IR2166 [INFINEON]

PFC & BALLAST CONTROL IC; PFC和镇流器控制IC
IR2166
型号: IR2166
厂家: Infineon    Infineon
描述:

PFC & BALLAST CONTROL IC
PFC和镇流器控制IC

功率因数校正
文件: 总29页 (文件大小:371K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet No. PD60198-C  
IR2166(S)  
PFC & BALLAST CONTROL IC  
Features  
PFC, Ballast control and half-bridge driver in one IC  
Programmable dead time  
Internal ignition ramp  
Internal fault counter  
DC bus under-voltage reset  
Shutdown pin with hysteresis  
Internal 15.6V zener clamp diode on Vcc  
Micropower startup (150µA)  
Latch immunity and ESD protection  
Critical conduction mode boost type PFC  
No PFC current sense resistor required  
Programmable preheat frequency  
Programmable preheat time  
Programmable run frequency  
Programmable over-current protection  
Programmable end-of-life protection  
Description  
Packages  
The IR2166 is a fully integrated, fully protected 600V ballast control IC designed to  
drive all types of fluorescent lamps. PFC circuitry operates in critical conduction mode  
and provides for high PF, low THD and DC Bus regulation. The IR2166 features in-  
clude programmable preheat and run frequencies, programmable preheat time, pro-  
grammable dead-time, programmable over-current protection, and programmable end-  
of-life protection. Comprehensive protection features such as protection from failure of  
a lamp to strike, filament failures, end-of-life protection, DC bus undervoltage reset as  
well as an automatic restart function, have been included in the design. The IR2166 is  
available in both 16-lead PDIP and 16-lead (narrow body) SOIC packages.  
16-Lead SOIC  
(narrow body)  
16-Lead PDIP  
IR2166 Application Diagram  
D BUS  
+ Rectified AC Line  
R BUS  
RSUPPLY  
CVDC  
RGHS  
VBUS  
CPH  
HO  
VS  
VB  
1
2
3
4
5
6
7
8
16  
15  
14  
M1  
RVDC  
CPH  
CBLOCK LRES  
+
CBOOT  
DBOOT  
CVCC2  
RGLS  
RT  
CBUS  
RT  
RPH  
CSNUB  
VCC  
DCP1  
13  
12  
R5  
RPH  
CT  
CVCC1  
COM  
CT  
R3  
CRES  
R6  
CCOMP  
COMP  
LO  
M2  
11  
10  
9
DCP2  
R7  
R2  
D1  
R1  
ZX  
CS  
DZCOMP  
R4  
PFC  
SD/EOL  
M3  
RGPFC  
RCS  
CSD1  
CCS CSD2  
D2 D3  
CEOL  
R8  
- Rectified AC Line  
*Please note that this data sheet contains advanced information that could change before the product is released to production.  
www.irf.com  
1
IR2166  
Absolute Maximum Ratings  
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage  
parameters are absolute voltages referenced to COM, all currents are defined positive into any lead. The thermal  
resistance and power dissipation ratings are measured under board mounted and still air conditions.  
Symbol  
Definition  
Min.  
Max.  
Units  
V
High side floating supply voltage  
High side floating supply offset voltage  
High side floating output voltage  
Low side output voltage  
-0.3  
625  
B
V
S
V
V
- 25  
V
V
+ 0.3  
+ 0.3  
+ 0.3  
+ 0.3  
B
B
B
V
- 0.3  
V
HO  
S
V
-0.3  
V
LO  
CC  
CC  
V
PFC gate driver output voltage  
-0.3  
V
PFC  
I
Maximum allowable output current (HO, LO, PFC)  
due to external power transistor miller effect  
-500  
500  
OMAX  
mA  
V
V
pin voltage  
-0.3  
-0.3  
-5  
V
V
+ 0.3  
+ 0.3  
BUS  
BUS  
CC  
V
V
CT pin voltage  
CT  
CPH  
RPH  
CC  
I
I
CPH pin current  
5
mA  
RPH pin current  
-5  
5
V
RPH pin voltage  
-0.3  
-5  
V
CC  
+ 0.3  
V
RPH  
I
RT pin current  
5
mA  
RT  
V
RT pin voltage  
-0.3  
-0.3  
-5  
V
CC  
+ 0.3  
RT  
V
V
CS  
Current sense pin voltage  
Current sense pin current  
Shutdown pin current  
5.5  
5
I
CS  
SD/EOL  
I
-5  
5
I
Supply current (Note 1)  
PFC inductor current, zero crossing detection input current  
PFC error compensation current  
Allowable offset voltage slew rate  
-20  
-5  
20  
CC  
mA  
I
5
ZX  
I
-5  
5
COMP  
dV/dt  
-50  
50  
V/ns  
W
P
Package power dissipation @ T +25°C  
(16-Pin PDIP)  
(16-Pin SOIC)  
(16-Pin PDIP)  
(16-Pin SOIC)  
1.80  
1.40  
70  
D
A
P
= (T  
-T )/Rth  
JA  
D
JMAX  
A
Rth  
Thermal resistance, junction to ambient  
JA  
oC/W  
oC  
86  
T
T
T
Junction temperature  
-55  
-55  
150  
150  
300  
J
Storage temperature  
S
L
Lead temperature (soldering, 10 seconds)  
Note 1:  
This IC contains a zener clamp structure between the chip V  
and COM which has a nominal breakdown  
CC  
voltage of 15.6V. Please note that this supply pin should not be driven by a DC, low impedance power source  
greater than the V specified in the Electrical Characteristics section.  
CLAMP  
2
www.irf.com  
IR2166  
Recommended Operating Conditions  
For proper operation the device should be used within the recommended conditions.  
Symbol  
Definition  
Min.  
Max.  
Units  
V
High side floating supply voltage  
Steady state high side floating supply offset voltage  
Supply voltage  
V
- 0.7  
V
BS  
CC  
CLAMP  
600  
V
V
-1  
S
V
V
V
CC  
CC  
CCUV+  
CLAMP  
10  
I
Supply current  
Note 2  
mA  
pF  
C
CT lead capacitance  
1
T
220  
-1  
I
End-of-life lead current  
SD/EOL  
I
Current sense lead current  
Zero crossing detection pin current  
Junction temperature  
-1  
-1  
1
mA  
oC  
CS  
I
1
ZX  
T
-25  
125  
J
Note 2: Enough current should be supplied into the VCC lead to keep the internal 15.6V zener clamp diode on this lead  
regulating its voltage, V  
.
CLAMP  
Electrical Characteristics  
V
V
= V = V  
= 14V +/- 0.25V, V  
= Open, R = 39.0k, R = 100kC = 470 pF, V  
= 0.0V, V = 0.0V,  
CPH SD  
CC  
BS  
