IR21364JTRPBF [INFINEON]

3-PHASE BRIDGE DRIVER; 3相桥式驱动器
IR21364JTRPBF
型号: IR21364JTRPBF
厂家: Infineon    Infineon
描述:

3-PHASE BRIDGE DRIVER
3相桥式驱动器

驱动器
文件: 总20页 (文件大小:361K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet No. PD PD60342A  
November 13, 2009  
IR21364(S&J)PbF  
3-PHASE BRIDGE DRIVER  
Features  
Product Summary  
Floating channel designed for bootstrap operation  
3 phase bridge  
driver  
Tolerant to negative transient voltage – dV/dt immune  
Gate drive supply range from 11.5 V to 20 V  
Undervoltage lockout for all channels  
Over-current shutdown turns off all six drivers  
Independent 3 half-bridge drivers  
Topology  
VOFFSET  
VOUT  
600 V  
11.5 V – 20 V  
Matched propagation delay for all channels  
Cross-conduction prevention logic  
Io+ & I o-  
(typical)  
200 mA & 350 mA  
500 ns & 530 ns  
Low side and High side outputs in phase with inputs.  
3.3 V logic compatible  
Lower di/dt gate drive for better noise immunity  
Externally programmable delay for automatic fault clear  
RoHS Compliant  
tON & tOFF  
(typical)  
Package Options  
Typical Applications  
Motor Control  
Air Conditioners/ Washing Machines  
General Purpose Inverters  
Micro/Mini Inverter Drivers  
28-Lead SOIC  
44-Lead PLCC  
w/o 12 Leads  
www.irf.com  
© 2009 International Rectifier  
1
IR21364(S&J)PbF  
Description  
The IR21364(S&J)PBF is a high voltage, high speed power MOSFET and IGBT drivers with three  
independent high and low side referenced output channels for 3-phase applications. Proprietary HVIC  
technology enables ruggedized monolithic construction. Logic inputs are compatible with CMOS or LSTTL  
outputs, down to 3.3V logic. A current trip function which terminates all six outputs can be derived from an  
external current sense resistor. An enable function is available to terminate all six outputs simultaneously. An  
open-drain FAULT signal is provided to indicate that an overcurrent or undervoltage shutdown has occurred.  
Overcurrent fault conditions are cleared automatically after a delay programmed externally via an RC  
network connected to the RCIN input. The output drivers feature a high pulse current buffer stage designed  
for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency  
applications. The floating channel can be used to drive N-channel power MOSFETs or IGBTs in the high side  
configuration which operates up to 600 V.  
Qualification Information†  
Industrial††  
Comments: This family of ICs has passed JEDEC’s  
Qualification Level  
Industrial qualification. IR’s Consumer qualification  
level is granted by extension of the higher Industrial  
level.  
MSL3†††, 260°C  
SOIC28W  
(per IPC/JEDEC J-STD-020)  
Moisture Sensitivity Level  
MSL3†††, 245°C  
PLCC44  
(per IPC/JEDEC J-STD-020)  
Class 2  
Human Body Model  
(per JEDEC standard JESD22-A114)  
ESD  
Class B  
Machine Model  
(per EIA/JEDEC standard EIA/JESD22-A115)  
Class I, Level A  
(per JESD78)  
Yes  
IC Latch-Up Test  
RoHS Compliant  
Qualification standards can be found at International Rectifier’s web site http://www.irf.com/  
†† Higher qualification ratings may be available should the user have such requirements. Please contact  
your International Rectifier sales representative for further information.  
Higher MSL ratings may be available for the specific package types listed here. Please contact your  
†††  
International Rectifier sales representative for further information.  
www.irf.com  
© 2009 International Rectifier  
2
IR21364(S&J)PbF  
