in the Figure 19 below:  
Figure 19  
HB Output OVP Detection Circuit  
A resistor divider scales down the auxiliary winding voltage, allowing for auxiliary voltage sensing and OVP  
protection. Once the voltage at OVP pin VOVP is higher than VOVP_ref = 2.5 V for longer than tHB_OVP_blank = 5 us, both PFC  
and HB stages stop switching and ICL5102HV enters auto-restart.  
3.3.3.4  
HB Capacitive Mode Protection  
The designed impedance of the resonant network is inductive when the minimum HB switching frequency is  
above the peak gain frequency. Once the HB switching frequency is below the peak gain frequency, the  
impedance of the resonant network becomes capacitive and the HB converter enters capacitive mode.  
Capacitive mode occurs most often due to low input voltage to the HB resonant converter, or during an overload  
condition on the HB output (shorted or overloaded).  
ICL5102HV detects the capacitive mode operation by monitoring the LSCS pin:  
Figure 20  
HB Capacitive Mode Detection  
Datasheet  
01  
19 of 34  
V 1.2  
2019-04-  
 
 
ICL5102HV PFC + Resonant Half-Bridge Controller  
2nd Generation  
Functional Description  
As shown in the Figure 20, once the voltage at the LSCS pin is greater than 1.6 V during turn-on of the HS gate  
driver or drops below -50 mV in the second half of LSGD on-time or during the dead time between LS and HS,  
capacitive mode operation is detected.  
ICL5102HV is able to provide the cycle by cycle frequency control for capacitive mode regulation. This is activated  
if the LSCS pin voltage is higher than +50 mV within the first 7% of LSGD on-time. The HB controller will increase  
the frequency cycle by cycle till the +50 mV crossing of the LSCS pin voltage shifts behind the 7% threshold as  
shown in the Figure 21.  
Figure 21  
HB Capacitive Mode Regulation  
If the capacitive mode operation is detected longer than 620 us despite the capacitive mode control, ICL5102HV  
will enter auto-restart.  
3.4  
Other Protection Features  
3.4.1  
External Over-Temperature Protection (OTP)  
External temperature is sensed at the OTP pin via an external NTC resistor from OTP pin to GND.  
The source current out of the OTP pin is IOTP = 100 uA. The current generates a voltage drop on the connected  
NTC. Once the voltage at the OTP pin decreases below VOTP_off = 625 mV longer than the blanking time tOTP_blanking  
=
620 us in the normal operation, both PFC and HB stages stop switching and ICL5102HV will enter auto-restart.  
PFC and HB operations recover after the voltage at the OTP pin is higher than VOTP_start = 703 mV for longer than  
tOTP_blanking. This is shown in the Figure 22.  
It is recommended to place good quality ceramic capacitor close to the OTP pin to prevent noise from falsely  
triggering OTP protection.  
To disable the External OTP, a resistor can be added at the OTP pin instead of the NTC to hold the voltage always  
higher than VOTP_start = 703 mV.  
Datasheet  
01  
20 of 34  
V 1.2  
2019-04-  
 
