IR1167ASPBF [INFINEON]

SmartRectifier CONTROL IC; 智能整流控制IC
IR1167ASPBF
型号: IR1167ASPBF
厂家: Infineon    Infineon
描述:

SmartRectifier CONTROL IC
智能整流控制IC

文件: 总15页 (文件大小:308K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
Data Sheet PD60254A  
IR1167ASPbF  
IR1167BSPbF  
SmartRectifierTM CONTROL IC  
Features  
• 50ns turn-off propagation delay  
• Vcc range from 11.3V to 20V  
• Direct sensing of MOSFET drain voltage  
• Minimal component count  
• Secondary side high speed SR controller  
• DCM, CrCM and CCM flyback topologies  
• 200V proprietary IC technology  
• Max 500KHz switching frequency  
• Anti-bounce logic and UVLO protection  
• 7A peak turn off drive current  
• Simple design  
• Lead-free  
• Compatible with 1W Standby, Energy Star, CECP, etc.  
• Micropower start-up & ultra low quiescent current  
• 10.7/14.5V gate drive clamp  
Description  
Package  
IR1167S is a smart secondary side driver IC designed to drive N-Channel power MOSFETs  
used as synchronous rectifiers in isolated Flyback converters.  
The IC can control one or more paralleled N-MOSFETs to emulate the behavior of Schottky  
diode rectifiers. The drain to source voltage is sensed differentially to determine the polarity  
of the current and turn the power switch on and off in proximity of the zero current transi-  
tion.  
Ruggedness and noise immunity are accomplished using an advanced blanking scheme  
and double-pulse suppression which allow reliable operation in continuous, discontinuous  
8-Lead SOIC  
and critical current mode operation and both fixed and variable frequency modes.  
IR1167 Application Diagram  
Vin  
Rs  
Cs  
Rdc  
U1  
XF M  
Cdc  
1
2
3
4
8
7
6
5
VCC VGATE  
Ci  
OVT  
GND  
VS  
Co  
MOT  
RMOT  
EN  
VD  
Rg  
Q1  
IR1167S  
Rtn  
*Please note that this data sheet contains advanced information that could change before the product is released to production.  
www.irf.com  
1
IR1167AS/BS  
PRELIMINARY  
Absolute Maximum Ratings  
Stress beyond those listed under ”Absolute Maximum Ratings” may cause permanent damage to the device.  
These are stress ratings only and functional operation of the device at these or any other conditions beyond those  
indicated in the operational sections of the specifications are not implied.All voltages are absolute voltages referenced  
to GND. Thermal resistance and power dissipation are measured under board mounted and still air conditions.  
Parameters  
Symbol Min.  
Max. Units  
Remarks  
Supply Voltage  
Enable Voltage  
VCC  
VEN  
VD  
-0.3  
-0.3  
-3  
20  
V
20  
V
Cont. Drain Sense Voltage  
Pulse Drain Sense Voltage  
Source Sense Voltage  
Gate Voltage  
200  
200  
20  
V
VD  
-5  
V
VS  
-3  
V
VGATE  
TJ  
-0.3  
-40  
-55  
20  
V
VCC=20V, Gate off  
Operating Junction Temperature  
Storage Temperature  
Thermal Resistance  
150  
150  
128  
970  
2
°C  
°C  
TS  
RθJA  
PD  
°C/W SOIC-8  
mW SOIC-8, TAMB=25°C  
Package Power Dissipation  
ESD Protection  
VESD  
fsw  
kV  
Human Body Model*  
Switching Frequency  
500  
kHz  
Recommended Operating Conditions  
Recommended operating conditions for reliable operation with margin  
Parameters Symbol Min. Max. Units  
Remarks  
Supply Voltage  
VCC  
TJ  
12  
-25  
-25  
40  
18  
125  
85  
V
°C  
Operating Junction Temperature  
Ambient Temperature  
TA  
°C  
Switching Frequency  
fsw  
400  
kHz  
* Per EIA/JESD22-A114-B( discharging a 100pF capacitor through a 1.5kseries resistor).  
www.irf.com  
2
IR1167AS/BS  
PRELIMINARY  
Electrical Characteristics  
The electrical characteristics involve the spread of values guaranteed within the specified supply voltage and  
junction temperature range TJ from – 25° C to 125°C. Typical values represent the median values, which are  
related to 25°C. If not otherwise stated, a supply voltage of VCC =15V is assumed for test condition.  
Supply Section  
Parameters  
VCC Turn On Threshold  
VCC Turn Off Threshold  
Symbol Min.  
Typ.  
10.5  
Max.  
11.3  
