IR21303C [INFINEON]

3-PHASE BRIDGE DRIVER; 3相桥式驱动器
IR21303C
型号: IR21303C
厂家: Infineon    Infineon
描述:

3-PHASE BRIDGE DRIVER
3相桥式驱动器

驱动器
文件: 总21页 (文件大小:247K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet No. PD60223 rev.A  
IR21303C  
3-PHASE BRIDGE DRIVER  
Features  
Product Summary  
Floating channel designed for bootstrap operation  
Fully operational to +600V  
V
600V max.  
200 mA / 420 mA  
11.1 - 20V  
OFFSET  
Tolerant to negative transient voltage  
dV/dt immune  
I +/-  
O
Gate drive supply range from 11.1 to 20V  
Undervoltage lockout for all channels  
Over-current shutdown turns off all six drivers  
Independent half-bridge drivers  
Matched propagation delay for all channels  
2.5V logic compatible  
V
OUT  
t
(typ.)  
675 & 425 ns  
600 ns  
on/off  
Deadtime (typ.)  
Outputs out of phase with inputs  
Cross-conduction prevention logic  
Description  
The IR21303C is a high voltage, high speed power MOSFET and IGBT driver with three independent high and  
low side referenced output channels. Proprietary HVIC technology enables ruggedized monolithic construction.  
Logic inputs are compatible with CMOS or LSTTL outputs, down to 2.5V logic. A ground-referenced opera-  
tional amplifier provides analog feedback of bridge current via an external current sense resistor. A current trip  
function which terminates all six outputs is also derived from this resistor. An open drain ꢀꢁꢂꢃꢄ signal  
indicates if an over-current or undervoltage shutdown has occurred. The output drivers feature a high pulse  
current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify  
use at high frequencies. The floating channels can be used to drive N-channel power MOSFETs or IGBTs in  
the high side configuration which operate up to 600 volts.  
Typical Connection  
(Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only. Please refer  
to our Application Notes and DesignTips for proper circuit board layout.  
www.irf.com  
1
IR21303C  
Absolute Maximum Ratings  
Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage param-  
eters are absolute voltages referenced to V . The Thermal Resistance and Power Dissipation ratings are measured  
S0  
under board mounted and still air conditions. Additional information is shown in Figures 50 through 53.  
Symbol  
Definition  
Min.  
Max.  
Units  
V
High Side Floating Supply Voltage  
High Side Floating Offset Voltage  
High Side Floating Output Voltage  
Low Side and Logic Fixed Supply Voltage  
Logic Ground  
-0.3  
- 25  
625  
B1,2,3  
V
V
V
+ 0.3  
S1,2,3  
B1,2,3  
B1,2,3  
+ 0.3  
B1,2,3  
V
V
- 0.3  
V
HO1,2,3  
S1,2,3  
V
CC  
-0.3  
- 25  
25  
+ 0.3  
V
V
V
V
SS  
CC  
CC  
V
Low Side Output Voltage  
-0.3  
V
+ 0.3  
LO1,2,3  
CC  
V
V
Logic Input Voltage (ꢅꢆꢇꢈꢉꢊꢉ, ꢃꢆꢇꢈꢉꢊꢉꢋ & ITRIP)  
- 0.3  
(V + 15) or  
SS  
IN  
SS  
(V + 0.3)  
CC  
whichever is  
lower  
V
Output Voltage  
V
V
V
- 0.3  
- 0.3  
- 0.3  
V
V
V
+ 0.3  
+ 0.3  
+ 0.3  
ꢀꢁꢂꢃꢄ  
FLT  
SS  
SS  
SS  
CC  
CC  
CC  
V
Operational Amplifier Output Voltage  
Operational Amplifier Inverting Input Voltage  
Allowable Offset Supply Voltage Transient  
Junction Temperature  
CAO  
V
CA-  
dV /dt  
S
50  
150  
V/ns  
T
°C  
J
Recommended Operating Conditions  
