IR22141SSTRPBF [INFINEON]

Half Bridge Based Peripheral Driver, PDSO24, LEAD FREE, MO-150AH, SSOP-24;
IR22141SSTRPBF
型号: IR22141SSTRPBF
厂家: Infineon    Infineon
描述:

Half Bridge Based Peripheral Driver, PDSO24, LEAD FREE, MO-150AH, SSOP-24

驱动 光电二极管 接口集成电路
文件: 总33页 (文件大小:666K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet No. PD60213 revG  
IR2114SSPbF/IR21141SSPbF  
IR2214SSPbF/IR22141SSPbF  
HALF-BRIDGE GATE DRIVER IC  
Features  
Product Summary  
Floating channel up to +600 V or +1200 V  
Soft over-current shutdown  
600 V or  
1200 V max.  
VOFFSET  
Synchronization signal to synchronize shutdown with the other phases  
Integrated desaturation detection circuit  
Two stage turn on output for di/dt control  
Separate pull-up/pull-down output drive pins  
Matched delay outputs  
IO+/- (min)  
VOUT  
Deadtime matching (max)  
Deadtime (typ)  
Desat blanking time (typ)  
DSH, DSL input voltage  
threshold (typ)  
1.0 A / 1.5 A  
10.4 V – 20 V  
75 ns  
330 ns  
3 µs  
Undervoltage lockout with hysteresis band  
LEAD-FREE  
8.0 V  
Description  
Soft shutdown time (typ)  
9.25 µs  
The IR211(4,41)/IR221(4,41) gate driver family is suited to drive a single half  
bridge in power switching applications. These drivers provide high gate driving  
capability (2 A source, 3 A sink) and require low quiescent current, which allows  
the use of bootstrap power supply techniques in medium power systems. These  
drivers feature full short circuit protection by means of power transistor  
desaturation detection and manage all half-bridge faults by smoothly turning off  
the desaturated transistor through the dedicated soft shutdown pin, therefore  
preventing over-voltages and reducing EM emissions. In multi-phase systems,  
the IR211(4,41)/ IR221(4,41) drivers communicate using a dedicated local  
network (SY_FLT and FAULT/SD signals) to properly manage phase-to-phase  
short circuits. The system controller may force shutdown or read device fault  
state through the 3.3 V compatible CMOS I/O pin (FAULT/SD). To improve the  
signal immunity from DC-bus noise, the control and power ground use dedicated  
pins enabling low-side emitter current sensing as well. Undervoltage conditions  
in floating and low voltage circuits are managed independently.  
Package  
24-Lead SSOP  
Typical connection  
DC+  
VCC  
VB  
15 V  
HOP  
HON  
SSDH  
LIN  
HIN  
DSH  
VS  
DC BUS  
uP,  
Motor  
FAULT/SD  
FLT_CLR  
SY_FLT  
Control  
(Up to 1200 V)  
LOP  
LON  
SSDL  
DSL  
COM  
VSS  
DC-  
www.irf.com  
1
IR211(4,41)/IR221(4,41)SSPbF  
Absolute Maximum Ratings  
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage  
parameters are absolute voltages referenced to VSS, all currents are defined positive into any lead The thermal resistance  
and power dissipation ratings are measured under board mounted and still air conditions.  
Symbol  
Definition  
Min.  
Max.  
Units  
VS  
High side offset voltage  
VB - 25  
VB + 0.3  
(IR2114 or IR21141)  
(IR2214 or IR22141)  
High side floating output voltage (HOP, HON and SSDH)  
Low side and logic fixed supply voltage  
Power ground  
Low side output voltage (LOP, LON and SSDL)  
Logic input voltage (HIN, LIN and FLT_CLR)  
FAULT input/output voltage (FAULT/SD and SY_FLT)  
-0.3  
625  
VB  
High side floating supply voltage  
-0.3  
1225  
VHO  
VCC  
COM  
VLO  
VS - 0.3  
-0.3  
VCC - 25  
VCOM -0.3 VCC + 0.3  
VSS -0.3  
VSS -0.3  
VS -3  
VCOM -3  
VB + 0.3  
25  
VCC + 0.3  
V
VIN  
VCC + 0.3  
VCC + 0.3  
VB + 0.3  
VCC + 0.3  
50  
VFLT  
VDSH  
VDSL  
dVs/dt  
PD  
High side DS input voltage  
Low side DS input voltage  
Allowable offset voltage slew rate  
Package power dissipation @ TA 25 °C  
Thermal resistance, junction to ambient  
Junction temperature  
V/ns  
W
°C/W  
1.5  
65  
150  
RthJA  
TJ  
TS  
Storage temperature  
-55  
150  
°C  
TL  
Lead temperature (soldering, 10 seconds)  
300  
Recommended Operating Conditions  
For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute  
voltages referenced to VSS. The VS offset rating is tested with all supplies biased at a 15 V differential.  
Symbol  
Definition  
Min.  
Max. Units  
VB  
High side floating supply voltage (Note 1)  
VS + 11.5  
VS + 20  
High side floating supply offset  
(IR2114 or IR21141)  
(IR2214 or IR22141)  
Note 2  
Note 2  
VS  
VCOM  
11.5  
-5  
VSS  
600  
VS  
voltage  
1200  
VHO  
VLO  
VCC  
COM  
VIN  
VFLT  
VDSH  
VDSL  
TA  
High side output voltage (HOP, HON and SSDH)  
Low side output voltage (LOP, LON and SSDL)  
Low side and logic fixed supply voltage (Note 1)  
Power ground  
Logic input voltage (HIN, LIN and FLT_CLR)  
Fault input/output voltage (FAULT/SD and SY_FLT)  
High side DS pin input voltage  
Low side DS pin input voltage  
Ambient temperature  
VS + 20  
VCC  
20  
5
VCC  
VCC  
VB  
VCC  
125  
V
VSS  
VS - 2.0  
VCOM - 2.0  
-40  
°C  
Note 1: While internal circuitry is operational below the indicated supply voltages, the UV lockout disables  
the output drivers if the UV thresholds are not reached.  
Note 2: Logic operational for VS from VSS-5 V to VSS +600 V or 1200 V. Logic state held for VS from VSS -5 V  
to VSS-VBS. (Please refer to the Design Tip DT97-3 for more details).  
www.irf.com  
2
IR211(4,41)/IR221(4,41)SSPbF  
Static Electrical Characteristics  
VCC = 15 V, VSS = COM = 0 V, VS = 600 V or 1200 V and TA = 25 °C unless otherwise specified.  
Pins: VCC, VSS, VB, VS  
Symbol  
Definition  
Min Typ Max Units  
Test Conditions  
VCCUV+  
VCCUV-  
VCCUVH  
VBSUV+  
VBSUV-  
VBSUVH  
VCC supply undervoltage positive going threshold  
VCC supply undervoltage negative going threshold  
VCC supply undervoltage lockout hysteresis  
(VB-VS) supply undervoltage positive going threshold  
(VB-VS) supply undervoltage negative going threshold  
(VB-VS) supply undervoltage lockout hysteresis  
9.3 10.2 11.4  
8.7 9.3 10.3  
0.9  
V
9.3 10.2 11.4  
8.7 9.3 10.3  
VS = 0 V, VS = 600 V  
or 1200 V  
0.9  
VB = VS = 600 V or  
1200 V  
VIN = 0 V or 3.3 V  
(No load)  
ILK  
Offset supply leakage current  
50  
µA  
IQBS  
IQCC  
Quiescent VBS supply current  
Quiescent VCC supply current  
400 800  
0.7  
2.5  
mA  
Note 1: Refer to Fig. 1  
Pins: HIN, LIN, FLTCLR, FAULT/SD, SY_FLT  
Symbol  
Definition  
Min  
Typ  
Max Units  
Test Conditions  
VIH  
VIL  
VIHSS  
Logic "1" input voltage  
Logic "0" input voltage  
Logic input hysteresis  
2.0  
0.2  
0.4  
0.8  
VCC = VCCUV-  
to 20 V  
V
Logic “1” input bias current (HIN, LIN, FLTCLR)  
Logic “0” input bias current (FAULT/SD, SY_FLT)  
Logic “0” input bias current  
Logic “1” input bias current (FAULT/SD, SY_FLT)  
FAULT/SD open drain resistance  
SY_FLT open drain resistance  
0
-1  
-1  
330  
60  
60  
1
0
0
IIN+  
VIN = 3.3 V  
VIN = 0 V  
µA  
IIN-  
RON,FLT  
RON,SY  
PW7 µs  
Note 1: Refer to Figs. 2 & 3  
Pins: DSL, DSH  
The active bias is present only the IR21141and IR22141. VDESAT, IDS and IDSB parameters are referenced to COM and VS  
respectively for DSL and DSH.  
