IKN04N60RC2 [INFINEON]

IGBT RC Drives 2;
IKN04N60RC2
型号: IKN04N60RC2
厂家: Infineon    Infineon
描述:

IGBT RC Drives 2

双极性晶体管
文件: 总17页 (文件大小:1256K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IKN04N60RC2  
600 V Reverse Conducting Drive 2  
600 V Reverse Conducting Drive 2 offering cost effective IGBT with monolithically integrated diode  
Features  
• VCE = 600 V  
• IC = 4 A  
• Very tight parameter distribution  
• Operating range of 1 to 20 kHz  
• Maximum junction temperature 150°C  
• Short circuit capability of 3 µs  
• Humidity robust design  
• Pb-free lead plating; RoHS compliant  
• Complete product spectrum and PSpice Models: http://www.infineon.com/rc-d2  
Potential applications  
• Ceiling fan  
• Countertop appliances - mixing  
• Kitchen hood  
• Refrigerators  
• Residential aircon indoor unit  
• Washing machines  
• General purpose drives (GPD)  
Product validation  
• Qualified for industrial applications according to the relevant tests of JEDEC47/20/22  
Description  
C
G
E
Type  
Package  
Marking  
IKN04N60RC2  
PG-SOT223-3  
K4DRC2  
Datasheet  
www.infineon.com  
Please read the sections "Important notice" and "Warnings" at the end of this document  
Revision 1.10  
2022-09-21  
IKN04N60RC2  
600 V Reverse Conducting Drive 2  
Table of contents  
Table of contents  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Potential applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Product validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
IGBT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
Diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Characteristics diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Package outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Testing conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
1
2
3
4
5
6
Datasheet  
2
Revision 1.10  
2022-09-21  
IKN04N60RC2  
600 V Reverse Conducting Drive 2  
1 Package  
1
Package  
Table 1  
Characteristic values  
Symbol Note or test condition  
Parameter  
Values  
Typ.  
Unit  
Min.  
Max.  
150  
Storage temperature  
Soldering temperature  
Tstg  
-55  
°C  
°C  
Tsold  
wave soldering / reflow soldering (MSL1  
according to JEDEC J-STA-020)  
260  
Thermal resistance,  
min.footprint junction-  
ambient  
Thermal resistance, 6 cm2  
Cu on PCB junction to  
ambient  
Rth(j-a)  
160  
75  
K/W  
K/W  
Rth(j-a)  
IGBT thermal resistance,  
junction-case1)  
Rth(j-c)  
Rth(j-c)  
18.4  
26.3  
K/W  
K/W  
Diode thermal resistance,  
junction-case1)  
1)  
Rth/Zth based on single cooling pulse. Please be aware that a correct Rth measurement of the IGBT, is not possible using a thermocouple.  
2
IGBT  
Table 2  
Maximum rated values  
Symbol Note or test condition  
VCE Tvj ≥ 25 °C  
Parameter  
Values  
600  
7.5  
Unit  
Collector-emitter voltage  
V
A
DC collector current,  
IC  
Tc = 25 °C  
1)  
limited by Tvjmax  
Tc = 100 °C  
4.1  
Pulsed collector current, tp  
limited by Tvjmax  
ICpulse  
12  
A
A
Turn-off safe operating  
area  
VCE ≤ 600 V, tp = 1 µs, Tvj ≤ 150 °C  
tp ≤ 10 µs, D < 0.01  
12  
Gate-emitter voltage  
VGE  
VGE  
20  
30  
V
V
Transient gate-emitter  
voltage  