Absolute Maximum Ratings  
Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage  
parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are  
measured under board mounted and still air conditions.  
Symbol  
Definition  
Min  
VB 1,2,3 - 25 VB 1,2,3 + 0.3  
-0.3 625  
VS1,2,3 - 0.3 VB 1,2,3 + 0.3  
Max  
Units  
VS  
High side offset voltage  
VB  
VHO  
High side floating supply voltage  
High side floating output voltage  
Low side and logic fixed supply voltage  
Logic ground  
VCC  
-0.3  
VCC - 25  
-0.3  
25  
V
VSS  
VCC + 0.3  
VCC + 0.3  
lower of  
VLO1,2,3  
Low side output voltage  
VIN  
Input voltage LIN, HIN, ITRIP, EN, RCIN  
VSS -0.3 VCC + 0.3 or  
Vss+15  
VFLT  
FAULT output voltage  
VSS -0.3  
VCC + 0.3  
50  
dV/dt  
Allowable offset voltage slew rate  
V/ns  
W
(28 lead SOIC)  
(44 lead PLCC)  
(28 lead SOIC)  
(44 lead PLCC)  
1.6  
Package power dissipation  
@ TA +25 °C  
PD  
2.0  
78  
Thermal resistance, junction to  
ambient  
°C/W  
°C  
RthJA  
63  
TJ  
TS  
TL  
Junction temperature  
150  
150  
300  
Storage temperature  
-55  
Lead temperature (soldering, 10 seconds)  
Recommended Operating Conditions  
The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the  
recommended conditions. All voltage parameters are absolute referenced to COM. The VS & VSS offset rating are  
tested with all supplies biased at a 15 V differential.  
Symbol  
Definition  
High side floating supply voltage  
Min.  
Max.  
Units  
VB1,2,3  
VS 1,2,3  
VCC  
IR21364  
IR21364  
VS1,2,3 +11.5 VS1,2,3 + 20  
High side floating supply voltage  
Low side supply voltage  
High side output voltage  
Low side output voltage  
Logic ground  
Note 1  
11.5  
VS1,2,3  
0
600  
20  
VHO 1,2,3  
VLO1,2,3  
VSS  
VB1,2,3  
VCC  
V
-5  
5
VFLT  
FAULT output voltage  
RCIN input voltage  
VSS  
VSS  
VSS  
VSS  
-40  
VCC  
VRCIN  
VITRIP  
VIN  
VCC  
ITRIP input voltage  
VSS + 5  
VSS + 5  
125  
Logic input voltage LIN, HIN, EN  
Ambient temperature  
TA  
°C  
Note 1: Logic operational for  
VS of COM -5 V to COM + 600 V. Logic state held for VS of COM -5 to COM – VBS.  
(Please refer to the Design Tip DT97 -3 for more details).  
www.irf.com  
© 2009 International Rectifier  
3
IR21364(S&J)PbF  
Static Electrical Characteristics  
VBIAS (VCC, VBS 1,2,3) = 15 V, TA = 25°C unless otherwise specified. The VIN, VTH and IIN parameters are referenced to  
VSS and are applicable to all six channels (HIN1,2,3 and LIN1,2,3). The VO and IO parameters are referenced to COM  
and VS1,2,3 and are applicable to the respective output leads: HO1,2,3 and LO1,2,3.  
Test  
Conditions  
Symbol  
Definition  
Logic “0” input voltage  
Min Typ Max Units  
VIH  
VIL  
2.5  
0.8  
Logic “1” input voltage  
VEN,TH+  
VEN,TH-  
VIT,TH+  
VIT,HYS  
VRCIN, TH+  
VRCIN, HYS  
VOH  
Enable positive going threshold  
Enable negative going threshold  
ITRIP positive going threshold  
ITRIP hysteresis  
2.5  
0.8  
0.37 0.46 0.55  
0.07  
8
RCIN positive going threshold  
RCIN hysteresis  
3
High level output voltage, VBIAS - VO  
0.9  
1.4  
Io = 20 mA  
V
VOL  
Low level output voltage, VO  
0.4  
0.6  
VCC supply undervoltage positive going  
threshold  
VCCUV+  
IR21364  
9.6 10.4 11.2  
VCC supply undervoltage negative going  
threshold  
VCCUV-  
VCCUVHY  
VBSUV+  
IR21364  
IR21364  
IR21364  
8.6  
9.4 10.2  
VCC supply undervoltage hysteresis  
1
VBS supply undervoltage positive going  
threshold  
9.6 10.4 11.2  
VBS supply undervoltage negative going  
threshold  