BIAS  
BUS  
T
PH  
,
T
= 0.0V, V = 0.0V, C  
C
= 1000pF, T = 25oC unless otherwise specified.  
LO = HO  
A
COMP  
CS  
Symbol Definition  
Min.  
Typ.  
Max.  
Units Test Conditions  
Supply Characteristics  
V
V
supply undervoltage positive going  
10.0  
8.5  
11.5  
9.5  
12.5  
10.7  
V
rising from 0V  
CCUV+  
CC  
CC  
threshold  
V
V
supply undervoltage negative going  
V
falling from 14V  
CC  
CCUV-  
CC  
V
threshold  
V
V
supply undervoltage lockout hysteresis  
1.5  
120  
2.0  
170  
2.3  
3.0  
280  
4.0  
UVHYS  
CC  
I
UVLO mode quiescent current  
Quiescent V supply current  
µA  
V
CC  
= 8V  
QCCUV  
I
mA  
CT connected toCOM  
VCC =14V  
QCC  
CC  
V
V
zener clamp voltage  
14.3  
15.6  
16.5  
V
I
= 10mA  
CC  
CLAMP  
CC  
Floating Supply Characteristics  
I
V
HO  
V
HO  
V
= (CT = 0V)  
S
Quiescent VBS supply current  
-1  
5
0
30  
2.5  
5
60  
QBS0  
µA  
I
Quiescent V supply current  
= V (C = 14V)  
QBS1  
BS  
B T  
V
Minimum required VBS voltage for proper  
HO functionality  
V
BSMIN  
µA  
I
LK  
Offset supply leakage current  
50  
V = V = 600V  
B S  
www.irf.com  
3
IR2166  
Electrical Characteristics cont.  
V
CC  
V
= V = V  
= 14V +/- 0.25V, V  
= Open, R = 39.0k, R = 100kC = 470 pF, V  
= 0.0V, V = 0.0V,  
CPH SD  
BS  
BIAS  
BUS  
T
PH  
,
T
= 0.0V, V = 0.0V, C  
C
= 1000pF, T = 25oC unless otherwise specified.  
LO = HO  
A
COMP  
CS  
Symbol Definition  
Min. Typ.  
Max. Units Test Conditions  
PFC Error Amplifier Characteristics  
I
V
V
V
V
V
= 14V  
= 3.5V  
= 14V  
= 4.5V  
= 3.0V  
55  
COMP  
Error amplifier output current sourcing  
5
35  
-30  
CPH  
BUS  
CPH  
BUS  
BUS  
SOURCE  
µA  
I
-18  
14.5  
4
COMP  
Error amplifier output current sinking  
-50  
10.5  
SINK  
V
COMPOH Error amplifier output voltage swing  
(high state)  
13.5  
0.25  
V
V
V
= 5.0V  
COMPOL Error amplifier output voltage swing  
(low state)  
BUS  
PFC DC Bus Regulation  
V
Overvoltage comparator threshold  
3.8  
75  
4.3  
100  
4.7  
300  
V
mV  
V
V
= 4.0V  
= 4V  
BUSOV  
COMP  
V
Overvoltage comparator  
hysterisis  
BUSOV  
COMP  
HYS  
V
VBUS internal reference voltage  
3.7  
4.0  
4.2  
V
V
= 4V  
VBUS  
COMP  
REG  
PFC Zero Current Detector  
V
V
V
1.1  
75  
2
800  
9.1  
V
V
I
= 4V  
= 4V  
ZX pin comparator threshold voltage  
1.65  
300  
7.5  
V
mV  
V
ZX  
COMP  
ZX pin comparator hysterisis  
ZXhys  
ZXclamp  
COMP  
= 5mA  
ZX pin clamp voltage (high state)  
6.3  
ZX  
PFC Watch-dog  
t
Watch-dog pulse interval  
90  
400  
810  
µS  
= 0V, V  
=2V  
WD  
ZX  
COMP>  
Ballast Control Oscillator Characteristics  
f
Oscillator frequency  
38.5  
71  
42  
47.5  
81  
Run mode  
osc  
kHz  
%
75  
50  
Preheat mode  
d
Oscillator duty cycle  
C
C
6.8  
1.8  
10.7  
5.6  
V
Upper  
Lower  
ramp voltage threshold  
ramp voltage threshold  
8.4  
4.6  
0
1.0  
1.0  
CT+  
T
V
= 14V  
CC  
V
CT-  
V
T
C
>
or CS >  
1.3V  
V
Fault-mode  
LO output deadtime  
HO output deadtime  
lead voltage  
T
SD 5.0V  
CTFLT  
DLO  
0.7  
0.7  
1.5  
1.5  
t
t
usec CT = 470pF  
DHO  
Ballast Control Preheat Characteristics  
CPH  
V
=5V,CT=0V, V =0V  
I
CPH pin charging current  
2.6  
3.2  
0
4.3  
µA  
mV  
CPH BUS  
> or CS >  
SD 5.0V 1.3V  
V
Fault-mode pin voltage  
CPHFLT  
CPH  
RPH Characteristics  
µA  
I
Open circuit RPH pin leakage current  
0.1  
0
RPHLK  
> or CS >  
SD 5.0V 1.3V  
V
Fault-mode pin voltage  
mV  
RPHFLT  
RPH  
4
www.irf.com  
IR2166  
Electrical Characteristics cont.  
V
CC  
V
= V = V  
= 14V +/- 0.25V, V  
= Open, R = 39.0k, R = 100kC = 470 pF, V  
= 0.0V, V = 0.0V,  
CPH SD  
BS  
BIAS  
BUS  
T
PH  
,
T
= 0.0V V = 0.0V, C  
C
= 1000pF, T = 25oC unless otherwise specified.  
LO = HO  
A
COMP  
CS  
Symbol Definition  
RT Characteristics  
Min. Typ.  
Max. Units Test Conditions  
µA  
I
Open circuit RT pin leakage current  
0.1  
0
CT = 10V  
RTLK  
> or CS >  
SD 5.0V 1.3V  
V
Fault-mode pin voltage  
mV  
RTFLT  
RT  
Protection Circuitry Characteristics  
V
V
V
V
V
Rising shutdown pin reset threshold voltage  
Shutdown pin 5.0V threshold hysteresis  
Rising shutdown pin end-of-life threshold volt.  
4.7  
100  
2.4  
5.2  
150  
3.0  
1.0  
1.2  
75  
5.7  
350  
3.6  
1.6  
1.3  
90  
V
SDTH+  
SDHYS  
SDEOL+  
mV  
V
>12V  
CPH  
-
Falling shutdown pin end-of-life threshold volt. 0.7  
V
SDEOL  
Over-current sense threshold voltage  
1.0  
25  
V
>7.5V  
CPH  
CSTH+  
-
Cycles  
V
>7.5V, CYCLES  
CPH  
Number of sequential over-current fault  
cycles before IC shuts down  
#FAULT  
CS > 1.3V  
V
V
BUSUV- The VBUS threshold below which the IC  
shuts down  
2.6  
3.0  
12  
3.3  
V
CPH  
CPH pin end-of-life enable threshold  
10.3  
13.2  
Gate Driver Output Characteristics (HO, LO and PFC pins)  
VOL  
VOH  
Low-level output voltage  
High-level output voltage  
0
0
100  
100  
Io = 0  
mV  
V
- Vo, Io = 0  
BIAS  
tr  
Turn-on rise time  
Turn-off fall time  
110  
55  
300  
400  
210  
160  
C
= 1nF  
= C = C  
LO PFC  
HO  
nsec  
mA  
tf  
I0+  
I0-  
HO, LO, PFC source current  
HO, LO, PFC sink current  
www.irf.com  
5
IR2166  
Block Diagram  
13  
Vcc  
S1  
R
14  
16  
15  
3
VB  
HO  
VS  
RT  
CT  
Soft  
Start  
S2  
40K  
Driver  
Logic  
High-  
Side  
Driver  
R
Comp  
1
5
T
Q
Q
VTH  
R
RDT  
3.0K  
R
S3  
Fault  
Logic  
S4  
S6  
R
R
Fault  
Counter  
4
RPH  
Low-  
Side  
Driver  
Schmitt  
1
3uA  
11  
LO  
2
CPH  
12  
COM  
S
Q