Symbol  
VDESAT+  
VDESAT-  
VDSTH  
Definition  
Min Typ Max Units  
7.2 8.0 8.8  
Test Conditions  
High desat input threshold voltage  
Low desat input threshold voltage  
Desat input voltage hysteresis  
High DSH or DSL input bias current  
Low DSH or DSL input bias current  
V
See Figs. 4,16  
6.3 7.0 7.7  
1.0  
21  
-160  
IDS+  
VDESAT = VCC or VBS  
VDESAT = 0 V  
µA  
IDS  
-
DSH or DSL input bias current  
IDSB  
-20  
mA  
VDESAT = (VCC or VBS) – 2 V  
(IR21141 and IR22141 only)  
Note 1: Refer to Fig. 4  
www.irf.com  
3
IR211(4,41)/IR221(4,41)SSPbF  
Pins: HOP, LOP  
Symbol  
Definition  
Min Typ Max Units Test Conditions  
VOH  
High level output voltage, VB – VHOP or VCC –VLOP  
40  
300 mV  
IO= 20 mA  
V
HOP/LOP= 0 V, HIN  
or LIN = 1, PW≤  
200 ns, resistive  
load, see Fig. 8  
IO1+  
Output high first stage short circuit pulsed current  
1
2
A
V
HOP/LOP= 0 V, HIN  
or LIN= 1,  
Output high second stage short circuit pulsed current  
IO2+  
0.5  
1
400 ns PW10  
µs, resistive load,  
see Fig. 8  
Note 1: Refer to Fig. 5  
Pins: HON, LON, SSDH, SSDL  
Symbol  
Definition  
Min Typ Max Units Test Conditions  
VOL  
RON,SSD  
Low level output voltage, VHON or VLON  
Soft Shutdown on resistance (Note 1)  
45  
90  
300 mV  
IO= 20 mA  
PW7 µs  
VHOP/LOP = 15 V,  
IN or LIN = 0, PW≤  
10 µs  
IO-  
Output low short circuit pulsed current  
1.5  
3
A
H
Note 1: SSD operation only  
Note 2: Refer to Fig. 6  
www.irf.com  
4
IR211(4,41)/IR221(4,41)SSPbF  
AC Electrical Characteristics  
VCC = VBS = 15 V, VS = VSS and TA = 25 °C unless otherwise specified.  
Symbol  
Definition  
Min. Typ. Max. Units  
Test Conditions  
ton  
toff  
tr  
tf  
ton1  
Turn on propagation delay  
Turn off propagation delay  
Turn on rise time (CLOAD=1 nF)  
Turn off fall time (CLOAD=1 nF)  
Turn on first stage duration time  
220  
220  
120  
440  
440  
24  
7
200  
660  
660  
280  
VIN = 0 & 1, VS = 0 V to 600 V  
or 1200 V,  
HOP shorted to HON, LOP  
shorted to LON, Fig. 7  
Fig. 8  
DSH to HO soft shutdown propagation delay at HO  
turn on  
tDESAT1  
tDESAT2  
tDESAT3  
tDESAT4  
2000 3300 4600  
1050  
2000 3300 4600  
VHIN= 1 V  
DSH to HO soft shutdown propagation delay after  
blanking  
V
V
DESAT = 15 V, Fig. 10  
LIN = 1 V  
DSL to LO soft shutdown propagation delay at LO  
turn on  
V
DSL to LO soft shutdown propagation delay after  
blanking  
1050  
1000  
DESAT = 15 V, Fig. 10  
tDS  
tSS  
Soft shutdown minimum pulse width of desat  
Soft shutdown duration period  
Fig. 9  
5700 9250 13500  
VDS=15 V, Fig. 9  
ns  
tSY_FLT,  
1300  
3600  
V
HIN = 1 V  
DS = 15 V, Fig. 10  
LIN = 1 V  
DESAT=15 V, Fig. 10  
DSH to SY_FLT propagation delay at HO turn on  
DSH to SY_FLT propagation delay after blanking  
DSL to SY_FLT propagation delay at LO turn on  
DESAT1  
tSY_FLT,  
DESAT2  
V
tSY_FLT  
,
3050  
V
DESAT3  
tSY_FLT  
,
1050  
V
DSL to SY_FLT propagation delay after blanking  
DS blanking time at turn on  
DESAT4  
V
HIN = VLIN = 1 V, VDESAT=15 V,  
tBL  
3000  
Fig. 10  
Deadtime/Delay Matching Characteristics  
DT  
Deadtime  
330  
Fig. 11  
MDT  
PDM  
Deadtime matching, MDT=DTH-DTL  
75  
External DT = 0 s, Fig. 11  
Propagation delay matching,  
Max (ton, toff) – Min (ton, toff)  
75  
External DT > 500 ns, Fig. 7  
www.irf.com  
5
IR211(4,41)/IR221(4,41)SSPbF  
schmitt  
trigger  
comparator  
VCC/V  
B
internal  
signal  
HIN/LIN/  
FLTCLR  
internal  
signal  
UV  
10k  
VCCUV/VBSUV  
VSS/V  
S
VSS  
Figure 1: Undervoltage Diagram  
Figure 2: HIN, LIN and FLTCLR Diagram  
VCC/VBS  
active  
bias  
100k  
700k  
fault/hold  
FAULT/SD  
SY_FLT  
internal signal  
comparator  
schmitt  
trigger  
DSL/DSH  
internal  
signal  
SSD  
R
ON  
hard/soft shutdown  
internal signal  
V
DESAT  
V
SS  
COM/VS  
Figure 3: FAULT/SD and SY_FLT Diagram  
Figure 4: DSH and DSL Diagram  
200ns  
V
CC/VB  
oneshot  
LON/HON  
V
OH  
SSDL/SSDH  
on/off  
on/off  
internal signal  
internal signal  
VOL  
LOP/HOP  
RON,SSD  
desat  
internal signal  
COM/V  
S
Figure 5: HOP and LOP Diagram  
Figure 6: HON, LON, SSDH and SSDL Diagram  
www.irf.com  
6
IR211(4,41)/IR221(4,41)SSPbF  
3.3V  
50%  
HIN  
LIN  
50%  
tr  
PWin  
toff  
ton  
tf  
PWout  
HO (HOP=HON)  
LO (LOP=LON)  
90%  
10%  
90%  
10%  
Figure 7: Switching Time Waveforms  
Ton1  
Io1+  
Io2+  
Figure 8: Output Source Current  
3.3V  
HIN/LIN  
t DS  
DSH/DSL  
8V  
8V  
SSD Driver Enable  
tSS  
tDESAT  
HO/LO  
Figure 9: Soft Shutdown Timing Waveform  
www.irf.com  
7
IR211(4,41)/IR221(4,41)SSPbF  
50%  
50%  
HIN  
LIN  
50%  
8V  
8V  
DSH  
8V  
8V  
DSL  
50%  
50%  
SY_FLT,DESAT3  
50%  
SY_FLT,DESAT1  
50%  
t
t
SY_FLT  
t
SY_FLT,DESAT2  
t
SY_FLT,DESAT4  
FAULT/SD  
FLTCLR  
Turn_Off propagation Delay  
t
DESAT2  
t
DESAT1  
90%  
90%  
90%  
SoftShutdown  
SoftShutdown  
50%  
50%  
10%  
HON  
t
DESAT4  
tBL  
tBL  
t
DESAT3  
90%  
90%  
SoftShutdown  
90%  
SoftShutdown  
50%  
50%  
Turn-On Propagation Delay  
10%  
LON  
tBL  
tBL  
Turn-On Propagation Delay  
Figure 10: Desat Timing  
LIN  
50%  
50%  
HIN  
50%  
DTH  
50%  
HO (HOP=HON)  
LO (LOP=LON)  
DTL  
50%  
50%  
MDT=DTH-DTL  
Figure 11: Internal Deadtime Timing  
www.irf.com  
8
IR211(4,41)/IR221(4,41)SSPbF  
Lead Assignments  
1
DSH  
24  
HIN  
LIN  
VB  
N.C.  
HOP  
HON  
VS  
FLT_CLR  
SY_FLT  
FAULT/SD  
VSS  
24-Lead SSOP  
SSOP24  
SSDL  
SSDH  
N.C.  
N.C.  
N.C.  
N.C.  
COM  
LON  
LOP  
VCC  
DSL  
12  
N.C.  
13  
Lead Definitions  
Symbol  
Description  
VCC  
VSS  
HIN  
LIN  
Low side gate driver supply  
Logic ground  
Logic input for high side gate driver outputs (HOP/HON)  
Logic input for low side gate driver outputs (LOP/LON)  
Dual function (in/out) active low pin. Refer to Figs. 15, 17, and 18. As an output, indicates fault condition.  
FAULT/SD As an input, shuts down the outputs of the gate driver regardless HIN/LIN status.  
Dual function (in/out) active low pin. Refer to Figs. 15, 17, and 18. As an output, indicates SSD sequence  
SY_FLT  
FLT_CLR  
is occurring. As an input, an active low signal freezes both output status.  
Fault clear active high input. Clears latched fault condition (see Fig. 17)  
LOP  
LON  
DSL  
SSDL  
COM  
VB  
HOP  
HON  
DSH  
SSDH  
VS  
Low side driver sourcing output  
Low side driver sinking output  
Low side IGBT desaturation protection input  
Low side soft shutdown  
Low side driver return  
High side gate driver floating supply  
High side driver sourcing output  
High side driver sinking output  
High side IGBT desaturation protection input  
High side soft shutdown  
High side floating supply return  
www.irf.com  
9
IR211(4,41)/IR221(4,41)SSPbF  
VCC  
VB  
on/off  
SCHMITT  
TRIGGER  
INPUT  
LATCH  
HOP  
HON  
on/off (HS)  
on/off (LS)  
on/off  
desat  
di/dt control  
Driver  
HIN  
LIN  
LOCAL DESAT  
PROTECTION  
INPUT  
HOLD  
LOGIC  
OUTPUT  
SHUTDOWN  
LOGIC  
soft  
LEVEL  
SHOOT  
SHIFTERS  
shutdown  
THROUGH  
PREVENTION  
SOFT SHUTDOWN  
UV_VBS DETECT  
SSDH  
DSH  