The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the  
recommended conditions. All voltage parameters are absolute voltages referenced to V . The V offset rating is tested  
S0 S  
with all supplies biased at 15V differential. Typical ratings at other bias conditions are shown in Figure 54.  
Symbol  
Definition  
Min.  
Max.  
Units  
V
High Side Floating Supply Voltage  
High Side Floating Offset Voltage  
High Side Floating Output Voltage  
Low Side and Logic Fixed Supply Voltage  
Logic Ground  
V
+ 13.3  
V
+ 20  
S1,2,3  
B1,2,3  
S1,2,3  
V
Note 1  
600  
S1,2,3  
V
V
V
B1,2,3  
HO1,2,3  
S1,2,3  
V
CC  
13.3  
-5  
20  
V
5
SS  
V
Low Side Output Voltage  
0
V
LO1,2,3  
CC  
V
V
IN  
Logic Input Voltage (ꢅꢆꢇꢈꢉꢊꢉ, ꢃꢆꢇꢈꢉꢊꢉꢋ & ITRIP)  
V
V + 5  
SS  
SS  
V
FLT  
Output Voltage  
V
V
CC  
ꢀꢁꢂꢃꢄ  
SS  
V
Operational Amplifier Output Voltage  
Operational Amplifier Inverting Input Voltage  
Ambient Temperature  
V
V
+ 5  
CAO  
SS  
SS  
SS  
V
V
V
+ 5  
CA-  
SS  
T
A
-40  
125  
°C  
Note 1: Logic operational for V of (V - 5V) to (V + 600V). Logic state held for V of (V - 5V) to (V - V ).  
S0 S S0 S0 BS  
S
S0  
(Please refer to the Design Tip DT97-3 for more details).  
Note 2: All input pins, CA- and CAO pins are internally clamped with a 5.2V zener diode.  
2
www.irf.com  
IR21303C  
Dynamic Electrical Characteristics  
V
(V , V  
BIAS CC BS1,2,3  
) = 15V, V  
= V , C = 1000 pF and T = 25°C unless otherwise specified. The dynamic  
S0,1,2,3  
SS  
L
A
electrical characteristics are defined in Figures 3 through 5.  
Symbol  
Definition  
Figure Min. Typ. Max. Units Test Conditions  
t
Turn-On Propagation Delay  
Turn-Off Propagation Delay  
Turn-On Rise Time  
11  
12  
13  
14  
15  
16  
17  
18  
19  
450  
300  
675  
425  
80  
850  
550  
125  
55  
on  
t
V
= 0 & 5V  
IN  
off  
t
V
= 0 to 600V  
r
S1,2,3  
t
Turn-Off Fall Time  
35  
f
t
ITRIP to Output Shutdown Prop. Delay  
ITRIP Blanking Time  
400  
660  
400  
590  
310  
9.0  
600  
6.2  
3.2  
920  
V
IN  
, V = 0 & 5V  
ITRIP  
itrip  
ns  
t
V
= 1V  
ITRIP  
bl  
t
ITRIP to ꢀꢁꢂꢃꢄ Indication Delay  
Input Filter Time (All Six Inputs)  
ꢃꢆꢇꢈꢉꢊꢉꢋ & ꢅꢆꢇꢈꢉꢊꢉto ꢀꢁꢂꢃꢄ Clear Time  
Deadtime  
335  
845  
V
, V  
ITRIP  
= 0 & 5V  
flt  
IN  
t
V
= 0 & 5V  
flt,in  
IN  
t
6.0  
300  
4.4  
2.4  
12.0  
900  
V
, V  
ITRIP  
= 0 & 5V  
fltclr  
IN  
ns  
DT  
SR+  
SR-  
V
= 0 & 5V  
IN  
Operational Amplifier Slew Rate (+)  
Operational Amplifier Slew Rate (-)  
V/µs  
NOTE: For high side PWM, HIN pulse width must be ≥ 1.5µsec  
Static Electrical Characteristics  
V
(V , V  
) = 15V, V  
= V and T = 25°C unless otherwise specified. The V , V and I parameters  
are referenced to V and are applicable to all six logic input leads: ꢅꢆꢇꢈꢉꢊꢉꢋ & ꢃꢆꢇꢈꢉꢊꢉ. The V and I parameters  
O O  
BIAS CC BS1,2,3  
S0,1,2,3  
SS  
A
IN TH  
IN  
SS  
are referenced to V  
and are applicable to the respective output leads: HO1,2,3 or LO1,2,3.  
S0,1,2,3  
Symbol  
Definition  
Figure Min. Typ. Max. Units Test Conditions  
V
Logic “0” Input Voltage (OUT = LO)  
Logic “1” Input Voltage (OUT = HI)  
ITRIP Input Positive Going Threshold  
20  
21  
2.2  
IH  
V
V
0.8  
IL  
V
436.8  
480 529.2  