Q
R1  
R2  
Comp  
3
10  
9
CS  
1.3V  
3V  
1V  
Under-  
Voltage  
Detect  
2.0V  
1.0M  
CPH>12V  
SD/EOL  
PFC  
CPH>12V  
7.6V  
1
6
VBUS  
Over-Voltage  
Protection  
Gain  
5.2V  
OTA1  
4.0V  
VCC  
4.3V  
8
COMP  
S
R
Q
Q
VCC  
Under-Voltage  
Reset  
Watch  
Dog  
Timer  
S
R
Q
Q
3.0V  
S
Q
R1  
R2  
Q
7
ZX  
1.0V  
7.6V  
6
www.irf.com  
IR2166  
State Diagram  
Power Turned On  
UVLO Mode  
1/2-Bridge Off  
IQCC 400µA  
CPH = 0V  
CT = 0V (Oscillator Off)  
VCC < 9.5V  
(VCC Fault or Power Down)  
or  
SD/EOL > 5.0V  
VCC > 11.5V (UV+)  
and  
SD/EOL < 5.0V  
SD/EOL > 5.0V  
(Lamp Removal)  
or  
(Lamp Fault or Lamp Removal)  
VCC < 9.5V (UV-)  
(Power Turned Off)  
PREHEAT Mode  
FAULT Mode  
1/2-Bridge oscillating @ fPH  
RPH // RT  
Fault Latch Set  
1/2-Bridge Off  
IQCC 180µA  
CPH = 0V  
VCC = 15.6V  
CPH Charging @ ICPH = 5 µA  
PFC Enabled (High Gain)  
CS Enabled  
CS > 1.3V for 25  
cycles  
Fault Counter Enabled  
CT = 0V (Oscillator Off)  
CPH > 10V  
(End of PREHEAT Mode)  
Ignition Ramp  
Mode  
CS > 1.3V for 25 cycles  
(Failure to Strike Lamp)  
RPH!Open  
fPH ramps to fRUN  
CPH charging  
CPH > 12V  
CS > 1.3V  
(Lamp Fault)  
or  
RUN Mode  
SD/EOL<1.0V or SD/EOL>3.0V  
(End-of-Life)  
RPH = Open  
Discharge  
VCC  
VBUS<3.0V  
1/2-Bridge Oscillating @fRUN  
EOL Thresholds Enabled  
PFC = Low Gain Mode  
VBUS UV Threshold Enabled  
Fault Counter Disabled  
to UVLO-  
www.irf.com  
7
IR2166  
Lead Assignments & Definitions  
VBUS  
HO  
Pin # Symbol  
Description  
1
2
3
4
5
6
7
8
16  
VBUS  
CPH  
RT  
DC Bus Sensing Input  
1
2
CPH  
VS  
Preheat Timing Capacitor  
15  
14  
13  
12  
3
Minimum Frequency Timing Resistor  
Preheat Frequency Timing Resistor  
Oscillator Timing Capacitor  
VB  
RT  
4
RPH  
CT  
5
RPH  
VCC  
COM  
6
PFC Error Amplifier Compensation  
COMP  
ZX  
7
PFC Zero-Crossing Detection  
PFC Gate Driver Output  
CT  
COMP  
ZX  
8
PFC  
SD/EOL  
CS  
9
Shut-Down/End of Life Sensing Circuit  
Current Sensing Input  
10  
11  
12  
13  
14  
15  
16  
LO  
11  
10  
9
LO  
Low-Side Gate Driver Output  
IC Power & Signal Ground  
COM  
VCC  
VB  
CS  
Logic & Low-Side Gate Driver Supply  
High-Side Gate Driver Floating Supply  
High Voltage Floating Return  
High-Side Gate Driver Output  
PFC  
SD/EOL  
VS  
HO  
8
www.irf.com  
IR2166  
BALLAST TIMING DIAGRAMS  
NORMAL OPERATION  
VCC  
15.6V  
UVLO+  
UVLO-  
VCC  
7.5V  
CPH  
frun  
fph  
FREQ  
HO  
LO  
CS  
Over-Current Threshold  
1.3V  
UVLO  
PH  
RUN  
UVLO  
RT  
RT  
RT  
RPH  
CT  
RPH  
CT  
RPH  
CT  
HO  
LO  
HO  
LO  
HO  
LO  
CS  
CS  
CS  
www.irf.com  
9
IR2166  
BALLAST TIMING  
DIAGRAMS  
FAULT CONDITION  
VCC  
15.6V  
UVLO+  
UVLO-  
VCC  
7.5V  
CPH  
frun  
p
h
f
FREQ  
SD  
HO  
LO  
CS  
1.3V  
UVLO  
PH  
RUN  
UVLO  
PH  
RT  
RT  
RT  
RPH  
CT  
RPH  
CT  
RPH  
CT  
HO  
LO  
HO  
LO  
HO  
LO  
CS  
CS  
CS  
10  
www.irf.com  
IR2166  
14  
12  
10  
8
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
UVLO+  
UVLO-  
6
4
2
0
-25  
0
25  
50  
75  
100  
125  
0
0.5  
1
1.5  
2
2.5  
3
DeadTime( S)  
Temperature (°C)  
µ
Graph 1. VCCUV+, VCCUV- vs TEMP  
Graph 2. CT vs Dead Time  
1000000  
100000  
10000  
1000  
9
8
7
6
5
4
3
2
1
0
CT+  
CT-  
-25  
0
25  
50  
75  
100  
125  
5
25  
45  
65  
85  
RT(K  
)
Temperature (°C)  
Graph 3: CT+, CT- vs TEMP  
Graph 4: Frequency vs RT  
www.irf.com  
11  
IR2166  
8
7
6
5
4
3
2
1
3.5  
3
2.5  
2
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
0
0
3
6
9
12  
15  
40  
80  
120  
160  
200  
VCPH (V)  
FREQUENCY (KHz)  
Graph 6: ICPH vs VCPH  
Graph 5: ICC vs Frequency  
50  
40  
30  
20  
10  
2.5  
2
ZX+  
1.5  
1
ZX-  
HYS  
0.5  
0
0
-25  
0
25  
50  
75  
100  
125  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
Graph 7. ILK vs TEMP  
Graph 8: ZX+, ZX- vs TEMP  
12  
www.irf.com  
IR2166  
325  
315  
305  
295  
285  
275  
9
8.5  
8
7.5  
7
6.5  
6
-25  
0
25  
50  
75  
100  
125  
-25  
0
25  
50  
75  
100 125  
Temperature (°C)  
Temperature (°C)  
Graph 9: IZX (ZX Input Bias) vs TEMP  
Graph 10: VZX (ZX Clamp Voltage) vs TEMP  
5
5
4.5  
4
4.5  
VBUS+  
4
VBUS-  
3.5  
3
3.5  
3
-25  
0
25  
50  
75  
100  
125  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
Graph 12: VBUS+, VBUS- vs TEMP  
Graph 11: VBUS Sense Thresh vs TEMP  
www.irf.com  
13  
IR2166  
63  
61  
59  
57  
55  
53  
150  
125  
100  
75  
Trise  
Tfall  
50  
25  
0
-25  
0
25  
50  
75  
100  
125  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
Graph 14: Frequency vs TEMP  
Graph 13: PFC Trise, Tfall vs TEMP  
2.5  
200  
175  
150  
125  
100  
75  
2.3  
2.1  
1.9  
1.7  
1.5  
t
DEAD HO  
t
RISE  
t
DEAD LO  
50  
t
FALL  
25  
0
-25  
0
25  
50  
75  
100  
125  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
Graph 15: tDEAD HO, tDEAD LO vs TEMP  
Graph 16: tRISE, tFALL vs TEMP  
14  
www.irf.com  
IR2166  
5
4
3
2
1
0
50  
40  
30  
20  
10  
0
-25  
0
25  
50  
75  
100  
125  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
Graph 17: CS Pulses vs TEMP  
Graph 18: CS Threshold vs TEMP  
3.5  
3
6
EOL+  
5.5  
5
2.5  
2
SD+  
SD-  
1.5  
1
EOL-  
4.5  
4
0.5  
0
-25  
0
25  
50  
75  
100  
125  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
Graph 19: EOL+,EOL- vs TEMP  
Graph 20: SD+, SD- vs TEMP  
www.irf.com  
15  
IR2166  
3
2.5  
2
15  
14  
13  
12  
11  
10  
1.5  
1
0.5  
0
-25  
0
25  
50  