(DT) Deadtime  
VS  
UV_VCC  
DETECT  
UV_VCC  
on/off  
LOP  
LON  
di/dt control  
Driver  
DesatHS  
soft  
SSD  
HOLD  
SD  
LOCAL DESAT  
PROTECTION  
FAULT LOGIC  
managemend  
(See figure 14)  
SY_FLT  
FAULT/SD  
FLT_CLR  
shutdown  
FAULT  
SSDL  
DSL  
SOFTSHUTDOWN  
DesatLS  
COM  
VSS  
FUNCTIONAL BLOCK DIAGRAM  
Start-Up  
Sequence  
ShutDown  
HO=LO=0  
UnderVoltage  
VCC  
UnderVoltage  
VBS  
FAULT  
HO=LO=0  
HO=0, LO=LIN  
UV_VCC  
DESAT  
EVENT  
HO/LO=1  
UV_VBS  
Soft  
ShutDown  
Freeze  
STATE DIAGRAM  
Stable State  
Temporary State  
System Variable  
FAULT  
SOFT SHUTDOWN  
START UP SEQUENCE  
FLT_CLR  
HIN/LIN  
UV_VCC  
UV_VBS  
DSH/L  
SY_FLT  
FAULT/SD  
HO=LO=0 (Normal operation)  
HO/LO=1 (Normal operation)  
UNDERVOLTAGE VCC  
SHUTDOWN (SD)  
UNDERVOLTAGE VBS  
FREEZE  
NOTE 1: A change of logic value of the signal labeled on lines (system variable) generates a state transition.  
NOTE 2: Exiting from UNDERVOLTAGE VBS state, the HO goes high only if a rising edge event happens in HIN.  
www.irf.com  
10  
IR211(4,41)/IR221(4,41)SSPbF  
HO/LO Status  
HOP/LOP  
HON/LON  
SSDH/SSDL  
0
1
HiZ  
1
0
HiZ  
HiZ  
0
HiZ  
HiZ  
SSD  
HiZ  
LO/HO  
LOn-1/HOn-1  
Output follows inputs (in=1->out=1, in=0->out=0)  
Output keeps previous status  
IR2214 Logic Table: Output Drivers Status Description  
Undervoltage  
Yes: V< UV  
threshold  
INPUTS  
INPUT/OUTPUT  
No : V> UV  
threshold  
OUTPUTS  
X: don’t care  
______  
_________  
FAULT/SD  
SY_FLT  
SSD: desat (out)  
HOLD: freezing  
(in)  
Operation  
SD: shutdown (in)  
FAULT: diagnostic  
(out)  
VCC  
VBS  
HO  
LO  
Hin  
Lin  
FLT_CLR  
Shutdown  
Fault Clear  
X
HIN  
1
X
LIN  
0
X
X
0 (SD)  
(FAULT)  
X
X
0
HO  
1
0
LO  
0
NOTE1  
No  
No  
No  
No  
No  
No  
No  
No  
0
0
0
1
1
1
1
1
1
Normal  
0
1
0
1
Operation  
0
0
0
0
Anti Shoot  
Through  
1
1
0
1
1
1
No  
No  
0
0
(SSD)  
Soft  
1
0
0
1
0
0
0
0
X
X
X
No  
No  
No  
No  
No  
No  
Yes  
No  
No  
No  
No  
No  
Yes  
X
SSD  
0
SSD  
0
Shutdown  
(SSD)  
(SSD)  
(SSD)  
1
0
(entering)  
(FAULT)  
Soft  
X
X
X
X
X
X
0
Shutdown  
(finishing)  
(FAULT)  
X
0
HOn-1  
0
0
Freeze  
X
0 (HOLD)  
1
LOn-1  
LO  
0
LIN  
X
1
1
1
Undervoltage  
0 (FAULT)  
0
NOTE 1: SY_FLT automatically resets after the SSD event is over and FLT_CLR is not required. In order to avoid the  
FLT_CLR conflicting with the SSD procedure, FLT_CLR should not be operated while SY_FLT is active.  
www.irf.com  
11  
IR211(4,41)/IR221(4,41)SSPbF  
1.4 Fault Management  
The IR211(4,41)/ IR221(4,41) is able to manage supply  
failure (undervoltage lockout) and transistor desaturation  
(on both the low and high side switches).  
1 Features Description  
1.1 Start-Up Sequence  
At power supply start-up, it is recommended to keep the  
FLT_CLR pin active until the supply voltages are  
properly established. This prevents spurious diagnostic  
signals being generated. All protection functions are  
operating independently from the FLT_CLR status and  
the output driver status reflects the input commands.  
1.4.1 Undervoltage (UV)  
The undervoltage protection function disables the  
driver’s output stage which prevents the power device  
from being driven when the input voltage is less than the  
undervoltage threshold. Both the low side (VCC supplied)  
and the floating side (VBS supplied) are controlled by a  
dedicate undervoltage function.  
When the bootstrap supply topology is used for  
supplying the floating high side stage, the following start-  
up sequence is recommended (see also Fig. 12):  
An undervoltage event on the VCC pin (when  
VCC < UVVCC-) generates a diagnostic signal by forcing  
the FAULT/SD pin low (see FAULT/SD section and Fig.  
14). This event disables both the low side and floating  
drivers and the diagnostic signal holds until the  
undervoltage condition is over. The fault condition is not  
latched and the FAULT/SD pin is released once VCC  
1. Set VCC  
,
2. Set FLT_CLR pin to HIGH level,  
3. Set LIN pin to HIGH level and charge the  
bootstrap capacitor,  
4. Release LIN pin to LOW level,  
5. Release FLT_CLR pin to LOW level.  
becomes higher than UVVCC+  
.
The VBS undervoltage protection works by disabling only  
the floating driver. Undervoltage on VBS does not prevent  
the low side driver from activating its output nor does it  
generate diagnostic signals. The VBS undervoltage  
condition (VBS < UVVBS-) latches the high side output  
stage in the low state. VBS must exceed the UVVBS+  
threshold to return the device to its normal operating  
mode. To turn on the floating driver, HIN must be re-  
asserted high (rising edge event on HIN is required).  
VCC  
FLT_CLR  
LIN  
LO  
Figure 12 Start-Up Sequence  
1.4.2 Power Devices Desaturation  
A minimum 15 µs LIN and FLT-CLR pulse is required.  
Different causes can generate a power inverter failure  
(phase and/or rail supply short-circuit, overload  
conditions induced by the load, etc.). In all of these fault  
conditions, a large increase in current results in the  
IGBT.  
1.2 Normal Operation Mode  
After the start-up sequence has completed, the device  
becomes fully operative (see grey blocks in the State  
Diagram).  
The IR211(4,41)/ IR221(4,41) fault detection circuit  
monitors the IGBT emitter to collector voltage (VCE) (an  
external high voltage diode is connected between the  
IGBT’s collector and the ICs DSH or DSL pins). A high  
current in the IGBT may cause the transistor to  
HIN and LIN produce driver outputs to switch  
accordingly, while the input logic monitors the input  
signals and deadtime (DT) prevent shoot-through events  
from occurring.  
desaturate; this condition results in an increase of VCE  
.
1.3 Shutdown  
The system controller can asynchronously command the  
Hard Shutdown (HSD) through the 3.3 V compatible  
CMOS I/O FAULT/SD pin. This event is not latched.  
Once in desaturation, the current in the power transistor  
can be as high as 10 times the nominal current.  
Whenever the transistor is switched off, this high current  
generates relevant voltage transients in the power stage  
that need to be smoothed out in order to avoid  
destruction (by over-voltage). The gate driver is able to  
control the transient condition by smoothly turning off the  
desaturated transistor with its integrated soft shutdown  
(SSD) protection.  
In a multi-phase system, FAULT/SD signals are or-ed so  
the controller or one of the gate drivers can force the  
simultaneous shutdown of the other gate drivers through  
the same pin.  
1.4.3 Desaturation Detection: DSH/L Function  
Figure 13 shows the structure of the desaturation  
sensing and soft shutdown block. This configuration is  
the same for both the high and low side output stages.  
www.irf.com  
12  
IR211(4,41)/IR221(4,41)SSPbF  
sensing  
diode  
VB/Vcc  
HOPH/L  
HONH/L  
SSDH/L  
PreDriver  
ONE  
SHOT  
(ton1)  
on/off  
tBL  
Blanking  
tss  
One Shot  
DesatHS/LS  
tDS  
DSH/L  
filter  
desat  
comparator  