ICL5102HV PFC + Resonant Half-Bridge Controller  
2nd Generation  
Functional Description  
Figure 22  
External Over-Temperature Protection  
Datasheet  
01  
21 of 34  
V 1.2  
2019-04-  
ICL5102HV PFC + Resonant Half-Bridge Controller  
2nd Generation  
ICL5102HV Operation Flow Chart  
4
ICL5102HV Operation Flow Chart  
Operating FLOW Chart ICL5102  
VCC Clamp OFF  
UVLO  
VCC < 9.0V  
Vcc < 9.0V  
Icc < 90µA  
VCC Clamp ON when VCC > 16.3V  
Monitoring  
9.0V < Vcc < 16.3V  
Icc < 100µA  
VCC < 16.3V  
VBO < 1.4V  
Power-up  
Gate Drives off  
9.0V < VCC < 16.3V  
Icc approx 4.0mA  
VBUS < 12,5%  
VBUS > 105%  
OTP / OVP  
VCC Clamp ON  
VCC Clamp OFF  
Start-up  
VBO < 1.2V  
OVP / OTP  
PFC Gate ON  
Inverter Gates OFF  
9.0V < Vcc < 16.3V  
VBUS < 75%  
t = 500ms  
Exempt BO  
Fault  
Softstart  
Inverter Gates ON  
9.0V < Vcc < 16.3V  
fSoftStart = fSSx  
Full Protection  
Full Protection:  
t > 50ms:  
16.3V> Vcc > 9.0V  
Gate Drives off  
POWER Down  
VBO < 1.2V  
VPFC > 115%  
VLSCS > 0.8V  
t > 620µs:  
OTP / CapLoad  
t > 5.0µs:  
OVP  
VLSCS > 1.6V  
t > 1.0µs  
AUTO RESTART  
Run  
9.0 V < Vcc < 16.3V  
f = fRUN  
Full Protection  
t > 620µs:  
VCC < 9.0V  
VBM < 0.75V  
OTP / CapLoad  
t > 5.0µs:  
OVP  
VLSCS > 1.6V  
t > 1.0µs  
VCC < 9.0V  
BM  
ENTRY  
t = 10ms  
BM Sleep  
0.25 < VBM < 2.2V  
All Gates OFF  
IBM = xxx µA  
OVP  
VCC < 9.0V  
BM EXIT 1 - 4  
VBM = 2.2V  
IBM = 0µA  
BM Pulse  
VBUS < 12.5%  
VBUS > 109%  
Full Protection  
VBM < 2.2V  
fBM = fRUN (stored)  
EXIT 1 bis  
EXIT 4  
Figure 23  
ICL5102HV Operation Flow Chart  
Datasheet  
01  
22 of 34  
V 1.2  
2019-04-  
ICL5102HV PFC + Resonant Half-Bridge Controller  
2nd Generation  
Electrical Characteristics  
5
Electrical Characteristics  
Note:  
All voltages except the high-side signals are measured with respect to GND (pin 4). The high-side  
voltages are measured with respect to HSGND (pin 14). The voltage levels are valid if other ratings  
are not violated.  
5.1  
Package Characteristics  
Table 2  
Package Characteristics  
Parameter  
Symbol  
Limit Values  
Min.  
Unit Remarks  
Max.  
PG-DSO-19 @ TA = 85°C &  
PCB Area > 30x20mm  
Thermal resistance for PG-  
DSO-19  
RthJA  
60  
K/W  
mm  
Creepage distance HSGND  
vs OVP pin  
DCRHS  
2.1  
5.2  
Absolute Maximum Ratings  
Note:  
Absolute maximum ratings (Table 3) are defined as ratings which when being exceeded may lead  
to destruction of the integrated circuit. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding  
only one of these values may cause irreversible damage to the integrated circuit. These values are  
not tested during production test.  
Table 3  
Absolute Maximum Ratings  
Parameter  
Symbol  
Limit Values  
Unit Remarks  
Min.  
- 5  
Max.  
6
V
VLSCS  
LSCS pin Voltage  
ILSCS  
- 3  
3
mA  
LSCS pin Current  
VCC+0.3  
5
VLSGD  
- 0.3  
- 75  
- 50  
V
Internally clamped to 11V  
LSGD pin Voltage  
mA  
mA  
< 500 ns  
< 100 ns  
ILSGD_O_max  
ILSGD_I_max  
LSGD pin peak source current  
LSGD pin peak sink current  
400  
Voltage externally supplied to pin  
VCC  
- 0.3  
- 5  
18.5  
5
V
VVcc  
Vcc pin internal zener diode  
clamp current  
IVCC_clamp  
mA  
VCC+0.3  
VPFCGD  
- 0.3  
- 150  
- 100  
- 5  
V
PFCGD pin voltage  
Internally clamped to 11V  
< 500 ns  
IPFCGD_O_max  
IPFCGD_I_max  
VPFCCS  
5
mA  
mA  
V
PFCGD pin peak source current  
PFCGD pin peak sink current  
PFCCS pin voltage  
700  
6
< 100 ns  
IPFCCS  
- 3  
3
mA  
PFCCS pin current  