75  
100  
125  
8
9
10  
11  
12  
13  
Temperature (°C)  
VCC (V)  
Graph 22: IQCC vs VCC UVLO Hysteresis  
Graph 21: VCPH (EOL/RUN) Threshold vs TEMP  
16  
14  
12  
10  
8
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
6
4
2
-10  
0
0
3
6
9
12  
15  
0
5
10  
PFC ON TIME ( S)  
15  
20  
VBS (V)  
µ
Graph 23: VCOMP vs PFC ON TIME  
Graph 24: I  
(1) vs V  
vs Temp  
CC  
QBS  
16  
www.irf.com  
IR2166  
20  
16  
12  
8
20  
16  
12  
8
-25  
25  
-25  
25  
75  
125  
75  
125  
4
4
0
0
0
5
10  
15  
20  
15  
15.5  
16  
16.5  
VCC (V)  
V
CC (V)  
Graph 25. IQCC vs VCC vs Temp  
Graph 26. IQCC vs VCC vs Temp  
Internal Zener Diode Curve  
2.5  
2
0.3  
0.25  
0.2  
-25  
25  
-25  
25  
75  
75  
125  
1.5  
1
125  
0.15  
0.1  
0.5  
0
0.05  
0
10  
10.5  
11  
11.5  
12  
12.5  
13  
0
3
6
9
12  
15  
VC C (V)  
V
CC (V)  
Graph 27. IQCC vs VCC vs Temp  
Micropower Startup Mode  
Graph 28: I  
vs V  
vs Temp V  
+
QCC  
CC  
CCUV  
www.irf.com  
17  
IR2166  
3
2.5  
2
-25  
25  
75  
125  
1.5  
1
0.5  
0
8.5  
9
9.5  
10  
10.5  
VCC (V)  
Graph 29: I  
vs V  
vs Temp V  
-
QCC  
CC  
CCUV  
18  
www.irf.com  
IR2166  
I. Ballast Section  
VC1  
Functional Description  
CVCC  
DISCHARGE  
INTERNAL VCC  
ZENER CLAMP VOLTAGE  
Under-voltage Lock-Out Mode (UVLO)  
VUVLO+  
VHYST  
The under-voltage lock-out mode (UVLO) is  
defined as the state the IC is in when VCC is  
below the turn-on threshold of the IC. To identify  
the different modes of the IC, refer to the State  
Diagram shown on page 7 of this document. The  
IR2166 undervoltage lock-out is designed to  
maintain an ultra low supply current of less than  
400uA, and to guarantee the IC is fully functional  
before the high and low side output drivers are  
activated. Figure 1 shows an efficient supply  
voltage using the start-up current of the IR2166  
together with a charge pump from the ballast  
output stage (RSUPPLY, CVCC, DCP1 and DCP2).  
VUVLO-  
DISCHARGE  
TIME  
CHARGE PUMP  
OUTPUT  
RSUPPLY & CVCC  
TIME  
CONSTANT  
t
Figure 2, Supply capacitor (C  
) voltage.  
VCC  
During the discharge cycle, the rectified current  
from the charge pump charges the capacitor above  
the IC turnoff threshold. The charge pump and  
the internal 15.6V zener clamp of the IC take over  
as the supply voltage. The start-up capacitor and  
snubber capacitor must be selected such that  
enough supply current is available over all ballast  
operating conditions. A bootstrap diode (DBOOT)  
and supply capacitor (CBOOT) comprise the  
supply voltage for the high side driver circuitry.  
To guarantee that the high-side supply is charged  
up before the first pulse on pin HO, the first pulse  
from the output drivers comes from the LO pin.  
During under-voltage lockout mode, the high-  
and low-side driver outputs HO and LO are both  
low, pin CT is connected internally to COM to  
disable the oscillator, and pin CPH is connected  
internally to COM for resetting the preheat time.  
VBUS(+)  
R SUPPLY  
D BOOT  
HO  
M1  
16  
Half-Bridge  
Output  
VS  
15  
14  
13  
12  
VB  
C BOOT  
CVCC  
VCC  
CSNUB  
IR2166  
COM  
LO  
11  
M2  
D CP1  
RCS  
D CP2  
VBUS(-)  
Figure 1, Start-up and supply circuitry.  
The start-up capacitor (CVCC) is charged by  
current through supply resistor (RSUPPLY)  
minus the start-up current drawn by the IC. This  
resistor is chosen to set the line input voltage  
turn-on threshold for the ballast . Once the  
capacitor voltage on VCC reaches the start-up  
threshold, and the SD pin is below 5.0 volts, the  
IC turns on and HO and LO begin to oscillate.  
The capacitor begins to discharge due to the  
increase in IC operating current (Figure 2).  
Preheat Mode (PH)  
The preheat mode is defined as the state the IC  
is in when the lamp filaments are being heated to  
their correct emission temperature. This is  
necessary for maximizing lamp life and reducing  
the required ignition voltage. The IR2166 enters  
preheat mode when VCC exceeds the UVLO  
positive-going threshold. HO and LO begin to  
www.irf.com  
19  
IR2166  
oscillate at the preheat frequency with 50% duty  
cycle and with a dead-time which is set by the  
value of the external timing capacitor, CT, and  
internal deadtime resistor, RDT. Pin CPH is  
disconnected from COM and an internal 3µA  
current source (Figure 3)  
VCC is the dead-time (both off) of the output  
gate drivers, HO and LO. The selected value of  
CT together with RDT therefore program the  
desired dead-time (see Design Equations, page  
26, Equations 1 and 2). Once CT discharges  
below 1/3 VCC, MOSFET S3 is turned off,  
disconnecting RDT from COM, and MOSFET  
S1 is turned on, connecting RT and RPH again  
to VCC. The frequency remains at the preheat  
frequency until the voltage on pin CPH exceeds  
10V and the IC enters Ignition Mode. During the  
preheat mode, the over-current protection  
together with the fault counter are enabled. The  
peak ignition current must not exceed the  
maximum allowable current ratings of the output  
stage MOSFETs. Should this voltage exceed the  
internal threshold of 1.3V, the internal FAULT  
Counter begins counting the sequential over-  
current faults (See Timing Diagram). If the  
number of over-current faults exceed 25, the IC  
will enter FAULT mode and gate driver outputs  
HO, LO and PFC will be latched low.  
VBUS (+)  
HO  
