IR3084U [INFINEON]

XPHASETM VR10, VR11 & OPTERON/ATHLON64 CONTROL IC; XPHASETM VR10 , VR11和OPTERON / ATHLON64控制IC
IR3084U
型号: IR3084U
厂家: Infineon    Infineon
描述:

XPHASETM VR10, VR11 & OPTERON/ATHLON64 CONTROL IC
XPHASETM VR10 , VR11和OPTERON / ATHLON64控制IC

文件: 总47页 (文件大小:724K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IR3084U  
Data Sheet No. PD94719  
XPHASETM VR10, VR11 & OPTERON/ATHLON64 CONTROL IC  
DESCRIPTION  
The IR3084U Control IC combined with an IR XPhaseTM Phase IC provides a full featured and flexible  
way to implement a complete VR10, VR11, Opteron, or Athlon64 power solution. The “Control” IC  
provides overall system control and interfaces with any number of “Phase” ICs which each drive and  
monitor a single phase of a multiphase converter. The XPhaseTM architecture results in a power supply  
that is smaller, less expensive, and easier to design while providing higher efficiency than conventional  
approaches.  
The IR3084U is based on the IR3084 VR10 Control IC, but incorporates the following modifications;  
Supports VR11 7-bit VID, VR10 7-bit extended VID, and Opteron/Athlon64 5-bit VID codes  
Supports both VR11 and legacy Opteron/Athlon64 start-up sequences  
VID Select pin sets the DAC to VR10, VR11, or Opteron/Athlon64  
INTL_MD output pin indicates which DAC is selected – Intel or AMD  
VOSENSfloat detection protects the CPU in the event that the VOSENStrace is broken  
Enable Input Thresholds set by VID Select pin to either VR10, VR11 or Opteron/Athlon64  
VID Input Thresholds set by VID Select pin to either 0.6V (VR10/VR11) or 1.24V (AMD)  
No-Load Setpoint Current changes polarity based on VID Select to accommodate VR10, VR11  
(negative offset from DAC) or Opteron/Athlon64 (positive offset from DAC).  
FEATURES  
1 to X phase operation with matching Phase IC  
7-bit VR 10/11 compatible VID with 0.5% overall system set point accuracy  
5-bit Opteron/Athlon64 compatible VID with 1% overall system set point accuracy  
Programmable Dynamic VID Slew Rate  
+/-300mV Differential Remote Sense  
Programmable VID Offset Voltage at the Error Amplifier’s Non-Inverting Input allows Zero Offset  
Programmable 150kHz to 1MHz oscillator  
Programmable VID Offset and Load Line output impedance  
Programmable Hiccup Over-Current Protection with Delay to prevent false triggering  
Simplified VR Ready output provides indication of proper operation and avoids false triggering  
Operates from 12V input with 9.9V Under-Voltage Lockout  
6.8V/6mA Bias Regulator provides System Reference Voltage  
Phase IC Gate Driver Bias Regulator / VRHOT Comparator  
Reduced Over-Current Detect Delay eliminates and external resistor in typical applications  
Small thermally enhanced 28L MLPQ package  
Page 1 of 47  
9/14/2005  
IR3084U  
TYPICAL APPLICATION CIRCUIT  
CCP1  
100pF  
EA  
+5.0V  
RT2  
R117  
4.7K, B=4450 1.21K  
RCP  
2.49K  
CCP  
56nF  
R1331  
1
Q4  
CJD200  
VREG_12V_FILTERED  
VGDRIVE  
R137  
2K  
RFB1  
162  
CFB  
12nF  
C204  
0.1uF  
C135  
1uF  
18  
EAOUT  
U5  
VCC_SENSE  
VSS_SENSE  
17  
27  
15  
19  
20  
VR_RDY  
ISHARE  
RMP  
FB  
VRRDY  
IIN  
RFB  
348  
RMPOUT  
VBIAS  
C1009  
1nF  
RDRP1  
750  
VBIAS  
RDRP  
750  
C134  
0.1uF  
C89  
100pF  
IR3084UMTR  
Q5  
24  
23  
25  
REGDRV  
16  
VDRP  
REGFB  
REGSET  
28  
9
8
7
6
5
4
3
1
OUTEN  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
VID6  
VID_SEL  
ENABLE  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
VID6  
VIDSEL  
2
RVGDRV  
97.6K  
CVGDRV  
10nF  
INTL_MD  
Q6  
RVSETPT1  
124  
14  
13  
12  
11  
VSETPT  
OCSET  
VDAC  
VREG_12V_FILTERED  
RVSETPT  
124  
21  
26  
VCC  
R30  
10  
C130  
0.1uF  
ROCSET  
12.7K  
SS/DEL  
VDAC  
CSS/DEL  
0.1uF  
RVDAC  
3.5  
CVDAC  
33nF  
VOSNS-- LGND ROSC  
10 22  
ROSC  
30.1K  
Page 2 of 47  
9/14/2005  
IR3084U  
ORDERING INFORAMATION  
DEVICE  
ORDER QUANTITY  
3000 Tape and Reel  
100 Piece Strip  
IR3084UMTRPBF  
IR3084UMPBF  
ABSOLUTE MAXIMUM RATINGS  
Operating Junction Temperature……………..0 to 150oC  
Storage Temperature Range………………….65oC to 150oC  
ESD Rating………………………………………HBM Class 1B JEDEC standard  
Moisture Sensitivity Level………………………JEDEC Level 3 @ 260 oC  
PIN #  
1
PIN NAME  
VIDSEL  
INTL_MD  
VID6VID0  
VOSNS-  
ROSC  
VMAX  
20V  
20V  
20V  
0.5V  
20V  
20V  
20V  
20V  
20V  
20V  
20V  
10V  
20V  
20V  
20V  
n/a  
VMIN  
-0.3V  
-0.3V  
-0.3V  
-0.5V  
-0.5V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
n/a  
ISOURCE  
1mA  
1mA  
1mA  
10mA  
1mA  
1mA  
1mA  
1mA  
1mA  
5mA  
1mA  
20mA  
5mA  
50mA  
1mA  
50mA  
1mA  
10mA  
1mA  
1mA  
1mA  
1mA  
ISINK  
1mA  
1mA  
1mA  
10mA  
1mA  
1mA  
1mA  
1mA  
1mA  
5mA  
1mA  
20mA  
5mA  
10mA  
50mA  
1mA  
1mA  
50mA  
1mA  
1mA  
20mA  
1mA  
2
3-9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
VDAC  
OCSET  
VSETPT  
IIN  
VDRP  
FB  
EAOUT  
RMPOUT  
VBIAS  
VCC  
LGND  
REGFB  
REGDRV  
REGSET  
SS/DEL  
VRRDY  
ENABLE  
20V  
20V  
20V  
20V  
20V  
20V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
-0.3V  
Page 3 of 47  
9/14/2005  
IR3084U  
ELECTRICAL SPECIFICATIONS  
Unless otherwise specified, these specifications apply over: 9.5V VCC 16V, 0.3V VOSNS- 0.3V,  
0 oC TJ 100 oC, ROSC = 24k, CSS/DEL = 0.1μF ±10%  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
VDAC REFERENCE  
VR10/VR11 System Set-Point  
Accuracy (Deviation from  
Tables 1 & 2 per test circuit in  
Figure 1 which emulates in-VR  
operation)  
VID 1V, 10kΩ≤ROSC100k,  
25 oC TJ 100 oC  
0.5  
0.5  
%
0.8V VID < 1V, 10kΩ≤ROSC100k,  
25 oC TJ 100 oC  
5  
1  
+5  
1
mV  
%
Opteron/Athlon64 System Set-  
Point Accuracy  
25 oC TJ 100 oC  
Source Current  
Sink Current  
Includes OCSET and VSETPT currents  
Includes OCSET and VSETPT currents  
104  
92  
113  
100  
122  
108  
μA  
μA  
VR10/VR11 VIDx Input  
Threshold  
500  
600  
700  
mV  
V
Opteron/Athlon64 VIDx Input  
Threshold  
1.04  
1.24  
1.44  
VIDx Input Bias Current  
VIDx 11111x Blanking Delay  
VIDSEL Pull up Voltage  
VIDSEL Pull up Resistor  
0V < VIDx < VCC  
5  
0
5
2.1  
2.85  
9
μA  
μs  
V
Measure Time till VRRDY drives low  
VIDSEL Floating  
0.5  
1.3  
2.4  
4.5  
1.95  
2.25  
KΩ  
VIDSEL VR10/Opteron  
Threshold  
VIDSEL “LOW”  
0.5  
0.9  
1.8  
0.6  
1.3  
0.7  
1.7  
2.1  
V
V
V
VIDSEL Opteron Voltage  
6.49K from VIDSEL to GND  
VIDSEL Opteron/VR11  
Threshold  
1.95  
ERROR AMPLIFIER  
Measure V(FB) – V(VSETPT) per test  
circuit in Figure 1. Applies to all VID  
codes. Note 2.  