Datasheet  
01  
23 of 34  
V 1.2  
2019-04-  
ICL5102HV PFC + Resonant Half-Bridge Controller  
2nd Generation  
Electrical Characteristics  
Parameter  
Symbol  
Limit Values  
Unit Remarks  
Min.  
- 3  
Max.  
VPFCZCD  
IPFCZCD  
VPFCVS  
VRF  
6
V
PFCZCD pin voltage  
PFCZCD pin current  
PFCVS pin voltage  
RF pin voltage  
- 5  
5
mA  
V
- 0.3  
- 0.3  
- 0.3  
- 0.3  
- 0.3  
- 0.3  
- 980  
- 40  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
980  
40  
V
VOTP  
V
OTP pin voltage  
VOVP  
V
OVP pin voltage  
V
VBM  
BM pin voltage  
VBO  
V
BO pin Voltage  
HSGND pin voltage  
HSGND pin voltage transient  
Referring to GND1  
Referred to HSGND  
VHSGND  
dVHSGND /dt  
V
V/ns  
Voltage externally supplied to pin  
HSVCC  
VHSVcc  
- 0.3  
18.0  
V
VHSGD  
IHSGD_O_max  
IHSGD_I_max  
TJ  
VHSVCC+0.3  
HSGD pin voltage  
- 0.3  
- 75  
0
V
Internally clamped to 11V  
< 500 ns  
HSGD pin peak source current  
HSGD pin peak sink current  
Junction temperature  
Storage temperature  
0
mA  
mA  
°C  
°C  
W
< 100 ns  
400  
150  
150  
1
- 40  
- 55  
TS  
PTOT  
PG-DSO-19 / Tamb=25°C  
Wave Soldering2  
Total IC power dissipation  
Soldering temperature  
TSOLD  
260  
°C  
Pin voltages acc. to abs.  
maximum ratings3  
Latch-up capability  
ILU  
150  
mA  
Human Body Model4  
Charged Device Model5  
VESD_HBM  
VESD_CDM  
ESD Capability HBM  
ESD Capability CDM  
2
kV  
V
500  
5.3  
Operating Conditions  
The recommended operating conditions are shown for which the DC Electrical Characteristics are valid.  
Table 4 Operating Range  
1 Limitation due to creepage distance between the high side and low side pins (CTT 900V inside)  
2 According to JESD22-A111 Rev A  
3 Latch-up capability according to JEDEC JESD78D, TA= 85°C  
4 ESD-HBM according to ANSI/ESDA/JEDEC JS-001-2012  
5 ESD-CDM according to JESD22-C101F  
Datasheet  
24 of 34  
V 1.2  
2019-04-  
01  
ICL5102HV PFC + Resonant Half-Bridge Controller  
2nd Generation  
Electrical Characteristics  
Parameter  
Symbol  
Limit Values  
Unit Remarks  
Min.  
Max.  
Voltage externally supplied to pin  
HSVCC  
VHSVcc  
17.5  
V
Referring to HSGND  
7.9  
VHSGND  
VVcc  
- 900  
8.5  
8.5  
- 4  
900  
17.5  
18.0  
5
V
Referring to GND1  
TJ = 25°C  
HSGND pin voltage  
External supplied VCC  
External supplied VCC  
LSCS pin voltage  
V
VVcc  
TJ = 125°C  
V
VLSCS  
VPFCVS  
VPFCCS  
IPFCZCD  
VOVP  
V
In active mode  
0
4
V
PFCVS pin voltage  
PFCCS pin voltage  
PFCZCD pin voltage  
OVP pin voltage  
- 4  
5
V
In active mode  
In active mode  
- 3  
3
mA  
V
0
2.5  
125  
TJ  
- 40  
°C  
Junction temperature  
Adjustable HB switching  
frequency  
fHB  
20  
500  
kHz  
@ Tj_max = 125°C / TA = - 40°C  
fHB_SS_max  
fAC  
-
1300  
65  
kHz  
Hz  
@ Soft Start  
HB Soft-start switching frequency  
AC mains input frequency  
45  
For notch filter  
5.4  
DC Electrical Characteristics  
Note:  
The electrical characteristics involve the spread of values given within the specified supply voltage  
and junction temperature range TJ from -40 °C to 125 °C. Typical values represent the median  
values, which are given in reference to 25 °C. If not otherwise stated, a supply voltage of 15 V and  
VHSVCC = 15 V is assumed and the IC operates in active mode. Furthermore, all voltages refer to GND  
if not otherwise mentioned.  
5.4.1  
Power Supply Characteristics  
Table 5  
Operating Range  
Parameter  
Symbol  
Limit Values  
Unit Remarks  
Min.  
Typ.  
Max.  