RT  
M1  
16  
3
OSC.  
RT  
Half-  
Bridge  
Output  
S4  
Half-  
Bridge  
Driver  
RPH  
CT  
4
5
VS  
LO  
R PH  
15  
11  
ILOAD  
CT  
M2  
3uA  
CPH  
RCS  
2
CCPH  
COM  
12  
IR2166  
Load  
Return  
VBUS (-)  
Figure 3, Preheat circuitry.  
charges the external preheat timing capacitor  
on CPH linearly. The over-current protection on  
pin CS is disabled during preheat. The preheat  
frequency is determined by the parallel  
combination of resistors RT and RPH, together  
with timing capacitor CT. CT charges and  
discharges between 1/3 and 3/5 of VCC (see  
Timing Diagram, page 9). CT is charged  
exponentially through the parallel combination  
of RT and RPH connected internally to VCC  
through MOSFET S1. The charge time of CT  
from 1/3 to 3/5 VCC is the on-time of the  
respective output gate driver, HO or LO. Once  
CT exceeds 3/5 VCC, MOSFET S1 is turned  
off, disconnecting RT and RPH from VCC. CT is  
then discharged exponentially through an  
internal resistor, RDT, through MOSFET S3 to  
COM. The discharge time of CT from 3/5 to 1/3  
V
BUS (+)  
VCC  
13  
3
S1  
HO  
VS  
RT  
16  
15  
M1  
OSC  
RT  
Half-  
Bridge  
Output  
S4  
RPH  
Half-  
Bridge  
Driver  
4
5
RPH  
ILOAD  
CT  
Fault  
Logic  
CT  
LO  
CS  
11  
10  
M2  
S3  
1.3V  
3uA  
R1  
CCS  
Comp 4  
CPH  
2
RCS  
CCPH  
12  
COM  
IR2166  
Load  
Return  
VBUS (-)  
Figure 4, Ignition circuitry.  
20  
www.irf.com  
IR2166  
Ignition Mode (IGN)  
RT and timing capacitor CT (see Design  
Equations, page 26, Equations 3 and 4). Should  
The ignition mode is defined as the state the IC hard-switching occur at the half-bridge at any  
is in when a high voltage is being established time due to an open-filament or lamp removal,  
across the lamp necessary for igniting the lamp. the voltage across the current sensing resistor,  
The IR2166 enters ignition mode when the RCS, will exceed the internal threshold of 1.3 volts  
voltage on pin CPH exceeds 10V.  
and the IC will enter FAULT mode and gate driver  
outputs HO, LO and PFC will be latched low.  
Pin CPH is connected internally to the gate of a  
P-channel MOSFET (S4) (see Figure 4) that DC Bus Under-voltage Reset  
connects pin RPH with pin RT. As pin CPH  
exceeds 10V, the gate-to-source voltage of Should the DC bus decrease too low during a  
MOSFET S4 begins to fall below the turn-on brownout line condition or overload condition,  
threshold of S4. As pin CPH continues to ramp the resonant output stage to the lamp can shift  
towards VCC, switch S4 turns off slowly. This near or below resonance. This can produce  
results in resistor RPH being disconnected hard-switching at the half-bridge which can  
smoothly from resistor RT, which causes the damage the half-bridge switches or, the DC bus  
operating frequency to ramp smoothly from the can decrease too far and the lamp can  
preheat frequency, through the ignition frequency, extinguish. To protect against this, the VBUS pin  
to the final run frequency. The over-current includes a 3.0V under-voltage threshold. Should  
threshold on pin CS will protect the ballast the voltage at the VBUS pin decrease below 3.0V,  
against a non-strike or open-filament lamp fault VCC will be discharged to the UVLO- threshold  
condition. The voltage on pin CS is defined by and all gate driver outputs will be latched low.  
the lower half-bridge MOSFET current flowing  
through the external current sensing resistor For proper ballast design, the designer should  
RCS. The resistor RCS therefore programs the design the PFC section such that the DC bus  
maximum allowable peak ignition current (and does not drop until the AC line input voltage falls  
therefore peak ignition voltage) of the ballast below the rated input voltage of the ballast (See  
output stage. If the number of over current pulses PFC section). When correctly designed, the  
exceed 25, the IC will enter fault mode and gate voltage measured at the VBUS pin will decrease  
driver outputs HO, LO and PFC will be latched below the internal 3.0V threshold and the ballast  
low.  
will turn off cleanly. The pull-up resistor to VCC  
( SUPPLY) will then turn the ballast on again  
R
Run Mode (RUN)  
with the AC input line voltage increasing to the  
minimum specified value causing VCC to exceed  
UVLO+.  
Once the lamp has successfully ignited, the  
ballast enters run mode. The run mode is defined  
as the state the IC is in when the lamp arc is  
established and the lamp is being driven to a  
given power level. The run mode oscillating  
frequency is determined by the timing resistor  
R
SUPPLY should be set to turn the ballast on at  
the minimum specified ballast input voltage. The  
PFC should then be designed such that the DC  
bus decreases at an input line voltage that is  
www.irf.com  
21  
IR2166  
II. PFC Section Functional Description  
lower than the minimum specified ballast input  
voltage. This hysteresis will result in clean turn-  
on and turnoff of the ballast.  
In most electronic ballasts it is necessary to  
have the circuit act as a pure resistive load to  
the AC input line voltage. The degree to which  
the circuit matches a pure resistor is measured  
by the phase shift between the input voltage  
and input current and how well the shape of the  
input current waveform matches the shape of  
the sinusoidal input voltage. The cosine of the  