Units  
V
Remarks  
VCC ON  
9.8  
VCC UVLO  
8.4  
9
9.7  
V
V
(Under Voltage Lock Out)  
VCC Turn On/Off Hysteresis  
VCC HYST  
1.4  
1.55  
1.7  
CLOAD=1nF, fsw = 400kHz  
8.5  
50  
10  
65  
IR1167A  
IR1167B  
C
LOAD=10nF, fSW = 400kHz  
ICC  
Operating Current  
mA  
CLOAD=1nF, fsw = 400kHz  
10.3  
66  
12  
C
LOAD=10nF, fSW = 400kHz  
- 0.1V  
80  
Quiescent Current  
Start-up Current  
IQCC  
ICC START  
ISLEEP  
VENHI  
1.8  
100  
150  
2.75  
1.6  
1.5  
2.2  
200  
200  
mA  
µA  
µA  
V
VCC=VCC  
ON  
Sleep Current  
V
EN=0V, VCC =15V  
Enable Voltage High  
Enable Voltage Low  
Enable Pull-up Resistance  
V
VENLO  
REN  
MΩ  
GBD  
Comparator Section  
Parameters  
Symbol Min.  
Typ.  
-3.5  
Max.  
0
Units  
Remarks  
-7  
OVT = 0V, VS=0V  
OVT floating, VS=0V  
OVT = VCC, VS=0V  
Turn-off Threshold  
VTH1  
-15  
-23  
-10.5  
-19  
-7  
mV  
-15  
-50  
Turn-on Threshold  
Hysteresis  
VTH2  
VHYST  
IIBIAS1  
IIBIAS2  
VOFFSET  
VCM  
-150  
mV  
mV  
µA  
µA  
mV  
V
55  
VD = -50mV  
1
7.5  
100  
2
Input Bias Current  
V
D = 200V  
30  
Input Bias Current  
Comparator Input Offset  
Input CM Voltage Range  
GBD  
-0.15  
2
One-Shot Section  
Parameters  
Blanking pulse duration  
Symbol Min.  
tBLANK  
Typ.  
15  
Max.  
20  
Units  
µs  
Remarks  
10  
V
CC=10V - GBD  
VCC=20V - GBD  
CC=10V - GBD  
2.5  
5.4  
40  
V
V
Reset Threshold  
Hysteresis  
VTH3  
V
mV  
VHYST3  
Minimum On Time Section  
Parameters  
Symbol Min.  
Typ.  
Max.  
Units  
Remarks  
190  
240  
290  
ns  
RMOT =5kΩ, VCC=12V  
TONmin  
Minimum on time  
2.4  
3
3.6  
µs  
RMOT =75kΩ, VCC=12V  
www.irf.com  
3
IR1167AS/BS  
PRELIMINARY  
Gate Driver Section  
Parameters  
Gate Low Voltage  
Gate High Voltage  
Gate High Voltage  
Rise Time  
Symbol Min.  
VGLO  
Typ. Max. Units  
Remarks  
0.3  
10.7  
14.5  
30  
180  
10  
30  
60  
40  
4
0.5  
V
IGATE = 200mA  
VGTH  
VGTH  
tr1  
9.5  
12.5  
16.5  
V
IR1167A - VCC=12V-18V (internally clamped)  
IR1167B - VCC=12V-18V (internally clamped)  
CLOAD = 1nF, VCC=12V  
12.5  
V
ns  
ns  
ns  
ns  
ns  
ns  
tr2  
CLOAD = 10nF, VCC=12V  
Fall Time  
tf1  
CLOAD = 1nF, VCC=12V  
tf2  
CLOAD = 10nF, VCC=12V  
Turn on Propagation Delay  
Turn off Propagation Delay  
Pull up Resistance  
tDon  
tDoff  
rup  
80  
60  
VDS to VGATE -100mV overdrive  
VDS to VGATE -100mV overdrive  
IGATE = 1A - GBD  
Pull down Resistance  
rdown  
IO source  
IO sink  
0.7  
2
I
GATE = -200mA  
LOAD = 10nF - GBD  
CLOAD = 10nF - GBD  
Output Peak Current (source)  
Output Peak Current (sink)  
A
C
7
A
** Guaranteed by Design  
STATE AND TRANSITIONS DIAGRAM  
POWER ON  
Gate Inactive  
UVLO MODE  
VCC < VCCon  
Gate Inactive  
ICC max = 200uA  
VCC > VCCon  
VCC < VCCuvlo  
and  
or  
ENABLE HIGH  
ENABLE LOW  
NORMAL  
Gate Active  
www.irf.com  
4
IR1167AS/BS  
PRELIMINARY  
Block Diagram  
MOT  
VCC  
VDD  
UVLO  
&
ENA  
REGULATOR  
VDD  
VD  
Min ON Time  
RESET  
VTH1  
VGATE  
VS  
DRIVER  
COM  
OVT  
Min OFF Time  
RESET  
Vgate  
VTH3  
VTH1  
VDS  
VTH2  
VTH3  
Lead Assignments & Definitions  
Lead Assignment  
Pin#  
Symbol  
VCC  
Description  
Supply Voltage  
1
Offset Voltage Trimming  
Minimum On Time  
Enable  
2
3
4
5
6
7
8
OVT  
MOT  
EN  
1
2
3
4
VCC  
OVT  
MOT  
EN  
8
7
6
5
VGATE  
GND  
VS  
VD  
FET Drain Sensing  
FET Source Sensing  
Ground  
VS  
VD  
GND  
GATE  
Gate Drive Output  
www.irf.com  
5
IR1167AS/BS  
PRELIMINARY  
Detailed Pin Description  
kelvin contact as close as possible to the power  
MOSFET source pin.  
GND: Ground  
This is ground potential pin of the integrated control  
circuit. The internal devices and gate driver are  
referenced to this point.  
VD: Drain Voltage Sense  
VD is the voltage sense pin for the power MOSFET  
Drain. This is a high voltage pin and particular care  
must be taken in properly routing the connection to  
the power MOSFET drain.  
Additional filtering and or current limiting on this pin is  