Short-circuit withstand  
time  
tSC  
VCC ≤ 400 V, VGE = 15 V, Allowed number of  
short circuits < 1000, Time between short  
circuits ≥ 1.0 s, Tvj = 150 °C  
3
µs  
W
Power dissipation  
Ptot  
Tc = 25 °C  
6.8  
2.7  
Tc = 100 °C  
1)  
DPAK equivalent  
Datasheet  
3
Revision 1.10  
2022-09-21  
IKN04N60RC2  
600 V Reverse Conducting Drive 2  
2 IGBT  
Table 3  
Characteristic values  
Symbol Note or test condition  
Parameter  
Values  
Typ.  
2
Unit  
Min.  
Max.  
Collector-emitter  
saturation voltage  
VCEsat IC = 4 A, VGE = 15 V  
Tvj = 25 °C  
2.3  
V
Tvj = 150 °C  
2.3  
Gate-emitter threshold  
voltage  
VGEth  
ICES  
IC = 45 µA, VCE = VGE  
VCE = 600 V, VGE=0 V  
4.3  
5
5.7  
V
Zero gate-voltage collector  
current  
Tvj = 25 °C  
25  
µA  
Tvj = 150 °C  
2500  
100  
Gate-emitter leakage  
current  
IGES  
VCE = 0 V, VGE = 20 V  
IC = 4 A, VCE = 20 V  
nA  
Transconductance  
Input capacitance  
Output capacitance  
gfs  
Cies  
Coes  
Cres  
2
180  
10  
7
S
VCE = 25 V, VGE=0 V, f = 1000 kHz  
VCE = 25 V, VGE=0 V, f = 1000 kHz  
VCE = 25 V, VGE=0 V, f = 1000 kHz  
pF  
pF  
pF  
Reverse transfer  
capacitance  
Gate charge  
QG  
IC = 4 A, VCC = 480 V, VGE = 15 V  
24  
8
nC  
ns  
Turn-on delay time  
td(on)  
VCC = 400 V, VGE = 0/15 V, Tvj = 25 °C, IC = 4 A  
RGon = 49 Ω, RGoff = 49 Ω,  
Lσ = 30 nH, Cσ = 32 pF  
IC = 4 A  
Tvj = 150 °C,  
8
Rise time (inductive load)  
Turn-off delay time  
Fall time (inductive load)  
Turn-on energy  
tr  
td(off)  
tf  
VCC = 400 V, VGE = 0/15 V, Tvj = 25 °C, IC = 4 A  
10  
10  
ns  
ns  
ns  
µJ  
µJ  
µJ  
RGon = 49 Ω, RGoff = 49 Ω,  
Tvj = 150 °C,  
Lσ = 30 nH, Cσ = 32 pF  
IC = 4 A  
VCC = 400 V, VGE = 0/15 V, Tvj = 25 °C, IC = 4 A  
126  
137  
RGon = 49 Ω, RGoff = 49 Ω,  
Lσ = 30 nH, Cσ = 32 pF  
IC = 4 A  
Tvj = 150 °C,  
VCC = 400 V, VGE = 0/15 V, Tvj = 25 °C, IC = 4 A  
24  
26  
RGon = 49 Ω, RGoff = 49 Ω,  
Lσ = 30 nH, Cσ = 32 pF  
IC = 4 A  
Tvj = 150 °C,  
Eon  
Eoff  
Ets  
VCC = 400 V, VGE = 0/15 V, Tvj = 25 °C, IC = 4 A  
95  
RGon = 49 Ω, RGoff = 49 Ω,  
Lσ = 30 nH, Cσ = 32 pF  
IC = 4 A  
Tvj = 150 °C,  
127  
Turn-off energy  
VCC = 400 V, VGE = 0/15 V, Tvj = 25 °C, IC = 4 A  
62  
82  
RGon = 49 Ω, RGoff = 49 Ω,  
Lσ = 30 nH, Cσ = 32 pF  
IC = 4 A  
Tvj = 150 °C,  
Total switching energy  
VCC = 400 V, VGE = 0/15 V, Tvj = 25 °C, IC = 4 A  
157  
209  
RGon = 49 Ω, RGoff = 49 Ω,  
Lσ = 30 nH, Cσ = 32 pF  
IC = 4 A  
Tvj = 150 °C,  
(table continues...)  
Datasheet  
4
Revision 1.10  
2022-09-21  
IKN04N60RC2  
600 V Reverse Conducting Drive 2  
3 Diode  
Table 3  
(continued) Characteristic values  
Parameter  
Symbol Note or test condition  
Values  
Typ.  
Unit  
Min.  
Max.  
Operating junction  
temperature  
Tvj  
-40  
150  
°C  
Note:  
Electrical Characteristic, at Tvj = 25°C, unless otherwise specified  
3
Diode  
Table 4  
Maximum rated values  
Parameter  
Symbol Note or test condition  
Values  
Unit  
Repetitive peak reverse  
voltage  
VRRM  
Tvj ≥ 25 °C  
600  
V
Diode forward current,  
IF  
Tc = 25 °C  
4.9  
2.3  
12  
A
A
1)  
limited by Tvjmax  
Tc = 100 °C  
Diode pulsed current, tp  
limited by Tvjmax  
IFpulse  
1)  
DPAK equivalent  