IT,TH+  
V
V
I
High Level Output Voltage, V  
- VO  
22  
23  
24  
25  
26  
27  
28  
29  
30  
100  
100  
50  
V
IN  
= 0V, I = 0A  
O
mV  
OH  
OL  
BIAS  
Low Level Output Voltage, VO  
Offset Supply Leakage Current  
V
IN  
= 5V, I = 0A  
O
V
= V = 600V  
S
LK  
B
µA  
I
Quiescent V Supply Current  
BS  
15  
30  
V = 0V or 5V  
IN  
QBS  
QCC  
I
Quiescent V  
Supply Current  
3.0  
450  
225  
75  
4.0  
mA  
V
= 0V or 5V  
IN  
CC  
I
Logic “1” Input Bias Current (OUT = HI)  
Logic “0” Input Bias Current (OUT = LO)  
“High” ITRIP Bias Current  
650  
400  
150  
100  
13.2  
V
= 0V  
IN+  
IN  
IN  
I
V
= 5V  
µA  
IN-  
I
ITRIP = 5V  
ITRIP = 0V  
ITRIP+  
I
“Low” ITRIP Bias Current  
nA  
ITRIP-  
V
V
Supply Undervoltage Positive Going  
BS  
10.8  
12  
BSUV+  
Threshold  
Supply Undervoltage Negative Going  
BS  
V
V
V
31  
9
10  
12  
10  
55  
11  
13.2  
11  
BSUV-  
Threshold  
Supply Undervoltage Positive Going  
CC  
V
V
10.8  
9.0  
CCUV+  
Threshold  
V Supply Undervoltage Negative Going  
CC  
V
CCUV-  
on,FLT  
Threshold  
R
FAULT Low On-Resistance  
75  
www.irf.com  
3
IR21303C  
Static Electrical Characteristics -- Continued  
V
(V , V  
) = 15V, V  
= V and T = 25°C unless otherwise specified. The V , V and I parameters  
are referenced to V and are applicable to all six logic input leads: ꢅꢆꢇꢈꢉꢊꢉꢋ & ꢃꢆꢇꢈꢉꢊꢉ. The V and I parameters  
O O  
BIAS CC BS1,2,3  
S0,1,2,3  
SS  
A
IN TH  
IN  
SS  
are referenced to V  
and are applicable to the respective output leads: HO1,2,3 or LO1,2,3.  
S0,1,2,3  
Symbol  
Definition  
Figure Min. Typ. Max. Units Test Conditions  
I
Output High Short Circuit Pulsed Current  
32  
200  
250  
V = 0V, V = 0V  
O IN  
O+  
PW 10 µs  
= 15V, V = 5V  
IN  
mA  
I
Output Low Short Circuit Pulsed Current  
33  
420  
500  
V
O-  
O
PW 10 µs  
V
Operational Amplifer Input Offset Voltage  
CA- Input Bais Current  
34  
35  
36  
-14  
80  
75  
14  
4.0  
mV  
nA  
V
= V  
= 0.2V  
OS  
S0  
CA-  
I
V
= 2.5V  
CA-  
CA-  
CMRR  
Op. Amp. Common Mode Rejection Ratio  
Op. Amp. Power Supply Rejection Ratio  
60  
55  
V =V =0.1V & 5V  
S0 CA-  
PSRR  
V
= V  
= 0.2V  
dB  
S0  
CA-  
V
CC  
= 14V & 20V  
V
Op. Amp. High Level Output Voltage  
Op. Amp. Low Level Output Voltage  
Op. Amp. Output Source Current  
37  
38  
39  
5.0  
5.2  
5.4  
20  
V
V
= 0V, V = 1V  
S0  
OH,AMP  
OL,AMP  
CA-  
CA-  
CA-  
V
mV  
V
= 1V, V = 0V  
S0  
I
2.3  
4.0  
V
V
V
V
= 0V, V = 1V  
S0  
SRC,AMP  
V
= 4V  
CAO  
I
Op. Amp. Output Sink Current  
40  
41  
42  
1.0  
2.1  
4.5  
3.2  
= 1V, V = 0V  
S0  
SINK,AMP  
CA-  
CA-  
CA-  
mA  
V
= 2V  
CAO  
I
Operational Amplifier Output High Short  
Circuit Current  
6.5  
5.2  
= 0V, V = 5V  
S0  
O+,AMP  
V
= 0V  
CAO  
I
Operational Amplifier Output Low Short  
Circuit Current  
= 5V, V = 0V  
S0  
O-,AMP  
V
= 5V  
CAO  
Lead Definitions  
Symbol Description  
HIN1,2,3 Logic inputs for high side gate driver outputs (HO1,2,3), out of phase  
LIN1,2,3 Logic inputs for low side gate driver output (LO1,2,3), out of phase  
FAULT  
Indicates over-current or undervoltage lockout (low side) has occurred, negative logic  
Low side and logic fixed supply  
V
CC  
ITRIP  
CAO  
CA-  
