IR2110LPBF [INFINEON]

Half Bridge Based MOSFET Driver, 2A, PDIP14, MO-036AB, 14 PIN;
IR2110LPBF
型号: IR2110LPBF
厂家: Infineon    Infineon
描述:

Half Bridge Based MOSFET Driver, 2A, PDIP14, MO-036AB, 14 PIN

驱动器 MOSFET驱动器 驱动程序和接口 接口集成电路 光电二极管
文件: 总15页 (文件大小:273K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet No. PD60147-L  
IR2110/IR2113  
HIGH AND LOW SIDE DRIVER  
Features  
Product Summary  
Floating channel designed for bootstrap operation  
Fully operational to +500V or +600V  
Tolerant to negative transient voltage  
dV/dt immune  
Gate drive supply range from 10 to 20V  
Undervoltage lockout for both channels  
Separate logic supply range from 5 to 20V  
Logic and power ground ±5V offset  
CMOS Schmitt-triggered inputs with pull-down  
Cycle by cycle edge-triggered shutdown logic  
Matched propagation delay for both channels  
Outputs in phase with inputs  
V
(IR2110)  
(IR2113) 600V max.  
500V max.  
OFFSET  
I +/-  
2A / 2A  
10 - 20V  
120 & 94 ns  
10 ns  
O
V
OUT  
t
(typ.)  
on/off  
Delay Matching  
Packages  
Description  
The IR2110/IR2113 are high voltage, high speed  
power MOSFET and IGBT drivers with independent  
high and low side referenced output channels. Pro-  
prietary HVIC and latch immune CMOS technologies  
enable ruggedized monolithic construction. Logic in-  
puts are compatible with standard CMOS or LSTTL  
output. The output drivers feature a high pulse  
current buffer stage designed for minimum driver  
cross-conduction. Propagation delays are matched  
to simplify use in high frequency applications. The  
floating channel can be used to drive an N-channel  
power MOSFET or IGBT in the high side configura-  
tion which operates up to 500 or 600 volts.  
14 Lead PDIP  
w/o Lead 4  
IR2110-1/IR2113-1  
14 Lead PDIP  
IR2110/IR2113  
16 Lead PDIP  
w/o leads 4 & 5  
IR2110-2/IR2113-2  
16 Lead SOIC  
IR2110S/IR2113S  
Typical Connection  
or 600V  
up to 500V  
HO  
VDD  
HIN  
SD  
VB  
VS  
VDD  
HIN  
SD  
TO  
LOAD  
LIN  
VSS  
VCC  
COM  
LO  
LIN  
VSS  
VCC  
www.irf.com  
1
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
IR2110/IR2113  
Absolute Maximum Ratings  
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage param-  
eters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured  
under board mounted and still air conditions. Additional information is shown in Figures 28 through 35.  
Symbol  
Definition  
High side floating supply voltage (IR2110)  
(IR2113)  
Min.  
-0.3  
Max.  
525  
Units  
V
B
-0.3  
625  
V
High side floating supply offset voltage  
High side floating output voltage  
Low side fixed supply voltage  
Low side output voltage  
V
- 25  
V
V
+ 0.3  
+ 0.3  
25  
S
B
B
B
V
HO  
V
- 0.3  
S
V
CC  
-0.3  
-0.3  
-0.3  
V
V
V
CC  
+ 0.3  
+ 25  
LO  
DD  
V
Logic supply voltage  
V
SS  
CC  
DD  
V
Logic supply offset voltage  
V
CC  
- 25  
V
V
+ 0.3  
+ 0.3  
SS  
V
Logic input voltage (HIN, LIN & SD)  
Allowable offset supply voltage transient (figure 2)  
V
SS  
- 0.3  
IN  
dV /dt  
50  
V/ns  
W
s
P
Package power dissipation @ T +25°C  
(14 lead DIP)  
-55  
1.6  
1.5  
1.6  
1.25  
75  
D
A
(14 lead DIP w/o lead 4)  
(16 lead DIP w/o leads 4 & 5)  
(16 lead SOIC)  
R
Thermal resistance, junction to ambient  
(14 lead DIP)  
(14 lead DIP w/o lead 4)  
(16 lead DIP w/o leads 4 & 5)  
(16lLead SOIC)  
THJA  
85  
°C/W  
°C  
75  
100  
150  
150  
300  
T
Junction temperature  
Storage temperature  
J
T
S
T
Lead temperature (soldering, 10 seconds)  
