IFX24401TEV50 [INFINEON]

Low Dropout Voltage Regulator; 低压差稳压器
IFX24401TEV50
型号: IFX24401TEV50
厂家: Infineon    Infineon
描述:

Low Dropout Voltage Regulator
低压差稳压器

稳压器
文件: 总18页 (文件大小:1338K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IFX24401  
Low Dropout Voltage Regulator  
IFX24401TEV50  
IFX24401ELV50  
Data Sheet  
Rev. 1.02, 2009-12-10  
Standard Power  
Low Dropout Voltage Regulator  
IFX24401  
1
Overview  
Features  
Output voltage 5 V ±2%  
Ultra low current consumption: 20 µA (typ.)  
300 mA current capability  
Enable input  
Very low-drop voltage  
Short circuit protection  
Overtemperature protection  
Low Dropout Voltage, 250mV (typ.)  
High Input Voltage 45 V  
PG-TO252-5  
Temperature Range -40 °C Tj 125 °C  
Green Product (RoHS compliant)  
Applications  
Battery powered devices (e.g. Handheld GPS)  
Portable Radios  
HDTV Televisions  
Game Consoles  
Network Routers  
PG-SSOP-14  
For automotive and transportation applications, please refer to the Infineon TLE and TLF voltage regulator series.  
Functional Description  
The IFX24401 is a monolithic integrated low-drop voltage regulator for load currents up to 300 mA. The output  
voltage is regulated to VQ,nom = 5.0 V with an accuracy of ±2%. A sophisticated design allows stable operation with  
low ESR ceramic output capacitors down to 470 nF. The device is designed for the harsh environments. Therefore  
it is protected against overload, short circuit and overtemperature conditions. Due to its ultra low stand-by current  
consumption of 20 µA (typ.) the IFX24401 is ideal for use in battery powered applications. The regulator can be  
shut down via an Enable input which further reduces the current consumption to 5 µA (typ.). An integrated output  
sink current circuitry keeps the voltage at the Output pin Q below 5.5 V even when reverse currents are applied.  
Thus connected devices are protected from overvoltage damage.  
Type  
IFX24401TEV50  
IFX24401ELV50  
Package  
PG-TO252-5  
PG-SSOP-14  
Marking  
2440150  
24401V50  
Data Sheet  
2
Rev. 1.02, 2009-12-10  
IFX24401  
Block Diagram  
2
Block Diagram  
IFX24401  
I
Q
Overtemperature  
Shutdown  
Bandgap  
1
Reference  
EN  
Enable  
Charge  
Pump  
GND  
Figure 1  
Block Diagram  
Data Sheet  
3
Rev. 1.02, 2009-12-10  
IFX24401  
Pin Configuration  
3
Pin Configuration  
I NC EN Q  
Figure 2  
Pin Configuration PG-TO252-5 (top view)  
3.1  
Pin Definitions and Functions (PG-TO252-5 )  
Pin  
Symbol  
Function  
1
I
Input  
Connect ceramic capcitor between I and GND  
2
3
4
5
N.C.  
GND  
EN  
No Connect  
May be open or connected to GND  
Ground  
Internally connected to heat slug  
Enable Input  
Low signal level disables the regulator. Pull-down resistor is integrated.  
Q
Output  
Place capacitor between Q pin and GND. Capacitor placement should be close to pin.  
Refer to capacitance and ESR requirements in “Functional Range” on Page 6  
Heat Slug --  
Heat Slug  
Connect to board GND and heatsink  
Data Sheet  
4
Rev. 1.02, 2009-12-10  
IFX24401  
Pin Configuration  
ꢁꢄ  
ꢁꢃ  
ꢁꢂ  
ꢁꢁ  
ꢁꢉ  
1ꢀ&ꢀ  
1ꢀ&ꢀ  
1ꢀ&ꢀ  
,
1ꢀ&ꢀ  
1ꢀ&ꢀ  
1ꢀ&ꢀ  
*1'  
1ꢀ&ꢀ  
(1  
1ꢀ&ꢀ  
4
1ꢀ&ꢀ  
1ꢀ&ꢀ  
3,1&21),*B6623ꢋꢁꢄꢀ69*  
Figure 3  
Pin Configuration PG-SSOP-14 (top view)  
3.2  
Pin Definitions and Functions (PG-SSOP-14 )  