phase angle between the input voltage and input  
current is defined as the power factor (PF), and  
how well the shape of the input current waveform  
matches the shape of the input voltage is  
determined by the total harmonic distortion  
(THD). A power factor of 1.0 (maximum)  
corresponds to zero phase shift and a THD of  
0% represents a pure sinewave (no distortion).  
For this reason it is desirable to have a high PF  
and a low THD. To achieve this, the IR2166  
includes an active power factor correction (PFC)  
circuit which, for an AC line input voltage,  
produces an AC line input current. The control  
method implemented in the IR2166 is for a boost-  
type converter (Figure 6) running in critical-  
conduction mode (CCM). This means that during  
each switching cycle of the PFC MOSFET, the  
circuit waits until the inductor current discharges  
to zero before turning the PFC MOSFET on again.  
The PFC MOSFET is turned on and off at a  
much higher frequency (>10KHz) than the line  
input frequency (50 to 60Hz).  
CS and EOL Fault Mode (FAULT)  
Should the voltage at the SD/EOL pin exceed 3V  
or decrease below 1V during RUN mode, the IC  
enters fault mode and all gate driver outputs, HO,  
LO and PFC, are latched off in the 'low' state.  
CPH is discharged to COM for resetting the  
preheat time, and CT is discharged to COM for  
disabling the oscillator. To exit fault mode, VCC  
must be recycled back below the UVLO negative-  
going turn-off threshold, or, the shutdown pin, SD,  
must be pulled above 5.2 volts. Either of these  
will force the IC to enter UVLO mode (see State  
Diagram, page 7). Once VCC is above the turn-  
on threshold and SD is below 5.0 volts, the IC  
will begin oscillating again in the preheat mode.  
The current sense function will force the IC to  
enter FAULT mode only after the voltage at the  
current sense pin has been pulsed about 25 times  
with a voltage greater than 1.3 volts during preheat  
and ignition modes only. These over-currents must  
occur during the on-time of LO. During run mode,  
a single pulse on the CS pin above 1.3V will force  
the IC to enter FAULT mode.  
25 Pulses  
LO  
DPFC  
LPFC  
DC Bus  
(+)  
CS  
2.0V  
+
CBUS  
MPFC  
(-)  
Run Mode  
Fault Mode  
Figure 6: Boost-type PFC circuit  
Figure 5: FAULT counter during preheat and ignition  
22  
www.irf.com  
IR2166  
When the switch MPFC is turned on, the inductor  
LPFC is connected between the rectified line  
input (+) and (-) causing the current in LPFC to  
charge up linearly. When MPFC is turned off,  
LPFC is connected between the rectified line  
input (+) and the DC bus capacitor CBUS  
(through diode DPFC) and the stored current in  
LPFC flows into CBUS. As MPFC is turned on  
and off at a high-frequency, the voltage on CBUS  
charges up to a specified voltage. The feedback  
loop of the IR2166 regulates this voltage to a  
fixed value by continuously monitoring the DC  
voltage and adjusting the on-time of MPFC  
accordingly. For an increasing DC bus the on-  
time is decreased, and for a decreasing DC bus  
the on-time is increased. This negative feedback  
control is performed with a slow loop speed and  
a low loop gain such that the average inductor  
current smoothly follows the low-frequency line  
input voltage for high power factor and low THD.  
The on-time of MPFC therefore appears to be  
fixed (with an additional modulation to be  
discussed later) over several cycles of the line  
voltage. With a fixed on-time, and an off-time  
determined by the inductor current discharging  
to zero, the result is a system where the  
switching frequency is free-running and  
constantly changing from a high frequency near  
the zero crossing of the AC input line voltage,  
to a lower frequency at the peaks (Figure 7).  
V, I  
t
Figure 7: Sinusoidal line input voltage (solid line), triangular  
PFC Inductor current and smoothed sinusoidal line input  
current (dashed line) over one half-cycle of the line input  
voltage.  
When the line input voltage is low (near the zero  
crossing), the inductor current will charge up to  
a small amount and the discharge time will be  
fast resulting in a high switching frequency.  
When the input line voltage is high (near the  
peak), the inductor current will charge up to a  
higher amount and the discharge time will be  
longer giving a lower switching frequency. The  
triangular PFC inductor current is then smoothed  
by the EMI filter to produce a sinusoidal line  
input current.  
The PFC control circuit of the IR2166 (Figure 8)  
only requires four control pins: VBUS, COMP,  
ZX and PFC. The VBUS pin is for sensing the  
DC bus voltage (via an external resistor voltage  
divider), the COMP pin programs the on-time of  
MPFC and the speed of the feedback loop, the  
ZX pin detects when the inductor current  
discharges to zero (via a secondary winding  
from the PFC inductor), and the PFC pin is the  
low-side gate driver output for MPFC.  
www.irf.com  
23  
IR2166  
LPFC  
(+)  
Fault Mode Signal  
Run Mode Signal  
GAIN  
DFPC  
1
6
VBUS  
COMP  
VCC  
COMP4  
COMP5  
OTA1  
4.0V  
4.3V  
8
PFC  
RS3  
S
Q
Q
RVBUS1  
R
M1  
RZX  
COMP2  
WATCH  
DOG  
TIMER  
Discharge  
VCC to  
UVLO-  
VBUS  
ZX  
C1  
M2  
3.0V  
RS4  
CBUS  
PFC  
Control  
S
Q
Q
R1  
R2  
RPFC  
PFC  
COMP  
MPFC  
COMP3  
7
ZX  
2.0V  
7.6V  
COM  
DCOMP CCOMP  
RVBUS  