L
Recommended Operating Conditions  
The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the  
recommended conditions.The V and V offset ratings are tested with all supplies biased at 15V differential.Typical  
S
SS  
ratings at other bias conditions are shown in figures 36 and 37.  
Symbol  
Definition  
High side floating supply absolute voltage  
High side floating supply offset voltage  
Min.  
Max.  
Units  
V
V
S
+ 10  
V + 20  
S
B
S
V
(IR2110)  
(IR2113)  
Note 1  
500  
600  
Note 1  
V
High side floating output voltage  
Low side fixed supply voltage  
Low side output voltage  
V
V
B
HO  
S
V
10  
0
20  
CC  
V
V
VCC  
LO  
DD  
V
Logic supply voltage  
V
+ 4.5  
V
+ 20  
SS  
SS  
V
Logic supply offset voltage  
Logic input voltage (HIN, LIN & SD)  
Ambient temperature  
-5  
5
SS  
V
V
V
DD  
IN  
SS  
T
-40  
125  
°C  
A
Note 1: Logic operational for V of -4 to +500V. Logic state held for V of -4V to -V .  
BS  
S
S
www.irf.com  
2
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
IR2110/IR2113  
Dynamic Electrical Characteristics  
V
(V , V , V ) = 15V, C = 1000 pF, T = 25°C and V = COM unless otherwise specified. The dynamic  
BIAS  
CC BS DD  
L
A
SS  
electrical characteristics are measured using the test circuit shown in Figure 3.  
Symbol  
Definition  
Turn-on propagation delay  
Turn-off propagation delay  
Shutdown propagation delay  
Turn-on rise time  
Figure Min. Typ. Max. Units Test Conditions  
t
7
120  
150  
125  
140  
35  
V = 0V  
S
on  
off  
t
8
94  
V
V
= 500V/600V  
= 500V/600V  
S
S
t
sd  
9
110  
25  
t
10  
11  
r
f
ns  
t
Turn-off fall time  
17  
25  
MT  
Delay matching, HS & LS turn-on/off  
10  
Figure 5  
Static Electrical Characteristics  
V
(V , V , V ) = 15V, T = 25°C and V = COM unless otherwise specified. The V , V and I parameters  
BIAS CC BS DD  
A SS IN TH IN  
are referenced to V and are applicable to all three logic input leads: HIN, LIN and SD. The V and I parameters are  
SS  
O
O
referenced to COM and are applicable to the respective output leads: HO or LO.  
Symbol  
Definition  
Figure Min. Typ. Max. Units Test Conditions  
V
Logic “1” input voltage  
12  
13  
14  
15  
16  
17  
18  
19  
20  
9.5  
6.0  
1.2  
0.1  
50  
IH  
V
Logic “0” input voltage  
IL  
V
V
OH  
High level output voltage, V  
- V  
O
I
I
= 0A  
= 0A  
BIAS  
O
V
Low level output voltage, V  
OL  
LK  
O
O
I
Offset supply leakage current  
Quiescent V supply current  
V =V = 500V/600V  
B S  
I
125  
180  
15  
20  
230  
340  
30  
V
= 0V or V  
QBS  
QCC  
QDD  
BS  
IN  
IN  
IN  
DD  
DD  
DD  
I
I
Quiescent V  
Quiescent V  
supply current  
supply current  
V
V
= 0V or V  
= 0V or V  
CC  
DD  
µA  
I
Logic “1” input bias current  
Logic “0” input bias current  
40  
V
= V  
IN DD  
IN+  
I
21  
22  
1.0  
9.7  
V
= 0V  
IN  
IN-  
V
V
BS  
supply undervoltage positive going  
7.5  
8.6  
BSUV+  
threshold  
supply undervoltage negative going  
threshold  
V supply undervoltage positive going  
CC  
threshold  
V supply undervoltage negative going  
CC  
threshold  
V
V
BS  
23  
24  
25  
26  
27  
7.0  
7.4  
7.0  
2.0  
2.0  
8.2  
8.5  
8.2  
2.5  
2.5  
9.4  
9.6  
9.4  
BSUV-  
V
CCUV+  
V
A
V
CCUV-  
I
Output high short circuit pulsed current  
V
= 0V, V = V  
PW 10 µs  
O+  
O
IN  
DD  
I
Output low short circuit pulsed current  
V
= 15V, V = 0V  
O-  
O IN  
PW 10 µs  
www.irf.com  
3
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
IR2110/IR2113  