Input Offset Voltage  
5  
0.0  
5
mV  
FB Bias Current  
VSETPT Bias Current  
VSETPT Bias Current  
DC Gain  
1  
48.5  
54  
90  
0.1  
51  
0.5  
53.5  
39  
110  
μA  
μA  
μA  
VR10/VR11 Mode  
Opteron/Athlon64 Mode  
Note 1  
47  
100  
10  
dB  
Gain Bandwidth Product  
Corner Frequency  
Slew Rate  
Note 1  
6
MHz  
Hz  
45 deg Phase Shift, Note 1  
Note 1  
200  
3.2  
400  
5
1.4  
1.2  
0.5  
V/μs  
mA  
mA  
Source Current  
Sink Current  
0.7  
1.1  
0.35  
1.7  
VBIAS–VEAOUT (referenced to  
VBIAS)  
Max Voltage  
Min Voltage  
150  
30  
350  
125  
600  
200  
mV  
mV  
Normal operation or Fault mode  
Page 4 of 47  
9/14/2005  
IR3084U  
PARAMETER  
CURRENT SENSE INPUT  
IIN BIAS CURRENT  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
2.0  
0.2  
1.0  
V(SS/DEL) > 0.85V, V(EAOUT) > 0.5V  
V(SS/DEL) < 0.35V  
µA  
IIN Preconditioning Pull-Down  
Resistance  
5.6  
12.5  
19.4  
KΩ  
IIN Preconditioning RESET  
Threshold  
V(EAOUT)  
V(SS/DEL)  
0.20  
0.35  
0.35  
0.60  
0.50  
0.85  
V
V
IIN Preconditioning SET  
Threshold  
VDRP BUFFER AMPLIFIER  
Input Offset Voltage  
Source Current  
Sink Current  
V(VDRP) – V(IIN), 0.5V < V(IIN) < 5V  
0.5V < V(IIN) < 5V  
0.5V < V(IIN) < 5V  
Note 1  
10  
9.0  
0.2  
1
2  
6.8  
0.85  
6
6
mV  
mA  
4.0  
4.1  
mA  
Bandwidth (-3dB)  
Slew Rate  
MHz  
V/μs  
Note 1  
5
10  
VBIAS REGULATOR  
Output Voltage  
Current Limit  
5mA < I(VBIAS) < 0mA  
6.6  
6.9  
7.2  
V
35  
20  
6  
mA  
OVER-CURRENT COMPARATOR  
Input Offset Voltage  
OCSET Bias Current  
1V < V(OCSET) < 5V  
10  
0
10  
mV  
53.5  
51  
48.5  
μA  
SOFT START AND DELAY  
Start Delay (TD1)  
RDRP = ∞  
1.2  
0.8  
0.2  
1.8  
1.8  
1.0  
2.6  
2.8  
2.5  
ms  
ms  
ms  
Soft Start Time (TD2)  
VID Sample Delay (TD3)  
RDRP = , Time to reach 1.1V  
VR10/VR11 mode only  
DVID Slew Time & VRRDY  
Delay (TD4+TD5)  
VR10/VR11 mode only  
0.5  
1.3  
2.2  
ms  
Opteron/Athlon64 mode. Measured from  
Vcore=1.1V to when VRRDY transitions HI.  
PowerGood Delay  
0.7  
150  
0.85  
2.3  
250  
1.3  
4.7  
350  
1.5  
ms  
us  
V
OC Delay Time  
SS/DEL to FB Input Offset  
Voltage  
With FB = 0V, adjust V(SS/DEL) until  
EAOUT drives high  
SS/DEL Charge Current  
40  
4
70  
100  
9
μA  
μA  
SS/DEL Discharge Current  
6.5  
Charge/Discharge Current  
Ratio  
9.5  
11.2  
12.5  
μA/μA  
OC Discharge Current  
Charge Voltage  
Note 1  
20  
40  
60  
μA  
V
3.6  
3.85  
4.1  
OC/VRRDY Delay Comparator Relative to Charge Voltage, SS/DEL  
Threshold rising  
OC/VRRDY Delay Comparator Relative to Charge Voltage, SS/DEL  
80  
mV  
100  
20  
mV  
mV  
V
Threshold  
falling  
Delay Comparator Hysteresis  
Note 1  
VID Sample Delay  
Comparator Threshold  
VR10/VR11 mode only  
3.10  
SS/DEL Discharge  
Comparator Threshold  
215  
mV  
Page 5 of 47  
9/14/2005  
IR3084U  
PARAMETER  
VRRDY OUTPUT  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
Output Voltage  
I(VRRDY) = 4mA  
150  
0
300  
10  
mV  
Leakage Current  
V(VRRDY) = 5.5V  
μA  
ENABLE INPUT  
VR10/11 Threshold Voltage  
VR10/11 Threshold Voltage  
VR10/11 Threshold Hysteresis  
ENABLE rising  
ENABLE falling  
800  
700  
70  
850  
750  
100  
900  
800  
130  
mV  
mV  
mV  
Opteron/Athlon64 Threshold  
Voltage  
ENABLE rising  
ENABLE falling  
1.11  
1.06  
1.23  
1.17  
1.35  
1.29  
V
V
Opteron/Athlon64 Threshold  
Voltage  
Opteron/Athlon64 Threshold  
Hysteresis  
35  
50  
75  
60  
85  
mV  
KΩ  
ns  
Input Resistance  
100  
250  
200  
400  
Noise Pulse < 250ns will not register  
an ENABLE state change. Note 1  
Blanking Time  
OSCILLATOR  
Switching Frequency  
ROSC = 24KΩ  
450  
70  
500  
71  
550  
74  
kHz  
%
Peak Voltage (4.8V typical,  
measured as % of VBIAS)  
Valley Voltage (0.9V typical,  
measured as % of VBIAS)  
10  
13  
15  
%
INTL_MD OUTPUT  
Source Current  
Sink Current  
Max Voltage  
Min Voltage  
V(INTL_MD)=2V, VR10 or VR11 mode  
V(INTL_MD)=2V, Opteron mode  
Pin Floating, V(VBIAS)V(INTL_MD)  
Pin Floating, LGND referenced  
100  
250  
50  
200  
750  
170  
400  
300  
1500  
350  
µA  
µA  
mV  
mV  
900  
VOSNSFLOAT DETECT  
V(VOSNS) with respect to V(LGND),  
Verify V(VRRDY) and V(EAOUT) are  
low.  
Detect Voltage  
1.2  
2
2.6  
V
V(VOSNS-) 0V to 2.6V step, measure  
time when V(VRRDY) falls. Note 1  
Detect Delay  
200  
350  
600  
ns  
DRIVER BIAS REGULATOR  
REGSET Bias Current  
1.5V < V(REGSET) < VCC – 1.5V  
112  
12  
99  
85  
μA  
1.5V < V(REGSET) < VCC – 1.5V,  
100μA < I(REGDRV) < 10mA  
Input Offset Voltage  
0
12  
mV  
V(REGDRV) = 0V,  
1.5V < V(REGSET) < VCC – 1.5V,  
Note 1  
Short Circuit Current  
Dropout Voltage  
10  
20  
50  
mA  
V
I(REGDRV) = 10mA, Note 1  
0.4  
0.87  
1.33  
Page 6 of 47  
9/14/2005  
IR3084U  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
VCC UNDER-VOLTAGE LOCKOUT  
Start Threshold  
Stop Threshold  
9.3  
8.5  
550  
9.9  
9.1  
10.3  
9.5  
V
V
Hysteresis  
Start – Stop  
800  
1000  
mV  
GENERAL  
VCC Supply Current  
9
14  
18  
mA  
mA  
0.3V < VOSNS< 0.3V,  
All VID Codes  
VOSNSCurrent  
1.45  
1.1  
0.75  
Note 1: Guaranteed by design, but not tested in production  
Note 2: VDAC Output is trimmed to compensate for Error Amp input offsets errors  
+
IR3084U  
EAOUT  
-
ERROR  
AMP  
200 OHM  
FB  
200 OHM  
VDAC  
BUFFER  
AMP  
-
+
VSETPT  
OCSET  
VDAC  
ISOURCE  
ISINK  
SYSTEM  
SET POINT  
VOLTAGE  
INTEL: +IOFFSET  
AMD: --IOFFSET  
IOCSET  
IROSC  
IROSC  
RVDAC  
CVDAC  
+
-
"FAST"  
VDAC  
ROSC  
BUFFER  
AMP  
CURRENT  
SOURCE  
GENERATOR  
+
-
ROSC  
+
-
ROSC  
1.2V  
VOSNS-  
Figure 1 – System Set Point Test Circuit  
Page 7 of 47  
9/14/2005  
IR3084U  
PIN DESCRIPTIONS  
PIN# PIN SYMBOL  
DESCRIPTION  
Selects the DAC table and the type of Soft Start. There are 3 possible modes of  
operation: (1) GND selects VR10 DAC and VR11 type startup, (2) FLOAT (2.4V)  
selects VR11 DAC and VR11 type startup, (3) 6.49K to GND (1.3V) selects  
Opteron/Athlon64 DAC and legacy type startup. Additional details are provided in  
the Theory of Operation section.  
1
VIDSEL  
Output that indicates if the controller is in Intel Mode or AMD Mode. This pin will be  
Low when in AMD mode and High when in Intel mode.  
2
INTL_MD  
Inputs to the D to A Converter. Must be connected to an external pull up resistor.  
Negative Remote Sense Input. Connect to ground at the Load.  
3-9  
10  
VID6VID0  
VOSNS−  
Connect a resistor from this pin to VOSNSto program the oscillator’s frequency,  
OCSET, VSETPT, REGSET, and VDAC bias currents.  
