IP1001PBF [INFINEON]

DC-DC Regulated Power Supply Module, 1 Output, Hybrid, SSBGA-218;
IP1001PBF
型号: IP1001PBF
厂家: Infineon    Infineon
描述:

DC-DC Regulated Power Supply Module, 1 Output, Hybrid, SSBGA-218

电源电路
文件: 总18页 (文件大小:506K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 94336c  
iP1001  
Full Function Synchronous Buck Power Block  
Integrated Power Semiconductors, Control IC & Passives  
Features  
• 3.3V to 12V input voltage1  
• 20A maximum load capability, with no derating up to TPCB = 90°C  
• 5 bit DAC settable, 0.925V to 2V output voltage range 2  
• Configurable down to 3.3Vin & up to 3.3Vout with simple external circuit 3  
• 200kHz or 300kHz nominal switching frequency  
• Optimized for very low power losses  
• Over & undervoltage protection  
• Adjustable lossless current limit  
• Internal features minimize layout sensitivity *  
• Very small outline 14mm x 14mm x 3mm  
iP1001 Power Block  
Description  
The iP1001 is a fully optimized solution for high current synchronous buck applications requiring up to 20A.  
The iP1001 is optimized for single-phase applications, and includes a full function fast transient response  
PWM control, with an optimized power semiconductor chip-set and associated passives, achieving benchmark  
power density. Very few external components are required, including output inductor, input & output capacitors.  
Further range of operation to 3.3Vin can be achieved with the addition of a simple external boost circuit, and  
operation up to 3.3Vout can be achieved with a simple external voltage divider.  
iPOWIR technology offers designers an innovative board space-saving solution for applications requiring high  
power densities. iPOWIR technology eases design for applications where component integration offers  
benefits in performance and functionality. iPOWIR technology solutions are also optimized internally for layout,  
heat transfer and component selection.  
iP1001 Internal Block Diagram  
VIN  
D0  
D1  
5 Bit  
D2  
DAC  
D3  
D4  
VSW  
PWM  
& Driver  
ENABLE  
PGOOD  
ILIM  
FREQ  
VDD  
PGND  
VFS VF  
SGND  
GNDS  
* Although, all of the difficult PCB layout and bypassing issues have been addressed with the internal design of the iPOWIR block, proper layout techniques should be  
applied for the design of the power supply board. There are no concerns about unwanted shutdowns common to switching power supplies, if operated as specified. The  
iPOWIR block will function normally, but not optimally without any additional input decoupling capacitors. Input decoupling capacitors should be added at Vin pin for stable  
and reliable long term operation. No additional bypassing is required on the Vdd pin. See layout guidelines in datasheet for more detailed information.  
www.irf.com  
1
05/20/03  
All specifications @ 25°C (unless otherwise specified)  
iP1001  
Absolute Maximum Ratings  
Parameter  
Conditions  
Symbol  
Min  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-
Typ  
Max  
16.0  
6.0  
Units  
VIN to PGND  
-
-
-
-
-
-
-
-
-
-
-
VDD to PGND  
VFS  
VF  
V
V
V
DD+0.3  
DD+0.3  
DD+0.3  
6.0  
V
D0-D4  
PGOOD to PGND  
ENABLE to PGND  
ILIM  
6.0  
VDD+0.3  
V
DD+0.3  
20  
125  
FREQ  
Output RMS Current  
Block Temperature  
A
°C  
TBLK  
-40  
Recommended Operating Conditions  
Conditions  
Parameter  
Supply Voltage  
Input Voltage Range 1  
Output RMS Current from VSW 4  
Symbol  
Min  
4.5  
3.3  
-
Typ  
Max  
5.5  
12  
Units  
VDD  
-
-
-
V
With 4.5V<VDD<5.5V  
VIN  
IoutVSW  
20  
A
V
DAC Setting  
see VID code, Table1.  
VOUT  
Output Voltage Range 2  
0.925  
-
2.0  
Electrical Specifications @ VDD = 5V & TPCB 0°C - 90°C (Unless otherwise specified)  
Conditions  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
300kHz, 12VIN, 1.3Vout, 20A  
PLOSS  
Power Loss  
-
3.1  
3.9  
W
VIN=12V, VOUT=1.3V,  
FREQ=300KHz, RLIM=340k  
Over Current Shutdown  
Soft Start Time  
-
-
25  
1.8  
-
-
-
A
ms  
%
All DAC codes  
BLK = -40°C to 125°C  