Input for over-current shutdown  
Output of current amplifier  
Negative input of current amplifier  
Logic ground  
V
SS  
V
High side floating supplies  
B1,2,3  
HO1,2,3 High side gate drive outputs  
High side floating supply returns  
LO1,2,3 Low side gate drive outputs  
Low side return and positive input of current amplifier  
V
S1,2,3  
V
S0  
4
www.irf.com  
IR21303C  
Pad Assignments  
Pin #  
Pin #  
14  
15  
16  
18  
19  
20  
22  
23  
24  
26  
27  
28  
1
Vcc1  
HIN 1  
HIN 2  
HIN 3  
LIN 1  
LIN 2  
LIN 3  
FAULT  
ITRIP  
CAO  
CA-  
LO 3  
LO 2  
LO 1  
VS 3  
HO 3  
VB 3  
VS 2  
HO 2  
VB 2  
VS 1  
HO 1  
VB 1  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
VSS  
VS0  
www.irf.com  
5
IR21303C  
Functional Block Diagram  
CLEAR  
6
www.irf.com  
IR21303C  
ꢅꢆꢇꢈꢉꢊꢉꢋ  
ꢃꢆꢇꢈꢉꢊꢉꢋ  
ITRIP  
<50 V/ns  
ꢀꢁꢂꢃꢄ  
HO1,2,3  
LO1,2,3  
Figure 1. Input/Output Timing Diagram  
Figure 2. Floating Supply Voltage Transient Test  
Circuit  
ꢅꢆꢇꢈꢉꢊꢉꢋ  
ꢃꢆꢇꢈꢉꢊꢉꢋ  
ꢅꢆꢇꢈꢉꢊꢉꢋ  
50%  
50%  
50%  
50%  
ꢃꢆꢇꢈꢉꢊꢉꢋ  
LO1,2,3  
t
on  
t
r
t
off  
t
f
90%  
90%  
50%  
50%  
HO1,2,3  
HO1,2,3  
LO1,2,3  
10%  
10%  
DT  
DT  
Figure 3. Deadtime Waveform Definitions  
Figure 4. Input/Output Switching Time Waveform  
Definitions  
www.irf.com  
7
IR21303C  
50%  
ꢃꢆꢇꢈꢉꢊꢉꢋ  
50%  
ITRIP  
ꢀꢁꢂꢃꢄ  
50%  
50%  
LO1,2,3  
50%  
t
flt  
t
fltclr  
t
itrip  
Figure 5. Overcurrent Shutdown Switching Time  
Waveform Definitions  
tin,fil  
tin,fil  
U
HIN/LIN  
on  
on off  
on off  
high  
off  
HO/LO  
low  
Figure 5.5 Input Filter Function  
VCC  
V
+
-
S0  
CAO  
CA-  
V
SS  
VSS  
Figure 6. Diagnostic Feedback Operational Amplifier Circuit  
8
www.irf.com  
IR21303C  
15V  
VCC  
15V  
VCC  
3V  
VS0  
+
-
+
-
CA-  
CAO  
CAO  
0V  
CA-  
V
V
50 pF  
S0  
SS  
VSS  
+
20k  
0.2V  
T1  
T2  
1k  
3V  
90%  
10%  
V  
V
0V  
CAO  
- 0.2V  
21  
V
=
OS  
V  
V  
SR+ =  
SR- =  
T1  
T2  
Figure 7. Operational Amplifier Slew Rate  
Measurement  
Figure 8. Operational Amplifier Input Offset Voltage  
Measurement  
VCC  
VS0  
+
15V  
VCC  
CAO  
CA-  
-
-
VSS  
CA-  
CAO  
+
+
V
S0  
20k  
V
SS  
0.2V  
1k  
Measure V  
at V = 0.1V  
S0  
CAO1  
V
at V = 5V  
S0  
CAO2  
Measure V  
at V  
= 10V  
= 20V  
CAO1  
CC  
V
at V  
CC  
(V  
-0.1V) - (V  
-5V)  
CAO2  
CAO1  
CAO2  
(dB)  
CMRR = -20 LOG  
*
V
CAO1  
- V  
CAO2  
4.9V  
PSRR = -20 LOG  
*
(10V) (21)  
Figure 9. Operational Amplifier Common Mode  
Rejection Ratio Measurements  
Figure 10. Operational Amplifier Power Supply  
Rejection Ratio Measurements  
www.irf.com  
9
IR21303C  
1.50  
1.20  
1.50  
1.20  
0.90  
0.60  
0.30  
0.00  
Max.  
0.90  
Max.  
Typ.  
Min.  
Typ.  
0.60  
Min.  
0.30  
0.00  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VBIAS Supply Voltage (V)  
Figure 11A. Turn-On Time vs. Temperature  
Figure 11B. Turn-On Time vs. Supply Voltage  
1.00  
0.80  
1.50  
Max  
1.20  
Typ.  
0.90  
0.60  
0.30  
0.00  
0.60  
Max.  
Typ.  
0.40  
Min.  
0.20  
0.00  
-50  
-25  
0
25  
50  
75  
100  
125  
0
1
2
3
Input Voltage (V)  
4
5
6
Temperature (°C)  
Figure 11C. Turn-On Time vs. Voltage  
Figure 12A. Turn-Off Time vs. Temperature  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
1.50  
1.20  
