ILD610-2 [INFINEON]

DUAL PHOTOTRANSISTOR OPTOCOUPLER; 双光电晶体管光耦合器
ILD610-2
型号: ILD610-2
厂家: Infineon    Infineon
描述:

DUAL PHOTOTRANSISTOR OPTOCOUPLER
双光电晶体管光耦合器

晶体 光电 晶体管 光电晶体管
文件: 总3页 (文件大小:62K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ILD610 SERIES  
DUAL PHOTOTRANSISTOR  
OPTOCOUPLER  
FEATURES  
Dimensions in inches (mm)  
• Dual Version of SFH610 Series  
• High Current Transfer Ratios  
ILD610-1, 40-80%  
ILD610-2, 63-125%  
ILD610-3, 100-200%  
ILD610-4, 160-320%  
Pin One I.D.  
4
3
2
1
8
Anode  
Cathode  
Anode  
8
7
6
5
1
2
3
4
Emitter  
.268 (6.81)  
.255 (6.48)  
Collector  
Emitter  
5
6
7
• Isolation Test Voltage, 5300 V  
RMS  
Cathode  
Collector  
• V  
• V  
0.25 (0.4) V at I =10 mA, I =2.5 mA  
F C  
=70 V  
.390 (9.91)  
.379 (9.63)  
CEsat  
CEO  
• Underwriters Lab File #E52744  
.305 Typ.  
(7.75) Typ.  
.045 (1.14)  
.030 (.76)  
.150 (3.81)  
.130 (3.30)  
VE  
VDE #0884 Available with Option 11  
D
DESCRIPTION  
.135 (3.43)  
.115 (2.92)  
The ILD610 Series is a dual channel optocoupler  
series for high density applications. Each channel  
consists of an optically coupled pair with a Gallium  
Arsenide infrared LED and a silicon NPN pho-  
totransistor. Signal information, including a DC  
level, can be transmitted by the device while main-  
taining a high degree of electrical isolation between  
input and output. The ILD610 Series is the dual ver-  
sion of SFH610 Series and uses a repetitive pin-out  
conguration instead of the more common alternat-  
ing pin-out used in most dual couplers.  
4° Typ.  
10 ° Typ.  
3°–9°  
.040 (1.02)  
.030 (.76 )  
.022 (.56)  
.018 (.46)  
.012 (.30)  
.008 (.20)  
.100 (2.54) Typ.  
Electrical Characteristics (T =25°C)  
A
Symbol  
Typ.  
Unit  
Condition  
Emitter  
Maximum Ratings (Each Channel)  
Forward Voltage  
V
1.25  
V
I =60mA  
Emitter  
F
F
(1.65)  
0.01 (10)  
25  
Reverse Voltage .................................................6 V  
Surge Forward Current (t £10 ms)...................1.5 A  
Total Power Dissipation ..............................100 mW  
Derate Linearly from 25°C ......................1.3 mW/°C  
DC Forward Current ......................................60 mA  
Reverse Current  
Capacitance  
I
µA  
V =6V  
R
R
C
pF  
V =0 V,  
O
R
f=1 MHz  
Detector  
Detector  
Collector-Emitter Voltage ..................................70 V  
Collector Current ..........................................50 mA  
Collector Current (t 1 ms)..........................100 mA  
Total Power Dissipation ..............................150 mW  
Derate Linearly from 25°C ......................2.0 mW/°C  
Breakdown Voltage  
Collector-Emitter  
Emitter-Collector  
BV  
90 (70)  
V
V
I =10 µA  
E
CEO  
C
BV  
7.0 (6.0)  
I =10 µA  
CEO  
Collector-Emitter Dark  
Current  
I
2 (50)  
nA  
pF  
V
=10 V  
CEO  
CE  
Package  
Capacitance  
C
7
V
CE  
=5 V,  
CE  
Isolation Test Voltage (t=1 sec.) ........ 5300 VAC  
Isolation Resistance  
RMS  
f=1 MHz  
12  
11  
Package  
V =500 V, T =25°C ............................... 10  
IO  
A
V =500 V, T =100°C ............................. 10  
IO  
A
Collector-Emitter Saturation  
Voltage  
V
0.25  
(0.40)  
V
I =10 mA,  
F
I =2.5 mA  
C
CEsat  
Storage Temperature ...................–55°C to +150°C  
Operating Temperature ...............–55°C to +100°C  
Junction Temperature ................................... 100°C  
Lead Soldering Time at 260°C .................... 10 sec.  
Coupling Capacitance  
C
0.35  
pF  
C
5–1  
-1  
-2  
-3  
-4  
1,  
CTR I =10 mA, V =5 V  
40-80  
13 min.  
2 (50)  
63-125  
22 min.  
2 (50)  
100-200  
34 min.  
5 (100)  
160-320  
56 min.  
5 (100)  
%
F
CE  
1,  
CTR I =1 mA, V =5 V  
%
F
CE  
I
(V =10 V)  
nA  
CEO  
CE  
CTR will match within a ratio of 1.7:1  
Switching Characteristics  
Linear Operation (without saturation) I =10 mA, V =5 V, R =75 , Typical  
F
CC  
C
-1  
-2  
-3  
-4  
Turn on time  
Rise time  
t
t
t
t
3.0  
2.0  
2.3  
2.0  
3.2  
2.5  
2.9  
2.6  
3.6  
2.9  
3.4  
3.1  
4.1  
3.3  
3.7  
3.5  
µs  
µs  
µs  
µs  
on  
r
Turn off time  
Fall time  
off  
f
Switching Operation (with saturation) V =5 V, R =1 , Typicall  
CC  
C
-1  
-2  
-3  
-4  
I
= 20 mA  
I
= 10 mA  
I
= 10 mA  
I = 5 mA  
F
F
F
F
Turn on time  
Rise time  
t
t
t
t
3.0  
2.0  
18  
4.3  
2.8  
2.9  
2.6  
4.6  
3.3  
3.4  
3.1  
6.0  
4.6  
25  
µs  
µs  
µs  
µs  
on  
r
Turn off time  
Fall time  
off  
f
11  
15  
Figure 3. Normalized non-saturated and saturated  
Figure 1. Forward voltage versus forward current  
CTR at T =50°C versus LED current  
A
1.5  
1.4  
Normalized to:  
Vce = 5V, IF = 10mA, Ta = 25°C  
CTRce(sat) Vce = 0.4V  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
Ta = -55°C  
Ta = 25°C  
1.0  
Ta = 50°C  
Ta = 85°C  
0.5  
NCTR(SAT)  
NCTR  
.1  
1
10  
100  
0.0  
.1  
IF - Forward Current - mA  
1
10  
100  
IF - LED Current - mA  
Figure 2. Normalized non-saturated and saturated  
Figure 4. Normalized non-saturated and saturated  
CTR at T =25°C versus LED current  
A
CTR at T =70°C versus LED curent  
A
1.5  
1.5  
Normalized to:  
Normalized to:  
Vce = 5V, IF = 10mA  
Ta = 25°C  
Vce = 5V, IF = 10mA  
Ta = 25°C  
1.0  
CTRce(sat) Vce = 0.4V  
1.0  
CTRce(sat) Vce = 0.4V  
0.5  
0.5  
Ta = 70°C  
NCTR(SAT)  
NCTR  
NCTR(SAT)  
NCTR  
0.0  
0.0  
.1  
1
10  
100  
.1  
1
10  
100  
IF - LED Current - mA  
IF - LED Current - mA  
ILD610  
5–2  
Figure 5. Normalized non-saturated and saturated CTR  
Figure 9. Switching timing  
at T =85°C versus LED current  
A
I
F
1.5  
Normalized to:  
Vce = 10V, IF = 10mA, Ta = 25°C  
CTRce(sat) Vce = 0.4V  
1.0  
0.5  
0.0  
t
R
D
t
V
O
t
PLH  
Ta = 85°C  
NCTR(SAT)  
NCTR  
V =1.5 V  
TH  
t
t
t
S
F
PHL  
.1  
1
10  
100  
IF - LED Current - mA  
Figure 10. Non-saturated switching schematic  
Figure 6. Collector-emitter current versus temperature  
and LED current  
V
=5 V  
CC  
F=10 KHz  
DF=50%  
35  
30  
R
L
25  
I =10 mA  
V
F
50°C  
O
20  
70°C  
15  
10  
5
25°C  
85°C  
Figure 11. Saturated switching time test waveform  
0
Input  
0
0
10  
20  
30  
40  
50  
60  
IF - LED Current - mA  
t
t
off  
on  
t
pdon  
t
pdof  
Figure 7. Collector-emitter leakage current versus  
temperature  
t
t
r
r
t
d
Output  
t
s
0
5
10  
10%  
50%  
90%  
10%  
50%  
4
10  
3
90%  
10  
2
10  
Vce = 10V  
TYPICAL  
1
10  
10  
0
-1  
-2  
10  
10  
-20  
0
20  
40  
60  
80  
100  
Ta - Ambient Temperature - °C  
Figure 8. Propagation delay versus collector load  
resistor  
1000  
100  
10  
2.5  
Ta = 2 5 ° C, IF = 10mA  
Vcc = 5 V,Vth = 1.5 V  
tpHL  
2.0  
1.5  
1.0  
tpLH  
1
.1  
1
10  
100  
RL - Collector Load Resistor - KΩ  
ILD610  
5–3  