Figure 9: IR2166 detailed PFC control circuit  
(-)  
The off-time of MPFC is determined by the time  
it takes the LPFC current to discharge to zero.  
This zero current level is detected by a  
secondary winding on LPFC which is connected  
to the ZX pin. A positive-going edge exceeding  
the internal 2V threshold signals the beginning  
of the off-time. A negative-going edge on the  
ZX pin falling below 1.7V will occur when the  
LPFC current discharges to zero which signals  
the end of the off-time and MPFC is turned on  
again (Figure 10). The cycle repeats itself  
indefinitely until the PFC section is disabled due  
to a fault detected by the ballast section (Fault  
Mode), an over-voltage or under-voltage  
condition on the DC bus, or, the negative  
transition of ZX pin voltage does not occur.  
Should the negative edge on the ZX pin not occur,  
MPFC will remain off until the watch-dog timer  
forces a turn-on of MPFC for an on-time duration  
programmed by the voltage on the COMP pin.  
The watch-dog pulses occur every 400µs  
indefinitely until a correct positive- and negative-  
going signal is detected on the ZX pin and normal  
PFC operation is resumed.  
Figure 8:IR2166 simplified PFC control circuit  
The VBUS pin is regulated against a fixed  
internal 4V reference voltage for regulating the  
DC bus voltage (Figure 9). The feedback loop  
is performed by an operational transconductance  
amplifier (OTA) that sinks or sources a current  
to the external capacitor at the COMP pin. The  
resulting voltage on the COMP pin sets the  
threshold for the charging of the internal timing  
capacitor (C1) and therefore programs the on-  
time of MPFC. During preheat and ignition  
modes of the ballast section, the gain of the  
OTA is set to a high level to raise the DC bus  
level quickly. When the voltage on the VBUS pin  
exceeds 3V, the gain is set to a low level to  
reduce overshoot. When the voltage on the VBUS  
pin exceeds 4V, the gain is set to a high level  
again to minimize the transient on the DC bus  
which can occur during ignition. During run  
mode, the gain is then decreased to a lower  
level necessary for achieving high power factor  
and low THD.  
24  
www.irf.com  
IR2166  
modulation circuit has been added to the PFC  
control. This circuit dynamically increases the  
on-time of MPFC as the line input voltage nears  
the zero-crossings (Figure 11). This causes the  
peak LPFC current, and therefore the smoothed  
line input current, to increase slightly higher near  
the zero-crossings of the line input voltage. This  
reduces the amount of cross-over distortion in  
the line input current which reduces the THD  
and higher harmonics to low levels.  
ILPFC  
0
0
0
PFC  
pin  
ILPFC  
0
ZX  
pin  
PFC  
pin  
0
near peak region of  
rectified AC line  
near zero-crossing region  
of rectified AC line  
Figure 10: LPFC current, PFC pin and ZX pin timing  
diagram.  
Figure 11: On-time modulation near the zero-crossings.  
Over-voltage Protection (OVP)  
On-time Modulation  
Should over-voltage occur on the DC bus  
causing the VBUS pin to exceed the internal 4.3V  
threshold, the PFC output is disabled (set to a  
logic 'low'). When the DC bus decreases again  
causing the VBUS pin to decrease below the  
internal 4V threshold, a watch-dog pulse is forced  
on the PFC pin and normal PFC operation is  
resumed.  
A fixed on-time of MPFC over an entire cycle of  
the line input voltage produces a peak inductor  
current which naturally follows the sinusoidal  
shape of the line input voltage. The smoothed  
averaged line input current is in phase with the  
line input voltage for high power factor but the  
total harmonic distortion (THD), as well as the  
individual higher harmonics, of the current can  
still be too high. This is mostly due to cross-  
over distortion of the line current near the zero-  
crossings of the line input voltage. To achieve  
low harmonics which are acceptable to  
international standard organizations and general  
market requirements, an additional on-time  
Under-voltage Reset (UVR)  
When the line input voltage is decreased,  
interrupted or a brown-out condition occurs, the  
PFC feedback loop causes the on-time of MPFC  
www.irf.com  
25  
IR2166  
Ballast Design Equations  
to increase in order to keep the DC bus constant.  
Should the on-time increase too far, the resulting  
peak currents in LPFC can exceed the saturation  
current limit of LPFC. LPFC will then saturate  
and very high peak currents and di/dt levels will  
occur. To prevent this, the maximum on-time is  
limited by limiting the maximum voltage on the  
COMP pin with an external zener diode DCOMP  
(Figure 8). As the line input voltage decreases,  
the COMP pin voltage and therefore the on-time  
will eventually limit. The PFC can no longer  
supply enough current to keep the DC bus fixed  
for the given load power and the DC bus will  
begin to drop. Decreasing the line input voltage  
further will cause the VBUS pin to eventually  
decrease below the internal 3V threshold (Figure  
9). When this occurs, VCC is discharged  
internally to UVLO-, the IR2166 enters UVLO  
mode and both the PFC and ballast sections  
are disabled (see State Diagram). The start-up  
supply resistor to VCC, together with the micro-  
power start-up current of the IR2166, determine  