Table 5  
Characteristic values  
Symbol Note or test condition  
Parameter  
Values  
Typ.  
1.85  
1.9  
Unit  
V
Min.  
Max.  
Diode forward voltage  
VF  
IF = 4 A  
Tvj = 25 °C  
2.2  
Tvj = 150 °C  
Diode reverse recovery  
time  
trr  
Qrr  
Irrm  
VR = 400 V  
Tvj = 25 °C, IF = 4 A,  
-diF/dt = 483 A/µs  
39  
ns  
Tvj = 150 °C,  
IF = 4 A,  
-diF/dt = 500 A/µs  
100  
Diode reverse recovery  
charge  
VR = 400 V  
VR = 400 V  
Tvj = 25 °C, IF = 4 A,  
-diF/dt = 483 A/µs  
0.097  
0.259  
µC  
A
Tvj = 150 °C,  
IF = 4 A,  
-diF/dt = 500 A/µs  
Diode peak reverse  
recovery current  
Tvj = 25 °C, IF = 4 A,  
-diF/dt = 483 A/µs  
4.7  
5.8  
Tvj = 150 °C,  
IF = 4 A,  
-diF/dt = 500 A/µs  
(table continues...)  
Datasheet  
5
Revision 1.10  
2022-09-21  
IKN04N60RC2  
600 V Reverse Conducting Drive 2  
3 Diode  
Table 5  
(continued) Characteristic values  
Parameter  
Symbol Note or test condition  
Values  
Typ.  
174  
Unit  
Min.  
Max.  
Diode peak rate of fall of  
reverse recovery current  
dirr/dt VR = 400 V  
Tvj = 25 °C, IF = 4 A,  
-diF/dt = 483 A/µs  
A/µs  
Tvj = 150 °C,  
IF = 4 A,  
-diF/dt = 500 A/µs  
67.4  
Operating junction  
temperature  
Tvj  
-40  
150  
°C  
Note:  
For optimum lifetime and reliability, Infineon recommends operating conditions that do not exceed 80% of  
the maximum ratings stated in this datasheet.  
Datasheet  
6
Revision 1.10  
2022-09-21  
IKN04N60RC2  
600 V Reverse Conducting Drive 2  
4 Characteristics diagrams  
4
Characteristics diagrams  
Power dissipation as a function of heatsink  
Collector current as a function of heatsink  
temperature  
IC = f(Tc)  
temperature  
Ptot = f(Tc)  
Tvj ≤ 150 °C  
Tvj ≤ 150 °C, VGE ≥ 15 V  
7
6
5
4
3
2
1
7.5  
6.0  
4.5  
3.0  
1.5  
0.0  
0
25  
50  
75  
100  
125  
150  
25  
50  
75  
100  
125  
150  
Typical output characteristic  
IC = f(VCE  
Typical output characteristic  
IC = f(VCE  
)
)
Tvj = 25 °C  
Tvj = 150 °C  
12  
12  
10  
8
10  
8
6
6
4
4
2
2
0
0
0
0
1
2
3
4
5
1
2
3
4
5
Datasheet  
7
Revision 1.10  
2022-09-21  
IKN04N60RC2  
600 V Reverse Conducting Drive 2  
4 Characteristics diagrams  
Typical transfer characteristic  
Typical collector-emitter saturation voltage as a  
function of junction temperature  
VCEsat = f(Tvj)  
IC = f(VGE  
)
VCE = 20 V  
VGE = 15 V  
16  
14  
12  
10  
8
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
6
4
2
0
25  
50  
75  
100  
125  
150  
3.0  
4.5  
6.0  
7.5  
9.0 10.5 12.0 13.5 15.0  
Gate-emitter threshold voltage as a function of  
junction temperature  
Typical switching times as a function of collector  
current  
VGEth = f(Tvj)  
t = f(IC)  
IC = 45 µA  
VCC = 400 V, Tvj = 150 °C, VGE = 0/15 V, RG = 49 Ω  
7
6
5
4
3
2
1
0
1000  
100  
10  
1
25  
50  
75  
100  
125  
150  
2
3
4
5
6
7
8
Datasheet  
8
Revision 1.10  
2022-09-21  
IKN04N60RC2  
600 V Reverse Conducting Drive 2  
4 Characteristics diagrams  
Typical switching times as a function of gate resistor Typical switching times as a function of junction  
temperature  
t = f(Tvj)  
t = f(RG)  
IC = 4 A, VCC = 400 V, Tvj = 150 °C, VGE = 0/15 V  
IC = 4 A, VCC = 400 V, VGE = 0/15 V, RG = 49 Ω  
1000  
100  
10  