相关型号:

ILD610-2-004

Optoelectronic
ETC

ILD610-2-009

Optoelectronic
ETC

ILD610-2-X006

Transistor Output Optocoupler, 2-Element, 5300V Isolation, DIP-8
VISHAY

ILD610-2-X007

Transistor Output Optocoupler, 2-Element, 5300V Isolation, DIP-8
VISHAY

ILD610-2-X007T

Transistor Output Optocoupler, 2-Element, 5300V Isolation, DIP-8
VISHAY

ILD610-2-X009

Transistor Output Optocoupler, 2-Element, 5300V Isolation, DIP-8
VISHAY

ILD610-2-X009T

Transistor Output Optocoupler, 2-Element, 5300V Isolation, DIP-8
VISHAY

ILD610-2-X016

Transistor Output Optocoupler, 2-Element, 5300V Isolation, DIP-8
VISHAY

ILD610-2-X017

Transistor Output Optocoupler, 2-Element, 5300V Isolation, DIP-8
VISHAY

ILD610-2-X017T

Transistor Output Optocoupler, 2-Element, 5300V Isolation, DIP-8
VISHAY

ILD610-2-X019

Transistor Output Optocoupler, 2-Element, 5300V Isolation, DIP-8
VISHAY

ILD610-2-X019T

Transistor Output Optocoupler, 2-Element, 5300V Isolation, DIP-8
VISHAY