the line input turn-on voltage. This should be  
set such that the ballast turns on at a line voltage  
level above the under-voltage turn-off level. It  
is the correct selection of the value of the supply  
resistor to VCC and the zener diode on the  
COMP pin that correctly program the on and off  
line input voltage thresholds for the ballast. With  
these thresholds correctly set, the ballast will  
turn off due to the 3V under-voltage threshold  
on the VBUS pin, and on again at a higher line  
input voltage (hysterisis) due to the supply  
resistor to VCC. This hysterisis will result in a  
proper reset of the ballast without flickering of  
the lamp, bouncing of the DC bus or re-ignition  
of the lamp when the DC bus is too low.  
Note: The results from the following design  
equations can differ slightly from experimental  
measurements due to IC tolerances, component  
tolerances, and oscillator over- and undershoot  
due to internal comparator response time.  
Step 1: Program Dead-time  
The dead-time between the gate driver outputs  
HO and LO is programmed with timing capacitor  
CT and an internal dead-time resistor RDT. The  
dead-time is the discharge time of capacitor CT  
from 3/5VCC to 1/3VCC and is given as:  
[Seconds]  
(1)  
tDT = CT 1475  
or  
tDT  
CT =  
[Farads]  
(2)  
1475  
Step 2: Program Run Frequency  
The final run frequency is programmed with  
timing resistor RT and timing capacitor CT. The  
charge time of capacitor CT from 1/3VCC to  
3/5VCC determines the on-time of HO and LO  
gate driver outputs. The run frequency is  
therefore given as:  
1
fRUN  
=
[Hertz] (3)  
2 CT (0.51 RT +1475)  
or  
1
RT =  
2892  
[Ohms] (4)  
1.02 CT fRUN  
26  
www.irf.com  
IR2166  
Step 5: Program Maximum Ignition Current  
Step 3: Program Preheat Frequency  
The maximum ignition current is programmed  
with the external resistor RCS and an internal  
threshold of 1.3 volts. This threshold determines  
the over-current limit of the ballast, which can  
be exceeded when the frequency ramps down  
towards resonance during ignition and the lamp  
does not ignite. The maximum ignition current  
is given as:  
The preheat frequency is programmed with  
timing resistors RT and RPH, and timing  
capacitor CT. The timing resistors are  
connected in parallel internally for the duration  
of the preheat time. The preheat frequency is  
therefore given as:  
1
fPH  
=
0.51 RT RPH  
RT + RPH  
[Hertz] (5)  
2 CT  
+1475  
1.3  
IIGN  
=
[Amps Peak] (9)  
[Ohms] (10)  
RCS  
or  
or  
1
2892 RT  
1.3  
1.02 CT fPH  
RCS  
=
RPH  
=
IIGN  
1
[Ohms] (6)  
RT −  
2892  
1.02 CT fPH  
Step 4: Program Preheat Time  
The preheat time is defined by the time it takes  
for the capacitor on pin CPH to charge up to  
10 volts. An internal current source of 3uA flows  
out of pin CPH. The preheat time is therefore  
given as:  
tPH = CPH 3.33e6  
[Seconds] (7)  
[Farads] (8)  
or  
CPH = tPH 0.3e 6  
www.irf.com  
27  
IR2166  
P FC D esign E quations  
S tep1: C alculate P FC inductor value:  
2
MIN  
(VBUS  
2 VAC  
) VAC  
η
ꢀ  
MIN  
ꢀꢀꢀꢀꢀꢀꢀ  
[H enries] (1)  
LPFC  
=
2
f MIN POUT VBUS  
w here,  
VBUS  
ꢁꢀꢀ  
D C bus voltage  
ꢀꢀꢀꢁꢀꢀ  
M inim um rm s A C input voltage  
P FC efficiency (typically 0.95)  
VAC  
MIN  
ꢁꢀꢀ  
ꢁꢀꢀ  
ꢁꢀꢀ  
η
ꢀ ꢀ  
ꢀꢀ  
M inim um P FC switching frequency at m inim um A C input voltage  
B allast output power  
f MIN  
POUT  
S tep 2: C alculate peak P FC inductor current:  
2
2
POUT  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
ꢀ ꢀ  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
[A m ps P eak] (2)  
iPK  
=
VAC  
η
MIN  
iPK  
N ote: The PFC inductor m ust not saturate at  
over the specified ballast operating tem perature range.  
P roper core sizing and air-gapping should be considered in the inductor design.  
S tep 3: C alculate m axim um on-tim e:  
2
POUT L PFC  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
ꢀ ꢀ  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
[Seconds] (3)  
tON  
=
2
MAX  
VAC  
η
MIN  
S tep 4: C alculate m axim um C O M P voltage:  
tON  
MAX  
ꢀꢀꢀꢀꢀ  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
V COMP  
=
[V olts] (4)  
MAX  
0.9 E 6  
S tep 5: S elect zener diode D C O M P value:  
zener voltage  
V COMP  
[V olts] (5)  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ  
D COMP  
MAX  
S tep 6: C alculate resistor R S U P P LY value:  
VAC  
+ 10  
MIN  
PK  
ꢀꢀꢀꢀꢀꢀ  
[O hm s] (6)  
R SUPPLY  
=
IQCCUV  
28  
www.irf.com  
IR2166  
Case outline  
01-6015  
01-3065 00 (MS-001A)  
16 Lead PDIP  
01-6018  
16 Lead SOIC (narrow body)  
01-3064 00 (MS-012AC)  
http://www.irf.com/ Data and specifications subject to change without notice.  
3/19/2003  
www.irf.com  
29  

相关型号:

IR2166PBF

PFC & BALLAST CONTROL IC
INFINEON

IR2166S

PFC & BALLAST CONTROL IC
INFINEON

IR2166SPBF

PFC & BALLAST CONTROL IC
INFINEON

IR2166STRPBF

PFC & BALLAST CONTROL IC
INFINEON

IR2167

PFC BALLAST CONTROL IC
INFINEON

IR2167PBF

暂无描述
INFINEON

IR2167S

PFC Ballast Control. Thermal Overload Protection. Brown Out Protection. Programmable Preheat and Frequency. Programmable Deadtime in a 20 Lead SOIC package
INFINEON

IR2167SPBF

暂无描述
INFINEON

IR2170

OVER CURRENT SENSING IC
INFINEON

IR21706S

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16
INFINEON

IR21706SPBF

Analog Circuit, 1 Func, PDSO16, SOIC-16
INFINEON

IR2170S

OVER CURRENT SENSING IC
INFINEON