0.90  
0.60  
0.30  
0.00  
Max.  
Typ.  
Min.  
Max  
Typ  
Min.  
0
1
2
3
4
5
6
10  
12  
14  
16  
18  
20  
Input Voltage (V)  
VBIAS Supply Voltage (V)  
Figure 12C. Turn-Off Time vs. Input Voltage  
Figure 12B. Turn-Off Time vs. Supply Voltage  
10  
www.irf.com  
IR21303C  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
Max.  
Typ.  
Max.  
Typ.  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VBIAS Supply Voltage (V)  
Figure 13A. Turn-On Rise Time vs. Temperature  
Figure 13B. Turn-On Rise Time vs. Voltage  
125  
100  
75  
125  
100  
75  
50  
25  
0
Max.  
Typ.  
50  
Max.  
Typ.  
25  
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VBIAS Supply Voltage (V)  
Figure 14A. Turn-Off Fall Time vs. Temperature  
Figure 14B. Turn-Off Fall Time vs. Voltage  
1.50  
1.50  
1.20  
1.20  
0.90  
0.60  
0.30  
0.00  
Max.  
Max.  
Typ.  
Min.  
0.90  
Typ.  
0.60  
Min.  
0.30  
0.00  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VBIAS Supply Voltage (V)  
Figure 15A. ITRIP to Output Shutdown Time vs.  
Temperature  
Figure 15B. ITRIP to Output Shutdown Time vs.  
Voltage  
www.irf.com  
11  
IR21303C  
1.50  
1.20  
1.50  
1.20  
0.90  
0.60  
0.30  
0.00  
Max.  
Max.  
0.90  
Typ.  
Typ.  
Min.  
0.60  
Min.  
0.30  
0.00  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VCC Supply Voltage (V)  
Figure 16A. ITRIP to ꢀꢁꢂꢃꢄ Indication Time vs.  
Temperature  
Figure 16B. ITRIP to ꢀꢁꢂꢃꢄ Indication Time vs.  
Voltage  
25.0  
20.0  
25.0  
20.0  
15.0  
15.0  
Max.  
Max.  
Typ.  
Typ.  
10.0  
10.0  
Min.  
Min.  
5.0  
5.0  
0.0  
0.0  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VCC Supply Voltage (V)  
Figure 17B. ꢃꢅꢆꢇꢈꢉꢈ,ꢋꢅꢆꢇꢈꢉꢈꢊ to ꢀꢁꢂꢃꢄ Clear  
Time vs. Voltage  
Figure 17A. ꢃꢅꢆꢇꢈꢉꢈꢊ & ꢋꢅꢆꢇꢈꢉꢈꢊ to ꢀꢁꢂꢃꢄ Clear Time  
vs. Temperature  
10.0  
10.0  
8.0  
8.0  
Typ.  
Typ.  
6.0  
6.0  
Min.  
Min.  
4.0  
4.0  
2.0  
0.0  
2.0  
0.0  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VCC Supply Voltage (V)  
Figure 18A. Amplifier Slew Rate (+) vs. Temperature  
Figure 18B. Amplifier Slew Rate (+) vs. Voltage  
12  
www.irf.com  
IR21303C  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
Typ.  
Min.  
Typ.  
Min.  
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
VCC Supply Voltage (V)  
Temperature (°C)  
Figure 19A. Amplifier Slew Rate (-) vs. Temperature  
Figure 19B. Amplifier Slew Rate (-) vs. Voltage  
5.00  
4.00  
3.00  
5.00  
4.00  
3.00  
Min.  
Min.  
2.00  
2.00  
1.00  
0.00  
1.00  
0.00  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VCC Supply Voltage (V)  
Figure 20A. Logic “0” Input Threshold vs. Tempera-  
Figure 20B. Logic “0” Input Threshold vs. Voltage  
ture  
5.00  
5.00  
4.00  
3.00  
2.00  
4.00  
3.00  
2.00  
1.00  
0.00  
Max.  
1.00 Max.  
0.00  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VCC Supply Voltage (V)  
Figure 21A. Logic “1” Input Threshold vs. Tempera-  
ture  
Figure 21B. Logic “1” Input Threshold vs. Voltage  
www.irf.com  
13  
IR21303C  
1.00  
0.80  
0.60  
0.40  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
0.20  
Max.  
Max.  
0.00  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VBIAS Supply Voltage (V)  
Figure 22A. High Level Output vs. Temperature  