Pin  
Symbol  
Function  
1,2,3,5,7 N.C.  
No Connect  
May be open or connected to GND  
4
6
GND  
EN  
Ground  
Enable Input  
Low signal level disables the regulator. Pull-down resistor is integrated.  
8,10,11,1 N.C.  
2,14  
No Connect  
May be open or connected to GND  
9
Q
Output  
Place capacitor between Q pin and GND. Capacitor placement should be close to pin.  
Refer to capacitance and ESR requirements in “Functional Range” on Page 6  
13  
I
Input  
Connect ceramic capcitor between I and GND  
Pad  
Exposed Pad  
Connect to board GND and heatsink  
Data Sheet  
5
Rev. 1.02, 2009-12-10  
IFX24401  
General Product Characteristics  
4
General Product Characteristics  
4.1  
Absolute Maximum Ratings  
Absolute Maximum Ratings1)  
Tj = -40 °C to 150 °C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Parameter  
Symbol  
Limit Values  
Unit  
Test Condition  
Min.  
Max.  
Input I  
Voltage  
Current  
Enable EN  
Voltage  
VI  
II  
-0.3  
-1  
45  
V
mA  
VEN  
IEN  
-0.3  
-1  
45  
1
V
Observe current limit  
IEN,max  
2)  
Current  
mA  
Output Q  
Voltage  
Voltage  
Current  
VQ  
VQ  
IQ  
-0.3  
-0.3  
-1  
5.5  
6.2  
V
V
mA  
t < 10 s3)  
Temperature  
Junction temperature  
Storage temperature  
Tj  
Tstg  
-40  
-50  
150  
150  
°C  
°C  
1) Not subject to production test, specified by design.  
2) External resistor required to keep current below absolute maximum rating when voltages 5.5 V are applied.  
3) Exposure to these absolute maximum ratings for extended periods (t > 10 s) may affect device reliability.  
Note:Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
Note:Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are  
not designed for continuous repetitive operation.  
4.2  
Functional Range  
Parameter  
Symbol  
Limit Values  
Unit Remarks  
Min.  
Max.  
42  
125  
Input voltage  
VI  
5.5  
-40  
470  
V
Junction temperature  
Output Capacitor  
Tj  
CQ  
ESR (CQ)  
°C  
nF  
1)  
10  
f = 10 kHz  
1) The minimum output capacitance requirement is applicable for a worst case capacitor tolerance of 30%  
Note:In the operating range, the functions given in the circuit description are fulfilled.  
Data Sheet  
6
Rev. 1.02, 2009-12-10  
IFX24401  
General Product Characteristics  
4.3  
Thermal Resistance  
Pos.  
Parameter  
Symbol  
Limit Value  
Unit  
Conditions  
Min. Typ. Max.  
IFX24401TEV50 (PG-TO252-5, )  
4.3.1  
4.3.2  
4.3.3  
Junction to Case1)  
RthJC  
RthJA  
4
115  
57  
K/W  
K/W  
K/W  
measured to pin 5  
Footprint only2)  
Junction to Ambient1)  
300mm2 heatsink area on  
PCB2)  
4.3.4  
42  
K/W  
600mm2 heatsink area on  
PCB2)  
IFX24401ELV50 (PG-SSOP-14)  
4.3.5  
4.3.6  
4.3.7  
Junction to Case1)  
RthJC  
RthJA  
7
120  
59  
K/W  
K/W  
K/W  
measured to pin 5  
Footprint only2)  
Junction to Ambient1)  
300mm2 heatsink area on  
PCB2)  
4.3.8  
49  
K/W  
600mm2 heatsink area on  
PCB2)  
1) not subject to production test, specified by design  
2) EIA/JESD 52_2, FR4, 80 × 80 × 1.5 mm; 35µ Cu, 5µ Sn  
Data Sheet  
7
Rev. 1.02, 2009-12-10  
IFX24401  
General Product Characteristics  
Table 1  
Electrical Characteristics  
VI = 13.5 V; VEN = 5 V; -40 °C < Tj < 125 °C (unless otherwise specified)  
Parameter  
Symbol  
Limit Values  
Unit  
Measuring Condition  
Min. Typ. Max.  