VDESAT  
VS/COM  
Figure 13: High and Low Side Output Stage  
internal  
HOLD  
internal FAULT  
(hard shutdown)  
SY_FLT  
(external  
hold)  
FAULT/SD  
(external hard  
shutdown)  
SET  
CLR  
Q
Q
S
R
DesatHS  
DesatLS  
UVCC  
FLTCLR  
Figure 14: Fault Management Diagram  
The external sensing diode should have BV > 600 V or  
1200 V and low stray capacitance (in order to minimize  
noise coupling and switching delays). The diode is  
biased by an internal pull-up resistor RDSH/L (equal to  
Eligible desaturation signals initiate the SSD sequence.  
While in SSD, the driver’s output goes to a high  
impedance state and the SSD pull-down is activated to  
turn off the IGBT through the SSDH/SSDL pin. The  
SY_FLT output pin (active low, see Fig. 14) reports the  
gate driver status during the SSD sequence (tSS). Once  
the SSD has finished, SY_FLT releases, and the gate  
driver generates a FAULT signal (see the FAULT/SD  
section) by activating the FAULT/SD pin. This generates  
a hard shutdown for both the high and low output stages  
(HO=LO=low). Each driver is latched low until the fault is  
cleared (see FLT_CLR).  
V
CC/IDS- or VBS/IDS- for IR2114 or IR2214) or by a  
dedicated circuit (see the active-bias section for IR21141  
and IR22141). When VCE increases, the voltage at the  
DSH or DSL pin increases too. Being internally biased to  
the local supply, the DSH/DSL voltage is automatically  
clamped. When DSH/DSL exceeds the VDESAT+  
threshold, the comparator triggers (see Fig. 13). The  
comparator’s output is filtered in order to avoid false  
desaturation detection by externally induced noise;  
pulses shorter than tDS are filtered out. To avoid  
detecting a false desaturation event during IGBT turn on,  
the desaturation circuit is disabled by a blanking signal  
(TBL, see blanking block in Fig. 13). This time is the  
estimated maximum IGBT turn on time and must be not  
exceeded by proper gate resistance sizing. When the  
IGBT is not completely saturated after TBL, desaturation  
is detected and the driver will turn off.  
Figure 14 shows the fault management circuit. In this  
diagram DesatHS and DesatLS are two internal signals  
that come from the output stages (see Fig. 13).  
It must be noted that while in SSD, both the  
undervoltage fault and external SD are masked until the  
end of SSD. Desaturation protection is working  
independently by the other control pin and it is disabled  
only when the output status is off.  
www.irf.com  
13  
IR211(4,41)/IR221(4,41)SSPbF  
In the high side circuit, the desaturation biasing current  
may become relevant for dimensioning the bootstrap  
capacitor (see Fig. 19). In fact, a pull up resistor with a  
FAULT  
low resistance may result in  
a high current the  
VCC  
VB  
VCC  
VB  
VCC  
VB  
significantly discharges the bootstrap capacitor. For that  
reason, the typical pull up resistor value is on the order  
of 100 k. This is the value of the internal pull up.  
LIN  
HIN  
FLT_CLR  
HOP  
HON  
SSH  
LIN  
HIN  
FLT_CLR  
HOP  
HON  
SSH  
LIN  
HIN  
FLT_CLR  
HOP  
HON  
SSH  
DSH  
VS  
DSH  
VS  
DSH  
VS  
SY_FLT  
SY_FLT  
SY_FLT  
LOP  
LON  
SSL  
LOP  
LON  
SSL  
LOP  
LON  
SSL  
FAULT/SD  
FAULT/SD  
FAULT/SD  
While the impedance of the DSH/DSL pins is very low  
when the transistor is on (low impedance path through  
the external diode down to the power transistor), the  
impedance is only controlled by the pull up resistor when  
the transistor is off. In that case, relevant dV/dt applied  
by the power transistor during the commutation at the  
output results in a considerable current injected through  
the stray capacitance of the diode into the desaturation  
detection pin (DSH/DSL). This coupled noise may be  
easily reduced be using an active bias structure for the  
sensing diode.  
DSL  
DSL  
DSL  
VSS  
COM  
VSS  
COM  
VSS  
COM  
phase U  
phase V  
phase W  
Figure 15: IR2214 Used in a 3 Phase Application  
1.4.4 Fault Management in Multi-Phase Systems  
In a system with two or more gate drivers the IR2214/1  
devices must be connected as shown in Fig. 15.  
SY_FLT: The bi-directional SY_FLT pins communicate  
each other through a local network. The logic signal is  
active low. The device that detects the IGBT  
desaturation activates the SY_FLT, which is then read  
by the other gate drivers. When SY_FLT is active all the  
drivers hold their output state regardless of the input  
signals (HIN, LIN) they receive from the controller (freeze  
state). This feature is particularly important in phase-to-  
phase short circuit where two IGBTs are involved; in  
fact, while one is softly shutting-down, the other must be  
prevented from hard shutdown to avoid exiting SSD. In  
the freeze state, the frozen drivers are not completely  
inactive because desaturation detection still takes the  
highest priority. SY_FLT communication has been  
designed for creating a local network between the  
drivers. There is no need to wire SY_FLT to the  
controller.  
An active bias structure is available only for the IR21141  
or IR22141 versions. The DSH/DSL pins present an  
active pull-up respectively to VB/VCC, and a pull-down  
respectively to VS/COM.  
The dedicated biasing circuit reduces the impedance on  
the DSH/DSL pin when the voltage exceeds the VDESAT  
threshold (see Fig. 16). This low impedance helps in  
rejecting the noise provided by the current injected by  
the parasitic capacitance. When the power transistor is  
fully on, the sensing diode is forward biased and the  
voltage at the DSH/DSL pin decreases. At this point the  
biasing circuit deactivates, in order to reduce the bias  
current of the diode as shown in Fig. 16.  
RDSH/L  
100K ohm  
FAULT/SD:  
The bi-directional FAULT/SD pins  
communicate with each other and with the system  
controller. The logic signal is active low. When low, the  
FAULT/SD signal commands the outputs to go off by  
hard shutdown. There are three events that can force  
FAULT/SD low:  
100 ohm  
VDSH/L  
1. Desaturation detection event: the FAULT/SD  
pin is latched low when SSD is over, and only a  
FLT_CLR signal can reset it,  
Figure 16: RDSH/L Active Biasing  
2. Undervoltage on VCC: the FAULT/SD pin is  
forced low and held until the undervoltage is  
active (not latched),  
1.6 Output Stage  
The structure is shown in Fig. 13 and consists of two  
turn on stages and one turn off stage. When the driver  
turns on the IGBT (see Fig. 8), a first stage is activated  
while an additional stage is maintained in the active state  
for a limited time (ton1). This feature boosts the total  
driving capability in order to accommodate both a fast  
gate charge to the plateau voltage and dV/dt control in  
switching.  
3. FAULT/SD is externally driven low either from  
the controller or from another IR2x14/1 device.  
This event is not latched; therefore the  
FLT_CLR cannot disable it. Only when  
FAULT/SD becomes high the device returns to  