VBSUV-  
IR21364  
IR21364  
8.6  
9.4 10.2  
VBS supply undervoltage  
hysteresis  
VBSUVHY  
llk  
1
50  
Offset supply leakage current  
VB = VS = 600 V  
µA  
V
B1,2,3 = VS1,2,3  
600 V  
=
IQBS  
Quiescent VBS supply current  
70  
120  
IQCC  
Quiescent VCC supply current  
Input bias current (LOUT = HI)  
Input bias current (LOUT = LO)  
Input bias current (HOUT = HI)  
Input bias current (HOUT = LO)  
“High” ITRIP input bias current  
“Low” ITRIP input bias current  
“High” ENABLE input bias current  
“Low” ENABLE input bias current  
-1  
-1  
-1  
-1  
0.6  
1.3  
mA VIN = 0 V or 5 V  
VLIN = 3.3 V  
ILIN  
ILIN  
IHIN  
IHIN  
+
100 195  
-
VLIN = 0 V  
+
100 195  
VHIN = 3.3 V  
VHIN = 0 V  
-
3.3  
6
IITRIP+  
IITRIP-  
IEN+  
VITRIP = 3.3 V  
µA  
VITRIP = 0 V  
VEN = 3.3 V  
VEN = 0 V  
100  
IEN-  
Vrcin = 0 V or 15  
V
IRCIN  
Io+  
Io-  
RCIN input bias current  
1
Vo = 0 V,  
PW 10 µs  
Vo = 15 V,  
Output high short circuit pulsed current  
Output low short circuit pulsed current  
120 200  
250 350  
mA  
PW 10 µs  
Ron_RCIN  
RCIN low on resistance  
FAULT low on resistance  
50  
50  
100  
100  
I = 1.5 mA  
Ron_FAULT  
www.irf.com  
© 2009 International Rectifier  
4
IR21364(S&J)PbF  
Dynamic Electrical Characteristics  
Dynamic Electrical Characteristics VCC = VBS = VBIAS = 15 V, VS1,2,3 = VSS = COM, TA = 25°C and CL = 1000 pF  
unless otherwise specified  
.
Symbol  
Definition  
Min Typ Max Units Test Conditions  
ton  
toff  
tr  
Turn-on propagation delay  
Turn-off propagation delay  
Turn-on rise time  
350  
375  
500  
530  
125  
50  
650  
685  
190  
75  
VIN = 0 V & 5 V  
tf  
Turn-off fall time  
ENABLE low to output shutdown propagation  
delay  
tEN  
300  
450  
600  
VIN, VEN = 0 V or 5 V  
VITRIP = 5 V  
tITRIP  
tbl  
ITRIP to output shutdown propagation delay  
ITRIP blanking time  
500  
100  
400  
750 1000  
150  
600  
VIN = 0 V or 5 V  
VITRIP = 5 V  
ns  
tFLT  
ITRIP to FAULT propagation delay  
800  
tFILIN  
tfilterEn  
DT  
Input filter time (HIN, LIN)  
100  
100  
220  
200  
200  
290  
VIN = 0 V & 5 V  
Enable input filter time  
Deadtime  
360  
75  
70  
75  
MT  
Ton, off matching time (on all six channels)  
DT matching (Hi->Lo & Lo->Hi on all channels)  
pulse width distortion (pwin-pwout)  
External dead time  
>450 nsec  
MDT  
PM  
PW input =10 µs  
VIN = 0 V or 5 V  
VITRIP = 0 V  
tFLTCLR  
FAULT clear time RCIN: R = 2 M, C = 1 nF  
1.3 1.65  
2
ms  
www.irf.com  
© 2009 International Rectifier  
5
IR21364(S&J)PbF  
HIN1,2,3  
LIN1,2,3  
EN  
ITRIP  
FAULT  
RCIN  
HO1,2,3  
LO1,2,3  
Fig. 1. Input/Output Timing Diagram  
LIN1,2,3  
HIN1,2,  
50%  
50%  
50%  
EN  
PW  
IN  
ten  
90%  
HO1,2,3  
LO1,2,3  
ton  
t
tof  
t
PW  
50  
90%  
90%  
HO1,2,3  
LO1,2,3  
10%  
10%  
Fig. 2. Switching Time Waveforms  
Fig. 3. Output Enable Timing Waveform  
www.irf.com  
© 2009 International Rectifier  
6
IR21364(S&J)PbF  
Fig. 4. Internal Deadtime Timing Waveforms  
RCIN  
50%  
50%  
ITRIP  
50%  
50%  
tflt  
FAULT  
90%  
tfltclr  
Any  
Ouput  
titrip  
Fig. 5. ITRIP/RCIN Timing Waveforms  
tin,fi  
tin,fi  
off  
on  
off  
on  
off  
on  
HIN/LI  
high  
lo  
Fig. 6. Input Filter Function  
www.irf.com  
© 2009 International Rectifier  
7
IR21364(S&J)PbF  
Lead Definitions  
Symbol  
Description  
VCC  
VSS  
Low side supply voltage  
Logic ground  
HIN1,2,3  
LIN1,2,3  
Logic inputs for high side gate driver outputs (HO1,2,3), in phase  
Logic input for low side gate driver outputs (LO1,2,3), in phase  