not recommended as it would limit switching perfor-  
mance of the IC.  
MOT: Minimum On Time  
The MOT programming pin controls the amount of  
minimum on time. Once VTH2 is crossed for the first  
time, the gate signal will become active and turn on  
the power FET. Spurious ringings and oscillations can  
trigger the input comparator off. The MOT blanks the  
input comparator keeping the FET on for a minimum  
time.  
VCC: Power Supply  
This is the supply voltage pin of the IC and it is  
monitored by the under voltage lockout circuit. It is  
possible to turn off the IC by pulling this pin below the  
minimum turn off threshold voltage, without damage  
to the IC.  
The MOT is programmed between 200ns and 3us  
(typ.) by using a resistor referenced to GND.  
OVT: Offset Voltage Trimming  
The OVT pin will program the amount of input offset  
To prevent noise problems, a bypass ceramic  
capacitor connected to Vcc and GND should be placed  
as close as possible to the IR1167S.  
voltage for the turn-off threshold VTH1  
.
The pin can be optionally tied to ground, to VCC or  
left floating, to select 3 ranges of input offset trimming.  
This programming feature allows for accomodating  
different RDSon MOSFETs.  
This pin is internally clamped.  
EN: Enable  
GATE: Gate Drive Output  
This pin is used to activate the IC “sleep” mode by  
pulling the voltage level below 2.5V (typ). In sleep  
mode the IC will consume a minimum amount of cur-  
rent. However all switching functions will be disabled  
and the gate will be inactive.  
This is the gate drive output of the IC. Drive voltage  
is internally limited and provides 2A peak source and  
5A peak sink capability. Although this pin can be  
directly connected to the power MOSFET gate, the  
use of minimal gate resistor is recommended,  
expecially when putting multiple FETs in parallel.  
Care must be taken in order to keep the gate loop as  
short and as small as possible in order to achieve  
optimal switching performance.  
VS: Source Voltage Sense  
VS is the differential sense pin for the power MOSFET  
Source. This pin must not be connected directly to  
the power ground pin (7) but must be used to create a  
www.irf.com  
6
IR1167AS/BS  
PRELIMINARY  
STATES OF OPERATION  
GENERAL DESCRIPTION  
The IR1167 Smart Rectifier IC can emulate the  
operation of diode rectifier by properly driving a  
Synchronous Rectifier (SR) MOSFET.  
UVLO/Sleep Mode  
The IC remains in the UVLO condition until the voltage  
on the VCC pin exceeds the VCC turn on threshold  
The direction of the rectified current is sensed by the  
voltage, VCC ON  
.
input comparator using the power MOSFET R  
as a shunt resistance and the GATE pin of the  
MOSFET is driven accordingly.  
Internal blanking logic is used to prevent spurious  
transitions and guarantee operation in continuous  
(CCM), discountinuous (DCM) and critical (CrCM)  
conduction mode.  
During the time the IC remains in the UVLO state, the  
gate drive circuit is inactive and the IC draws a  
quiescent current of ICC START. The UVLO mode is  
accessible from any other state of operation whenever  
the IC supply voltage condition of VCC < VCC UVLO  
occurs.  
The sleep mode is initiated by pulling the EN pin below  
2.5V (typ). In this mode the IC is essentially shut down  
and draws a very low quiescent supply current.  
DSon  
VGate  
Normal Mode  
The IC enters in normal operating mode once the  
UVLO voltage has been exceeded. At this point the  
gate driver is operating and the IC will draw a  
maximum of ICC from the supply voltage source.  
VDS  
VTH2  
VTH1  
VTH3  
Input comparator thresholds  
The modes of operation for a Flyback circuit differ  
mainly for the turn-off phase of the SR switch, while  
the turn-on phase of the secondary switch (which  
correspond to the turn off of the primary side switch)  
is identical.  
Turn-on phase  
When the conduction phase of the SR FET is initiated,  
current will start flowing through its body diode,  