Figure 22B. High Level Output vs. Voltage  
1.00  
1.00  
0.80  
0.60  
0.40  
0.80  
0.60  
0.40  
0.20  
0.00  
0.20  
Max.  
Max.  
0.00  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VBIAS Supply Voltage (V)  
Figure 23A. Low Level Output vs. Temperature  
Figure 23B. Low Level Output vs. Voltage  
500  
500  
400  
300  
200  
100  
400  
300  
200  
100  
0
Max.  
Max.  
0
0
100  
200  
300  
400  
500  
600  
-50  
-25  
0
25  
50  
75  
100  
125  
VB Boost Voltage (V)  
Temperature (°C)  
Figure 24A. Offset Supply Leakage Current  
vs. Temperature  
Figure 24B. Offset Supply Leakage Current vs.  
Voltage  
14  
www.irf.com  
IR21303C  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
Max.  
Typ.  
Max.  
Typ.  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VBS Floating Supply Voltage (V)  
Figure 25A. V  
Supply Current vs. Temperature  
Figure 25B. V  
Supply Current vs. Voltage  
BS  
BS  
10.0  
8.0  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
6.0  
4.0  
Max.  
Max.  
Typ.  
Typ.  
2.0  
0.0  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VCC Supply Voltage (V)  
Figure 26A. V  
Supply Current vs. Temperature  
Figure 26B. V  
Supply Current vs. Voltage  
CC  
CC  
1.25  
1.25  
1.00  
0.75  
1.00  
0.75  
0.50  
0.25  
0.00  
0.50  
Max.  
Typ.  
Max.  
Typ.  
0.25  
0.00  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VCC Supply Voltage (V)  
Figure 27A. Logic “1” Input Current vs. Temperature  
Figure 27A. Logic “1” Input Current vs. Voltage  
www.irf.com  
15  
IR21303C  
1.25  
1.00  
0.75  
0.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
Max.  
0.25  
Max.  
Typ.  
Typ.  
0.00  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VCC Supply Voltage (V)  
Figure 28A. Logic “0” Input Current vs. Temperature  
Figure 28B. Logic “0” Input Current vs. Voltage  
500  
400  
300  
500  
400  
300  
200  
200  
Max.  
Max.  
100  
100  
Typ.  
Typ.  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VCC Supply Voltage (V)  
Figure 29A. “High” ITRIP Current vs. Temperature  
Figure 29B. “High” ITRIP Current vs. Voltage  
250  
200  
150  
500  
400  
300  
200  
100  
0
100  
Max.  
Max.  
50  
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VCC Supply Voltage (V)  
Figure 30A. “Low” ITRIP Current vs. Temperature  
Figure 30B. “Low” ITRIP Current vs. Voltage  
16  
www.irf.com  
IR21303C  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
Max.  
Typ.  
Max.  
Typ.  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VCC Supply Voltage (V)  
Figure 31A. ꢀꢁꢂꢃꢄ Low On Resistance vs.  
Temperature  
Figure 31B. ꢀꢁꢂꢃꢄ Low On Resistance vs. Voltage  
500  
400  
500  
400  
300  
Typ.  
300  
Min.  
200  
200  
Typ.  
100  
0
100  
Min.  
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VBIAS Supply Voltage (V)  
Figure 32A. Output Source Current vs. Temperature  
Figure 32B. Output Source Current vs. Voltage  
750  
750  
625  
500  
Typ.  
600  
Min.  
450  
375  
Typ.  
300  
150  
0
250  
Min.  
125  
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
V
BIAS Supply Voltage (V)  
Figure 33A. Output Sink Current vs. Temperature  
Figure 33B. Output Sink Current vs. Voltage  