its normal operating mode.  
1.5 Active Bias  
At turn off, a single n-channel sinks up to 3 A (IO-) and  
offers a low impedance path to prevent the self-turn on  
due to the parasitic Miller capacitance in the power  
switch.  
For the purpose of sensing the power transistor  
desaturation, the collector voltage is monitored (an  
external high voltage diode is connected between the  
IGBT’s collector and the IC’s DSH or DSL pin). The  
diode is normally biased by an internal pull up resistor  
connected to the local supply line (VB or VCC). When the  
transistor is “on” the diode is conducting and the amount  
of current flowing in the circuit is determined by the  
internal pull up resistor value.  
1.7 Timing and Logic State Diagrams Description  
The following figures show the input/output logic  
diagram. Figure 17 shows the SY_FLT and FAULT/SD  
signals as outputs, whereas Fig. 18 shows them as  
inputs.  
www.irf.com  
14  
IR211(4,41)/IR221(4,41)SSPbF  
A
B
C
D
E
F
G
HIN  
LIN  
DSH  
DSL  
SY_FLT  
FAULT/SD  
FLT_CLR  
HO(HOP/HON)  
LO(LOP/LON)  
Figure 17: I/O Timing Diagram with SY_FLT and FAULT/SD as Output  
A
B
C
D
E
F
HIN  
LIN  
SY_FLT  
FAULT/SD  
FLT_CLR  
HO (HOP/HON)  
LO (LOP/LON)  
Figure 18: I/O Logic Diagram with SY_FLT and FAULT/SD as Input  
Referred to the timing diagram of Fig. 17:  
Referred to the timing diagram Fig. 18:  
A. The device is in the hold state, regardless of  
input variations. The hold state results as  
SY_FLT is forced low externally,  
A. When the input signals are on together the  
outputs go off (anti-shoot through),  
B. The HO signal is on and the high side IGBT  
desaturates, the HO turn off softly while the  
SY_FLT stays low. When SY_FLT goes high  
the FAULT/SD goes low. While in SSD, if LIN  
goes up, LO does not change (freeze),  
C. When FAULT/SD is latched low (see  
FAULT/SD section) FLT_CLR can disable it  
and the outputs go back to follow the inputs,  
D. The DSH goes high but this is not read  
because HO is off,  
B. The device outputs go off by hard shutdown,  
externally commanded. A through B is the  
same sequence adopted by another IR2x14x  
device in SSD procedure.  
C. Externally driven low FAULT/SD (shutdown  
state) cannot be disabled by forcing FLT_CLR  
(see FAULT/SD section),  
D. The FAULT/SD is released and the outputs go  
back to follow the inputs,  
E. The LO signal is on and the low side IGBT  
desaturates, the low side behaviour is the  
same as described in point B,  
E. Externally driven low FAULT/SD: outputs go  
off by hard shutdown (like point B),  
F. As point A and B but for the low side output.  
F. The DSL goes high but this is not read as LO  
is off,  
G. As point A (anti-shoot through).  
www.irf.com  
15  
IR211(4,41)/IR221(4,41)SSPbF  
Charge required by the internal level shifters  
(QLS); typical 20 nC,  
2 Sizing Tips  
2.1 Bootstrap Supply  
Bootstrap capacitor leakage current (ILK_CAP),  
High side on time (THON).  
The VBS voltage provides the supply to the high side  
driver circuitry of the gate driver. This supply sits on top  
of the VS voltage and so it must be floating. The  
bootstrap method is used to generate the VBS supply  
and can be used with any of the IR211(4,41)/  
IR221(4,41) drivers. The bootstrap supply is formed by  
a diode and a capacitor as connected in Fig. 19.  
ILK_CAP is only relevant when using an electrolytic  
capacitor and can be ignored if other types of  
capacitors are used. It is strongly recommend using at  
least one low ESR ceramic capacitor (paralleling  
electrolytic and low ESR ceramic may result in an  
efficient solution).  
bootstrap  
resistor  
bootstrap  
diode  
DC+  
Then we have:  
Rboot  
VF  
VCC  
VB  
QTOT = QG + QLS + (ILK _ GE + IQBS  
+
VCC  
HOP  
HON  
VS  
+ ILK + ILK _ DIODE + ILK _ CAP + IDS )THON  
The minimum size of bootstrap capacitor is:  
QTOT  
bootstrap  
capacitor  
VBS  
VGE  
ILOAD  
motor  
SSDH  
VCEon  
VFP  
CBOOT min  
=
VBS  
COM  
An example follows using IR2214SS or IR22141SS:  
Figure 19: Bootstrap Supply Schematic  
a) using a 25 A @ 125 °C 1200 V IGBT  
(IRGP30B120KD):  
This method has the advantage of being simple and low  
cost but may force some limitations on duty-cycle and  
on-time since they are limited by the requirement to  
refresh the charge in the bootstrap capacitor. Proper  
capacitor choice can reduce drastically these  
limitations.  
IQBS = 800 µA  
(datasheet IR2214);  
ILK = 50 µA (see Static Electrical Characteristics);  
QLS = 20 nC  
QG = 160 nC  
ILK_GE = 100 nA  
ILK_DIODE = 100 µA  
ILK_CAP = 0  
IDS- = 150 µA (see Static Electrical Characteristics);  
THON = 100 µs.  
(datasheet IRGP30B120KD);  
(datasheet IRGP30B120KD);  
(reverse recovery <100 ns);  
2.2 Bootstrap Capacitor Sizing  
(neglected for ceramic capacitor);  
To size the bootstrap capacitor, the first step is to  
establish the minimum voltage drop (VBS) that we  
have to guarantee when the high side IGBT is on.  
And:  
If VGEmin is the minimum gate emitter voltage we want  
to maintain, the voltage drop must be:  
VCC = 15 V  
VF = 1 V  
VBS VCC VF VGE min VCEon  
under the condition,  
VCEonmax = 3.1 V  
VGEmin = 10.5 V  
the maximum voltage drop VBS becomes  
VGE min >VBSUV −  
where VCC is the IC voltage supply, VF is bootstrap  
diode forward voltage, VCEon is emitter-collector voltage  
of low side IGBT, and VBSUV- is the high-side supply  
undervoltage negative going threshold.  
VBS VCC VF VGEmin VCEon  
=
=15V1V10.5V3.1V= 0.4 V  
And the bootstrap capacitor is:  
Now we must consider the influencing factors  
contributing VBS to decrease:  
290 nC  
0.4V  
CBOOT  
= 725 nF  
IGBT turn on required gate charge (QG),  
IGBT gate-source leakage current (ILK_GE),  
Floating section quiescent current (IQBS),  
Floating section leakage current (ILK),  
Bootstrap diode leakage current (ILK_DIODE),  
Desat diode bias when on (IDS- ),  
NOTICE: VCC has been chosen to be 15 V. Some  
IGBTs may require a higher supply to work correctly  
with the bootstrap technique. Also VCC variations  
must be accounted in the above formulas.  
www.irf.com  
16  
IR211(4,41)/IR221(4,41)SSPbF  
minimize the amount of charge fed back from the  
2.3 Some Important Considerations  
bootstrap capacitor to VCC supply.  
Voltage Ripple: There are three different cases to  
consider (refer to Fig. 19).  
2.4 Gate Resistances  
The switching speed of the output transistor can be  
controlled by properly sizing the resistors controlling the  
turn-on and turn-off gate currents. The following section  
provides some basic rules for sizing the resistors to  
obtain the desired switching time and speed by  
introducing the equivalent output resistance of the gate  
driver (RDRp and RDRn).  
ILOAD < 0 A; the load current flows in the low side  
IGBT (resulting in VCEon).  
VBS = VCC VF VCEon  
In this case we have the lowest value for VBS. This  
represents the worst case for the bootstrap capacitor  
sizing. When the IGBT is turned off, the Vs node is  