11  
ROSC  
Regulated output voltage programmed by the VID inputs. Connect an external RC  
network to from this pin to VOSNSto program the Dynamic VID slew rate and  
provide compensation for the internal Buffer Amplifier.  
12  
VDAC  
Programs the hiccup over-current threshold through an external resistor tied to  
VDAC and an internal current source. Over-current protection can be disabled by  
connecting a resistor from this pin to VDAC to program the threshold higher than the  
possible signal into the IIN pin from the Phase ICs but no greater than 5V (do not  
float this pin as improper operation will occur).  
13  
14  
OCSET  
Error Amp non-inverting input. The converter’s output voltage can be decreased  
(Intel) or increased (AMD) from the VDAC voltage with an external resistor  
connected between VDAC and an internal current source. Current sensing and  
PWM operation are referenced to this pin.  
VSETPT  
Current Sense input from the Phase IC(s). Prior to startup, when SS/DEL<0.6V, this  
pin is pulled low by a 12.5K resistor to disable current balancing in the Phase ICs.  
When SS/DEL>0.6V and EAOUT>0.35V, this pin is released and current balancing  
is enabled. If AVP or over-current protection is not required, connect this pin to  
VDAC. To ensure proper do not float this pin.  
15  
16  
IIN  
Buffered IIN signal. Connect an external resistor from this pin to the FB pin to set the  
converter’s output impedance.  
VDRP  
Inverting input to the Error Amplifier.  
17  
18  
19  
FB  
Output of the Error Amplifier. When Low, provides UVL function to the Phase ICs.  
Oscillator Output voltage. Used by the Phase ICs to program Phase Delay.  
EAOUT  
RMPOUT  
6.9V/6mA Regulated output used as a system reference voltage for internal circuitry  
and for phase timing at the Phase ICs.  
20  
VBIAS  
Power Input for the internal circuitry.  
21  
22  
VCC  
Local Ground for internal circuitry and IC substrate connection  
LGND  
Inverting input of the Bias Regulator Error Amp. Connect this pin to the collector of  
the Phase IC Gate Driver Bias transistor.  
23  
24  
REGFB  
Output of the Bias Regulator Error Amp.  
REGDRV  
Non-inverting input of the Bias Regulator Error Amp. The output voltage of the  
Phase IC Gate Driver Bias Regulator is set by an internal current source supplying  
an external resistor connected from this pin to ground.  
25  
REGSET  
Controls converter start-up and over-current timing. Connect an external capacitor  
from this pin to LGND to program the soft start and delay times.  
26  
27  
28  
SS/DEL  
VRRDY  
ENABLE  
Open Collector output that drives low during start-up and when any external fault  
occurs. Connect external pull-up resistor.  
Enable Input. A logic low applied to this pin puts the IC into Fault mode. This pin  
has a 100K pull-down resistor to GND.  
Page 8 of 47  
9/14/2005  
IR3084U  
SYSTEM THEORY OF OPERATION  
XPhaseTM Architecture  
The XPhaseTM architecture is designed for multiphase interleaved buck converters which are used in  
applications requiring small size, design flexibility, low voltage, high current and fast transient response. The  
architecture can be used in any multiphase converter ranging from 1 to 16 or more phases where flexibility  
facilitates the design trade-off of multiphase converters. The scalable architecture can be applied to other  
applications which require high current or multiple output voltages.  
As shown in Figure 2, the XPhaseTM architecture consists of a Control IC and a scalable array of phase  
converters each using a single Phase IC. The Control IC communicates with the Phase ICs through a 5-wire  
analog bus, i.e. bias voltage, phase timing, average current, error amplifier output, and VID voltage. The Control  
IC incorporates all the system functions, i.e. VID, PWM ramp oscillator, error amplifier, bias voltage, and fault  
protections etc. The Phase IC implements the functions required by the converter of each phase, i.e. the gate  
drivers, PWM comparator and latch, over-voltage protection, and current sensing and sharing.  
There is no unused or redundant silicon with the XPhaseTM architecture compared to others such as a 4 phase  
controller that can be configured for 2, 3, or 4 phase operation. PCB Layout is easier since the 5 wire bus  
eliminates the need for point-to-point wiring between the Control IC and each Phase. The critical gate drive and  
current sense connections are short and local to the Phase ICs. This improves the PCB layout by lowering the  
parasitic inductance of the gate drive circuits and reducing the noise of the current sense signal.  
VR READY  
PHASE FAULT  
VR HOT  
VR FAN  
12V  
ENABLE  
VIDSEL  
PHASE FAULT  
VID6  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
CIN  
IR3084  
CONTROL  
IC  
>> BIAS VOLTAGE  
>> PHASE TIMING  
<< CURRENT SENSE  
>> PWM CONTROL  
>> VID VOLTAGE  
VOUT SENSE+  
VOUT+  
CURRENT SHARE  
IR3086  
PHASE  
IC  
COUT  
VOUT-  
CCS RCS  
VOUT SENSE-  
PHASE FAULT  
CURRENT SHARE  
IR3086  
PHASE  
IC  
CCS RCS  
ADDITIONAL PHASES  
CONTROL BUS  
INPUT/OUTPUT  
Figure 2 – System Block Diagram  
Page 9 of 47  
9/14/2005  
IR3084U  
PWM Control Method  
The PWM block diagram of the XPhaseTM architecture is shown in Figure 3. Feed-forward voltage mode control  
with trailing edge modulation is used. A high-gain wide-bandwidth voltage type error amplifier in the Control IC is  
used for the voltage control loop. An external RC circuit connected to the input voltage and ground is used to  
program the slope of the PWM ramp and to provide the feed-forward control at each phase. The PWM ramp  
slope will change with the input voltage and automatically compensate for changes in the input voltage. The input  
voltage can change due to variations in the silver box output voltage or due to drops in the PCB related to  
changes in load current.  
VIN  
CONTROL IC  
PHASE IC  
SYSTEM  
REFERENCE  
VOLTAGE  
BIASIN  
50%  
PWM  
LATCH  
RAMP GENERATOR  
DUTY  
CYCLE  
VPEAK  
RMPOUT  
RAMPIN+  
GATEH  
GATEL  
VOSNS+  
VOUT  
+
-
CLOCK  
PULSE  
S
PWM  
COMPARATOR  
GENERATOR  
RESET  
DOMINANT  
RRAMP1  
VVALLEY  
RAMPIN-  
EAIN  
COUT  
-
VBIAS  
VOSNS-  
VDAC  
R
+
VDAC  
GND  
+
-
RRAMP2  
VBIAS  
REGULATOR  
ENABLE  
PWMRMP  
+
RAMP  
SLOPE  
ADJUST  
O% DUTY  
CYCLE  
COMPARATOR  
-
RPWMRMP  
VOSNS-  
RAMP  
DISCHARGE  
CLAMP  
VSETPT  
EAOUT  
RVSETPT  
SCOMP  
CPWMRMP  
+
-
SHARE  
CSCOMP  
ADJUST  
ERROR  
AMP  
X
0.91  
ERROR  
AMP  
+
-
RVFB  
RDRP  
CURRENT  
SENSE  
AMP  
ISHARE  
DACIN  
20mV  
CSIN+  
CSIN-  
10K  
+
FB  
CCS RCS  
-
X34  
IOFFSET  
IROSC  
VDRP  
AMP  
+
VDRP  
-
IIN  
PHASE IC  
SYSTEM  
BIASIN  
REFERENCE  
VOLTAGE  
PWM  
LATCH  
RAMPIN+  
GATEH  
GATEL  
+
-
CLOCK  
PULSE  
GENERATOR  
S
RRAMP1  
PWM  
COMPARATOR  
RESET  
DOMINANT  
RAMPIN-  
EAIN  
-
R
+
RRAMP2  
ENABLE  
PWMRMP  
+
RAMP  
O% DUTY  
CYCLE  
COMPARATOR  
SLOPE  
ADJUST  
-
RPWMRMP  
RAMP  
DISCHARGE  
CLAMP  
SCOMP  
CPWMRMP  
SHARE  
CSCOMP  
ADJUST  
ERROR  
AMP  
X
0.91  
+
-
CURRENT  
SENSE  
AMP  
ISHARE  
DACIN  
20mV  
CSIN+  
CSIN-  
10K  
+
CCS RCS  
-
X34  
Figure 3 – IR3084U PWM Block Diagram  
Frequency and Phase Timing Control  
The oscillator is located in the Control IC and its frequency is programmable from 150kHz to 1MHZ by an external  
resistor. The output of the oscillator is a 50% duty cycle triangle waveform with peak and valley voltages of  
approximately 5V and 1V. This signal is used to program both the switching frequency and phase timing of the  
Phase ICs. The Phase IC is programmed by resistor divider RRAMP1 and RRAMP2 connected between the  
VBIAS reference voltage and the Phase IC LGND pin. A comparator in the Phase ICs detects the crossing of the  
oscillator waveform with the voltage generated by the resistor divider and triggers a clock pulse that starts the  
PWM cycle. The peak and valley voltages track the VBIAS voltage reducing potential Phase IC timing errors.  
Figure 4 shows the Phase timing for an 8 phase converter. Note that both slopes of the triangle waveform can be  
used for synchronization by swapping the RAMP + and – pins.  