Output Q  
Output voltage  
VQ  
VQ  
4.9  
4.9  
5.0  
5.0  
5.1  
5.1  
V
V
0.1 mA < IQ < 300 mA;  
6 V < VI < 16 V  
Output voltage  
0.1 mA < IQ < 100 mA;  
6 V < VI < 40 V  
1)  
Output current limit  
Output current limit  
Current consumption;  
Iq = II - IQ  
IQ,LIM  
IQ,LIM  
Iq  
320  
20  
800  
30  
mA  
mA  
µA  
VQ = 0V  
IQ = 0.1 mA;  
Tj = 25 °C  
Current consumption;  
Iq  
40  
9
µA  
µA  
mV  
IQ = 0.1 mA;  
Tj 80 °C  
Iq = II - IQ  
Quiescent current;  
Disabled  
Drop voltage  
Iq  
5
VEN = 0 V;  
Tj < 80 °C  
Vdr  
250  
500  
IQ = 200 mA;  
1)  
Vdr = VI - VQ  
Load regulation  
Line regulation  
VQ, lo  
VQ, li  
-40  
-20  
15  
5
40  
20  
mV  
mV  
IQ = 5 mA to 250 mA  
Vl = 10V to 32 V;  
IQ = 5 mA  
Power supply ripple rejection  
60  
dB  
fr = 100 Hz;  
Vr = 0.5 Vpp  
PSRR  
Temperature output voltage drift  
Enable Input EN  
Turn-on Voltage  
Turn-off Voltage  
H-input current  
dVQ/dT  
0.5  
mV/K  
VEN ON  
VEN OFF  
IEN ON  
3.1  
3
0.5  
0.8  
4
V
V
µA  
µA  
VQ 4.9 V  
VQ 0.3 V  
V
V
EN = 5 V  
EN = 0 V;  
L-input current  
IEN OFF  
1
Tj < 80 °C  
1) Measured when the output voltage VQ has dropped 100 mV from the nominal value obtained at VI = 13.5 V.  
Data Sheet  
8
Rev. 1.02, 2009-12-10  
IFX24401  
Typical Performance Characteristics  
5
Typical Performance Characteristics  
Current Consumption Iq versus  
Junction Temperature TJ  
Current Consumption Iq versus  
Input Voltage VQ  
1_Iq -Tj .vsd  
3_IQ -VI.VSD  
Iq A]  
TJ = 25°C  
Iq [µA]  
VI = 13.5V  
100  
10  
40  
30  
20  
10  
IQ = 100 µA  
IQ = 50mA  
IQ = 10mA  
1
IQ = 0.2mA  
0.01  
-40 -20  
0
20 40 60 80 100 120 140  
0
10  
20  
30  
40  
TJ C]  
VI [V]  
Current Consumption Iq versus  
Output Current IQ  
Output Voltage VQ versus  
Junction Temperature TJ  
5A_VQ-TJ.VSD  
2_IQ-IQ.VSD  
30  
VI = 13.5 V  
Iq [µA]  
VQ [V]  
VI = 13.5 V  
Tj = 25 °C  
Tj = -40 °C  
5.05  
5.00  
20  
15  
10  
5
IQ =100µA...100mA  
4.95  
4.90  
-40 -20  
0
20 40 60 80 100 120 140  
0
20  
40  
60  
100  
IQ [mA]  
Tj [°C]  
Data Sheet  
9
Rev. 1.02, 2009-12-10  
IFX24401  
Typical Performance Characteristics  
Dropout Voltage Vdr versus  
Output Current IQ  
Maximum Output Current IQ versus  
Junction Temperature Tj  
6_VDR-IQ .VSD  
8_IQMAX-TJ.VSD  
600  
620  
VI= 13.5 V  
Vdr [mV]  
IQ [mA]  
TJ = 150 °C  
400  
300  
200  
100  
580  
560  
540  
520  
500  
T
Jj = 25 °C  
TJ = -40 °C  
0
100  
200  
300  
-40 -20  
0
20 40 60 80 100 120 140  
IQ [mA]  
TJ C]  
Dropout Voltage Vdr versus  
Maximum Output Current IQ versus  
Input Voltage VI  
Junction Temperature  
9_SOA.VSD  
7_ V D R -TJ . V S D  
600  
600  
IQ,LIM  
T
T
j = 125 °C  
j = 25 °C  
[mA]  
Vdr [mV]  
IQ = 250 mA  
400  
300  
200  
100  
400  
300  
200  
100  
IQ = 150mA  
IQ = 10 mA  
0
10  
20  
30  
40  
VI [V]  
-40 -20  
0
20 40 60 80 100 120 140  
TJ C]  
Data Sheet  
10  
Rev. 1.02, 2009-12-10  
IFX24401  
Typical Performance Characteristics  
Region of Stability  
Output Voltage VQ Start-up behavior  
14_VI-  
12_ESR-IQ.VSD  
time _startup.vsd  
100  
CQ = 10nF ...10 µF  
Tj = 25 °C  
VQ [V]  
ESRCQ  
[]  
EN = HIGH  
10  
5.05  
5.00  
4.90  
4.80  
I
Q = 5mA  
1
Stable  
Region  
0.1  
0.01  
0
50  
100  
150  
200  
IQ [mA]  
1
2
3
4
5
t
[ms]  
Power Supply Ripple Rejection PSRR versus  