Output Voltage Accuracy  
VF Input Resistance  
Frequency  
-2  
2
T
-
-
-
-
181  
200  
300  
4.2  
-
-
-
-
k  
kHz  
freq pin connected to VDD  
freq pin floating  
200mV hysteresis  
FREQ  
VDD Undervoltage Lockout  
Output Undervoltage Shutdown  
Threshold  
Output Undervoltage Protection  
Blanking Time  
V
V
-
0.8  
-
ENABLE going high on start-up  
-
20  
-
ms  
Output Overvoltage Shutdown  
Threshold at VF  
PGOOD Trip Threshold  
See OVP note in Design  
Guidelines  
At VF  
PGOOD output high  
Forced to 5.5V  
-
-
-
2.25  
VDAC -5%  
1
-
-
-
V
V
PGOOD  
PGOOD Leakage Current  
µA  
Isink = 1mA  
D0-D4, Enable  
D0-D4, Enable  
PGOOD Output Low Voltage  
Logic Input High Voltage  
Logic Input Low Voltage  
-
2.4  
-
-
-
-
0.4  
-
0.8  
V
V
V
2
www.irf.com  
iP1001  
Electrical Specifications (continued)  
Conditions  
Parameter  
Symbol  
Min  
Typ  
25  
600  
-
Max  
Units  
mA  
µA  
mA  
kΩ  
VDD Operating Current  
VDD Quiescent Current  
VIN Quiescent Current  
IVDD  
IQVDD  
IQVIN  
Enable High, 300kHz  
Shutdown mode  
Enable Low, VIN = 12V  
Measured ILIM pin to SGND  
-
-
-
-
-
-
1
-
300  
ILIM to SGND Internal Resistance  
Notes :  
1
2
For Vin less than 4.5V requires external 5VDD supply.  
Can be modified to operate up to 3.3VOUT, outside of DAC settable range. See Design Guidelines on how to set  
output voltage greater than 2V.  
See design guidelines.  
See Fig. 5 for Recommended Operating Area  
3
4
www.irf.com  
3
iP1001  
Guaranteed Performance Curves  
22  
5.0  
20  
18  
4.5  
VIN = 12V  
OUT = 1.3V  
BLK=125°C  
sw set to 300kHZ  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
V
Maximum  
16  
14  
12  
10  
8
T
f
Safe Operating Area  
Typical  
VIN = 12V  
VOUT = 1.3V  
6
f
sw set to 300kHZ  
4
2
0
0
10 20 30 40 50 60 70 80 90 100 110 120 130  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
PCB Temperature (°C)  
Output Current (A)  
Fig 1. Power Loss vs Current  
Fig 2. Safe Operating Area (SOA) vs TPCB  
Adjusting the Power Loss and SOA curves for different operating conditions  
To make adjustments to the power loss curves in Fig. 1, multiply the normalized value obtained from the curves in Figs. 3,  
or 4 by the value indicated on the power loss curve in Fig. 1. If multiple adjustments are required, multiply all of the  
normalized values together, then multiply that product by the value indicated on the power loss curve in Fig. 1. The resulting  
product is the final power loss based on all factors.  
To make adjustments to the SOA curve in Fig. 2, determine the maximum allowed PCB temperature in Fig. 2 at the required  
operating current. Then, add the correction temperature from the normalized curves in Figs. 3 or 4 to find the final maximum  
allowable PCB temperature. When multiple adjustments are required, add all of the temperatures together, then add the sum  
to the PCB temperature indicated on the SOA graph to determine the final maximum allowable PCB temperature based on  
all factors.  
Note: If input voltage <5Vin nominal operation is required then first see Fig. 5 for maximum current capability limit.  
Operating Conditions for the examples below:  
Output Current = 20A  
Output Voltage = 2.5V  
Input Voltage = 7V  
Adjusting for Maximum Power Loss:  
(Fig. 1) Maximum power loss =5 W  
(Fig. 3) Normalized power loss for output voltage ≈1.14  
(Fig. 4) Normalized power loss for input voltage ≈0.89  
Adjusted Power Loss = 5W x 0.89 x 1.14 5.07W  
Adjusting for SOA Temperature:  
(Fig. 2) SOA PCB Temperature = 90°C  
(Fig. 3) Normalized SOA PCB Temperature for output voltage -4.5°C  
(Fig. 4) Normalized SOA PCB Temperature for input voltage 4°C  
Adjusted SOA PCB Temperature = 90°C + 4°C -4.5°C ≈ 89.5°C  
4
www.irf.com  
iP1001  
Typical Performance Curves  
1.36  
1.30  
1.24  
1.18  
1.12  
1.06  
1.00  
0.94  
0.88  
-13  
-11  
-9  
-6  
-4  
-2  
0
1.00  
0.97  
0.94  
0.91  
0.89  
0.86  
0.83  
0
1
2
3
4
5
6
VIN = 12V  
VOUT = 1.3V  
IOUT = 20A  
IOUT = 20A  