Functional Block Diagram  
VB  
UV  
VDD  
DETECT  
R
R
S
Q
HV  
LEVEL  
SHIFT  
HO  
PULSE  
FILTER  
R
Q
S
VDD/VCC  
LEVEL  
SHIFT  
HIN  
SD  
PULSE  
GEN  
VS  
VCC  
UV  
DETECT  
VDD/VCC  
LEVEL  
SHIFT  
LIN  
VSS  
LO  
S
R
Q
DELAY  
COM  
Lead Definitions  
Symbol Description  
V
DD  
Logic supply  
HIN  
SD  
Logic input for high side gate driver output (HO), in phase  
Logic input for shutdown  
LIN  
Logic input for low side gate driver output (LO), in phase  
Logic ground  
V
V
SS  
High side floating supply  
B
HO  
High side gate drive output  
High side floating supply return  
Low side supply  
V
V
S
CC  
LO  
Low side gate drive output  
COM  
Low side return  
Lead Assignments  
14 Lead PDIP  
14 Lead PDIP w/o Lead 4 16 Lead PDIP w/o Leads 4 & 5 16 Lead SOIC (Wide Body)  
IR2110/IR2113  
IR2110-1/IR2113-1  
IR2110-2/IR2113-2  
IR2110S/IR2113S  
Part Number  
www.irf.com  
4
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
IR2110/IR2113  
HV =10 to 500V/600V  
Figure 1. Input/Output Timing Diagram  
Figure 2. Floating Supply Voltage Transient Test Circuit  
50%  
50%  
t
HIN  
LIN  
(0 to 500V/600V)  
t
t
t
f
on  
off  
r
90%  
90%  
HO  
LO  
10%  
10%  
Figure 3. Switching Time Test Circuit  
Figure 4. Switching Time Waveform Definition  
50%  
50%  
HIN  
LIN  
SD  
50%  
LO  
HO  
t
sd  
10%  
HO  
LO  
90%  
MT  
MT  
90%  
LO  
HO  
Figure 3. Shutdown Waveform Definitions  
Figure 6. Delay Matching Waveform Definitions  
www.irf.com  
5
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
IR2110/IR2113  
250  
200  
250  
200  
150  
100  
50  
Max.  
Typ.  
150  
Max.  
Typ.  
100  
50  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
125  
125  
10  
12  
14  
16  
18  
20  
20  
20  
Temperature (°C)  
V
BIAS Supply Voltage (V)  
Figure 7A. Turn-On Time vs.Temperature  
Figure 7B.Turn-On Time vs. Voltage  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
Max.  
Typ.  
Max.  
Typ.  
0
0
-50  
-25  
0
25  
50  
75  
100  
10  
12  
14  
16  
18  
Temperature (°C)  
V
BIAS Supply Voltage (V)  
Figure 8A. Turn-Off Time vs.Temperature  
Figure 8B. Turn-Off Time vs. Voltage  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
Max.  
Typ.  
Max.  
Typ.  
0
0
-50  
-25  
0
25  
50  
75  
100  
10  
12  
14  
16  
18  
Temperature (°C)  
V
BIAS Supply Voltage (V)  
Figure 9A. Shutdown Time vs. Temperature  
Figure 9B. Shutdown Time vs. Voltage  
www.irf.com  
6
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
IR2110/IR2113  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
Max.  
Typ.  
Max.  
Typ.  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VBIAS Supply Voltage (V)  
Figure 10A.Turn-On Rise Time vs. Temperature  
Figure 10B. Turn-On Rise Time vs. Voltage  
50  
40  
50  
40  
30  
20  
10  
0
30  
Max.  
20  
Max.  
Typ.  
Typ.  
10  
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VBIAS Supply Voltage (V)  
Figure 11A. Turn-Off Fall Time vs. Temperature  
Figure 11B. Turn-Off Fall Time vs. Voltage  
15.0  
12.0  
15.0  
12.0  
9.0  
Max  
9.0  
6.0  
3.0  
0.0  
6.0  
Max
3.0  
0.0  
-50  
-25  
0
25  
50  
75  
100  
125  
5
7.5  
10  
12.5  
15  
17.5  
20  
Temperature (°C)  
VDD Logic Supply Voltage (V)  
Figure 12A. Logic “1” Input Threshold vs.Temperature  
Figure 12B. Logic “1” Input Threshold vs. Voltage  
www.irf.com  
7
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
IR2110/IR2113  
15.0  
12.0  
9.0  
15.0  
12.0  
9.0  
Max.  
Min.  
6.0  
3.0  