Indicates over-current (ITRIP) or low-side undervoltage lockout has occurred. Negative logic, open-drain  
output  
FAULT  
EN  
Logic input to enable I/O functionality. Positive logic, i.e. I/O logic functions When ENABLE is high. No  
effect on FAULT and not latched  
Analog input for overcurrent shutdown. When active, ITRIP shuts down outputs and activates FAULT and  
RCIN low. When ITRIP becomes inactive, FAULT stays active low for an externally set time TFLTCLR, then  
automatically becomes inactive (open-drain high impedance).  
ITRIP  
External RC network input used to define FAULT CLEAR delay, TFLTCLR, approximately equal to R*C.  
When RCIN > 8 V, the FAULT pin goes back into open-drain high-impedance  
RCIN  
COM  
VB1,2,3  
Low side gate drivers return  
High side floating supply  
HO1,2,3  
VS1,2,3  
High side gate driver outputs  
High voltage floating supply return  
Low side gate driver outputs  
LO1,2,3  
www.irf.com  
© 2009 International Rectifier  
8
IR21364(S&J)PbF  
Functional Block Diagram  
VCC  
<UVCC  
15 V  
15 V  
15 V  
15 V  
VBS  
X
<UVBS  
15 V  
15 V  
15 V  
ITRIP  
X
0 V  
0 V  
>VITRIP  
0 V  
ENAB LE  
X
5 V  
5 V  
5 V  
0 V  
FAULT  
0 (note 1)  
high imp  
high imp  
0 (note 2)  
high imp  
LO1,2,3  
0
LIN1,2,3  
LIN1,2,3  
0
HO1,2,3  
0
0
HIN1,2,3  
0
0
0
Note 1: A shoot-through prevention logic prevents LO1,2,3 and HO1,2,3 for each channel from turning on simultaneously.  
Note 2: UVCC is not latched, when VCC > UVCC, FAULT return to high impedance.  
Note 3: When ITRIP <VITRIP, FAULT returns to high-impedance after RCIN pin becomes greater than 8 V (@ VCC = 15 V)  
www.irf.com  
© 2009 International Rectifier  
9
IR21364(S&J)PbF  
Parameter Temperature Trends  
Figures 7-39 provide information on the experimental performance of the IR21364 HVIC. The line plotted  
in each figure is generated from actual lab data. A small number of individual samples were tested at  
three temperatures (-40 ºC, 25 ºC, and 125 ºC) in order to generate the experimental (Exp.) curve. The  
line labeled Exp. consist of three data points (one data point at each of the tested temperatures) that have  
been connected together to illustrate the understood temperature trend. The individual data points on the  
curve were determined by calculating the averaged experimental value of the parameter (for a given  
temperature).  
800  
700  
600  
500  
400  
300  
200  
100  
0
1000  
800  
600  
400  
200  
0
Exp.  
Exp.  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 8. (Toff_Ls1) Turn-off Propagation Delay  
vs. Temperature  
Fig. 7. (Ton_Ls1 ) Turn-on Propagation Delay  
vs. Temperature  
800  
700  
600  
800  
700  
600  
Exp.  
Exp.  
500  
500  
400  
300  
200  
100  
0
400  
300  
200  
100  
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 9. (Ton_Hs11) Turn-on Propagation Delay  
vs. Temperature  
Fig. 10. (Toff_Hs21) Turn-off Propagation  
Delay vs. Temperature  
www.irf.com  
© 2009 International Rectifier  
10  
IR21364(S&J)PbF  
250  
200  
150  
100  
50  
120  
100  
80  
60  
40  
20  
0
Exp.  
Exp.  
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 11. Turn-on Rise Time vs. Temperature  
Fig. 12. Turn-off Fall Time vs. Temperature  
100  
100  
80  
80  
60  
40  
20  
0
60  
Exp.  
40  
20  
0
Exp.  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 13. Ton, off matching time vs.  
Temperature  
Fig. 14. DT matching time vs. Temperature  
100  
80  
60  
40  
20  
0
1000  
800  
Exp.  
600  