120  
5.8  
IVcc_QU1  
IVcc_QU2  
VVcc = 8.0V  
Vcc Quiescent supply Current 1  
Vcc Quiescent supply Current 2  
70  
µA  
VPFCVS > 2.725V  
4.0  
mA  
Vcc supply current in sleep  
mode  
IVcc_sleep  
100  
160  
µA  
VVcc_On  
Vcc turn-on threshold  
15.4  
8.5  
6.7  
15.4  
3
16.0  
9.0  
16.6  
9.5  
7.4  
16.6  
6
V
VVcc_Off  
Vcc turn-off threshold  
V
VVcc_Hys  
Vcc on-off hysteresis  
7.0  
V
VVcc_Clamp  
IVcc_clamp  
IHSGND_leak  
Vcc internal clamping voltage  
Vcc internal clamping current  
High side leakage current  
16.3  
V
IVcc = 2mA  
mA  
µA  
VVcc = 18V  
VHSGND = 950V, VGND = 0V  
0.01  
2.0  
Datasheet  
01  
25 of 34  
V 1.2  
2019-04-  
ICL5102HV PFC + Resonant Half-Bridge Controller  
2nd Generation  
Electrical Characteristics  
Parameter  
Symbol  
Limit Values  
Unit Remarks  
Min.  
Typ.  
Max.  
HSVcc Quiescent supply  
Current 1  
IHSVcc_QU1  
IHSVcc_QU2  
VHSVcc = 8.0V  
190  
280  
µA  
HSVcc Quiescent supply  
Current 2  
VHSVcc > VHSVcc_On  
0.65  
1.2  
mA  
1
1
1
VHSVcc_On  
VHSVcc_Off  
VHSVcc_Hy  
HSVcc turn-on threshold  
HSVcc turn-off threshold  
HSVcc on-off hysteresis  
9.55  
7.9  
10.3  
8.6  
11  
V
V
V
9.3  
2.1  
1.4  
1.7  
5.4.2  
PFC Stage Characteristics  
Table 6  
Electrical Characteristics of the PFCGD Pin  
Parameter  
Symbol  
Limit Values  
Unit Remarks  
Min.  
0.40  
0.40  
- 0.20  
10.0  
7.5  
Typ.  
Max.  
0.92  
1.12  
0.62  
11.6  
IPFCGD = 5mA  
IPFCGD = 20mA  
IPFCGD = -20mA  
IPFCGD = -20mA  
IPFCGD = -1mA / VVCC  
IPFCGD = -5mA / VVCC  
0.70  
0.75  
0.30  
11.0  
0.75  
V
V
V
V
V
V
V
VPFCGDL  
PFCGD low voltage  
PFCGD high voltage  
2
1
VPFCGDH  
7.0  
0.40  
1.12  
IPFCGD = 20mA / VVCC=5V  
VPFCGDLASD  
VPFCGDLUVLO  
IPFCGDSO  
PFCGD active shut down  
PFCGD UVLO shut down  
PFCGD peak source current  
PFCGD peak sink current  
IPFCGD = 5mA / VVCC=2V  
3+4  
0.30  
1.00  
- 100  
500  
1.60  
V
mA  
mA  
2+3  
IPFCGDSI  
PFCGD voltage during sink  
current  
VPFCGDHS  
IPFCGD = 3mA  
10.8  
11.7  
12.3  
V
tPFCGDR  
tPFCGDF  
2V > VLSGD < 8V 2  
8V > VLSGD > 2V 2  
125  
20  
275  
45  
580  
72  
ns  
ns  
PFCGD rise time  
PFCGD fall time  
Table 7  
Electrical Characteristics of the PFCCS Pin  
Parameter  
Symbol  
Limit Values  
Unit Remarks  
Min.  
Typ.  
Max.  
PFC OCP1 comparator  
reference voltage  
VPFC_OCP1  
0.95  
1.0  
1.05  
V
1 Referring to high-side ground (HSGND)  
2 VVcc = VVcc_off + 0.3V  
3 RLoad = 4Ω and CLoad = 3.3nF  
4 This parameter is no subject to production testing verified by design / characterization  
Datasheet  
26 of 34  
V 1.2  
2019-04-  
01  
ICL5102HV PFC + Resonant Half-Bridge Controller  
2nd Generation  
Electrical Characteristics  
Parameter  
Symbol  
Limit Values  
Unit Remarks  
Min.  
Typ.  
Max.  
PFC OCP1 blanking time (incl.  
prorogation delay)  
tPFC_OCP1_blanking  
140  
200  
260  
ns  
Pulse width when VPFCCS  
> 1.0V  
tPFC_LEB  
Leading-edge blanking  
PFCCS pin bias current  
180  
250  
320  
0.5  
ns  
IPFCCSBIAS  
VPFCCS = 1.5V  
- 0.5  
µA  
Table 8  
Electrical Characteristics of the PFCZCD Pin  
Parameter  
Symbol  
Limit Values  
Unit Remarks  
Min.  
1.4  
0.4  
Typ.  
Max.  
1.6  
0.6  
VPFCZCDTHRH  
VPFCZCDTHRL  
VPFCZCDHY  
1.5  
0.5  
1.0  
V
V
V
ZCD reset threshold  
ZCD threshold  
ZCD hysteresis  
Input voltage positive clamping  
level  
VPFCZCDCLAMPH  
IPFCZCD = 2mA  
4.1  
4.6  
5.10  
- 1.0  
V
V
Input voltage negative  
clamping level  
VPFCZCDCLAMPL  
IPFCZCD = - 2mA  
- 1.70  