pushed up by the load current until the high side  
freewheeling diode is forwarded biased.  
The example shown uses IGBT power transistors and  
Figure 20 shows the nomencla*ture used in the following  
paragraphs. In addition, Vge indicates the plateau  
voltage, Qgc and Qge indicate the gate to collector and  
gate to emitter charge respectively.  
ILOAD = 0 A; the IGBT is not loaded while being on  
and VCE can be neglected  
IC  
CRES  
VBS = VCC VF  
VGE  
ILOAD > 0 A; the load current flows through the  
freewheeling diode  
t1,QGE  
VCE  
t2,QGC  
dV/dt  
VBS = VCC VF +VFP  
In this case we have the highest value for VBS. Turning  
on the high side IGBT, ILOAD flows into it and VS is  
pulled up. To minimize the risk of undervoltage, the  
bootstrap capacitor should be sized according to the  
ILOAD< 0 A case.  
IC  
90%  
CRESon  
CRES  
VGE  
Vge  
*
CRESoff  
10%  
10%  
Bootstrap Resistor: A resistor (Rboot) is placed in series  
with the bootstrap diode (see Fig. 19) in order to limit  
the current when the bootstrap capacitor is initially  
charged. We suggest not exceeding 10 to avoid  
increasing the VBS time-constant. The minimum on time  
for charging the bootstrap capacitor or for refreshing its  
charge must be verified against this time-constant.  
t,Q  
tSW  
tDon  
tR  
Figure 20: Nomenclature  
2.5 Sizing The Turn-On Gate Resistor  
Bootstrap Capacitor: For high THON designs where an  
electrolytic capacitor is used, its ESR must be  
considered. This parasitic resistance forms a voltage  
divider with Rboot, which generats a voltage step on VBS  
at the first charge of bootstrap capacitor. The voltage  
step and the related speed (dVBS/dt) should be limited.  
As a general rule, ESR should meet the following  
constraint.  
Switching-Time: For the matters of the calculation  
included hereafter, the switching time tsw is defined  
as the time spent to reach the end of the plateau  
voltage (a total Qgc+Qge has been provided to the  
IGBT gate). To obtain the desired switching time the  
gate resistance can be sized starting from Qge and  
ESR  
*
Qgc, Vcc, Vge (see Fig. 21):  
VCC 3V  
ESR+ RBOOT  
Qgc + Qge  
Iavg  
=
A parallel combination of a small ceramic capacitor and  
a large electrolytic capacitor is normally the best  
compromise, the first capacitor posses a fast time  
constant and limits the dVBS/dt by reducing the  
equivalent resistance. The second capacitor provides a  
large capacitance to maintain the VBS voltage drop  
tsw  
and  
Vcc Vg*e  
within the desired VBS  
.
RTOT  
=
Iavg  
Bootstrap Diode: The diode must have a BV > 600 V or  
1200 V and a fast recovery time (trr < 100 ns) to  
www.irf.com  
17  
IR211(4,41)/IR221(4,41)SSPbF  
IGBT, the device may self turn on, causing large  
Iavg  
CRES  
Vcc/Vb  
RDRp  
oscillation and relevant cross conduction.  
dV/dt  
HS Turning ON  
RGon  
CRESoff  
COM/Vs  
RGoff  
OFF  
ON  
Figure 21: RGon Sizing  
RDRn  
CIES  
where RTOT = RDRp + RGon  
Figure 22: RGoff Sizing: Current Path When Low Side is  
RGon = gate on-resistor  
Off and High Side Turns On  
RDRp = driver equivalent on-resistance  
The transfer function between the IGBT collector and  
the IGBT gate then becomes:  
When RGon > 7 , RDRp is defined by  
tSW  
Vcc Vcc  
Vge  
s (RGoff + RDRn )CRESoff  
+
1 when tSW > ton1  
=
Io1+ Io2+ ton1  
RDRp  
=
Vde 1+ s (RGoff + RDRn ) (CRESoff + CIES )  
Vcc  
Io1+  
when tSW ton1  
Which yields to a high pass filter with a pole at:  
1
1/τ =  
(IO1+ ,IO2+ and ton1 from “Static Electrical  
Characteristics”).  
(RGoff + RDRn ) (CRESoff + CIES )  
Table 1 reports the gate resistance size for two  
commonly used IGBTs (calculation made using typical  
datasheet values and assuming VCC= 15 V).  
As a result, when τ is faster than the collector rise time  
(to be verified after calculation) the transfer function can  
be approximated by:  
Output Voltage Slope: The turn-on gate resistor  
RGon can be sized to control the output slope  
(dVOUT/dt). While the output voltage has a non-  
linear behaviour, the maximum output slope can be  
approximated by:  
Vge  
Vde  
= s (RGoff + RDRn )CRESoff  
dVde  
in the  
So that Vge = (RGoff + RDRn ) CRESoff  
time domain.  
Iavg  
CRESoff  
dt  
dVout  
dt  
=
Then the condition:  
inserting the expression yielding Iavg and rearranging:  
dVout  
dt  
*
( )  
Vth >Vge = RGoff + RDRn CRESoff  
must be verified to avoid spurious turn on.  
Vcc Vge  
RTOT  
=
dVout  
dt  
CRESoff  
Rearranging the equation yields:  
As an example, table 2 shows the sizing of gate  
resistance to get dVout/dt= 5 V/ns when using two  
popular IGBTs (typical datasheet values are used and  
VCC= 15 V is assumed).  
Vth  
RGoff  
<
RDRn  
dV  
dt  
CRESoff  
In any case, the worst condition for unwanted turn on is  
with very fast steps on the IGBT collector.  
NOTICE: Turn on time must be lower than TBL to avoid  
improper desaturation detection and SSD triggering.  
In that case, the collector to gate transfer function can  
be approximated with the capacitor divider:  
2.6 Sizing the Turn-Off Gate Resistor  
The worst case in sizing the turn-off resistor RGoff is  
when the collector of the IGBT in the off state is forced  
to commutate by an external event (e.g., the turn-on of  
the companion IGBT). In this case the dV/dt of the  
output node induces a parasitic current through CRESoff  
flowing in RGoff and RDRn (see Fig. 22). If the voltage  
drop at the gate exceeds the threshold voltage of the  
CRESoff  
Vge =Vde ⋅  
(CRESoff + CIES )  
which is driven only by IGBT characteristics.  
www.irf.com  
18  
IR211(4,41)/IR221(4,41)SSPbF  
As an example, table 3 reports RGoff (calculated with the  
above mentioned disequation) for two popular IGBTs to  
withstand dVout/dt = 5 V/ns.  
NOTICE: The above-described equations are intended  
to approximate a way to size the gate resistance. A  
more accurate sizing may provide more precise device  
and PCB (parasitic) modelling.  
IGBT  
Qge  
Qgc  
Vge*  
tsw  
Iavg  
Rtot  
Tsw  
RGon std commercial value  
IRGP30B120K(D) 19 nC 82 nC  
9 V  
9 V  
400 ns 0.25 A  
200 ns 0.15 A  
24 RTOT - RDRp = 12.7 10 ꢀ  
40 RTOT - RDRp = 32.5 33 ꢀ  
420 ns  
202 ns  
IRG4PH30K(D)  
IGBT  
10 nC 20 nC  
Table 1: tsw Driven RGon Sizing  
Qge  
Qgc  
Vge* CRESoff  
Rtot  
dVout/dt  
RGon std commercial value  
IRGP30B120K(D)  
IRG4PH30K(D)  
19 nC  
10 nc  
82 nC  
20 nC  
9 V  
9 V  
85 pF  
14 pF  
14 Ω  
85 Ω  
RTOT - RDRp = 6.5 8.2 ꢀ  
RTOT - RDRp = 78 82 ꢀ  
4.5 V/ns  
5 V/ns  
Table 2: dVOUT/dt Driven RGon Sizing  
IGBT  
IRGP30B120K(D)  
IRG4PH30K(D)  
Vth(min)  
4
CRESoff  
85 pF  
14 pF  
RGoff  
RGoff 4 ꢀ  
3
RGoff 35 ꢀ  
Table 3: RGoff Sizing  
www.irf.com  
19  
IR211(4,41)/IR221(4,41)SSPbF  
3 PCB Layout Tips  
3.5 Routing and Placement Example  
Figure 24 shows one of the possible layout solutions  
using a 3 layer PCB. This example takes into account  
all the previous considerations. Placement and routing  