Page 10 of 47  
9/14/2005  
IR3084U  
50% RAMP  
DUTY CYCLE  
SLOPE  
SLOPE  
SLOPE  
=
=
=
80mV  
/
%
DC  
ns  
ns  
VPEAK (5.0V)  
1.6mV  
8.0mV  
/
/
@
@
200kHz  
1MHz  
VPHASE4&5 (4.5V)  
VPHASE3&6 (3.5V)  
VPHASE2&7 (2.5V)  
VPHASE1&8 (1.5V)  
VVALLEY (1.00V)  
CLK1  
CLK2  
CLK3  
CLK4  
CLK5  
CLK6  
CLK7  
CLK8  
Figure 4 – 8 Phase Oscillator Waveforms  
PWM Operation  
The PWM comparator is located in the Phase IC. Upon receiving a clock pulse, the PWM latch is set, the  
PWMRMP voltage begins to increase, the low side driver is turned off, and the high side driver is then turned on.  
When the PWMRMP voltage exceeds the Error Amp’s output voltage the PWM latch is reset. This turns off the  
high side driver, turns on the low side driver, and activates the Ramp Discharge Clamp. The clamp quickly  
discharges the PWMRMP capacitor to the VDAC voltage of the Control IC until the next clock pulse.  
The PWM latch is reset dominant allowing all phases to go to zero duty cycle within a few tens of nanoseconds in  
response to a load step decrease. Phases can overlap and go to 100% duty cycle in response to a load step  
increase with turn-on gated by the clock pulses. An Error Amp output voltage greater than the common mode  
input range of the PWM comparator results in 100% duty cycle regardless of the voltage of the PWM ramp. This  
arrangement guarantees the Error Amp is always in control and can demand 0 to 100% duty cycle as required. It  
also favors response to a load step decrease which is appropriate given the low output to input voltage ratio of  
most systems. The inductor current will increase much more rapidly than decrease in response to load transients.  
This control method is designed to provide “single cycle transient response” where the inductor current changes  
in response to load transients within a single switching cycle maximizing the effectiveness of the power train and  
minimizing the output capacitor requirements. An additional advantage is that differences in ground or input  
voltage at the phases have no effect on operation since the PWM ramps are referenced to VDAC.  
Page 11 of 47  
9/14/2005  
IR3084U  
Body BrakingTM  
In a conventional synchronous buck converter, the minimum time required to reduce the current in the inductor in  
response to a load step decrease is;  
TSLEW = [L x (IMAX - IMIN)] / Vout  
The slew rate of the inductor current can be significantly increased by turning off the synchronous rectifier in  
response to a load step decrease. The switch node voltage is then forced to decrease until conduction of the  
synchronous rectifier’s body diode occurs. This increases the voltage across the inductor from Vout to Vout +  
VBODY DIODE. The minimum time required to reduce the current in the inductor in response to a load transient  
decrease is now;  
TSLEW = [L x (IMAX - IMIN)] / (Vout + VBODY DIODE  
)
Since the voltage drop in the body diode is often higher than output voltage, the inductor current slew rate can be  
increased by 2X or more. This patent pending technique is referred to as “body braking” and is accomplished  
through the “0% Duty Cycle Comparator” located in the Phase IC. If the Error Amp’s output voltage drops below  
91% of the VDAC voltage this comparator turns off the low side gate driver.  
Figure 5 depicts PWM operating waveforms under various conditions  
PHASE IC  
CLOCK  
PULSE  
EAIN  
PWMRMP  
VDAC  
BODY BRAKING  
THRESHOLD  
GATEH  
GATEL  
STEADY-STATE  
OPERATION  
DUTY CYCLE INCREASE  
DUE TO LOAD  
INCREASE  
DUTY CYCLE DECREASE  
DUE TO VIN INCREASE  
(FEED-FORWARD)  
DUTY CYCLE DECREASE DUE TO LOAD  
DECREASE (BODY BRAKING) OR FAULT  
(VCC UV, VCCVID UV, OCP, VID=11111X)  
STEADY-STATE  
OPERATION  
Figure 5 – PWM Operating Waveforms  
Lossless Average Inductor Current Sensing  
Inductor current can be sensed by connecting a series resistor and a capacitor network in parallel with the  
inductor and measuring the voltage across the capacitor. The equation of the sensing network is,  
RL + sL  
1+ sRS CS  
1
vC (s) = vL (s)  
= iL (s)  
1+ sRS CS  
Usually the resistor Rcs and capacitor Ccs are chosen so that the time constant of Rcs and Ccs equals the time  
constant of the inductor which is the inductance L over the inductor DCR. If the two time constants match, the  
voltage across Ccs is proportional to the current through L, and the sense circuit can be treated as if only a sense  
resistor with the value of RL was used. The mismatch of the time constants does not affect the measurement of  
inductor DC current, but affects the AC component of the inductor current.  
Page 12 of 47  
9/14/2005  
IR3084U  
The advantage of sensing the inductor current versus high side or low side sensing is that actual output current  
being delivered to the load is obtained rather than peak or sampled information about the switch currents. The  
output voltage can be positioned to meet a load line based on real time information. Except for a sense resistor in  
series with the inductor, this is the only sense method that can support a single cycle transient response. Other  
methods provide no information during either load increase (low side sensing) or load decrease (high side  
sensing).  
An additional problem associated with peak or valley current mode control for voltage positioning is that they  
suffer from peak-to-average errors. These errors will show in many ways but one example is the effect of  
frequency variation. If the frequency of a particular unit is 10% low, the peak to peak inductor current will be 10%  
larger and the output impedance of the converter will drop by about 10%. Variations in inductance, current sense  
amplifier bandwidth, PWM prop delay, any added slope compensation, input voltage, and output voltage are all  
additional sources of peak-to-average errors.  
Current Sense Amplifier  
A high speed differential current sense amplifier is located in the Phase IC, as shown in Figure 6. Its gain  
decreases with increasing temperature and is nominally 34 at 25ºC and 29 at 125ºC (-1470 ppm/ºC). This  
reduction of gain tends to compensate the 3850 ppm/ºC increase in inductor DCR. Since in most designs the  
Phase IC junction is hotter than the inductor these two effects tend to cancel such that no additional temperature  
compensation of the load line is required.  
The current sense amplifier can accept positive differential input up to 100mV and negative up to -20mV before  
clipping. The output of the current sense amplifier is summed with the DAC voltage and sent to the Control IC  
and other Phases through an on-chip 10Kresistor connected to the ISHARE pin. The ISHARE pins of all the  
phases are tied together and the voltage on the share bus represents the average inductor current through all the  
inductors and is used by the Control IC for voltage positioning and current limit protection.  
vL  
L
RL  
iL  
Vo  
Rs  
Cs  
vc  
Co  
CSA  
CO  
Figure 6 – Inductor Current Sensing and Current Sense Amplifier  
Average Current Share Loop  
Current sharing between phases of the converter is achieved by the average current share loop in each Phase  
IC. The output of the current sense amplifier is compared with the share bus less a 20mV offset. If current in a  
phase is smaller than the average current, the share adjust amplifier of the phase will activate a current source  
that reduces the slope of its PWM ramp thereby increasing its duty cycle and output current. The crossover  
frequency of the current share loop can be programmed with a capacitor at the SCOMP pin so that the share loop  
does not interact with the output voltage loop.  
Page 13 of 47  
9/14/2005  
IR3084U  
IR3084U THEORY OF OPERATION  
Block Diagram  
VRRDY  
IIN  
VCC UVLO  
COMPARATOR  
VCC  
-
UVLO  
VOSNS OPEN  
DISABLE  
+
S
R
+
OVER CURRENT  
VOSNS FLOAT  
DETECT  
2.0V  
9.9V  
9.1V  
-
0.6V  
DISCHARGE  
0.215V  
12.5K  
-
NO CPU  
NO CPU LATCHED  
+
+
COMPARATOR  
S
+
-
ENABLE  
COMPARATOR  
FAULT  
LATCH  
250ns  
BLANKING  
-
0.35V  
ENABLE  
INTEL AMD  
-
DELAY  
COMPARATOR  
-
+
R
+
-
+
S
IIN  
VID  
+
PRECONDITIONING  
+
-
FAULT  
LATCH  
850mV 1.23V  
750mV 1.17V  
100k  
LATCH  
80mV  
VCHG  
3.85V  
OC  
VDRP  
VDRP  
AMP  
R
-
+
100mV  
DISCHARGE  
CURRENT  
40uA  
ON  
-
+
-
OC  
COMPARATOR  
OCSET  
ON  
LGND  
S
R
SS/DEL  
DISCHARGE  
IHICCUP  
DISCHARGE  
6.5uA  
VID SAMPLE  
DELAY COMPARATOR  
START  
LATCH  
OFF  
ICHG  
70uA  
-
3.1V  
SS/DEL  
+
1.3us  
BLANKING  
IROSC  
DISABLE  
NO_CPU  
1.3V  
+
+
-
EAOUT  
FB  
DIGITAL TO  
IROSC  
VID INPUT  
COMPARATORS  
VID6  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
-
+
ANALOG  
IROSC  
ERROR  
AMP  
+
-
CONVERTER  
(1 OF  
9
IROSC  
IROSC  
INTL_MD  
SHOWN)  
+
-
SOFTSTART  
CLAMP  
-
+
IROSC  
VSETPT  
VDAC  
"FAST"  
+
INTEL: IOFFSET  
AMD: -IOFFSET  
IOCSET  
IROSC  
IROSC  
IROSC  
VDAC  
+
-
INTEL: 0.6V  
AMD: 1.24V  
+
+
-
+
IROSC  
ISOURCE  
ISINK  
-
IROSC  
IROSC  
0.6V  
1.95V  
2.4V  
INTEL/AMD  
-
-
1.1V  
VDAC  
BUFFER  
AMP  
4.5K  
VID = 1.1V BOOT  
1.2V  
VIDSEL  
VOSNS-  
VBIAS  
INTL_MD  
-
+
VBIAS  
REGULATOR  
VBIAS  
IROSC  
6.9V  
50%  
DUTY  
CYCLE  
RAMP GENERATOR  
BIAS  
REGULATOR  
ERROR AMP  
4.8V  
0.9V  
+
-
REGDRV  
REGFB  
ROSC  
BUFFER  
AMP  
RMPOUT  
ROSC  
CURRENT  
SOURCE  
GENERATOR  
+
-
IROSC  
IREGSET  
VCC  
REGSET  
Figure 7 – IR3084U Block Diagram  
VID Control  
A 7-bit VID voltage compatible with VR10 (see Table 1) and VR11 (see Table 2) and Opteron/Athlon64 (see  
Table 3) is available at the VDAC pin. The VIDSEL pin configures the DAC for VR10 if grounded, VR11 if  
floating, and Opteron/Athlon64 if connected to GND via a 6.4K resistor. The VIDSEL pin is internally pulled-up to  
2.4V through a 4.5Kohm resistor. The VID pins require an external bias voltage and should not be floated. The  
VID input comparators, with 0.6V reference for VR10/VR11 and 1.24V for Opteron/Athlon64, monitor the VID  
pins and control the 7-bit Digital-to-Analog Converter (DAC) whose output is sent to the VDAC buffer amplifier.  