- 1.4  
IPFCZCDBIASH  
IPFCZCDBIASL  
tPFCZCDRING  
VPFCZCD = 1.5V  
VPFCZCD = 0.5V  
- 0.5  
- 0.5  
350  
5.0  
0.5  
650  
µA  
µA  
ns  
PFCZCD pin bias current, high  
PFCZCD pin bias current, low  
Ringing suppression-time  
500  
Limit value for ON-time  
extension  
Δt x IZCD  
400  
600  
670  
pC  
Table 9  
Electrical Characteristics of the PFCVS Pin  
Symbol Limit Values  
Parameter  
Unit Remarks  
Min.  
Typ.  
Max.  
VPFCVS_ref  
VPFCVSOV2  
2.46  
2.50  
2.54  
V
PFCVS pin reference voltage  
PFC OVP level 2 threshold (115%  
2.82  
2.67  
2.56  
2.88  
2.93  
2.78  
2.68  
V
V
V
PFC and HB OFF  
VPFCVS_ref  
)
PFC OVP level 1 threshold  
(109% VPFCVS_ref  
VPFCVSOV1  
VPFCVSOVR  
2.73  
2.63  
PFC OFF  
)
PFC OVP recovery threshold  
(105% VPFCVS_ref  
)
VPFCVSOVHY  
VPFCVSUV1  
70  
100  
130  
mV  
V
4 % rated bus voltage  
PFC OVP hysteresis  
PFC UVP threshold (75% VPFCVS_ref  
1.83  
1.88  
1.92  
)
PFC open loop threshold(12.5%  
VPFCVSUV2  
IPFCVSBIAS  
0.237  
- 1.0  
0.31  
0.387  
1.0  
V
VPFCVS_ref  
)
VPFCVS = 2.5V  
µA  
PFCVS pin bias current  
Datasheet  
01  
27 of 34  
V 1.2  
2019-04-  
ICL5102HV PFC + Resonant Half-Bridge Controller  
2nd Generation  
Electrical Characteristics  
Table 10  
PFC PWM Generation  
Symbol  
Parameter  
Limit Values  
Unit Remarks  
Min.  
1.75  
17  
Typ.  
Max.  
10.64  
26  
tPFC_on_initial  
tPFC_on_max  
VPFCZCD = 0V, VBO = 2.0V  
PFC initial on-time in soft-start  
PFC maximum on-time  
6.0  
22  
µs  
µs  
VACIN = 90V  
PFC minimum on-time in CrCM  
operation  
tPFC_on_min  
100  
220  
370  
ns  
tPFC_rep  
tPFC_off  
VPFCZCD = 0V  
PFC repetition-time  
47  
42  
52  
47  
60  
µs  
µs  
PFC maximum off-time  
52.5  
5.4.3  
HB Stage Characteristics  
Table 11  
Electrical Characteristics of the LSGD Pin  
Parameter  
Symbol  
Limit Values  
Unit Remarks  
Min.  
0.40  
0.40  
- 0.30  
10.0  
7.5  
Typ.  
Max.  
1.00  
1.20  
0.53  
11.6  
ILSGD = 5 mA  
ILSGD = 20 mA  
0.70  
0.80  
0.20  
10.8  
V
V
V
V
V
V
V
VLSGDL  
LSGD low voltage  
LSGD high voltage  
ILSGD = - 20 mA  
ILSGD = - 20 mA  
ILSGD = 1 mA1  
ILSGD = 5 mA2  
ILSGD = 20 mA / VCC = 5V  
VLSGDH  
7.0  
VLSGDLASD  
VLSGDLUVLO  
ILSGDSO  
0.4  
0.75  
1.12  
LSGD active shut down  
LSGD UVLO shut down  
LSGD peak source current  
LSGD peak sink current  
ILSGD = 5 mA / VCC = 2 V  
0.3  
1.0  
1.6  
V
+
2
3
- 50  
300  
mA  
mA  
1 + 2  
ILSGDSI  
LSGD voltage during sink  
current  
VLSGDHS  
ILSGD = 3 mA  
11.7  
V
tLSGDR  
tLSGDF  
125  
20  
275  
35  
580  
60  
ns  
ns  
2 V < VLSGD < 8 V 1  
8 V > VLSGD > 2 V 1  
LSGD rise time  
LSGD fall time  
Table 12  
Electrical Characteristics of the LSCS Pin  
Parameter  
Symbol  
Limit Values  
Unit Remarks  
Min.  
Typ.  
Max.  
HB over-current protection  
level 2  
VHB_OCP2  
1.54  
1.6  
1.66  
V
1 VCC = VCCOFF + 0.3 V  
2 Load: RLoad = 10 Ω and CLoad = 1 nF  
3 The parameter is not subject to production testing verified by design/characterization  
Datasheet  
28 of 34  
V 1.2  
2019-04-  
01  
ICL5102HV PFC + Resonant Half-Bridge Controller  
2nd Generation  
Electrical Characteristics  
Parameter  
Symbol  
Limit Values  
Unit Remarks  
Min.  
Typ.  
Max.  
Blanking time for HB over-  
current protection level 2  
tHB_OCP2_blanking  
430  
600  
0.8  
50  
670  
ns  
V
HB over-current protection  
level 1  
VHB_OCP1  
tHB_OCP1_blanking  
VHB_Cap1  
tHB_Cap1_blanking  
VHB_Cap2  
tHB_Cap2_blanking  
VHB_cap_reg  
0.74  
0.86  
Blanking time for HB over-  