Frequency f  
Load Regulation VQ versus  
Output Current Change IQ  
13_PSRR.VSD  
18a_dVQ-dIQ _Vi6V.vsd  
80  
0
IQ = 0.1 mA  
Q = 30 mA  
PSRR  
VI = 6V  
VQ  
[dB ]  
[mV]  
I
IQ = 100 mA  
60  
-10  
-15  
-20  
-25  
-30  
T
j = -40 °C  
j = 25 °C  
50  
40  
30  
T
V
RIPPLE = 0.5 VPP  
VI = 13.5 V  
Q = 10 µF Tantalum  
T
j = 150 °C  
C
TJ = 25 °C  
10  
100  
1k  
10k  
100k  
[Hz]  
0
50  
100  
150  
250  
IQ [mA]  
f
Data Sheet  
11  
Rev. 1.02, 2009-12-10  
IFX24401  
Typical Performance Characteristics  
Load Regulation VQ versus  
Output Current Change dIQ  
Line Regulation V versus  
Input Voltage ChangQ ed VI  
18b_dVQ-dIQ_Vi135V.vsd  
19_dVQ-dVI__150C.vsd  
0
0
TJ = 150 °C  
V
I = 13.5V  
VQ  
VQ  
[mV]  
[mV]  
IQ = 1mA  
IQ = 10mA  
IQ = 100mA  
-10  
-15  
-20  
-25  
-30  
-2  
-3  
-4  
-5  
-6  
T
J = -40 °C  
T
J = 25 °C  
IQ = 200mA  
TJ = 150 °C  
0
50  
100  
150  
250  
0
5
10 15 20 25 30 35 40 45  
I [V]  
IQ [mA]  
V
Load Regulation VQ versus  
Output Current Change IQ  
Line Regulation VQ versus  
Input Voltage Changed VI  
19_dVQ-dVI_25C.vsd  
18c_dVQ-dIQ_Vi28V.vsd  
0
0
TJ = 25 °C  
VI = 28  
VQ  
VQ  
[mV]  
[mV]  
IQ = 1mA  
IQ = 10mA  
-2  
-3  
-4  
-5  
-6  
-10  
-15  
-20  
-25  
-30  
TJ = -40 °C  
I
Q = 100mA  
IQ = 200mA  
TJ = 25 °C  
TJ = 150 °C  
0
5
10 15 20 25 30 35 40 45  
I [V]  
0
50  
100  
150  
250  
V
IQ [mA]  
Data Sheet  
12  
Rev. 1.02, 2009-12-10  
IFX24401  
Typical Performance Characteristics  
Line Regulation VQ versus  
Input Voltage Change VI  
Load Transient Response Peak Voltage VQ  
19_dVQ-dVI_-40C.vsd  
20_Load Trancientvs time 125.vsd  
0
T
J =40 °C  
IQ  
IQ=100mA  
T
J = 125 °C  
I = 13.5 V  
VQ  
[mV]  
V
IQ = 1mA  
IQ = 10mA  
-2  
-3  
-4  
-5  
-6  
IQ = 100mA  
I
Q = 200mA  
VQ  
VQ = 100 mV/DIV  
t = 40 µs/DIV  
0
5
10 15 20 25 30 35 40 45  
I [V]  
V
Load Transient Response Peak Voltage VQ  
Line Transient Response Peak Voltage VQ  
20_Load Trancientvs time 25.vsd  
21_Line Trancientvs time 25.vsd  
IQ  
TJ = 25 °C  
VI = 13.5 V  
TJ = 25 °C  
VI = 13.5 V  
IQ = 100mA  
VI  
VI = 2V  
VQ  
VQ = 50 mV/DIV  
VQ  
VQ = 100 mV/DIV  
t = 40 µs/DIV  
t = 400 µs/DIV  
Data Sheet  
13  
Rev. 1.02, 2009-12-10  
IFX24401  
Typical Performance Characteristics  
Line Transient Response Peak Voltage VQ  
I
Enabled Input Current IEN versus  
Input Voltage VI , EN=Off  
25_IINH vs VIN INH _off.vsd  
21_Line Trancientvs time 125.vsd  
TJ = 125 °C  
VI = 13.5 V  
IEN  
EN = L  
[µA ]  
VI  
(i.e. IC OFF)  
VI = 2 V  
1.0  
0.8  
0.6  
0.4  
0.2  
T
J = 150°C  
TJ = 25°C  
TJ = -40°C  
VQ  
VQ = 50 mV/DIV  
t = 400 µs/DIV  
10  
20  
30  
40  
V
I [V]  
Enabled Input Current IEN versus  
Enabled Input Voltage VEN  
Thermal Resistance Junction-Ambient RTHJA  
versus Power Dissipation PV  
24_IINH vs VINH.vsd  
32_RTH VS PV TO252.VSD  
75  
RTH-JA  
A = 300mm2  
IEN  
Cooling Area single sided PCB  
[µA ]  
T
J = 150°C  
[K /W]  
50  
40  
30  
20  
10  
T
T
J = 25°C  
65  
60  
J = -40°C  
TO252-5  
55  
50  
10  
20  
30  
40  
3
6
9
12  
V
EN [V]  
PV [W]  
Data Sheet  
14  
Rev. 1.02, 2009-12-10  
IFX24401  
Application Information  
6
Application Information  
IFX24401  
VBat  
100  
VCC  
1
Q 5  
I
470  
nF  
+
4.7  
µF  
nF  
Overtemperature  
Shutdown  