fsw set to 300kHz  
TBLK = 125°C  
f
sw set to 300kHz  
TBLK = 125°C  
2
4
0.9  
1.3  
1.7  
2.1  
2.5  
2.9  
3.3  
3
4
5
6
7
8
9
10 11 12  
Output Voltage (V)  
Input Voltage (V)  
Fig 4. Normalized Power Loss vs VIN  
Fig 3. Normalized Power Loss vs VOUT  
25  
20  
15  
10  
5
VIN = 5V to 12V  
200kHz/300kHz  
For 200kHz frequency setting there will be a  
10% power loss reduction and a positive PCB  
temperature adjustment of 3°C.  
VIN = 3.3V,  
200kHz  
0
0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3  
Output Voltage (V)  
Fig 5. Recommended Operating Area  
www.irf.com  
5
iP1001  
D4  
D3  
D2  
D1  
D0  
OUTPUT  
VOLTAGE(V)  
2.00  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1.95  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
1.55  
1.50  
1.45  
1.40  
1.35  
1.30  
Shutdown*  
1.275  
1.250  
1.225  
1.200  
1.175  
1.150  
1.125  
1.100  
1.075  
1.050  
1.025  
1.000  
0.975  
0.950  
0.925  
Shutdown*  
* Shutdown : Upon receipt of the shutdown code (per VID code table above), both FETs are turned OFF and  
the output is discharged as the undervoltage protection is activated.  
Table 1. VID Code Table2  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
6
11  
16  
21  
26  
31  
36  
Typical Current Limit Setting in Amps  
Fig 6. Overcurrent adjustment settings using RLIM  
6
www.irf.com  
iP1001  
Pin Name  
VIN  
Ball Designator  
Pin Description  
A9-A12, B9-B12, C9-  
C14, D9-D14, E9-E16,  
F9-F16, G9-G16  
Input voltage connection node.  
A1, A6-A7, A13-A15,  
B1, B6-B7, B13-B16,  
C3, C6-C7, C15-C16,  
D3-D4, D6, D15-D16  
E3-E6, F1-F5, G1-G5,  
H1-H5, J1-J2, J6-J8,  
K6-K8, L6-L8, M 6-M8,  
N4-N5, N7-N8, P4-P5,  
P7-P8, R6-R8, S6-S8  
H9-H14, J11-J14, K11-  
K14, L11-L14, N11-  
N14, M11-M 14, P11-  
P14, R11-R14, S11-S14  
H15-H16, J15-J16, K9-  
K10, K15-K16, L9-  
NC  
No electrical connection.  
VSW  
Output inductor connection node.  
Power ground.  
L10, L15-L16, M 9-  
PGND  
M 10, M15-M 16, N9-  
N10, N15-N16, P9-P10,  
P15-P16, R9-R10, R15-  
R16, S9-S10, S15-S16  
R4-R5, S4-S5  
A2-A3, B2-B3  
VDD  
SGND  
Control Power connection node  
Signal ground.  
Rem ote Ground Sense Pin. Connect to PGND for  
GNDS  
ENABLE  
NC  
E1  
VOU T >2V  
Com m ands output ON or OFF. Active floating  
(internally pulled high). When logic low, the  
synchronous M OSFET is turned ON.  
No electrical connection, internally pulled high,  
must leave floating.  
Internally pulled-up to VDD.  
Output voltage feedback local sense.  
R3, S3  
R2, S2  
PGOOD  
VF  
R1, S1  
C1-C2  
Output voltage rem ote sense feedback signal. For  
greater than 2VOUT, disconnect from rem ote load  
and connect to VF.  
VFS  
D1-D2  
D0  
D1  
D2  
D3  
D4  
P1-P2  
N1-N2  
M 1-M 2  
L1-L2  
K1-K2  
VID code setting D/A inputs. Internally pulled high.  
Current lim it threshold setting pin. See ILIM curve  
for external resistor values.  
Switching frequency selector pin. Floating selects  
300kHz, tied to VDD selects 200kHz.  
ILIM  
A5, B5, C5  
A4, B4  
FREQ  
Table 2. Pin Description  
www.irf.com  
7
iP1001  
P = VIN Average x I Average  
PIN = VDD Average xINIDD Average  
PODDUT = V Average x IOUT Average  
PLOSS = (OPUITN + PDD) - POUT  
Average  
VDD  
Current  
Average  
Input  
Current  
A
A
Average  
VDD  
Voltage  
Average  
Input  
Voltage  
V
V
DC  
DC  
Average Output  
Current  
VO  
VOS  
VSW  
A
PGOOD  
D4  
D3  
Averaging  
Circuit  
D2  
D1  
D0  
FREQ  
Average  
Output  
Voltage  
V
iP1001  
ENABLE  
ILIM  
VF  
VFS  
GNDS  
Fig 7. Power loss test circuit  
8
www.irf.com  
iP1001  
FREQ  
SGND  
NC  
NC  
NC NC  
NC  
ILIM  
NC  
NC  
V
F
NC  
NC  
NC  
V
FS  
NC NC  
V
IN  
GNDS  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC NC NC  
NC  
NC NC  
NC  
D4  
D3  
NC  
V
NC NC  
NC  
D2  
D1  
D0  
SW  
PGND  
PGND  
NC  
NC  
NC  
NC  
V
NC NC  
DD  
PGOOD  
ENABLE  
Fig 8. Recommended PCB Footprint (Top View)  
www.irf.com  
9
iP1001  
PGOOD  
iP1001 User’s Design Guidelines  