current protection level 1  
1
ms  
during turn-on of the  
HSGD  
HB capacitive mode detection  
level 1  
1.54  
30  
1.6  
50  
1.66  
90  
V
Blanking time for HB capacitive  
mode detection level 1  
ns  
mV  
ns  
mV  
%
before turn-on of the  
HSGD  
HB capacitive mode detection  
level 2  
- 70  
300  
25  
- 50  
390  
50  
- 25  
550  
70  
Blanking time for HB capacitive  
mode detection level 2  
HB capacitive mode regulation  
voltage  
HB capacitive mode regulation  
ratio  
KHB_cap_reg  
4.5  
7.0  
9.0  
VLSCSCC  
ILSCSBA  
0.74  
-1.0  
0.8  
0.86  
1.0  
V
HB over-current control  
LSCS pin bias current  
VLSCS = 1.5 V  
µA  
Table 13  
Electrical Characteristics of the HSGD Pin  
Parameter  
Symbol  
Limit Values  
Unit Remarks  
Min.  
0.018  
0.40  
- 0.40  
9.7  
Typ.  
0.05  
1.10  
-0.20  
10.5  
Max.  
0.1  
2.50  
- 0.04  
11.3  
IHSGD = 5mA  
V
V
V
V
V
V
IHSGD = 100mA  
IHSGD = - 20mA  
VCC_HS=15V  
IHSGD = - 20mA  
VCC_HS_OFF + 0.3V  
IHSGD = - 1mA1  
VCC_HS=5V1  
VHSGDL  
HSGD low voltage  
HSGD high voltage  
VHSGDH  
7.8  
0.04  
VHSGDLASD  
IHSGDSO  
IHSGDSI  
0.22  
0.50  
HSGD active shut down  
HSGD peak source current  
HSGD peak sink current  
HSGD rise time  
- 50  
300  
220  
35  
V
V
tHSGDR  
IHSGD = 20mA  
120  
17  
320  
70  
ns  
ns  
tHSGDF  
RLoad = 10Ω+CLoad = 1nF  
HSGD fall time  
Table 14  
Electrical Characteristics of the RF Pin  
1 The parameter is not subject to Production Test verified by Design / Characterization  
Datasheet  
29 of 34  
V 1.2  
2019-04-  
01  
ICL5102HV PFC + Resonant Half-Bridge Controller  
2nd Generation  
Electrical Characteristics  
Parameter  
Symbol  
Limit Values  
Unit Remarks  
Min.  
Typ.  
Max.  
RF pin voltage in normal  
operation  
VRF  
@ 100µA < IRFM < 800µA  
2.46  
2.5  
2.54  
V
RRF = 10kΩ without the  
resistor to BM pin  
IRF = - 100 µA  
IRF = - 200 µA  
IRF = - 500 µA  
HB nominal switching  
frequency  
fNOM  
97.5  
100  
102.5  
kHz  
f1  
f2  
f3  
f4  
f5  
37  
76  
190  
220  
290  
40  
80  
200  
240  
320  
43  
84  
210  
260  
350  
kHz  
kHz  
kHz  
kHz  
kHz  
IRF = - 600 µA  
IRF = - 800 µA  
Adjustable HB switching  
frequency via the CCO  
IRF = - 1.25 mA / @ Tj = -  
fmax-25°C  
fmax-40°C  
450  
400  
500  
500  
-
-
kHz  
kHz  
25°C1  
IRF = - 1.25 mA / @ Tj = -  
40°C1  
Table 15  
Electrical Characteristics of the BM Pin  
Parameter  
Symbol  
Limit Values  
Unit Remarks  
Min.  
Typ.  
Max.  
HB burst mode entry voltage  
threshold  
VHB_BM_entry  
710  
750  
790  
mV  
ms  
Blanking time for HB burst  
mode entry  
tHB_BM_entry_blanking  
8.5  
10.0  
11.5  
HB burst mode turn-on  
threshold  
VHB_BM_on  
VHB_BM_exit  
IBM_max  
2.13  
1.93  
2.20  
2.0  
2.27  
2.07  
V
V
HB burst mode exit threshold  
Maximum sink current into  
the BM pin  
800  
µA  
BM pin current in the sleep  
mode  
IBM_Stop  
-3  
14  
µA  
Table 16  
Electrical Characteristics of the BO Pin  
Parameter  
Symbol  
Limit Values  
Unit Remarks  
Min.  
1.14  
1.34  
-0.5  
Typ.  
1.2  
1.4  
Max.  
1.26  
1.46  
0.5  
VBO_out  
VBO_in  
IBOBA  
Brown-out threshold  
Brown-in threshold  
BO pin bias current  
V
V
VBO = 5.0V  
µA  
Table 17  
Electrical Characteristics of the OVP Pin  
1 Make sure, that the expected ambient temperature does NOT cause a maximum junction temperature higher than 125°C  
Datasheet  
30 of 34  
V 1.2  
2019-04-  
01  
ICL5102HV PFC + Resonant Half-Bridge Controller  
2nd Generation  