400  
200  
0
Exp.  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 16. ITRIP to Output Shutdown Propagation  
Delay vs. Temperature  
Fig. 15. Pulse Width Distortion vs.  
Temperature  
www.irf.com  
© 2009 International Rectifier  
11  
IR21364(S&J)PbF  
1200  
1000  
800  
600  
400  
200  
0
1000  
800  
600  
400  
200  
0
Exp.  
Exp.  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 17. Dead Time vs. Temperature  
Figure 18. EN to Output Shutdown Time vs.  
Temperature  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
Exp.  
Exp.  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 19. ITRIP to FAULT Indication Delay vs.  
Temperature  
Fig. 20. FAULT Clear Time vs. Temperature  
6.0  
2.5  
2.0  
4.5  
1.5  
Exp.  
3.0  
Exp.  
1.0  
0.5  
0.0  
1.5  
0.0  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 21. Input Positive Going Threshold vs.  
Temperature  
Fig. 22. Input Negative Going Threshold vs.  
Temperature  
www.irf.com  
© 2009 International Rectifier  
12  
IR21364(S&J)PbF  
800  
700  
600  
500  
400  
300  
200  
100  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
EXP.  
Exp.  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 24. ITRIP Input Negative Going Threshold  
vs. Temperature  
Fig. 23. ITRIP Input Positive Going Threshold  
vs. Temperature  
600  
500  
400  
1600  
1200  
300  
800  
Exp.  
Exp.  
200  
100  
0
400  
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 25. Low Level Output Voltage vs.  
Temperature  
Fig. 26. High Level Output Voltage vs.  
Temperature  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
120  
100  
80  
60  
40  
20  
0
Exp.  
Exp.  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 28. Offset Supply Leakage Current vs.  
Temperature  
Fig. 27. FAULT Low On-Resistance vs.  
Temperature  
www.irf.com  
© 2009 International Rectifier  
13  
IR21364(S&J)PbF  
2.0  
1.5  
1.0  
0.5  
0.0  
2.0  
1.5  
1.0  
0.5  
0.0  
Exp.  
Exp.  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 29. Quiescent VCC Supply Current vs.  
Temperature  
Fig. 30. Quiescent VCC Supply Current vs.  
Temperature  
80  
70  
60  
50  
40  
30  
20  
10  
0
140  
120  
100  
80  
60  
40  
20  
0
Exp.  
Exp.  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 31. Quiescent VBS Supply Current vs.  
Temperature  
Fig. 32. Quiescent VBS Supply Current vs.  
Temperature  
18.0  
15.0  
15.0  
12.0  
9.0  
12.0  
9.0  
6.0  
3.0  
0.0  
Exp.  
Exp.  
6.0  
3.0  
0.0  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 34. VCC Supply Undervoltage Positive  
Going Threshold vs. Temperature  
Fig. 33. VCC Supply Undervoltage Negative  
Going Threshold vs. Temperature  
www.irf.com  
© 2009 International Rectifier  
14  
IR21364(S&J)PbF  
15.0  
12.0  
9.0  
15.0  
12.0  
9.0  
Exp.  
Exp.  
6.0  
6.0  
3.0  
3.0  
0.0  
0.0  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 35. VBS Supply Undervoltage Negative  
Going Threshold vs. Temperature  
Fig. 36. VBS Supply Undervoltage Positive  
Going Threshold vs. Temperature  
0.0  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0.5  
-50  
-25  
0
25  
50  
75  
100  
125  
0.4  
Exp.  
Exp.  
0.3  
0.2  
0.1  
0.0  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Fig. 37. Output High Short Circuit Pulsed  
Current vs. Temperature  
Fig. 38. Output Low Short Circuit Pulsed Current  
vs. Temperature  
0
-50  
-25  
0
25  
50  
75  
100  
125  
-2  
-4  
Exp.  
-6  
-8  
-10  
-12  
-14  
Temperature (oC)  
Fig. 39. Max -VS vs. Temperature  