Bandgap  
1
Reference  
e. g.  
Ignition  
2
EN  
Enable  
Charge  
Pump  
GND  
3, Tab  
Figure 4  
Application Diagram  
Input, Output  
An input capacitor is necessary for damping line influences. A resistor of approx. 1 in series with CI, can damp  
the LC of the input inductivity and the input capacitor.  
The IFX24401 requires a ceramic output capacitor of at least 470 nF. In order to damp influences resulting from  
load current surges it is recommended to add an additional electrolytic capacitor of 4.7 µF to 47 µF at the output  
as shown in Figure 4.  
Additionally a buffer capacitor CB of > 10µF should be used for the output to suppress influences from load surges  
to the voltage levels. This one can either be an aluminum electrolytic capacitor or a tantalum capacitor following  
the application requirements.  
A general recommendation is to keep the drop over the equivalent serial resistor (ESR) together with the discharge  
of the blocking capacitor below the allowed Headroom of the Application to be supplied (e.g. typ. dVQ = 350mV).  
Since the regulator output current roughly rises linearly with time the discharge of the capacitor can be calculated  
as follows:  
dVCB = dIQ*dt/CB  
The drop across the ESR calculates as:  
dVESR = dI*ESR  
To prevent a reset the following relationship must be fullfilled:  
dVC + dVESR < VRH = 350mV  
Example: Assuming a load current change of dIQ = 100mA, a blocking capacitor of CB = 22µF and a typical  
regulator reaction time under normal operating conditions of dt ~ 25µs and for special dynamic load conditions,  
such as load step from very low base load, a reaction time of dt ~ 75µs.  
dVC = dIQ*dt/CB = 100mA * 25µs/22µF = 113mV  
So for the ESR we can allow  
dVESR = VRH2 - dVC = 350mV - 113mV = 236mV  
The permissible ESR becomes:  
ESR = dVESR / dIQ = 236mV/100mA = 2.36Ohm  
Data Sheet  
15  
Rev. 1.02, 2009-12-10  
IFX24401  
Package Outlines  
7
Package Outlines  
+0.15  
-0.05  
6.5  
A
+0.05  
-0.10  
5.7 MAX.1)  
2.3  
+0.08  
-0.04  
B
(5)  
0.5  
+0.20  
-0.01  
0.9  
0...0.15  
0.15 MAX.  
per side  
+0.08  
±0.1  
5 x 0.6  
1.14  
0.5  
-0.04  
0.1 B  
4.56  
M
0.25  
A B  
GPT09527  
1) Includes mold flashes on each side.  
All metal surfaces tin plated, except area of cut.  
Figure 5  
PG-TO252-5  
0.35 x 45˚  
1)  
0.1 C D  
±0.1  
3.9  
+0.06  
0.19  
0.08  
C
C
0.64±0.25  
0.2  
0.65  
2)  
±0.05  
±0.2  
6
0.25  
M
M
D 8x  
0.15  
C A-B D 14x  
D
Bottom View  
±0.2  
3
A
1
7
14  
8
1
7
14  
8
Exposed  
Diepad  
B
0.1 C A-B 2x  
1)  
±0.1  
4.9  
GPT09113  
Index Marking  
1) Does not include plastic or metal protrusion of 0.15 max. per side  
2) Does not include dambar protrusion  
PG-SSOP-14-1,-2,-3-PO V02  
Figure 6  
PG-SSOP-14  
Data Sheet  
16  
Rev. 1.02, 2009-12-10  
IFX24401  
Revision History  
8
Revision History  
Revision  
1.02  
Date  
2009-12-10  
Changes  
Corrections to pin assignment  
1.01  
2009-10-19  
Coverpage changed  
Overview page: Inserted reference statement to TLE/TLF series.  
Initial Release  
1.0  
2009-04-28  
Data Sheet  
17  
Rev. 1.02, 2009-12-10  
Edition 2009-12-10  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2009 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties  
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  