Electrical Characteristics  
Parameter  
Symbol  
Limit Values  
Unit Remarks  
Min.  
Typ.  
Max.  
HB OVP pin reference voltage  
for OVP detection  
VHB_OVP_ref  
2.45  
2.5  
2.55  
V
t > 5µs  
Blanking time for HB OVP  
detection  
tHB_OVP_blanking  
IOVPBA  
5
µs  
OVP pin bias current  
- 0.5  
0.5  
µA  
VOVP = 3.0V  
Table 18  
Electrical Characteristics of the OTP Pin  
Parameter  
Symbol  
Limit Values  
Unit Remarks  
Min.  
670  
594  
Typ.  
Max.  
735  
VOTP_start  
VOTP_off  
OTP turn-on threshold  
OTP turn-off threshold  
703  
625  
mV  
mV  
665  
Blanking time for OTP  
detection  
tOTP_blanking  
IOTP  
620  
µs  
OTP pin source current in  
normal operation  
- 106  
- 100  
- 94  
µA  
Table 19  
Time Section  
Parameter  
Symbol  
Limit Values  
Unit Remarks  
Min.  
550  
350  
150  
Typ.  
Max.  
930  
600  
300  
tDead_max1  
tDead_max2  
tDead_min  
750  
500  
250  
ns  
ns  
ns  
LSCS > - 50mV / 100kHz  
HB maximum dead time 1  
HB maximum dead time 2  
HB minimum dead time  
LSCS > - 50mV / 500kHz  
LSCS < - 50mV / 500kHz  
Datasheet  
01  
31 of 34  
V 1.2  
2019-04-  
ICL5102HV PFC + Resonant Half-Bridge Controller  
2nd Generation  
Package Dimensions  
6
Package Dimensions  
The package dimensions of PG-DSO-19 are provided.  
Figure 24  
Package Dimensions for PG-DSO-19  
Note:  
Note:  
Dimensions in mm.  
You can find all of our packages, packing types and other package information on our Infineon  
internet page “Products”: http://www.infineon.com/products.  
Datasheet  
01  
32 of 34  
V 1.2  
2019-04-  
ICL5102HV PFC + Resonant Half-Bridge Controller  
2nd Generation  
Revision history  
Revision history  
Document  
version  
Date of release  
Description of changes  
V1.2  
V1.1  
V1.0  
01.04.2019  
09.11.2018  
01.06.2018  
Errors correction and content modification  
Errors correction and content modification  
First release  
Datasheet  
01  
33 of 34  
V 1.2  
2019-04-  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on the product, technology,  
Edition 2019-04-01  
event be regarded as a guarantee of conditions or delivery terms and conditions and prices please  
Published by  
characteristics (“Beschaffenheitsgarantie”) .  
contact your nearest Infineon Technologies office  
(www.infineon.com).  
Infineon Technologies AG  
81726 München, Germany  
With respect to any examples, hints or any typical  
values stated herein and/or any information  
regarding the application of the product, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation warranties of non-infringement of  
intellectual property rights of any third party.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2019 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about this  
document?  
In addition, any information given in this document  
is subject to customer’s compliance with its  
obligations stated in this document and any  
applicable legal requirements, norms and standards  
concerning customer’s products and any use of the  
product of Infineon Technologies in customer’s  
applications.  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized  
representatives  
of  
Infineon  
Email: erratum@infineon.com  
Technologies, Infineon Technologies’ products may  
not be used in any applications where a failure of the  
product or any consequences of the use thereof can  
reasonably be expected to result in personal injury.  
Document reference  
ifx1  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  