The PGOOD comparator constantly monitors VF for  
undervoltage. A 5% drop in output voltage can cause  
PGOOD to go low. PGOOD pin is internally pulled-  
up to V through a 100K, 5% resistor. If it is desired  
to use DthDe PGOOD signal to enable another stage  
using iP1001, then it is recommended to filter and  
buffer PGOOD to prevent transients appearing at  
The iP1001 is a 20A power block that consists of  
optimized power semiconductors, PWM control and  
its associated passive components. It is based on  
a synchronous buck topology and offers an optimized  
solution where space, efficiency and noise caused  
by stray parasitics are of concern. The iP1001 com-  
ponents are integrated in a ball grid array (BGA) pack-  
age where the electrical and thermal conduction is  
accomplished through solder balls.  
the output from pulling PGOOD low.  
OVP (Output Overvoltage Protection)  
If the overvoltage trip 2.25V threshold is reached, the  
OVP is triggered, the circuit is shutdown and the  
bottom FET is latched on discharging the output filter  
capacitor. Pulling ENABLE low resets the latch. The  
overvoltage trip threshold is scaled accordingly, if  
output voltages greater than 2V are set through  
voltage dividers.  
FUNCTIONAL DESCRIPTION  
VIN  
The standard iP1001 operating input voltage range  
is 5V to 12V. The input voltage can also be easily  
configured to run at voltages down to 3.3V.  
UVP (Output Undervoltage Protection)  
FREQ  
The Output Undervoltage Protection trip threshold is  
fixed at 0.8V. If ENABLE is pulled up and VF is below  
0.8V for a duration of 10-20ms, the PWM will be in a  
latched state, with the bottom FET latched on, and  
will not restart until ENABLE is recycled.  
The PWM control is pseudo current mode. The ESR  
of the output filter capacitor is used for current sens-  
ing and the output voltage ripple developed across  
the ESR provides the PWM ramp signal.  
iP1001 offers two switching frequency settings,  
200kHz and 300kHz. At a given setting the switching  
frequency will remain relatively constant indepen-  
dent of load current.  
DAC Converter (D0-D4)  
The output voltage is programmed through a 5-bit  
DAC (see the VID code in table 1). The output volt-  
age can be programmed from 0.925V to 2V. To elimi-  
nate external resistors, the DAC pins are internally  
pulled up. To set for output voltages above 2V, the  
DAC must be set to 2V and a resistor divider,  
R3 & R4 (see Fig 10.), is used. The values of the  
resistors are selected using equation 1.  
VDD (+5V bias)  
An external 5V bias supply is required to operate the  
iP1001. In applications where input voltages are  
lower than 4.5V, and where 5V is not available, a  
special boost circuit is required to supply VDD with 5V  
(as shown in the reference design).  
Equation 1 : Vout = VF x (1 + R3/R4)  
where VF is equal to the DAC setting  
and R4 is recommended to be ~1kΩ  
Soft Start, VDD Undervoltage Lockout  
When V rises above 4.2V a soft start is initiated by  
rampingDDthe maximum allowable current limit. The  
ramp time is typically 1.8ms. An external capacitor  
can be added across the current limit resistor from  
ILIM to PGND to provide up to 5ms ramp time. Select  
the capacitor according to the 10nf/ms rule.  
Bottom  
ENABLE  
Low  
Mode  
Shutdown  
Comments  
FET  
ON  
DAC code = X1111, Both FETs  
are turned OFF.  
High  
OFF  
Shutdown  
High  
Switching  
PWM (Running)  
Fault latch set by OVP or UVP.  
This mode will sustain until VDD  
is cycled or ENABLE is reset.  
High  
ON  
Fault  
Table 3 - iP1001 Operating Truth Table  
www.irf.com  
10  
iP1001  
DESIGNPROCEDURE  
Inductor Selection  
A 470µF POSCAP capacitor has a maximum 35mΩ  
of ESR which provides 9.7kHz zero frequency.  
The ESR zero frequency must be set below 12kHz.  
This value is calculated assuming the capacitor  
datasheet maximum ESR value.  
The inductor is selected according to the following  
expression.  
L = VOUT x (1-D) / (fsw x IL)  