The output of the buffer amp is the VDAC pin. The VDAC voltage is post-package trimmed to compensate for  
the input offsets of the Error Amp to provide a 0.5% system accuracy. The actual VDAC voltage does not  
represent the system set point and has a wider tolerance.  
Page 14 of 47  
9/14/2005  
IR3084U  
VID4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
VID3  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
VID2  
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
VID1  
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
VID0  
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
VID5  
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
VID6  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
Voltage  
1.60000  
1.59375  
1.58750  
1.58125  
1.57500  
1.56875  
1.56250  
1.55625  
1.55000  
1.54375  
1.53750  
1.53125  
1.52500  
1.51875  
1.51250  
1.50625  
1.50000  
1.49375  
1.48750  
1.48125  
1.47500  
1.46875  
1.46250  
1.45625  
1.45000  
1.44375  
1.43750  
1.43125  
1.42500  
1.41875  
1.41250  
1.40625  
1.40000  
1.39375  
1.38750  
1.38125  
1.37500  
1.36875  
1.36250  
1.35625  
1.35000  
1.34375  
1.33750  
1.33125  
1.32500  
1.31875  
1.31250  
1.30625  
1.30000  
1.29375  
1.28750  
1.28125  
1.27500  
1.26875  
1.26250  
1.25625  
1.25000  
1.24375  
1.23750  
1.23125  
1.22500  
1.21875  
1.21250  
1.20625  
VID4  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
VID3  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
VID2  
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
VID1  
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
VID0  
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
VID5  
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
VID6  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
Voltage  
1.20000  
1.19375  
1.18750  
1.18125  
1.17500  
1.16875  
1.16250  
1.15625  
1.15000  
1.14375  
1.13750  
1.13125  
1.12500  
1.11875  
1.11250  
1.10625  
1.10000  
1.09375  
FAULT  
FAULT  
FAULT  
FAULT  
1.08750  
1.08125  
1.07500  
1.06875  
1.06250  
1.05625  
1.05000  
1.04375  
1.03750  
1.03125  
1.02500  
1.01875  
1.01250  
1.00625  
1.00000  
0.99375  
0.98750  
0.98125  
0.97500  
0.96875  
0.96250  
0.95625  
0.95000  
0.94375  
0.93750  
0.93125  
0.92500  
0.91875  
0.91250  
0.90625  
0.90000  
0.89375  
0.88750  
0.88125  
0.87500  
0.86875  
0.86250  
0.85625  
0.85000  
0.84375  
0.83750  
0.83125  
Table 1 – VR10 7-bit VID Table with 6.25mV Extension  
Page 15 of 47  
9/14/2005  
IR3084U  
Hex (VID7:VID0)  
00  
Dec (VID7:VID0)  
00000000  
00000001  
00000010  
00000011  
00000100  
00000101  
00000110  
00000111  
00001000  
00001001  
00001010  
00001011  
00001100  
00001101  
00001110  
00001111  
00010000  
00010001  
00010010  
00010011  
00010100  
00010101  
00010110  
00010111  
00011000  
00011001  
00011010  
00011011  
00011100  
00011101  
00011110  
00011111  
00100000  
00100001  
00100010  
00100011  
00100100  
00100101  
00100110  
00100111  
00101000  
00101001  
00101010  
00101011  
00101100  
00101101  
00101110  
00101111  
00110000  
00110001  
00110010  
00110011  
00110100  
00110101  
00110110  
00110111  
00111000  
00111001  
00111010  
00111011  
00111100  
00111101  
00111110  
00111111  
Voltage  
Fault  
Fault  
Hex (VID7:VID0)  
40  
Dec (VID7:VID0)  
01000000  
01000001  
01000010  
01000011  
01000100  
01000101  
01000110  
01000111  
01001000  
01001001  
01001010  
01001011  
01001100  
01001101  
01001110  
01001111  
01010000  
01010001  
01010010  
01010011  
01010100  
01010101  
01010110  
01010111  
01011000  
01011001  
01011010  
01011011  
01011100  
01011101  
01011110  
01011111  
01100000  
01100001  
01100010  
01100011  
01100100  
01100101  
01100110  
01100111  
01101000  
01101001  
01101010  
01101011  
01101100  
01101101  
01101110  
01101111  
01110000  
01110001  
01110010  
01110011  
01110100  
01110101  
01110110  
01110111  
01111000  
01111001  
01111010  
01111011  
01111100  
01111101  
01111110  
01111111  
Voltage  
1.21250  
1.20625  
1.20000  
1.19375  
1.18750  
1.18125  
1.17500  
1.16875  
1.16250  
1.15625  
1.15000  
1.14375  
1.13750  
1.13125  
1.12500  
1.11875  
1.11250  
1.10625  
1.10000  
1.09375  
1.08750  
1.08125  
1.07500  
1.06875  
1.06250  
1.05625  
1.05000  
1.04375  
1.03750  
1.03125  
1.02500  
1.01875  
1.01250  
1.00625  
1.00000  
0.99375  
0.98750  
0.98125  
0.97500  
0.96875  
0.96250  
0.95625  
0.95000  
0.94375  
0.93750  
0.93125  
0.92500  
0.91875  
0.91250  
0.90625  
0.90000  
0.89375  
0.88750  
0.88125  
0.87500  
0.86875  
0.86250  
0.85625  
0.85000  
0.84375  
0.83750  
0.83125  
0.82500  
0.81875  
01  
02  
03  
04  
05  
06  
07  
08  
41  
42  
43  
44  
45  
46  
47  
48  
1.60000  
1.59375  
1.58750  
1.58125  
1.57500  
1.56875  
1.56250  
1.55625  
1.55000  
1.54375  
1.53750  
1.53125  
1.52500  
1.51875  
1.51250  
1.50625  
1.50000  
1.49375  
1.48750  
1.48125  
1.47500  
1.46875  
1.46250  
1.45625  
1.45000  
1.44375  
1.43750  
1.43125  
1.42500  
1.41875  
1.41250  
1.40625  
1.40000  
1.39375  
1.38750  
1.38125  
1.37500  
1.36875  
1.36250  
1.35625  
1.35000  
1.34375  
1.33750  
1.33125  
1.32500  
1.31875  
1.31250  
1.30625  
1.30000  
1.29375  
1.28750  
1.28125  
1.27500  
1.26875  
1.26250  
1.25625  
1.25000  
1.24375  
1.23750  
1.23125  
1.22500  
1.21875  
09  
49  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
15  
16  
17  
18  
55  
56  
57  
58  
19  
59  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
25  
26  
27  
28  
65  
66  
67  
68  
29  
69  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
35  
36  
37  
38  
75  
76  
77  
78  
39  
79  
3A  
3B  
3C  
3D  
3E  
3F  
7A  
7B  
7C  
7D  
7E  
7F  
Table 2 – VR11 7-bit VID Table  
Page 16 of 47  
9/14/2005  
IR3084U  
VID4 VID3 VID2 VID1 VID0 Vout (V)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1.550  
1.525  
1.500  
1.475  
1.450  
1.425  
1.400  
1.375  
1.350  
1.325  
1.300  
1.275  
1.250  
1.225  
1.200  
1.175  
1.150  
1.125  
1.100  
1.075  
1.050  
1.025  
1.000  
0.975  
0.950  
0.925  
0.900  
0.875  
0.850  
0.825  
0.800  
OFF4  
Table 3 – Opteron 5-bit VID Table  
Page 17 of 47  
9/14/2005  
IR3084U  
Dynamic VID Operation  
The IR3084U can accept changes in the VID code while operating and vary the DAC voltage accordingly. The  
sink/source capability of the VDAC buffer amp is programmed by the external resistor that sets the oscillator  
frequency (Rosc). The slew rate of the voltage at the VDAC pin can be adjusted by an external capacitor between  
VDAC pin and the VOSNSpin. A resistor connected in series with this capacitor is required to compensate the  
VDAC buffer amplifier. Digital VID transitions result in a smooth analog transition of the VDAC voltage and  
converter output voltage minimizing inrush currents in the input and output capacitors and overshoot of the output  
voltage.  