1000  
100  
10  
1
1
25  
50  
75  
100  
125  
150  
0
200  
400  
600  
800  
1000  
Typical switching energy losses as a function of  
collector current  
Typical switching energy losses as a function of gate  
resistor  
E = f(IC)  
E = f(RG)  
VCC = 400 V, Tvj = 150 °C, VGE = 0/15 V, RG = 49 Ω  
IC = 4 A, VCC = 400 V, Tvj = 150 °C, VGE = 0/15 V  
500  
400  
300  
200  
100  
0
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
1
2
3
4
5
6
7
8
0
200  
400  
600  
800  
1000  
Datasheet  
9
Revision 1.10  
2022-09-21  
IKN04N60RC2  
600 V Reverse Conducting Drive 2  
4 Characteristics diagrams  
Typical switching energy losses as a function of  
junction temperature  
Typical switching energy losses as a function of  
collector emitter voltage  
E = f(Tvj)  
E = f(VCE)  
IC = 4 A, VCC = 400 V, VGE = 0/15 V, RG = 49 Ω  
IC = 4 A, Tvj = 150 °C, VGE = 0/15 V, RG = 49 Ω  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
0
0
25  
50  
75  
100  
125  
150  
200  
250  
300  
350  
400  
450  
500  
Typical gate charge  
VGE = f(QG)  
IC = 4 A  
Typical capacitance as a function of collector-emitter  
voltage  
C = f(VCE  
)
f = 1000 kHz, VGE = 0 V  
15  
12  
9
1000  
100  
10  
1
6
3
0
0
4
8
12  
16  
20  
24  
0
5
10  
15  
20  
25  
30  
Datasheet  
10  
Revision 1.10  
2022-09-21  
IKN04N60RC2  
600 V Reverse Conducting Drive 2  
4 Characteristics diagrams  
Typical short circuit collector current as a function of IGBT transient thermal impedance as a function of  
gate-emitter voltage  
IC(SC) = f(VGE  
Tvj ≤ 150 °C, VCC ≤ 400 V  
pulse width  
Zth(j-c) = f(tp)  
D = tp/T  
)
40  
100  
35  
30  
25  
20  
15  
10  
5
10  
1
0.1  
0.01  
0
1E-6 1E-5 0.0001 0.001 0.01  
0.1  
1
10  
12  
13  
14  
15  
16  
17  
18  
Diode transient thermal impedance as a function of  
pulse width  
Typical diode forward current as a function of forward  
voltage  
Zth(j-c) = f(tp)  
IF = f(VF)  
D = tp/T  
12  
100  
10  
10  
8
1
6
0.1  
4
0.01  
0.001  
2
0
1E-7 1E-6 1E-5 0.0001 0.001 0.01 0.1  
1
10  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
Datasheet  
11  
Revision 1.10  
2022-09-21  
IKN04N60RC2  
600 V Reverse Conducting Drive 2  
4 Characteristics diagrams  
Typical diode forward voltage as a function of  
junction temperature  
Typical reverse recovery time as a function of diode  
current slope  
VF = f(Tvj)  
trr = f(diF/dt)  
VR = 400 V, IF = 4 A  
3.0  
320  
280  
240  
200  
160  
120  
80  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
40  
0
25  
50  
75  
100  
125  
150  
0
200  
400  
600  
800 1000 1200 1400  
Typical reverse recovery charge as a function of diode Typical reverse recovery current as a function of  
current slope  
Qrr = f(diF/dt)  
diode current slope  
Irr = f(diF/dt)  
VR = 400 V, IF = 4 A  
VR = 400 V, IF = 4 A  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
10  
9
8
7
6
5
4
3
2
1
0
0
200  
400  
600  
800 1000 1200 1400  
0
200  
400  
600  
800  
1000 1200 1400  
Datasheet  
12  
Revision 1.10  
2022-09-21  
IKN04N60RC2  
600 V Reverse Conducting Drive 2  
4 Characteristics diagrams  
Typical diode peak rate of fall of reverse recovery  
current as a function of diode current slope  