0.0  
6.0  
3.0  
Min.  
0.0  
-50  
-25  
0
25  
50  
75  
100  
125  
5
7.5  
10  
12.5  
15  
17.5  
20  
Temperature (°C)  
VDD Logic Supply Voltage (V)  
Figure 13A. Logic “0” Input Threshold vs.Temperature  
Figure 13B. Logic “0” Input Threshold vs. Voltage  
5.00  
4.00  
3.00  
2.00  
5.00  
4.00  
3.00  
2.00  
Max.  
Max.  
1.00  
1.00  
0.00  
0.00  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
V
BIAS Supply Voltage (V)  
Figure 14A. High Level Output vs.Temperature  
Figure 14B. High Level Output vs.Voltage  
1.00  
1.00  
0.80  
0.60  
0.40  
0.80  
0.60  
0.40  
0.20  
0.00  
0.20  
Max.  
Max.  
0.00  
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
V
BIAS Supply Voltage (V)  
Temperature (°C)  
Figure 15A. Low Level Output vs.Temperature  
Figure 15B. Low Level Output vs. Voltage  
www.irf.com  
8
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
IR2110/IR2113  
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
Max.  
Max.  
0
100  
200  
V
300  
400  
500  
IR2110  
600  
IR2113  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
B Boost Voltage (V)  
Figure 16A. Offset Supply Current vs.Temperature  
Figure 16B. Offset Supply Current vs. Voltage  
500  
400  
300  
500  
400  
300  
200  
100  
0
Max.  
200  
Max.  
Typ.  
Typ.  
100  
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VBS Floating Supply Voltage (V)  
Figure 17A. VBS Supply Current vs. Temperature  
Figure 17B. VBS Supply Current vs. Voltage  
625  
625  
500  
375  
500  
375  
250  
125  
0
Max.  
250  
Max.  
Typ.  
Typ.  
125  
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VCC Fixed Supply Voltage (V)  
Figure 18A. VCC Supply Current vs.Temperature  
Figure 18B. VCC Supply Current vs. Voltage  
www.irf.com  
9
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
IR2110/IR2113  
100  
80  
100  
80  
60  
40  
20  
0
60  
40  
Max.  
Max.  
Typ.  
20  
Typ.  
0
-50  
-25  
0
25  
50  
75  
100  
125  
5
7.5  
10  
12.5  
15  
17.5  
20  
Temperature (°C)  
V
DD Logic Supply Voltage (V)  
Figure 19A. VDD Supply Current vs.Temperature  
Figure 19B. VDD Supply Current vs. Voltage  
100  
80  
100  
80  
60  
40  
20  
0
60  
40  
Max.  
Max.  
Typ.  
20  
Typ.  
0
5
7.5  
10  
12.5  
15  
17.5  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
V
DD Logic Supply Voltage (V)  
Temperature (°C)  
Figure 20A. Logic “1” Input Current vs. Temperature  
Figure 20B. Logic “1” Input Current vs. Voltage  
5.00  
4.00  
3.00  
2.00  
5.00  
4.00  
3.00  
2.00  
Max.  
Max.  
1.00  
1.00  
0.00  
0.00  
-50  
-25  
0
25  
50  
75  
100  
125  
5
7.5  
10  
12.5  
15  
17.5  
20  
Temperature (°C)  
V
DD Logic Supply Voltage (V)  
Figure 21A. Logic “0” Input Current vs. Temperature  
Figure 21B. Logic “0” Input Current vs. Voltage  
www.irf.com  
10  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
IR2110/IR2113  
11.0  
10.0  
9.0  
11.0  
10.0  
9.0  
Max.  
Typ.  
Min.  
Max.  
Typ.  
Min.  
8.0  
8.0  
7.0  
7.0  
6.0  
6.0  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
Figure 22. VBS Undervoltage (+) vs.Temperature  
Figure 23.VBS Undervoltage (-) vs. Temperature  
11.0  
11.0  
10.0  
Max.  
10.0  
Max.  
9.0  
9.0  
Typ.  
8.0  
Typ.  
8.0  
Min.  
7.0  
7.0  
Min.  
6.0  
6.0  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
Figure 24. VCC Undervoltage (+) vs.Temperature  
Figure 25. VCC Undervoltage (-) vs. Temperature  
5.00  
4.00  
5.00  
4.00  
3.00  
Typ.  
3.00  
Min.  
2.00  