where, D = V / V  
OUT  
IN  
Example:  
To determine the amount of capacitance  
to meet a 30mVp-p output ripple, with 4A  
inductor current ripple requirement.  
V
is the output voltage in Volts,  
fsOwUTis the switching frequency in kHz,  
IL is the output inductor ripple current.  
The calculated ESR will be = 30mV/4A =  
7.5m. This will require 5 x 470uF POSCAP  
capacitors. The total ESR will result in a  
9.7kHz zero frequency.  
The inductor value should be selected from 0.8µH  
to 2.0µH range.  
Output Capacitor Selection  
For stable operation:  
Set the resonant frequency fo of the output  
inductor and capacitor between 2kHz and 4kHz.  
The resonant frequency is calculated using the  
following expression:  
Use tantalum or POSCAP type capacitors for iP1001.  
Selection of the output capacitors depends on  
several factors.  
Low effective ESR for ripple and load transient  
requirements.  
fo = 1/ (2π x (LC))  
Stability.  
To support the load transients and to stay within a  
specified voltage dip V due to the transients, ESR  
selection should satisfy the following equation:  
Select the output inductor value between 0.8µH  
to 2.0µH and the output capacitance between  
1880µF (4x 470µF) and 5600µF (12x470µF)  
R
ESR ≤ ∆V/I  
Set the minimum output ripple voltage to be  
greater than 0.5% of the output voltage. Select the  
capacitor by ESR and by voltage rating rather than  
capacitance.  
where, I is the transient load step  
If output voltage ripple is required to be maintained  
at specified levels then, the following expression  
should be used to select the output capacitors.  
External Input Capacitor Selection  
The switching currents impose RMS current  
requirements on the input capacitors. The following  
expression allows the selection of the input  
capacitors, based on the input RMS current:  
RESR Vp-p / IL  
where, Vp-p is the peak to peak output voltage ripple.  
IRMS = ILOAD x ( D x (1-D))  
The value of the output capacitor ESR zero frequency  
also determines stability. The value of the ESR zero  
frequency is calculated by the expression:  
where, D = VOUT/VIN  
RESR = 1 / (2π x fESR x COUT  
)
www.irf.com  
11  
iP1001  
Application Issues  
Setting VOUT above 2V  
In certain applications where the output voltage is  
required to be set higher than the maximum DAC  
code setting of 2V, it is possible to use an external  
resistive voltage divider which, for accuracy, needs  
to have 1% or better tolerance. The switching  
frequency should be set at 200kHz by connecting  
the FREQ pin to VDD. Also, the output voltage should  
never be set higher than 3.3V with a VIN minimum of  
5V, or 2.5V with a VIN minimum of 3.3V. The DAC  
code should be set to 2V and the following equation  
used to select the resistors:  
VOUT = VF x (1 + R3/R4)  
See the reference design for reference designators.  
Note that the impedance at V is 180K±35%. It is  
recommended that R3 be cFalculated assuming a  
value of 1kfor R4. Connect VFS to VF and GNDS to  
PGND.  
Duty Cycle D = VOUT / VIN >50%  
For duty cycles >50% the switching frequency should  
be set at 200kHz. 300kHz switching frequency can  
be selected if the output is less than 2V and the duty  
cycle is <50%.  
For duty cycles >50%, add external compensation  
ramp from the Vsw terminal of the iP1001 device as  
shown in the reference design through R9 resistor  
and C21 capacitor (Fig 10a.). For optimum perfor-  
mance maintain a RC time constant of approximately  
5µs.  
12  
www.irf.com  
iP1001  
Layout Guidelines  
For stable and noise free operation of the whole  
power system it is recommended that the designer  
uses to the following guidelines.  
5. Although there is a certain degree of VIN  
bypassing inside the iP1001, the external input  
decoupling capacitors should be as close to the  
device as possible.  
1. Follow the layout scheme presented in Fig.9.  
Make sure that the output inductor L1 is placed as  