dirr/dt = f(diF/dt)  
VR = 400 V, IF = 4 A  
0
-50  
-100  
-150  
-200  
-250  
-300  
-350  
-400  
0
200  
400  
600  
800 1000 1200 1400  
Datasheet  
13  
Revision 1.10  
2022-09-21  
IKN04N60RC2  
600 V Reverse Conducting Drive 2  
5 Package outlines  
5
Package outlines  
PG-SOT223-3  
DOCUMENT NO.  
Z8B00180553  
0
SCALE  
MILLIMETERS  
MAX  
INCHES  
DIM  
MIN  
1.52  
-
MIN  
0.060  
-
MAX  
2.5  
A
A1  
A2  
b
1.80  
0.10  
1.70  
0.80  
3.10  
0.32  
6.70  
7.30  
3.70  
0.071  
0.004  
0.067  
0.031  
0.122  
0.013  
0.264  
0.287  
0.146  
0
2.5  
1,50  
0.059  
0.024  
0.116  
0.009  
0.248  
0.264  
0.130  
5mm  
0.60  
2.95  
0.24  
6.30  
6.70  
3.30  
b2  
c
EUROPEAN PROJECTION  
D
E
E1  
e
2.3 BASIC  
4.6 BASIC  
0.091 BASIC  
0.181 BASIC  
e1  
L
ISSUE DATE  
24-02-2016  
0.75  
1.10  
0.030  
0.043  
N
3
3
REVISION  
O
ꢀƒ  
ꢁꢀƒ  
ꢀƒ  
ꢁꢀƒ  
01  
Figure 1  
Datasheet  
14  
Revision 1.10  
2022-09-21  
IKN04N60RC2  
600 V Reverse Conducting Drive 2  
6 Testing conditions  
6
Testing conditions  
VGE(t)  
I,V  
90% VGE  
trr = ta + tb  
dIF/dt  
Qrr = Qa + Qb  
a
b
10% VGE  
t
Qa  
Qb  
IC(t)  
dI  
90% IC  
90% IC  
10% IC  
10% IC  
Figure C. Definition of diode switching  
characteristics  
t
VCE(t)  
t
t
td(off)  
tf  
td(on)  
tr  
Figure A.  
VGE(t)  
90% VGE  
Figure D.  
10% VGE  
t
IC(t)  
CC  
2% IC  
t
VCE(t)  
Figure E. Dynamic test circuit  
Parasitic inductance L ,  
parasitic capacitor C ,  
s
s
relief capacitor C ,  
(only for ZVT switching)  
r
t2  
t4  
E
=
VCE x IC x dt  
E
=
VCE x IC x dt  
off  
on  
2% VCC  
t1  
t3  
t
t1  
t2  
t3  
t4  
Figure B.  
Figure 2  
Datasheet  
15  
Revision 1.10  
2022-09-21  
IKN04N60RC2  
600 V Reverse Conducting Drive 2  
Revision history  
Revision history  
Document revision  
Date of release Description of changes  
1.00  
1.01  
1.10  
2021-09-28  
2021-10-15  
2022-09-21  
Final datasheet  
Change of Potential Applications  
Add of wave soldering conditions  
Datasheet  
16  
Revision 1.10  
2022-09-21  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
Edition 2022-09-21  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
Important notice  
Please note that this product is not qualified  
according to the AEC Q100 or AEC Q101 documents  
of the Automotive Electronics Council.  
The information given in this document shall in no  
event be regarded as a guarantee of conditions or  
characteristics (“Beschaffenheitsgarantie”).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer’s compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer’s products and any use of the product of  
Infineon Technologies in customer’s applications.  
Warnings  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
©
2022 Infineon Technologies AG  
All Rights Reserved.  
Except as otherwise explicitly approved by Infineon  
Technologies in  
a written document signed by  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or  
any consequences of the use thereof can reasonably  
be expected to result in personal injury.  
Document reference  
IFX-ABB482-003  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to such  
application.  