Adaptive Voltage Positioning (AVP)  
Adaptive Voltage Positioning (AVP) is needed to reduce the total output voltage deviations during load transients  
and to reduce the power dissipation of the load when it is drawing high current. The circuitry related to the voltage  
positioning is shown in Figure 8.  
Resistor RSETPT is connected between the VDAC pin and the VSETPT pin to set the desired amount of fixed  
offset voltage above or below the DAC voltage. The VSETPT pin is internally connected to both the non-inverting  
input of the voltage error amplifier and an internal current source, IOFFSET. The magnitude of IOFFSET is  
programmed by the external resistor that programs the oscillator frequency (Rosc) while the polarity of IOFFSET is  
set by the VIDSEL pin. When the VR10 and VR11 DAC tables are selected, the polarity of IOFFSET is positive  
(current flows into the pin). When the Opteron/Athlon64 DAC table is selected, the polarity of IOFFSET is negative  
(current flow out of the pin). The voltage across RSETPT sets the no load offset voltage above or below the  
VDAC voltage.  
The voltage at the VDRP pin is a buffered version of the current share bus (Iin) and represents the sum of the  
VDAC voltage and the average inductor current of all the phases. The VDRP pin should be connected to the FB  
pin through the resistor RDRP. Because the Error Amp will regulate the voltage at the FB pin equal to the  
voltage at the VSETPT pin, a current will flow from the VDRP pin to the FB pin equal to (VDRPVSETPT) / RDRP.  
When the load current increases, the VDRP voltage will increase, additional current will flow through the  
feedback resistor RFB and the converter’s output voltage will droop below the no load setpoint. The amount of  
voltage droop can be programmed by the resistor RDRP so the converter’s output impedance meets the load-line  
specification set by the CPU manufacturer. The offset and slope of the converter’s output impedance are  
referenced to VDAC and are therefore independent of the exact VDAC (VID) setting.  
Due to the difference between VDAC and FB, the voltage at the VDRP pin causes additional offset voltage  
through RDRP and RFB. The total offset voltage is the sum of the voltage across RVSETPT and the voltage  
drop across the RFB resistor at no load.  
Control IC  
VDAC  
VDAC  
Phase IC  
RSETPT  
Current Sense  
V SETPT  
Amplifier  
CSIN+  
CSIN-  
+
ISHARE  
VDAC  
+
-
-
EA OUT  
FB  
10k  
IOFFSET  
Vo  
RFB  
Error  
Amplifier  
RDRP  
VDRP  
Amplifier  
Phase IC  
VDRP  
IIN  
Current Sense  
-
+
Amplifier  
CSIN+  
CSIN-  
+
ISHARE  
VDAC  
-
10k  
Figure 8 - Adaptive voltage positioning  
Page 18 of 47  
9/14/2005  
IR3084U  
Inductor DCR Temperature Correction  
If the thermal compensation of the inductor DCR provided by the temperature dependent gain of the current  
sense amplifier is not adequate, a negative temperature coefficient (NTC) thermistor can be used for additional  
correction. The thermistor should be placed close to the inductor and connected in parallel with the feedback  
resistor, as shown in Figure 9. The resistor in series with the thermistor is used to reduce the nonlinearity of the  
thermistor.  
Control IC  
VDAC  
RSETPT  
V SETPT  
+
EA OUT  
-
Vo  
RFB  
Error  
Amplifier  
IOFFSET  
RFB2  
Rt  
RDRP  
AVP  
Amplifier  
VDRP  
IIN  
-
+
Figure 9 - Temperature compensation of inductor DCR  
Remote Voltage Sensing  
To compensate for impedance in the ground plane, the VOSNSpin is used for remote ground sensing and  
connects directly to the load. The VDAC voltage is referenced to VOSNSto avoid additional error terms or  
delays related to a separate differential amplifier. The capacitor connecting the VDAC and VOSNSpins ensure  
that high speed transients are fed directly into the error amp without delay.  
Start-up Modes  
The IR3084U has a programmable soft-start function to limit the surge current during converter start-up. A  
capacitor connected between the SS/DEL and LGND pins controls soft start timing, over-current protection delay,  
and hiccup mode timing. A charge current of 70µA controls the positive slope of the voltage at the SS/DEL pin.  
There are two types of start-up possible: VR11 and Opteron/Athlon64. In VR11 mode, the soft start circuitry will  
set the voltage at the VDAC pin to the 1.1V Boot voltage and the converter’s output will slowly rise using the slew  
rate set by the capacitor at the SS/DEL pin until it’s equal to the VDAC voltage. After Vcore reaches the 1.1V  
Boot voltage there will be a short delay, the VID pins will be sampled, and the voltage at the VDAC pin and the  
converter’s output will increase or decrease to the desired VID setting using the dynamic VID slew rate. In  
Opteron/Athlon64 mode, the soft start sequence will ramp the voltage at the VDAC pin directly to the external VID  
setting using the slew rate set by the capacitor at the SS/DEL pin without pausing at the 1.1V Boot voltage.  
Page 19 of 47  
9/14/2005  
IR3084U  
Figure 10a depicts the start-up sequence without AVP in Boot mode the VIDSEL pin is either grounded or  
floated. First, the VDAC pin is charged to the 1.1V Boot voltage. Then, if there are no fault conditions, the  
SS/DEL capacitor will begin to be charged. Initially, the error amplifier’s output will be clamped low until the  
voltage at the SS/DEL reaches 1.3V. After the voltage at the SS/DEL pin rises to 1.3V, the error amplifier’s  
output will begin to rise and the converter’s output voltage will be regulated 1.3V below the voltage at the SS/DEL  
pin. The converter’s output voltage will slowly ramp to the 1.1V Boot voltage. The SS/DEL voltage will continue  
to increase until it rises above the 3.10V threshold of the VID delay comparator. When the SS/DEL voltage  
exceeds 3.10V, the VID inputs will be sampled and the VDAC pin will transition to the level determined by the VID  
inputs at the dynamic VID slew rate. When the voltage on the SS/DEL pin rises above 3.77V the VRRDY Delay  
Comparator will allow the VRRDY signal to be asserted. SS/DEL will continue to rise until finally settling at  
3.85V, indicating the end of the start-up sequence.  
Figure 10b depicts the start-up sequence in Opteron/Athlon64 mode VIDSEL is connected to GND via a 6.49K  
resistor. First, the external VID setting is sampled and the VDAC pin is set to the desired VID voltage. Then, if  
there are no fault conditions, the SS/DEL capacitor will begin to charge. Initially, the error amplifier’s output will  
be clamped low until the voltage at the SS/DEL rises to 1.3V. After the voltage at the SS/DEL pin reaches 1.3V,  
the error amplifier’s output will begin to rise and the converter’s output voltage will be regulated 1.3V below the  
voltage at the SS/DEL pin. As the voltage at the SS/DEL pin continues to rise, the converter’s output voltage will  
slowly increase until it is equal to the voltage at the VDAC pin. When the voltage on the SS/DEL pin rises above  
3.77V the VRRDY Delay Comparator will allow the VRRDY signal to be asserted. SS/DEL will continue to rise  
until finally settling at 3.85V, indicating the end of the start-up sequence.  
If AVP is used, the soft start timing will change slightly because of the resistor from the VDRP amplifier to the  
Error Amplifier’s FB pin. During startup with AVP, the VDRP amplifier will produce a voltage at the FB pin equal  
to VDAC times the resistor divider formed by the droop resistor and the feedback resistor from Vcore to the FB  
pin. To offset the contribution from the VDRP amplifier, the voltage at the SS/DEL pin will have to rise to beyond  
1.3V before the Error Amplifier’s output and Vcore begin to rise. For a DAC setting of 1.3V with typical VR11  
AVP, the Error Amplifier’s output will begin to rise when the voltage at the SS/DEL pin reaches approximately  
1.8V. The effect of this offset will be to slightly lengthen the Start Delay (TD1) and shorten the Soft Start Ramp  
Time (TD2).  
The following table summarizes the differences between the 3 modes associated with setting the VIDSEL pin. In  
addition to changing the soft start sequence, the NO_CPU code may or may not be ignored during startup and  
the NO_CPU code may or may not be latched.  
1.1V Boot  
Voltage During  
Startup?  
Ignore NO CPU  
Codes During  
Startup?  
VIDSEL  
Voltage  
VID  
Table  
Latch NO CPU  
Fault Code?  