close to the iP1001 as possible to prevent noise  
propagation that can be caused by switching of  
power at the switching node VSW, to sensitive circuits.  
6. In situations where the load is located at an  
appreciable distance from the iP1001 block, it is  
recommended that at least one or two capacitors  
be placed close to the iP1001 to derive the VF  
signal.  
2. Provide a mid-layer solid ground with connections  
to the top layer through vias. The two PGND pads of  
the iP1001 also need to be connected to the same  
ground plane through vias.  
7. The VF connection to the output capacitors should  
be as short as possible and should be routed as  
far away from noise generating traces as possible.  
3. Do not connect SGND pins of the iP1001 to PGND.  
8. V & GNDS pins need to be connected at the  
loadFSfor remote sensing. If remote sensing is not  
used connect VFS to VF and GNDS to PGND.  
4. To increase power supply noise immunity, place  
input and output capacitors close to one another, as  
shown in the layout diagram. This will provide short  
high current paths that are essential at the ground  
terminals.  
9. Refer to IR application noteAN-1029 to determine  
what size vias and what copper weight and  
thickness to use when designing the PCB.  
iP1001 Block  
Input Caps (CIN)  
V
IN  
Input  
Terminal  
PGND  
VSW  
Load  
Terminal  
PGND  
Output Caps (COUT  
)
VOUT  
Output Inductor (L1)  
Fig 9. iP1001 suggested layout  
www.irf.com  
13  
iP1001  
iP1001 Reference Design  
The schematics in Fig.10a & 10b and complete Bill  
of Materials in Table 4 are provided as a reference  
design to enable a preliminary evaluation of iP1001.  
They represent a simple method of applying the  
iP1001 solution in a synchronous buck topology.  
Fig. 10a shows the implementation for <5V  
nominal applications, and Fig. 10b shows thIeN  
implementation for 5VIN  
applications.  
-
12VIN nominal  
The connection pins are provided through the solder  
balls on the bottom layer of the package. A total  
power supply solution is presented with the addition  
of inductor L1 and the output capacitors C11-C14.  
Input capacitors C1-C10 are for bypassing in the  
5V - 12VIN application, but only C1-C3 are required  
forIN<5VIN applications (refer to the BOM for values).  
Switches 1-5 of SW1 are used to program the output  
voltage. Refer to the VID table provided in this  
datasheet for the code that corresponds to the  
desired output voltage. Resistors R2 & R4 need to  
be removed for operation at standard VID levels  
(0.925V - 2.0V, leave R3 = 0). Switch 8 of SW1  
enables the output when floating (internally pulled  
high). The 5V VDD power terminal and input power  
terminals are provided as separate inputs. They  
can be connected together if the application  
requires only 5V nominal input voltage.  
The reference design also offers a higher output  
voltage option for greater than 2.0V, up to 3.3V. For  
output voltages above 2V, the DAC setting must be  
set to 2V, and then select resistors R3 & R4 per  
Equation 1 on page 10 for the desired output volt-  
age. Remove R5 and connect VF to VFS through R2,  
where R2=0Ω. In this case, GNDS should be refer-  
enced to PGND. Tighter regulation can be achieved  
by using resistors with less than 1% tolerance. For  
Vin < 5V and Vout > 2V, the frequency select pin  
(FREQ) must be set to 200kHz (connected to VDD).  
For applications with VIN < 5V and where there is no  
auxiliary 5V available, connections JP2 and JP3  
must be provided in order to enable the boost cir-  
cuit. This will provide 5V V necessary for the  
iP1001 internal logic to functiDoDn. The boost circuit  
will convert 3.3V input voltage to 5V, to power the  
V , and will provide enough power to supply the  
inDteD rnal logic for up to five iP1001 power blocks.  
14  
www.irf.com  
iP1001  
Optional  
U2  
1
2
3
4
8
7
6
5
FB  
OUT  
LX  
L2  
C17  
10µF  
C18  
10µF  
LBI  
LBO  
REF  
22µH  
GND  
C20  
1µF  
SHDN  
C19  