相关型号:

ICL551-1

5-Phase VRD/POL Inductor
ICE

ICL644CBD

Switching Regulator, 1.6A, 24kHz Switching Freq-Max, CMOS, PDSO14
RENESAS

ICL644CBD-T

1.6A SWITCHING REGULATOR, 24kHz SWITCHING FREQ-MAX, PDSO14
RENESAS

ICL644CPD

Switching Regulator, 1.6A, 24kHz Switching Freq-Max, CMOS, PDIP14
RENESAS

ICL644IBD-T

Switching Regulator, 1.6A, 24kHz Switching Freq-Max, PDSO14
RENESAS

ICL645CBD-T

1.6A SWITCHING REGULATOR, 24kHz SWITCHING FREQ-MAX, PDSO14
RENESAS

ICL645IBD-T

Switching Regulator, 1.6A, 24kHz Switching Freq-Max, PDSO14
RENESAS

ICL646CBD

IC,DC/DC CONVERTER,+5V,CMOS,SOP,14PIN
RENESAS

ICL646CBD-T

1.6A SWITCHING REGULATOR, 24kHz SWITCHING FREQ-MAX, PDSO14
RENESAS

ICL646CPD

IC,DC/DC CONVERTER,+5V,CMOS,DIP,14PIN
RENESAS

ICL646IBD

IC,DC/DC CONVERTER,+5V,CMOS,SOP,14PIN
RENESAS

ICL646IBD-T

1.6A SWITCHING REGULATOR, 24kHz SWITCHING FREQ-MAX, PDSO14
RENESAS