generating a negative VDS voltage across it. The body  
diode has generally a much higher voltage drop than  
the one caused by the MOSFET on resistance and  
therefore will trigger the turn-on threshold V  
.
TH2  
At that point the IR1167 will drive the gate of MOSFET  
on which will in turn cause the conduction voltage VDS  
to drop down. This drop is usually accompained by some  
amount of ringing, that can trigger the input comparator  
to turn off; hence, a Minimum On Time (MOT) blanking  
period is used that will maintain the power MOSFET on  
for a minimum amount of time.  
The programmed MOT will limit also the minimum duty  
www.irf.com  
7
IR1167AS/BS  
PRELIMINARY  
cycle of the SR MOSFET and, as a consequence, the  
max duty cycle of the primary side switch.  
is blanked for a certain amount of time (TBLANK) after  
VTH1 has been triggered.  
The blanking time is internally set. As soon as VDS  
crosses the positive threshold VTH3 also the blanking  
time is terminated and the IC is ready for next  
conduction cycle.  
DCM/CrCM Turn-off phase  
Once the SR MOSFET has been turned on, it will  
remain on until the rectified current will decay to the  
level where V will cross the turn-off threshold VTH1  
.
DS  
CCM Turn-off phase  
This will happen differently depending on the mode  
of operation.  
In DCM the current will cross the threshold with a  
relatively low dI/dt. Once the threshold is crossed, the  
current will start flowing again through the body diode,  
In CCM mode the turn off transition is much steeper  
and dI/dt involved is much higher. The turn on phase  
is identical to DCM or CrCM and therefore won’t be  
repeated here.  
During the SR FET conduction phase the current will  
decay linearly, and so will VDS on the SR FET.  
IPRIM  
VPRIM  
IPRIM  
VPRIM  
time  
T3  
T1  
T2  
ISEC  
VSEC  
time  
T2  
T1  
ISEC  
VSEC  
time  
Primary and secondary currents and  
voltages for DCM mode  
Primary and secondary currents and time  
voltages for CCM mode  
IPRIM  
VPRIM  
Once the primary switch will start to turn back on, the  
SR FET current will rapidly decrease crossing VTH1  
and turning the gate off.  
The turn off speed is critical to avoid cross conduction  
on the primary side and reduce switching losses.  
also in this case a blanking period will be applied, but  
given the very fast nature of this transition, it will be  
time  
T2  
T1  
ISEC  
VSEC  
reset as soon as VDS crosses VTH3  
.
time  
Primary and secondary currents and  
voltages for CrCM mode  
causing the VDS voltage to jump negative. Depending  
on the amount of residual current, VDS may trigger  
once again the turn on threshold: for this reason VTH2  
www.irf.com  
8
IR1167AS/BS  
PRELIMINARY  
VTH3  
ISEC  
VDS  
T1  
T2  
time  
VTH1  
VTH2  
Gate Drive  
Blanking  
time  
time  
MOT  
Secondary side CCM operation  
VTH3  
ISEC  
VDS  
T1  
T2  
time  
time  
9
VTH1  
VTH2  
Gate Drive  
Blanking  
MOT  
10us blanking  
Secondary side DCM/CrCM operation  
www.irf.com  
IR1167AS/BS  
PRELIMINARY  
11  
10  
9
10  
1
0.1  
0.01  
V
CC ON  
V
CC UVLO  
8
-50  
0
50  
100  
150  
5
10  
15  
20  
Temperature ( °C )  
Supply Voltage (V)  
Fig 1. Supply Current vs. Supply Voltage  
Fig 2. Under Voltage Lockout  
vs. Temp.  
0
-5  
0
-10  
-15  
-20  
-25  
-30  
-50  
-100  
-150  
OVT = GND  
OVT = Floating  
OVT = V  
CC  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature ( °C )  
Temperature ( °C )  
Fig 4. VTH2 vs. Temp.  
Fig 3. VTH1 vs. Temp.  
www.irf.com  
10  
IR1167AS/BS  
PRELIMINARY  
100  
50  
0
0
-3  
-6  
-9  
VS = -150mV  
VS= 0V  
VS= +2V  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature ( °C )  
Temperature ( °C )  
Fig 5. Comparator Hysteresis vs.  
Fig 6. VTH1 vs. Temp. and Common  
Temp.  
Mode (OVT=GND)  
-50  
-100  
-150  
-50  
-100  
-150  
VS = -150mV  
VS= 0V  
VS= +2V  
VS = -150mV  
VS= 0V  
VS= +2V  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature ( °C )  