0.1µF  
MAX1675  
JP3  
JP2  
R8  
100K  
VIN  
3.3-4.5V  
JP1  
1
2
C1  
C2  
C3  
100uF 100uF 100uF  
6.3V  
6.3V  
6.3V  
+5V  
TP1  
U1  
TP4  
VO  
VOS  
L1  
1.06uH  
R1  
VSW  
VOUT  
0
TP3  
C11  
470uF 470uF 470uF 470uF  
6.3V 6.3V 6.3V 6.3V  
C12  
C13  
C14  
PGOOD  
D1  
C16  
0.1µF  
10MQ040N  
SW1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
PGND  
D4  
D3  
D2  
D1  
D0  
FREQ  
PGND  
+5V  
R9  
R3  
R4  
iP1001  
TP5  
91K  
ENABLE  
ILIM  
C21  
47pF  
R6  
0
R5  
R7  
340K, 1%  
VF  
R2  
VFS  
GNDS  
TP2  
Fig 10a. - Reference Design Schematic For <4.5VIN  
VIN  
5-12V  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
10uF 10uF 10uF 10uF 10uF 10uF 10uF 10uF 10uF 10uF  
C8  
C9  
C10  
25V  
25V  
25V  
25V  
25V  
25V  
25V  
25V  
25V 25V  
+5V  
TP1  
U1  
TP4  
VO  
VOS  
L1  
1.06uH  
R1  
VSW  
VOUT  
0
TP3  
C11  
470uF 470uF 470uF 470uF  
6.3V 6.3V 6.3V 6.3V  
C12  
C13  
C14  
PGOOD  
D1  
C16  
0.1µF  
10MQ040N  
SW1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
PGND  
D4  
D3  
D2  
D1  
D0  
FREQ  
PGND  
+5V  
R3  
R4  
iP1001  
TP5  
ENABLE  
ILIM  
R6  
0
R5  
R7  
340K, 1%  
VF  
R2  
VFS  
GNDS  
TP2  
Fig 10b. - Reference Design Schematic For 5VIN - 12VIN Nominal  
www.irf.com  
15  
iP1001  
Designator  
C1, C3, C5  
IRDCiP1001-A (For operation <4.5VIN)  
Value  
100uF  
-
Part Type  
Capacitor, 6.3V, 20%, X5R  
Not Installed  
Footprint  
1812  
-
Mfr.  
TDK  
Mfr. P/N  
C4532X5R0J107MT  
-
C2, C4, C6, C7, C8, C9, C10, C15  
C11, C12, C13, C14  
-
Sanyo  
470uF  
0.100uF  
10.0uF  
1.00uF  
47.0pF  
40V  
Capacitor, 6.3V, 20%, Tantalum  
Capacitor, 50V, 10%, X7R  
Capacitor, 16V, 10%, X5R  
Capacitor, 10V, 10%, X7R  
Capacitor, 50V, 5%, C0G  
Schottky Diode, 40V, 2.1A  
Test Point  
7343  
1206  
1210  
0805  
1206  
D-64  
-
6TPB470M  
C16, C19  
C17, C18  
Novacap  
TDK  
1206B104K500N  
C3225X5R1C106KT  
GRM40X7R105K010  
GRM42-6C0G470J050A  
10MQ040N  
C20  
C21  
MuRata  
MuRata  
International Rectifier  
Samtec  
D1  
JP1, JP2, JP3  
JP1-1, JP2-1, JP3-1  
-
TSW-102-07-LS  
SNT-100-BKT  
ETQP6F1R1BFA  
CR43-220  
-
Shunt  
-
Samtec  
Panasonic  
Sumida  
L1  
L2  
R1  
1.06uH  
22uH  
0:  
Inductor, 16A, 20%, Ferrite  
Inductor, 0.68A, 20%, Ferrite  
Resistor, 0: Jumper  
SMT  
SMT  
2716  
Isotek Corp  
SMT-R000  
For <2Vout, Not installed  
For >2Vout, Resistor, 0: Jumper  
For <2Vout, Resistor, 0: Jumper  
For >2Vout see formula for value  
For <2Vout, Not installed  
For >2Vout recommend 1k:  
see formula for detail  
R2  
R3  
-
SMT  
SMT  
-
-
-
-
-
-
SMT  
-
-
R4  
R5  
R6  
For <2Vout, Resistor, 0: Jumper  
For >2Vout, Not installed  
Resistor, 0: Jumper  
-
1206  
1206  
Panasonic  
-
ERJ-8GEY0R00  
-
0:  
Resistor, 340k:, 1%  
R7  
340k:  
1206  
ROHM  
MCR18EZHF3403  
340k: sets for 20A limit.  
See ILIM formula for other values  
Resistor, 100k:, 5%  
R8  
R9  
1206  
1206  
SMT  
ROHM  
ROHM  
MCR18EZHJ104  
MCR18EZHJ913  
SD08H0SK  
-
100k:  
91k:  
-
-
-
Resistor, 91k:, 5%  
8-position DIP switch  
SW1  
TP1, TP3  
TP2, TP4, TP5  
C&K Components  
-
Keystone  
Not Installed  
Test Point  
-
-
1502-2  
SSBGA  
14mmx14mm  
8uMAX  
U1  
U2  
-
-
Power Block  
International Rectifier  
Maxim  
iP1001  
IC, Step-Up DC-DC Converter, 0.5A  
MAX1675EUA  
IRDCiP1001-B (For operation 5VIN to 12VIN)  
Designator  
Value  
Part Type  
Footprint  
Mfr.  
Mfr. P/N  
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 10.0uF  
Capacitor, 25V, 10%, X5R  
1812  
MuRata  
GRM43-2X5R106K25A  
C11 C12 C13 C14  
470uF  
Capacitor, 6.3V, 20%, Tantalum  
Capacitor, 50V, 10%, X7R  
Not Installed  
7343  
Sanyo  
6TPB470M  
C16  
0.100uF  
1206  
Novacap  
1206B104K500N  
C15, C17, C18, C19, C20, C21  
-
-
-
-
D1  
40V  
Schottky Diode, 40V, 2.1A  
Not Installed  
D-64  
International Rectifier  
10MQ040N  
JP1, JP2, JP3  
-
-
-
-
JP1-1, JP2-1, JP3-1  
-
1.06uH  
-
Not Installed  
-
-
-
ETQP6F1R1BFA  
-
L1  
L2  
R1  
Inductor, 16A, 20%, Ferrite  
Not Installed  
SMT  