www.irf.com  
17  
IR21303C  
10.0  
8.0  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
6.0  
Max.  
Max.  
4.0  
2.0  
0.0  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VCC Supply Voltage (V)  
Figure 34A. CA- Input Current vs. Temperature  
Figure 34B. CA- Input Current vs. Voltage  
100  
100  
80  
60  
40  
20  
0
Typ.  
Min.  
Typ.  
80  
Min.  
60  
40  
20  
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VCC Supply Voltage (V)  
Figure 35A. Amplifier CMRR vs. Temperature  
Figure 35B. Amplifier CMRR vs. Voltage  
100  
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
Typ.  
Min.  
Typ.  
Min.  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VCC Supply Voltage (V)  
Figure 36A. Amplifier PSRR vs. Temperature  
Figure 36B. Amplifier PSRR vs. Voltage  
18  
www.irf.com  
IR21303C  
6.00  
5.70  
5.40  
5.10  
4.80  
4.50  
6.00  
5.70  
5.40  
5.10  
4.80  
4.50  
Max.  
Typ.  
Min.  
Max.  
Typ.  
Min.  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VCC Supply Voltage (V)  
Figure 37A. Amplifier High Level Output vs.  
Temperature  
Figure 37B. Amplifier High Level Output vs. Voltage  
100  
100  
80  
60  
40  
20  
0
80  
60  
40  
Max.  
Max.  
20  
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VCC Supply Voltage (V)  
Figure 38A. Amplifier Low Level Output vs.  
Temperature  
Figure 38B. Amplifier Low Level Output vs. Voltage  
10.0  
8.0  
10.0  
8.0  
6.0  
4.0  
6.0  
Typ.  
4.0  
Min.  
Typ.  
2.0  
0.0  
2.0  
Min.  
0.0  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VCC Supply Voltage (V)  
Figure 39A. Amplifier Output Source Current vs.  
Temperature  
Figure 39B. Amplifier Output Source Current vs.  
Voltage  
www.irf.com  
19  
IR21303C  
5.00  
4.00  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
3.00  
Typ.  
2.00  
Typ.  
Min.  
Min.  
1.00  
0.00  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VCC Supply Voltage (V)  
Figure 40A. Amplifier Output Sink Current vs.  
Figure 40B. Amplifier Output Sink Current vs.  
Temperature  
Voltage  
15.0  
15.0  
12.0  
12.0  
9.0  
9.0  
Max.  
6.0  
6.0  
Typ.  
Max.  
3.0  
0.0  
3.0  
Typ.  
0.0  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VCC Supply Voltage (V)  
Figure 41A. Amplifier Output High Short Circuit  
Current vs. Temperature  
Figure 41B. Amplifier Output High Short Circuit  
Current vs. Voltage  
15.0  
12.0  
9.0  
15.0  
12.0  
9.0  
Max.  
6.0  
6.0  
Typ.  
Max.  
3.0  
3.0  
Typ.  
0.0  
0.0  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VCC Supply Voltage (V)  
Figure 42A. Amplifier Output Low Short Circuit  
Current vs. Temperature  
Figure 42B. Amplifier Output Low Short Circuit  
Current vs. Voltage  
20  
www.irf.com  
IR21303C  
0.0  
-3.0  
Typ.  
-6.0  
-9.0  
-12.0  
-15.0  
10  
12  
14  
16  
18  
20  
VBS Floating Supply Voltage (V)  
Figure 4-3. Maximum VS Negative Offset vs. V  
Supply Voltage  
BS  
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105  
This product has been designed and qualified for the industrial market.  
Qualification Standards can be found on IR’s Web Site http://www.irf.com  
Data and specifications subject to change without notice.  
10/5/2004  
www.irf.com  
21  