Temperature ( °C )  
Fig 7. VTH2 vs. Temp. and Common  
Fig 8. Comparator Hysteresis vs. Temp. and  
Mode (OVT=GND)  
Common Mode (OVT=GND)  
www.irf.com  
11  
IR1167AS/BS  
PRELIMINARY  
4
3
2
1
0
100  
80  
60  
40  
20  
0
T = -25°C  
J
RMOT = 5k  
RMOT= 75k  
T = 25°C  
J
T = 125°C  
J
-50  
0
50  
Temperature ( °C )  
100  
150  
0
50  
100  
150  
200  
Drain Sense Voltage (V (V)  
D)  
Fig 9. MOT vs. Temp.  
Fig 10. Input Bias Current vs. VD.  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
20  
Csync = 2nF  
Csync = 5nF  
Csync = 8nF  
Csync = 15nF  
Csync = 20nF  
Csync = 2nF  
Csync = 5nF  
Csync = 8nF  
Csync = 15nF  
Csync = 20nF  
19  
18  
17  
16  
15  
14  
13  
12  
11  
50 100 150 200 250 300 350 400 450 500  
50 100 150 200 250 300 350 400 450 500  
Max. Synchronous HEXFET Switching Frequency (kHz)  
Max. Synchronous HEXFET Switching Frequency (kHz)  
Fig 12. Max. VCC Voltage vs. Synchronous Rectifier  
Switching Freq, TJ=125°C, TIC = 85°C, external RG=2W,  
1HEXFET Gate Resistance included  
Fig 11. Max. VCC Voltage vs. Synchronous Rectifier  
Switching Freq, TJ=125°C, TIC = 85°C, external RG=1W,  
1HEXFET Gate Resistance included  
www.irf.com  
12  
IR1167AS/BS  
PRELIMINARY  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
Csync = 2nF  
Csync = 5nF  
Csync = 8nF  
Csync = 15nF  
Csync = 20nF  
Csync = 2nF  
Csync = 5nF  
Csync = 8nF  
Csync = 15nF  
Csync = 20nF  
50 100 150 200 250 300 350 400 450 500  
50 100 150 200 250 300 350 400 450 500  
Maximum Synchronous HEXFET Switching Frequency (kHz)  
Max. Synchronous HEXFET Switching Frequency (kHz)  
Fig 13. Max. VCC Voltage vs. Synchronous Rectifier  
Switching Freq, TJ=125°C, TIC = 85°C, external RG=4W,  
1HEXFET Gate Resistance included  
Fig 14. Max VCC Voltage vs. Synchronous Rectifier  
Switching Freq, TJ=125°C, TIC = 85°C, external RG=6W,  
1HEXFET Gate Resistance included  
Figures 11-14 shows the maximum allowable VCC voltage vs. maximum switching frequency for  
different loads which are calculated using the design methodology discussed in AN1087.  
www.irf.com  
13  
IR1167AS/BS  
PRELIMINARY  
VCC  
VCC ON  
VCC UVLO  
t
UVLO  
NORMAL  
UVLO  
Fig. 14 - V Under Voltage Lockout  
cc  
VTH1  
VDS  
VTH2  
tDon  
tDoff  
VGate  
90%  
50%  
10%  
trise  
tfall  
Fig. 15 - Timing Diagrams  
www.irf.com  
14  
IR1167AS/BS  
PRELIMINARY  
Case outline  
INCHES  
MIL L IME T ERS  
DIM  
A
D
B
MIN  
.0532  
MAX  
.0688  
.0098  
.020  
MIN  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
MAX  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
FOOTPRINT  
8X 0.72 [.028]  
5
A
A1 .0040  
b
c
D
E
.013  
.0075  
.189  
.0098  
.1968  
.1574  
8
1
7
2
6
3
5
6
H
E
.1497  
0.25 [.010]  
A
e
.050 BASIC  
1.27 BASIC  
6.46 [.255]  
4
e1 .025 BASIC  
0.635 BASIC  
H
K
L
.2284  
.0099  
.016  
0°  
.2440  
.0196  
.050  
8°  
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
1.27  
8°  
3X 1.27 [.050]  
e
6X  
8X 1.78 [.070]  
y
K x 45°  
e1  
A
A
C
y
0.10 [.004]  
8X c  
8X L  
A1  
B
8X b  
7
0.25 [.010]  
C
5
6
7
DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.  
MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].  
NOTES:  
1. DIMENSIONING& TOLERANCING PER ASME Y14.5M-1994.  
2. CONT ROLLING DIME NS ION: MILLIME T ER  
DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.  
MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].  
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].  
4. OU T L INE CONF OR MS T O JE DE C OU T L INE MS -012AA.  
DIMENSION IS THE LENGTH OF LEAD FOR SOLDERINGTO  
ASUBSTRATE.  
01-6027  
01-0021 11 (MS-012AA)  
8-Lead SOIC  
1167ASPbF  
Data and specifications subject to change without notice.  
Qualification Standards can be found on IR’s Web site.  
WORLD HEADQUARTERS: 233 Kansas Street, El Segundo, California 90245 Tel: (310) 252-7105  
http://www.irf.com/ Data and specifications subject to change without notice. 4/2006  
www.irf.com  
15  