相关型号:

IFX25001

Low Dropout Voltage Regulator
INFINEON

IFX25001MEV25

Low Dropout Voltage Regulator
INFINEON

IFX25001MEV25XT

Fixed Positive LDO Regulator, 2.5V, 2V Dropout, PDSO4, GREEN, PLASTIC, SOT-223, 4 PIN
INFINEON

IFX25001MEV33

Low Dropout Voltage Regulator
INFINEON

IFX25001MEV33HTSA1

Fixed Positive LDO Regulator, 3.3V, 1.2V Dropout, PDSO4, GREEN, PLASTIC, SOT-223, 4 PIN
INFINEON

IFX25001TCV10

Low Dropout Voltage Regulator
INFINEON

IFX25001TCV50

Low Dropout Voltage Regulator
INFINEON

IFX25001TCV50

5 V FIXED POSITIVE LDO REGULATOR, 0.5 V DROPOUT, PSSO3, GREEN, PLASTIC, TO-263, 3 PIN
ROCHESTER

IFX25001TCV50ATMA1

Fixed Positive LDO Regulator, 5V, 0.5V Dropout, PSSO3, GREEN, PLASTIC, TO-263, 3 PIN
INFINEON

IFX25001TCV50XT

Fixed Positive LDO Regulator, 5V, 0.5V Dropout, PSSO3, GREEN, PLASTIC, TO-263, 3 PIN
INFINEON

IFX25001TCV85

Low Dropout Voltage Regulator
INFINEON

IFX25001TFV33

Low Dropout Voltage Regulator
INFINEON