for supply capacitors and gate resistances in the high  
and low voltage side minimize the supply path loop and  
the gate drive loop. The bootstrap diode is placed under  
the device to have the cathode as close as possible to  
the bootstrap capacitor and the anode far from high  
3.1 Distance from High to Low Voltage  
The IR2x14/1 pin out maximizes the distance between  
floating (from DC- to DC+) and low voltage pins. It’s  
strongly recommended to place components tied to  
floating voltage on the high voltage side of device (VB,  
VS side) while the other components are placed on the  
opposite side.  
voltage and close to VCC  
.
3.2 Ground Plane  
To minimize noise coupling, the ground plane must not  
be placed under or near the high voltage floating side.  
R2  
D2  
D3  
DC+  
VGH  
R3  
3.3 Gate Drive Loops  
R4  
Current loops behave like antennas and are able to  
receive and transmit EM noise. In order to reduce the  
EM coupling and improve the power switch turn on/off  
performances, gate drive loops must be reduced as  
much as possible. Figure 23 shows the high and low  
side gate loops.  
IR2214  
Phase  
R5  
VGL  
R6  
R7  
C2  
a) Top Layer  
Moreover, current can be injected inside the gate drive  
loop via the IGBT collector-to-gate parasitic  
capacitance. The parasitic auto-inductance of the gate  
loop contributes to developing a voltage across the  
gate-emitter, increasing the possibility of self turn-on.  
For this reason, it is strongly recommended to place the  
three gate resistances close together and to minimize  
the loop area (see Fig. 23).  
C1  
VEH  
VCC  
R1  
VEL  
IGC  
VB/ VCC  
gate  
b) Bottom Layer  
resistance  
CGC  
H/LOP  
H/LON  
SSDH/L  
Gate Drive  
VGE  
Loop  
VS/COM  
Figure 23: gate drive loop  
c) Ground Plane  
Figure 24: layout example  
3.4 Supply Capacitors  
The IR2x14x output stages are able to quickly turn on  
an IGBT, with up to 2 A of output current. The supply  
capacitors must be placed as close as possible to the  
device pins (VCC and VSS for the ground tied supply, VB  
and VS for the floating supply) in order to minimize  
parasitic inductance/resistance.  
Information below refers to Fig. 24:  
Bootstrap section: R1, C1, D1  
High side gate: R2, R3, R4  
High side Desat: D2  
Low side supply: C2  
Low side gate: R5, R6, R7  
Low side Desat: D3  
www.irf.com  
20  
IR211(4,41)/IR221(4,41)SSPbF  
Figures 25-83 provide information on the experimental performance of the IR211(4,41)/ IR221(4,41)SSPbF HVIC. The  
line plotted in each figure is generated from actual lab data. A large number of individual samples from multiple wafer lots  
were tested at three temperatures (-40 ºC, 25 ºC, and 125 ºC) in order to generate the experimental (Exp.) curve. The  
line labeled Exp. consist of three data points (one data point at each of the tested temperatures) that have been  
connected together to illustrate the understood trend. The individual data points on the curve were determined by  
calculating the averaged experimental value of the parameter (for a given temperature).  
10.30  
10.25  
10.20  
10.15  
10.10  
10.05  
10.00  
9.95  
9.60  
9.55  
9.50  
9.45  
9.40  
9.35  
9.30  
9.25  
9.20  
9.15  
Exp.  
Exp.  
-50  
-25  
0
25  
Temperature (oC)  
Figure 25. VCCUV+ Threshold vs. Temperature  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Figure 26. VCCUV- Threshold vs. Temperature  
9.70  
9.65  
9.60  
9.55  
9.50  
9.45  
9.40  
9.35  
9.30  
9.25  
10.45  
10.40  
10.35  
10.30  
10.25  
10.20  
10.15  
10.10  
10.05  
10.00  
Exp.  
Exp.  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Figure 28. VBSUV- Threshold vs. Temperature  
Figure 27. VBSUV+ Threshold vs. Temperature  
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
600  
500  
400  
300  
200  
100  
0
Exp.  
Exp.  
-50  
-25  
0
25  
Temperature (oC)  
Figure 30. VCC Quiescent Current vs. Temperature  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Figure 29. VBS Quiescent Current vs. Temperature  
www.irf.com  
21  
IR211(4,41)/IR221(4,41)SSPbF  
2.70  
2.30  
1.90  
1.50  
1.10  
2.10  
1.80  
1.50  
1.20  
0.90  
Exp.  
Exp.  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
Temperature (oC)  
Figure 32. VIL Logic Input Voltage vs. Temperature  
50  
75  
100  
125  
Temperature (oC)  
Figure 31. VIH Logic Input Voltage vs. Temperature  
2.20  
0.60  
Exp.  
0.50  
1.90  
1.60  
1.30  
1.00  
0.40  
0.30  
0.20  
0.10  
0.00  
Exp.  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Figure 34. LIN Logic "1" Input Voltage vs. Temperature  
Figure 33. VIHSS HIN Logic Input Hysteresis vs.  
Temperature  
1.90  
0.90  
0.70  
1.60  
1.30  
1.00  
0.70  
Exp.  
0.50  
Exp.  
0.30  
0.10  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Figure 35. LIN Logic "0" Input Voltage vs. Temperature  
Figure 36. VIHSS LIN Logic Input Hysteresis vs.  
Temperature  
www.irf.com  
22  
IR211(4,41)/IR221(4,41)SSPbF  
2.30  
2.00  
1.70  
1.40  
1.10  
1.70  
1.40  
1.10  
0.80  
Exp.  
Exp.  
-50  
-25  
0
25  
50  
75  
100  
125  
125  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Figure 37. VIH FLTCLR Logic Input Voltage vs.  
Temperature  
Figure 38. VIL FLTCLR Logic Input Voltage vs.  
Temperature  
2.10  
0.60  
Exp.  
1.70  
1.30  
0.90  
0.50  
0.50  
0.40  
0.30  
0.20  
Exp.  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
Temperature (oC)  
Temperature (oC)  
Figure 40. VIH SD Logic Input Voltage vs. Temperature  
Figure 39. VIHSS FLTCLR Logic Input Hysteresis vs.  
Temperature  
0.60  
2.10  
0.50  
1.70  
1.30  
0.90  
0.50  
Exp.  
0.40  
0.30  
0.20  
Exp.  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
Temperature (oC)  
Temperature (oC)  
Figure 42. VIHSS SD Logic Input Hysteresis vs. Temperature  
Figure 41. VIL SD Logic Input Voltage vs. Temperature  
www.irf.com  
23  
IR211(4,41)/IR221(4,41)SSPbF  
2.40  
2.00  
1.60  
1.20  
0.80  
2.40  
2.00  
1.60  
1.20  
0.80  
Exp.  
Exp.  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Figure 43. VIH SYFLT Logic Input Voltage vs. Temperature  
Figure 44. VIL SYFLT Logic Input Voltage vs. Temperature  
60  
50  
40  
0.60  
0.50  
Exp.  
0.40  
0.30  
0.20  
Exp.  
30  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
Temperature (oC)  
Figure 46. VOL LO vs. Temperature  
50  
75  
100  
125  
Temperature (oC)  
Figure 45. VIHSS SYFLT Logic Input Hysteresis vs.  
Temperature  
65  
55  
45  
35  
25  
900  
725  
550  
375  
200  
Exp.  
Exp.  
-50  
-25  
0
25  
Temperature (oC)  
Figure 48. VOL HO vs. Temperature  
50  
75  
100  
125  
-50  
-25  
0
25  
Temperature (oC)  
Figure 47. VOH LO vs. Temperature  
50  
75  
100  
125  
www.irf.com  
24  
IR211(4,41)/IR221(4,41)SSPbF  
9
8
7
6
5
900  
725  
550  
375  
200  
Exp.  
Exp.  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
Temperature (oC)  
Figure 49. VOH HO vs. Temperature  
50  
75  
100  
125  
Temperature (oC)  
Figure 50. VDSH+ DSH Input Voltage vs. Temperature  
8.30  
9
7.60  