相关型号:

IR2130D

3-PHASE DRIVER
INFINEON

IR2130J

3-PHASE BRIDGE DRIVER
INFINEON

IR2130JPBF

3-PHASE BRIDGE DRIVER
INFINEON

IR2130JTRPBF

Half Bridge Based MOSFET Driver, 0.5A, BICMOS, PQCC32, PLASTIC, MS-018AC, LCC-44/32
INFINEON

IR2130PBF

3-PHASE BRIDGE DRIVER
INFINEON

IR2130S

3-PHASE BRIDGE DRIVER
INFINEON

IR2130SPBF

3-PHASE BRIDGE DRIVER
INFINEON

IR2130STR

Half Bridge Based MOSFET Driver, 0.5A, BICMOS, PDSO28, MS-013AE, SOIC-28
INFINEON

IR2130STRPBF

暂无描述
INFINEON

IR2131

3 HIGH SIDE AND 3 LOW SIDE DRIVER
INFINEON

IR2131J

Half Bridge Based MOSFET Driver, 0.5A, BICMOS, PQCC32, PLASTIC, MS-018AC, LCC-44/32
INFINEON

IR2131JPBF

Half Bridge Based MOSFET Driver, 0.5A, PQCC32, LEAD FREE, PLASTIC, MS-018AC, LCC-44/32
INFINEON