2.00  
Typ.  
1.00  
1.00  
Min.  
0.00  
0.00  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
V
BIAS Supply Voltage (V)  
Figure 26A. Output Source Current vs.Temperature  
Figure 26B. Output Source Current vs.Voltage  
www.irf.com  
11  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
IR2110/IR2113  
5.00  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
4.00  
Typ.  
3.00  
Min.  
2.00  
Typ.  
Min.  
1.00  
0.00  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VBIAS Supply Voltage (V)  
Figure 27A. Output Sink Current vs.Temperature  
Figure 27B. Output Sink Current vs. Voltage  
320V  
320V  
150  
150  
125  
100  
75  
50  
25  
0
125  
100  
75  
50  
25  
0
140V  
140V  
10V  
10V  
1E+2  
1E+3  
1E+4  
1E+5  
1E+6  
1E+2  
1E+3  
1E+4  
1E+5  
1E+6  
Frequency (Hz)  
Frequency (Hz)  
Figure 28. IR2110/IR2113 TJ vs. Frequency  
Figure 29. IR2110/IT2113 TJ vs. Frequency  
(IRFBC20) RGATE = 33, VCC = 15V  
(IRFBC30) RGATE = 22, VCC = 15V  
320V  
140V  
320V  
140V  
150  
150  
125  
100  
75  
50  
25  
0
125  
100  
75  
50  
25  
0
10V  
10V  
1E+2  
1E+3  
1E+4  
1E+5  
1E+6  
1E+2  
1E+3  
1E+4  
1E+5  
1E+6  
Frequency (Hz)  
Frequency (Hz)  
Figure 30. IR2110/IR2113 TJ vs. Frequency  
Figure 31. IR2110/IR2113 TJ vs. Frequency  
(IRFBC40) RGATE = 15, VCC = 15V  
(IRFPE50) RGATE = 10, VCC = 15V  
www.irf.com  
12  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
IR2110/IR2113  
320V  
140V  
320V 140V  
150  
125  
100  
75  
150  
125  
100  
75  
10V  
10V  
50  
50  
25  
25  
0
0
1E+2  
1E+3  
1E+4  
1E+5  
1E+6  
1E+2  
1E+3  
1E+4  
1E+5  
1E+6  
Frequency (Hz)  
Frequency (Hz)  
Figure 32. IR2110S/IR2113S TJ vs. Frequency  
Figure 33. IR2110S/IR2113S TJ vs. Frequency  
(IRFBC20) RGATE = 33, VCC = 15V  
(IRFBC30) RGATE = 22, VCC = 15V  
320V 140V  
320V 140V 10V  
150  
150  
125  
100  
75  
125  
100  
75  
50  
25  
0
10V  
50  
25  
0
1E+2  
1E+3  
1E+4  
1E+5  
1E+6  
1E+2  
1E+3  
1E+4  
1E+5  
1E+6  
Frequency (Hz)  
Frequency (Hz)  
Figure 34. IR2110S/IR2113S TJ vs. Frequency  
Figure 35. IR2110S/IR2113S TJ vs. Frequency (IRFPE50)  
(IRFBC40) RGATE = 15, VCC = 15V  
RGATE = 10, VCC = 15V  
0.0  
20.0  
16.0  
12.0  
-2.0  
Typ.  
-4.0  
-6.0  
8.0  
Typ.  
-8.0  
4.0  
0.0  
-10.0  
10  
12  
14  
16  
18  
20  
10  
12  
14  
16  
18  
20  
V
BS Floating Supply Voltage (V)  
VCC Fixed Supply Voltage (V)  
Figure 36. Maximum VS Negative Offset vs.  
VBS Supply Voltage  
Figure 37. Maximum VSS Positive Offset vs.  
VCC Supply Voltage  
www.irf.com  
13  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
IR2110/IR2113  
Case Outlines  
14 Lead PDIP  
01-3002 03  
14 Lead PDIP w/o Lead 4  
01-3008 02  
www.irf.com  
14  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
IR2110/IR2113  
16 Lead PDIP w/o Leads 4 & 5  
01-3010 02  
16 Lead SOIC (wide body)  
01-3014 03  
4/12/2000  
www.irf.com  
15  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  

相关型号:

IR2110PBF

HIGH AND LOW SIDE DRIVER
INFINEON

IR2110S

HIGH AND LOW SIDE DRIVER
INFINEON

IR2110SPBF

HIGH AND LOW SIDE DRIVER
INFINEON

IR2110STR

HIGH AND LOW SIDE DRIVER
INFINEON

IR2110STRPBF

HIGH AND LOW SIDE DRIVER
INFINEON

IR2110_1

HIGH VOLTAGE MOS GATE DRIVER
INFINEON

IR2111

HALF-BRIDGE DRIVER
INFINEON

IR2111PBF

HALF-BRIDGE DRIVER
INFINEON

IR2111S

HALF-BRIDGE DRIVER
INFINEON

IR2111SPBF

HALF-BRIDGE DRIVER
INFINEON

IR2111STR

HALF-BRIDGE DRIVER
INFINEON

IR2111STRPBF

HALF-BRIDGE DRIVER
INFINEON