9
8
8
7
Exp.  
6.90  
6.20  
5.50  
Exp.  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Figure 52. VDSH- DSH Input Voltage vs. Temperature  
Figure 51. VDSL+ DSL Input Voltage vs. Temperature  
90  
75  
60  
8.00  
7.50  
Exp.  
7.00  
45  
6.50  
6.00  
Exp.  
30  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Figure 54. FAULT/SD Open Drain Resistance vs.  
Temperature  
Figure 53. VDSL- DSL Input Voltage vs. Temperature  
www.irf.com  
25  
IR211(4,41)/IR221(4,41)SSPbF  
490  
430  
370  
310  
250  
130  
105  
80  
Exp.  
55  
Exp.  
30  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Figure 55. SY_FLT Open Drain Resistance vs. Temperature  
Figure 56. DTL Off Deadtime vs. Temperature  
780  
660  
540  
420  
300  
490  
430  
Exp.  
370  
Exp.  
310  
250  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Figure 58. TonH Propagation Delay vs. Temperature  
Figure 57. DTH Off Deadtime vs. Temperature  
780  
660  
540  
420  
300  
32  
28  
24  
20  
Exp.  
Exp.  
16  
12  
-50  
-25  
0
25  
Temperature (oC)  
Figure 60. TrH Turn On Rise Time vs. Temperature  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Figure 59. ToffH Propagation Delay vs. Temperature  
www.irf.com  
26  
IR211(4,41)/IR221(4,41)SSPbF  
780  
18  
15  
12  
9
660  
540  
420  
300  
Exp.  
Exp.  
6
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
Temperature (oC)  
Figure 61. TfH Turn Off Fall Time vs. Temperature  
50  
75  
100  
125  
Temperature (oC)  
Figure 62. TonL Propagation Delay vs. Temperature  
780  
40  
33  
660  
540  
420  
300  
26  
Exp.  
Exp.  
19  
12  
-50  
-25  
0
25  
Temperature (oC)  
Figure 63. ToffL Propagation Delay vs. Temperature  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Figure 64. TrL Turn On Rise Time vs. Temperature  
6
5
4
3
2
20  
16  
12  
8
Exp.  
Exp.  
4
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
Temperature (oC)  
Figure 66. tDSAT1 vs. Temperature  
50  
75  
100  
125  
Temperature (oC)  
Figure 65. TfL Turn Off Fall Time vs. Temperature  
www.irf.com  
27  
IR211(4,41)/IR221(4,41)SSPbF  
6
5
4
3
2
3
3
2
2
1
Exp.  
Exp.  
-50  
-25  
0
25  
Temperature (oC)  
Figure 67. tDSAT2 vs. Temperature  
50  
75  
100  
100  
100  
125  
125  
125  
-50  
-25  
0
25  
Temperature (oC)  
Figure 68. tDSAT3 vs. Temperature  
50  
75  
100  
125  
17  
14  
11  
8
4.50  
3.50  
2.50  
1.50  
0.50  
Exp.  
Exp.  
5
-50  
-25  
0
25  
Temperature (oC)  
Figure 69. tDSAT4 vs. Temperature  
50  
75  
-50  
-25  
0
25  
Temperature (oC)  
Figure 70. tSSH vs. Temperature  
50  
75  
100  
125  
1.80  
1.45  
1.10  
0.75  
0.40  
17  
14  
11  
8
Exp.  
Exp.  
5
-50  
-25  
0
25  
Temperature (oC)  
Figure 72. IO2+H SC Pulsed Current vs. Temperature  
50  
75  
100  
125  
-50  
-25  
0
25  
Temperature (oC)  
Figure 71. tSSL vs. Temperature  
50  
75  
www.irf.com  
28  
IR211(4,41)/IR221(4,41)SSPbF  
1.80  
1.45  
1.10  
0.75  
0.40  
3.25  
2.80  
2.35  
1.90  
1.45  
Exp.  
Exp.  
-50  
-25  
0
25  
Temperature (oC)  
Figure 73. IO2+L SCPulsed Current vs. Temperature  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Figure 74. IO-H SC Pulsed Current vs. Temperature  
3.50  
900  
3.05  
2.60  
2.15  
1.70  
1.25  
700  
Exp.  
Exp.  
500  
300  
100  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
Temperature (oC)  
Figure 76. tON1H vs. Temperature  
50  
75  
100  
125  
Temperature (oC)  
Figure 75. IO-L SC Pulsed Current vs. Temperature  
3.00  
500  
400  
2.50  
2.00  
1.50  
1.00  
Exp.  
300  
Exp.  
200  
100  
-50  
-25  
0
25  
Temperature (oC)  
Figure 78. IO1+H SC Pulsed Current vs. Temperature  
50  
75  
100  
125  
-50  
-25  
0
25  
Temperature (oC)  
Figure 77. tON1L vs. Temperature  
50  
75  
100  
125  
www.irf.com  
29  
IR211(4,41)/IR221(4,41)SSPbF  
900  
700  
500  
300  
100  
4
3
2
1
0
Exp.  
Exp.  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Figure 79. IO1+L SC Pulsed Current vs. Temperature  
Figure 80. IHIN+ Logic "1" Input Bias Current vs.  
Temperature  
0.02  
900  
Exp.  
-0.03  
700  
500  
300  
100  
-0.08  
-0.13  
-0.18  
-0.23  
-0.28  
Exp.  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Temperature (oC)  
Figure 81. IHIN- Logic "0" Input Bias Currentvs.  
Temperature  
Figure 82. ILIN+ Logic "1" Input Bias Current vs.  
Temperature  
0.02  
-0.03  
Exp.  
-0.08  
-0.13  
-0.18  
-0.23  
-0.28  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (oC)  
Figure 83. ILIN- Logic "0" Input Bias Current vs.  
Temperature  
www.irf.com  
30  
IR211(4,41)/IR221(4,41)SSPbF  
Case Outline  
www.irf.com  
31  
IR211(4,41)/IR221(4,41)SSPbF  
LOADED TAPE FEED DIRECTION  
B
A
H
D
F
C
NOTE : CONTROLLING  
DIMENSION IN MM  
E
G
CARRIER TAPE DIMENSION FOR 24SSOP:2000 units per reel  
Metric  
Imperial  
Code  
A
Min  
11.90  
3.90  
15.70  
7.40  
8.30  
8.50  
1.50  
1.50  
Max  
12.10  
4.10  
16.30  
7.60  
8.50  
8.70  
n/a  
Min  
Max  
0.476  
0.161  
0.641  
0.299  
0.334  
0.342  
n/a  
0.468  
0.153  
0.618  
0.291  
0.326  
0.334  
0.059  
0.059  
B
C
D
E
F
G
H
1.60  
0.062  
F
D
B
C
A
E
G
H
REEL DIMENSIONS FOR 24SSOP  
Metric  
Imperial  
Max  
Code  
A
Min  
329.60  
20.95  
12.80  
1.95  
Max  
330.25  
21.45  
13.20  
2.45  
102.00  
22.40  
21.10  
18.40  
Min  
12.976  
0.824  
0.503  
0.767  
3.858  
n/a  
13.001  
0.844  
0.519  
0.096  
4.015  
0.881  
0.830  
0.724  
B
C
D
E
98.00  
n/a  
18.50  
16.40  
F
G
0.728  
0.645  
H
www.irf.com  
32  
IR211(4,41)/IR221(4,41)SSPbF  
LEAD-FREE PART MARKING INFORMATION  
Part number  
IRSxxxxx  
YWW?  
Date code  
IR logo  
?XXXX  
Pin 1  
Identifier  
Lot Code  
(Prod mode – 4 digit SPN code)  
?
P
MARKING CODE  
Lead Free Released  
Non-Lead Free  
Relased  
Assembly site code  
Per SCOP 200-002  
ORDER INFORMATION  
24-Lead SSOP IR2114SSPbF  
24-Lead SSOP IR21141SSPbF  
24-Lead SSOP IR2214SSPbF  
24-Lead SSOP IR22141SSPbF  
24-Lead SSOP Tape & Reel IR2114SSPbF  
24-Lead SSOP Tape & Reel IR21141SSPbF  
24-Lead SSOP Tape & Reel IR2214SSPbF  
24-Lead SSOP Tape & Reel IR22141SSPbF  
WORLDWIDE HEADQUARTERS: 233 Kansas Street, El Segundo, CA 90245 Tel: (310) 252-7105  
This part has been qualified per industrial level  
http://www.irf.com Data and specifications subject to change without notice. 5/18/2006  
www.irf.com  
33  

相关型号:

IR2214SS

HALF-BRIDGE GATE DRIVER IC
INFINEON

IR2214SSPBF

HALF-BRIDGE GATE DRIVER IC
INFINEON

IR2214SSTRPBF

Half Bridge Based Peripheral Driver, PDSO24, LEAD FREE, MO-150AH, SSOP-24
INFINEON

IR2233

3-PHASE BRIDGE DRIVER
INFINEON

IR2233J

3-PHASE BRIDGE DRIVER
INFINEON

IR2233JSPBF

3-PHASE BRIDGE DRIVER
INFINEON

IR2233JTR

MOSFET Driver, CMOS, PQCC44
INFINEON

IR2233JTRPBF

MOSFET Driver, CMOS, PQCC44,
INFINEON

IR2233S

3-PHASE BRIDGE DRIVER
INFINEON

IR2233SPBF

Floating channel designed for bootstrap operation Fully operational to 600V or1200V Tolerant to negative transient voltage dV/dt immune
INFINEON

IR2235

3-PHASE BRIDGE DRIVER
INFINEON

IR2235J

3-PHASE BRIDGE DRIVER
INFINEON