相关型号:

IKP01N120H2

HighSpeed 2-Technology with soft, fast recovery anti-parallel EmCon HE diode
INFINEON

IKP03N120H2

HighSpeed 2-Technology with soft, fast recovery anti-parallel EmCon HE diode
INFINEON

IKP03N120H2HKSA1

Insulated Gate Bipolar Transistor, 9.6A I(C), 1200V V(BR)CES, N-Channel, TO-220AB, GREEN, PLASTIC, TO-220, 3 PIN
INFINEON

IKP03N120H2XKSA1

Insulated Gate Bipolar Transistor, 9.6A I(C), 1200V V(BR)CES, N-Channel, TO-220AB, GREEN, PLASTIC, TO-220, 3 PIN
INFINEON

IKP03N120H2_08

HighSpeed 2-Technology with soft, fast recovery anti-parallel EmCon HE diode
INFINEON

IKP04N60T

Low Loss DuoPack : IGBT in Trench and Fieldstop technology with soft, fast recovery anti-parallel EmCon HE diode
INFINEON

IKP04N60TXKSA1

Insulated Gate Bipolar Transistor, 8A I(C), 600V V(BR)CES, N-Channel, TO-220AB, GREEN, PLASTIC, TO-220, 3 PIN
INFINEON

IKP04N60T_09

Low Loss DuoPack : IGBT in TrenchStop and Fieldstop technology
INFINEON

IKP06N60T

Low Loss DuoPack : IGBT in Trench and Fieldstop technology with soft, fast recovery anti-parallel EmCon HE diode
INFINEON

IKP06N60TXKSA1

Insulated Gate Bipolar Transistor, 12A I(C), 600V V(BR)CES, N-Channel, TO-220AB, GREEN, PLASTIC, TO-220, 3 PIN
INFINEON

IKP06N60T_07

Low Loss DuoPack : IGBT in TrenchStop and Fieldstop technology
INFINEON

IKP08N65F5

650V DuoPack IGBT and Diode High speed switching series fifth generation
INFINEON