GND  
(<0.6V)  
FLOAT  
VR10  
VR11  
YES  
YES  
NO  
YES  
YES  
NO  
YES  
YES  
NO  
(>1.8V)  
6.49K to GND  
(0.9V<VIDSEL<1.7V)  
Opteron/Athlon64  
Table 4: Controller Functionality versus VIDSEL Voltages  
Page 20 of 47  
9/14/2005  
IR3084U  
9.1V  
UVLO  
+12Vin  
0.85V  
ENABLE  
(VTT)  
1.100V  
VDAC  
3.85V  
3.77V  
3.10V  
1.30V  
SS/DEL  
EAOOUT  
1.100V  
VDAC  
IIN  
1.100V  
VOUT  
VRRDY  
VID  
VR_RDY DELAY  
1.3ms (TD4+TD5)  
START  
(ENABLE ENDS  
FAULT MODE)  
START DELAY  
1.8ms (TD1)  
NORMAL  
OPERATION  
POWER-DOWN  
(VCC UVL  
INITIATES  
FAULT MODE)  
SOFT START TIME  
1.6ms (TD2)  
SAMPLE  
DELAY  
1.0ms  
(TD3)  
DYNAMIC VID TIME  
200us (TD4)  
Figure 10a – Start-up Waveforms with Boot Mode (VID Setting > 1.1V)  
9.1V  
UVLO  
+12Vin  
0.85V  
ENABLE  
(VTT)  
VID SETTING  
VDAC  
3.77V  
1.30V  
SS/DEL  
EAOOUT  
VID SETTING  
IIN  
VID SETTING  
VOUT  
VRRDY  
POWER-DOWN  
(VCC UVL  
INITIATES  
FAULT MODE)  
START  
(ENABLE ENDS  
FAULT MODE)  
START DELAY  
1.8ms  
SOFT START TIME  
1.8ms  
VR_RDY DELAY  
2.3ms  
NORMAL  
OPERATION  
Figure 10b – Opteron/Athlon64 Start-up Waveforms (VID Setting=1.1V)  
Page 21 of 47  
9/14/2005  
IR3084U  
Fault Modes  
Under Voltage Lock Out, VID = FAULT, as well as a low signal on the ENABLE input immediately sets the fault  
latch. This causes the EAOUT pin to drive low which turns off the Phase IC drivers. The VRRDY pin also drives  
low. The SS/DEL capacitor will discharge down to 0.215V through a 6.5µA current source. If the fault has cleared  
when SS/DEL falls to 0.215V then the fault latch will be reset by the discharge comparator allowing a normal  
start-up sequence to occur. If a VID = FAULT condition is latched it can only be cleared by cycling power to the  
IR3084U on and off.  
SS/DEL  
(3.85V  
3.77V  
3.75V  
DURING  
NORMAL  
OPERATION)  
1.3V  
DISCHARGE VOLTAGE (0.215V)  
VOUT  
VRRDY  
IOUT  
OCP THRESHOLD  
NORMAL  
OPERATION  
HICCUP OVER-CURRENT  
PROTECTION  
RESTART NORMAL  
AFTER  
OPERATION  
OCP  
OCP  
DELAY  
Figure 11 – Over-Current Protection Waveforms (VID = 1.1V for simplicity)  
Over-Current Protection Delay and Hiccup Mode  
Figure 11 depicts the operating waveforms of the Over Current Protection (OCP). A delay is included if an over-  
current condition occurs after a successful soft start sequence. This delay is required because over-current  
conditions can occur as part of normal operation due to load transients or VID transitions. If an over-current fault  
occurs during normal operation it will activate the over-current discharge current of 40µA but will not set the fault  
latch immediately. If the over-current condition persists long enough for the SS/DEL capacitor to discharge below  
the 100mV offset of the delay comparator, the Fault latch will be Se, the error amp’s output will be pulled low,  
switching in the phase ICs will be inhibited, and the VRRDY signal will be de-asserted.  
The SS/DEL capacitor will continue to discharge until it reaches 0.215V and the fault latch is Reset allowing a  
normal soft start to occur. If an over-current condition is again encountered during the soft start cycle the fault  
latch will be set without any delay and hiccup mode will begin. During hiccup mode the 11.2 to 1 charge to  
discharge current ratio results in a 9% hiccup mode duty cycle regardless of at what point the over-current  
condition occurs.  
If the SS/DEL pin is pulled below 0.85V, the converter can be disabled.  
Page 22 of 47  
9/14/2005  
IR3084U  
Under Voltage Lockout (UVLO)  
The UVLO function monitors the IR3084U’s VCC supply pin and ensures that there is adequate voltage to safely  
power the internal circuitry. The IR3084U’s UVLO is set higher than the minimum operating voltage of compatible  
Phase ICs thus providing UVLO protection for them as well. UVLO at the Phase ICs is a function of the Error  
Amplifier’s output voltage. When the IR3084U is in UVLO, the Error Amplifier is disabled and EAOUT is at a very  
low voltage (<200mV) thus preventing the Phase ICs from becoming active.  
During power-up the fault latch will be reset when VCC exceeds 9.9V and there are no other faults. If the VCC  
voltage drops below 9.1V the fault latch will be set.  
Over Current Protection (OCP)  
The current limit threshold is set by a resistor connected between the OCSET and VDAC pins. If the IIN pin  
voltage, which is proportional to the average phase current plus DAC voltage, exceeds the OCSET voltage, the  
over-current protection is triggered.  
VID = Fault Code (NO_CPU)  
When VIDSEL is grounded or left floating, NO_CPU VID codes of 11111XX for VR10 and 0000000X, 1111111X  
for VR11 will set both the VID Fault Latch and the Fault Latch to disable the error amplifier. The controller will be  
latched OFF and a power-on reset (POR) must be performed to produce a new soft start sequence. In these 2  
modes, the NO_CPU codes are ignored during startup. See Table 1 for further details.  
When VIDSEL is connected to GND via a 6.49K resistor, NO_CPU VID codes of 11111 will set the Fault Latch to  
disable the error amplifier but the VID Fault Latch will not be set. The controller will not be latched OFF and a  
soft start sequence will be produced when the NO_CPU code is removed and the SS/DEL voltage falls below  
0.215V. In Opteron/Athlon64 mode, the NO_CPU codes are not ignored during startup. See Table 1 for further  
details.  
A 1.3µs delay is provided to prevent a NO_CPU fault condition from occurring during Dynamic VID changes.  
VR_RDY (Power Good) Output  
The VRRDY pin is an open-collector output and should be pulled up to a voltage source through a resistor.  
During soft start, the VRRDY remains low until the output voltage is in regulation and SS/DEL is above 3.77V.  
The VRRDY pin becomes low if the fault latch is set. A high level at the VRRDY pin indicates that the converter is  
in operation and has no fault, but does not ensure the output voltage is within the specification. Output voltage  
regulation within the design limits can logically be assured however, assuming no component failure in the  
system.  
Load Current Indicator Output  
The VDRP pin voltage represents the average phase current of the converter plus the DAC voltage. The load  
current can be retrieved by subtracting the VDAC voltage from the VDRP voltage.  
Page 23 of 47  
9/14/2005  
IR3084U  
System Reference Voltage (VBIAS)  
The IR3084U supplies a 6.8V/6mA precision reference voltage from the VBIAS pin. The oscillator ramp trip points  
are based on the VBIAS voltage so it should be used to program the Phase ICs phase delay to minimize phase  
errors.  
Phase IC Gate Driver Bias Regulator / VRHOT Comparator  
An internal amplifier can be configured as a gate driver bias regulator to provide programmable gate driver  
voltage for phase ICs (Figure 12a), or a thermal monitor to provide VRHOT/VRFAN signal as required in VR11  
(Figure 12b).  
The internal current source IREGSET whose value is programmed by the switching frequency going through the  
external RSET resistor sets the gate driver voltage or the VRHOT/VRFAN threshold voltage. An NTC thermistor  
is used to monitor the temperature on the VRM/VRD.  