-
Panasonic  
-
2716  
Isotek Corp  
SMT-R000  
0:  
Resistor, 0: Jumper  
For <2Vout, Not installed  
For >2Vout, Resistor, 0: Jumper  
For <2Vout, Resistor, 0: Jumper  
For >2Vout see formula for value  
For <2Vout, Not installed  
For >2Vout recommend 1k:  
see formula for detail  
For <2Vout, Resistor, 0: Jumper  
For >2Vout, Not installed  
Resistor, 0: Jumper  
R2  
R3  
-
SMT  
SMT  
-
-
-
-
-
R4  
-
SMT  
-
-
R5  
R6  
-
1206  
1206  
Panasonic  
-
ERJ-8GEY0R00  
-
0:  
Resistor, 340k:, 1%  
R7  
340k:  
1206  
ROHM  
MCR18EZHF3403  
340k: sets for 20A limit.  
See ILIM formula for other values  
Not Installed  
R8, R9  
SW1  
-
-
-
-
-
-
-
SD08H0SK  
1502-2  
-
8-position DIP switch  
Test Point  
SMT  
C&K Components  
TP1 TP2 TP4 TP5  
TP3  
-
-
Keystone  
-
Not Installed  
SSBGA  
U1  
U2  
-
-
Power Block  
Not Installed  
International Rectifier  
-
iP1001  
-
14mmx14mm  
-
Table 4 - Reference Design Bill of Materials  
16  
www.irf.com  
iP1001  
0.15 [.006]  
2X  
C
14.00  
[.551]  
B
A
6
5
C
0.45 [.0177]  
0.35 [.0138]  
BALL A1  
CORNER ID  
0.12 [.005]  
C
14.00  
[.551]  
NOTES:  
1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.  
2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].  
3. CONTROLLING DIMENSION: MILLIMETER  
4. SOLDER BALL POSITION DESIGNATION PER JESD 95-1, SPP-010.  
5
6
7
PRIMARY DATUM C (SEATING PLANE) IS DEFINED BY THE  
SPHERICAL CROWNS OF THE SOLDER BALLS.  
BILATERAL TOLERANCE ZONE IS APPLIED TO EACH SIDE OF THE  
PACKAGE BODY.  
0.15 [.006]  
2X  
C
TOP VIEW  
6
SOLDER BALL DIAMETER IS MEASURED AT THE MAXIMUM SOLDER  
BALL DIAMETER, IN A PLANE PARALLEL TO DATUM C.  
0.55 [.0216]  
0.45 [.0178]  
218X Ø  
7
0.15 [.006]  
0.08 [.003]  
C
C
A B  
2.66 [.1047]  
2.46 [.0969]  
0.40  
[.016]  
(4X 1.0 [.039])  
0.80  
[.032]  
3.11 [.1224]  
2.81 [.1107]  
4X  
30X  
BOTTOM VIEW  
SIDE VIEW  
Mechanical Drawing  
Refer to the following application notes for detailed guidelines and suggestions when implementing  
iPOWIR Technology products:  
AN-1028: Recommended Design, Integration and Rework Guidelines for International Rectifier’s  
iPOWIR Technology BGA Packages  
This paper discusses the assembly considerations that need to be taken when mounting iPOWIR BGA’s  
on printed circuit boards. This includes soldering, pick and place, reflow, inspection, cleaning and  
reworking recommendations.  
AN-1029: Optimizing a PCB Layout for an iPOWIR Technology Design  
This paper describes how to optimize the PCB layout design for both thermal and electrical performance.  
This includes placement, routing, and via interconnect suggestions.  
AN-1030:Applying iPOWIR Products in Your Thermal Environment  
This paper explains how to use the Power Loss and SOA curves in the data sheet to validate if the  
operating conditions and thermal environment are within the Safe Operating Area of the iPOWIR product.  
www.irf.com  
17  
iP1001  
0123  
XXXX  
iP1001  
TOP  
Part Marking  
24mm  
0123  
0123  
XXXX  
iP1001  
XXXX  
iP1001  
FEED DIRECTION  
20mm  
NOTES:  
1. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
Tape & Reel Information  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.03/02  
18  
www.irf.com  

相关型号:

IP100ALF

Integrated 10/100 Ethernet MAC + PHY
ETC

IP101

PHY 10/100M Single Chip Fast Ethernet Transceiver
ETC

IP101ALF

Single port 10/100 Fast Ethernet Transceiver
ETC

IP101ALF-DS-R01

Single port 10/100 Fast Ethernet Transceiver
ETC

IP101ALF-DS-R02

Single port 10/100 Fast Ethernet Transceiver
ETC

IP101ALF-DS-R03

Single port 10/100 Fast Ethernet Transceiver
ETC

IP101ALF-DS-R04

Single port 10/100 Fast Ethernet Transceiver
ETC

IP101ALF-DS-R05

Single port 10/100 Fast Ethernet Transceiver
ETC

IP101ALF-DS-R06

Single port 10/100 Fast Ethernet Transceiver
ETC

IP101ALF-DS-R07

Single port 10/100 Fast Ethernet Transceiver
ETC

IP101ALF-DS-R08

Single port 10/100 Fast Ethernet Transceiver
ETC

IP101ALF-DS-R09

Single port 10/100 Fast Ethernet Transceiver
ETC