www.irf.com  
© 2009 International Rectifier  
15  
IR21364(S&J)PbF  
Case Outlines  
www.irf.com  
© 2009 International Rectifier  
16  
IR21364(S&J)PbF  
www.irf.com  
© 2009 International Rectifier  
17  
IR21364(S&J)PbF  
LOADED TAPE FEED DIRECTION  
A
B
H
D
F
C
NOTE : CONTROLLING  
DIMENSION IN MM  
E
G
CARRIER TAPE DIMENSION FOR 28SOICW  
Metric  
Imperial  
Code  
A
B
C
D
E
F
G
Min  
11.90  
3.90  
23.70  
11.40  
10.80  
18.20  
1.50  
Max  
12.10  
4.10  
24.30  
11.60  
11.00  
18.40  
n/a  
Min  
Max  
0.476  
0.161  
0.956  
0.456  
0.433  
0.724  
n/a  
0.468  
0.153  
0.933  
0.448  
0.425  
0.716  
0.059  
0.059  
H
1.50  
1.60  
0.062  
F
D
B
C
A
E
G
H
REEL DIMENSIONS FOR 28SOICW  
Metric  
Imperial  
Min  
Code  
A
Min  
329.60  
20.95  
12.80  
1.95  
Max  
330.25  
21.45  
13.20  
2.45  
102.00  
30.40  
29.10  
26.40  
Max  
13.001  
0.844  
0.519  
0.096  
4.015  
1.196  
1.145  
1.039  
12.976  
0.824  
0.503  
0.767  
3.858  
n/a  
B
C
D
E
98.00  
n/a  
F
G
26.50  
24.40  
1.04  
0.96  
H
www.irf.com  
© 2009 International Rectifier  
18  
IR21364(S&J)PbF  
LOADED TAPE FEED DIRECTION  
A
B
H
D
F
C
NOTE : CONTROLLING  
DIMENSION IN MM  
E
G
CARRIER TAPE DIMENSION FOR 44PLCC  
Metric  
Imperial  
Code  
A
Min  
23.90  
3.90  
Max  
24.10  
4.10  
Min  
0.94  
Max  
0.948  
0.161  
1.271  
0.562  
0.712  
0.712  
n/a  
B
0.153  
1.248  
0.555  
0.704  
0.704  
0.078  
0.059  
C
31.70  
14.10  
17.90  
17.90  
2.00  
32.30  
14.30  
18.10  
18.10  
n/a  
D
E
F
G
H
1.50  
1.60  
0.062  
F
D
B
C
A
E
G
H
REEL DIMENSIONS FOR 44PLCC  
Metric  
Imperial  
Max  
Code  
A
Min  
329.60  
20.95  
12.80  
1.95  
Max  
330.25  
21.45  
13.20  
2.45  
Min  
12.976  
0.824  
0.503  
0.767  
3.858  
n/a  
13.001  
0.844  
0.519  
0.096  
4.015  
1.511  
1.409  
1.303  
B
C
D
E
98.00  
n/a  
34.7  
102.00  
38.4  
35.8  
F
G
1.366  
1.283  
H
32.6  
33.1  
www.irf.com  
© 2009 International Rectifier  
19  
IR21364(S&J)PbF  
ORDER INFORMATION  
28-Lead SOIC Tape & Reel IR21364STRPbF  
44-Lead PLCC Tape & Reel IR21364JTRPbF  
28-Lead SOIC IR21364SPbF  
44-Lead PLCC IR21364JPbF  
The information provided in this document is believed to be accurate and reliable. However, International Rectifier assumes no responsibility  
for the consequences of the use of this information. International Rectifier assumes no responsibility for any infringement of patents or of other  
rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or  
patent rights of International Rectifier. The specifications mentioned in this document are subject to change without notice. This document  
supersedes and replaces all information previously supplied.  
For technical support, please contact IR’s Technical Assistance Center  
http://www.irf.com/technical-info/  
WORLD HEADQUARTERS:  
233 Kansas St., El Segundo, California 90245  
Tel: (310) 252-7105  
www.irf.com  
© 2009 International Rectifier  
20  

相关型号:

IR21364PBF

3-PHASE BRIDGE DRIVER
INFINEON

IR21364PBF_15

3-PHASE BRIDGE DRIVER
INFINEON

IR21364SPBF

3-PHASE BRIDGE DRIVER
INFINEON

IR21364STRPBF

3-PHASE BRIDGE DRIVER
INFINEON

IR21365

3-PHASE BRIDGE DRIVER
INFINEON

IR21365C

MOSFET Driver, CMOS
INFINEON

IR21365J

3-PHASE BRIDGE DRIVER
INFINEON

IR21365JPBF

3-PHASE BRIDGE DRIVER
INFINEON

IR21365PBF

3-PHASE BRIDGE DRIVER
INFINEON

IR21365S

3-PHASE BRIDGE DRIVER
INFINEON

IR21365SPBF

3-PHASE BRIDGE DRIVER
INFINEON

IR21365STRPBF

Half Bridge Based MOSFET Driver, 0.35A, PDSO28, MS-013AE, SOIC-28
INFINEON