相关型号:

IR1167ASPBF_09

SmartRectifierTM CONTROL IC
INFINEON

IR1167ASTRPBF

Buffer/Inverter Based MOSFET Driver, 7A, PDSO8, LEAD FREE, MS-012AA, SOIC-8
INFINEON

IR1167AS_15

Secondary side high speed SR controller
INFINEON

IR1167BS

SMARTRECTIFIERTM CONTROL IC
INFINEON

IR1167BSPBF

SmartRectifier CONTROL IC
INFINEON

IR1167BSTRPBF

Buffer/Inverter Based MOSFET Driver, 7A, PDSO8, LEAD FREE, MS-012AA, SOIC-8
INFINEON

IR11682S

DUAL SMART RECTIFIER DRIVER IC
INFINEON

IR11682SPBF

DUAL SmartRectifier DRIVER IC 200V proprietary IC technology
INFINEON

IR11682STRPBF

DUAL SmartRectifier DRIVER IC 200V proprietary IC technology
INFINEON

IR11682S_11

DUAL SmartRectifier DRIVER IC 200V proprietary IC technology
INFINEON

IR11688S

DUAL SYNCHRONOUS RECTIFICATION CONTROL IC
INFINEON

IR11688SPBF

DUAL SYNCHRONOUS RECTIFICATION CONTROL IC
INFINEON