+12V  
VCC  
RPU  
1ohm / 1206  
IREGSET  
0Adc  
REGSET  
+
-
REGDRV  
REGFB  
Q1  
CJD200  
CVGDRV  
10nF  
RVGDRV  
97.6K  
VGDRIVE  
C2  
10uF  
+
IR3084 CONTROL IC  
Figure 12a – IR3084U Bias Regulator configured for Gate Driver Bias Regulator  
RH2  
36K  
RH1  
1.1MEG  
+3.3V  
VBIAS  
VCC  
RPU1  
2K  
VRHOT#  
IREGSET  
R1  
10K  
R4  
2K  
REGSET  
REGFB  
+
-
Q5  
2N7002  
REGDRV  
R5  
1K  
C2  
10nF  
C1  
1nF  
R2  
100K  
IR3084 CONTROL IC  
R3  
3K  
Figure 12b – IR3084U Bias Regulator configured for VRHOT/VRFAN function  
Page 24 of 47  
9/14/2005  
IR3084U  
PERFORMANCE CHARACTERISTICS  
Figure 13: Oscillator Frequency versus ROSC  
Figure 14: I(OCSET) versus ROSC  
1000  
120  
110  
100  
90  
900  
800  
700  
600  
500  
400  
300  
200  
100  
80  
70  
60  
50  
40  
30  
20  
10  
10  
20  
30  
40  
50  
60  
70  
80  
90  
10  
20  
30  
40  
50  
60  
70  
80  
90  
ROSC (Kohms)  
ROSC (Kohms)  
Figure 16: I(REGSET) CURRENT versus ROSC  
Figure 15: I(VSETPT) versus ROSC  
250  
230  
210  
190  
170  
150  
130  
110  
90  
120  
110  
100  
90  
80  
70  
60  
50  
40  
70  
30  
50  
20  
30  
10  
10  
10  
20  
30  
40  
50  
60  
70  
80  
90  
10  
20  
30  
40  
50  
60  
70  
80  
90  
ROSC (Kohms)  
ROSC (Kohms)  
Figure 17: VDAC SINK & SOURCE CURRENT vs. ROSC  
Figure 18: IR3084 Error Amplifier Bode Plot  
200  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
I(VDAC SOURCE) (uA)  
I(VDAC SINK) (uA)  
Gain  
150  
100  
50  
Phase  
0
60  
40  
20  
-50  
1.E+01  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
1.E+06  
1.E+07  
1.E+08  
10  
20  
30  
40  
50  
60  
70  
80  
90  
Frequency (Hz)  
ROSC (Kohms)  
Page 25 of 47  
9/14/2005  
 
IR3084U  
APPLICATIONS INFORMATION  
VR READY  
VRHOT  
PHASE FAULT  
VOUT SENSE-  
VOUT SENSE+  
+12V  
RCS-  
CIN  
R1332  
1
Q8  
CJD200  
CCS+  
CCS-  
RBIASIN  
C205  
0.1uF  
C137  
1uF  
RCS+  
0.1uF  
CCP  
100pF  
1
15  
RMPIN+  
VCCH  
DISTRIBUTION  
RT  
R118  
2
3
4
5
14  
13  
12  
11  
IMPEDANCE  
VOUT+  
IR3086  
PHASE  
IC  
+5.0V  
RMPIN-  
HOTSET  
VRHOT  
ISHARE  
GATEH  
PGND  
GATEL  
VCCL  
4.7K, B=4450 1.21K  
RCP  
2.49K  
CCP  
56nF  
R138  
2K  
COUT  
RFB  
162  
CFB  
12nF  
18  
EAOUT  
U6  
17  
27  
15  
19  
20  
FB  
VRRDY  
IIN  
RMPOUT  
VBIAS  
RFB  
348  
0.1uF  
C1010  
100pF  
RDRP2  
750  
RDRP1  
750  
C136  
0.1uF  
C90  
100pF  
RPWMRMP  
0.1uF  
IR3084UMTR  
24  
23  
25  
CSCOMP  
REGDRV  
REGFB  
16  
VDRP  
REGSET  
OUTEN  
28  
9
8
7
6
5
4
3
1
2
RVGDRV  
97.6K  
CVGDRV  
10nF  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
VID6  
VID7  
VID_SEL  
ENABLE  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
VID6  
VIDSEL  
INTL_MD  
RCS-  
CCS-  
CCS+  
RVSETPT1  
RBIASIN  
14  
13  
12  
11  
VSETPT  
OCSET  
VDAC  
RCS+  
0.1uF  
+12V  
RVSETPT2  
124  
21  
VCC  
R31  
10  
C131  
0.1uF  
ROCSET  
12.7K  
26  
SS/DEL  
CSS/DEL  
0.1uF  
1
15  
RMPIN+  
VCCH  
GATEH  
PGND  
GATEL  
VCCL  
RVDAC  
3.5  
2
3
4
5
14  
13  
12  
11  
IR3086  
PHASE  
IC  
VOSNS-- LGNDROSC  
10 22  
RMPIN-  
HOTSET  
VRHOT  
ISHARE  
CVDAC  
33nF  
ROSC  
30.1K  
0.1uF  
RPWMRMP  
0.1uF  
CSCOMP  
RCS-  
CCS-  
CCS+  
RBIASIN  
RCS+  
0.1uF  
1
15  
RMPIN+  
VCCH  
GATEH  
PGND  
GATEL  
VCCL  
2
3
4
5
14  
13  
12  
11  
IR3086  
PHASE  
IC  
RMPIN-  
HOTSET  
VRHOT  
ISHARE  
0.1uF  
RPWMRMP  
0.1uF  
CSCOMP  
RCS-  
CCS-  
CCS+  
RBIASIN  
RCS+  
0.1uF  
1
15  
RMPIN+  
VCCH  
GATEH  
PGND  
GATEL  
VCCL  
2
3
4
5
14  
13  
12  
11  
IR3086  
PHASE  
IC  
RMPIN-  
HOTSET  
VRHOT  
ISHARE  
0.1uF  
RPWMRMP  
0.1uF  
CSCOMP  
RCS-  
CCS-  
CCS+  
RBIASIN  
RCS+  
0.1uF  
1
15  
RMPIN+  
VCCH  
GATEH  
PGND  
GATEL  
VCCL  
2
3
4
5
14  
13  
12  
11  
IR3086  
PHASE  
IC  
RMPIN-  
HOTSET  
VRHOT  
ISHARE  
0.1uF  
RPWMRMP  
0.1uF  
CSCOMP  
Figure 19 – IR3084U/3086 5 Phase VRM/EVRD 11 Converter  
Page 26 of 47  
9/14/2005  
IR3084U  
DESIGN PROCEDURES – IR3084U and IR3086 Chipset  
IR3084U EXTERNAL COMPONENTS  
Oscillator Resistor Rosc  
The oscillator of IR3084 generates a triangle waveform to synchronize the phase ICs, and the switching  
frequency of the each phase converter equals the oscillator frequency, which is set by the external resistor ROSC  
according to the curve in Figure 13 on page  
VDAC Slew Rate Programming Capacitor CVDAC and Resistor RVDAC  
The sink and source currents of the VDAC pin are set by the value of ROSC. The sink current capability of the  
VDAC pin is slightly less than the source current. Therefore, the VDAC sink current (ISINK) should be used to  
calculate CVDAC to insure that the dynamic VID slew rate when Vcore decreases is not too slow.  
The negative slew rate of VDAC (SRDOWN) is programmed by the external capacitor CVDAC as shown in Equation  
(1). The resistor RVDAC is used to compensate/stabilize the VDAC circuit and is determined by Equation (2). The  
positive slew rate of the VDAC voltage (SRUP) is proportional to the negative slew rate of VDAC and can be  
calculated using Equation (3).  
ISINK  
CVDAC  
=
(1)  
SRDOWN  
Where: ISINK is the sink current of the VDAC pin at the chosen value of ROSC as shown in Figure 17 on  
page 25.  
3.2 1015  
(2)  
(3)  
RVDAC = 0.5Ω +  
2
CVDAC  
ISOURCE  
SRUP  
=
CVDAC  
Where: ISOURCE is the source current of the VDAC pin at the chosen value of ROSC as shown in Figure 17  
on page 25.  
The VID voltage rise or fall time during startup with Boot Mode (TD4) can be calculated using either Equation  
(4a) or (4b).  
CVDAC  
TD4 =  
TD4 =  
(
VDAC 1.1V  
)
if VDAC > 1.1V  
if VDAC < 1.1V  
(4a)  
(4b)  
ISOURCE  
CVDAC  
(
1.1V VDAC  
)
ISINK  
Where: VDAC is the DAC voltage set by the VID pins.  
ISOURCE and ISINK are the source and sink currents of the VDAC pin.  
If Boot Mode is not used then TD4 = 0.  
Page 27 of 47  
9/14/2005  
IR3084U  
No Load Output Voltage Setting Resistor RVSETPT, Feedback Resistor RFB, and AVP Resistor RDRP  
An external resistor, RVSETPT, connected between the VDAC pin and the VSETPT pin is used to set the no load  
output voltage offset, VO_NLOFST, which is the difference between the VDAC voltage and output voltage at no load.  
However, the converter’s output voltage will be set by the combination of VSETPT plus some contribution from  
the VDRP pin. At no load, both pins of the Error Amplifier are at VDAC – VSETPT while the VDRP pin is at  
VDAC + VCS_OFST•GCSA (VCS_OFST and GCSA are the input offset and gain of the current sense amplifiers). Because  
the VDRP pin is at a higher voltage than the FB pin of the Error Amplifier, VDRP will contribute to the no load  
offset through the RDRP and RFB resistors. The design approach is to choose a value for the feedback resistor,  
RFB, from 100 to 2K and then calculate RDRP and RVSETPT to provide the required no load offset voltage.  
A* D C * B  
(A + B C D)  
VSETPT =  
(5)  
CSA +VCS _ TOFST *GCSA  
C = VCS _ TOFST *GCSA  
D = VO_NLOFST  
Io* R *G  
L
A =  
n
B = VO_NLOFST + Io* Ro  
Where:  
IO is the full load output current of the converter  
RL is the DCR of the output inductor  
GCSA is the gain of the current sense amplifiers  
n is the number of phases  
VO_NLOFST is the no load offset voltage below the DAC setting,  
a positive number for VR10 and VR11, a negative number for AMD  
Ro is the desired load line slope (ohms)  
VCS_TOFST is the total offset voltage of the current sense amplifiers, see below.  
The total input offset voltage (VCS_TOFST) of the current sense amplifier in the phase IC is the sum of input offset  
(VCS_OFST) of the amplifier itself plus that created by the amplifier input bias currents flowing through the current  
sense resistors RCS+ and RCSas shown in Equation (6).  
VCS_TOFST = VCS_OFST  
+
(
ICSIN + RCS +  
)
(
ICSIN RCS −  
)
(6)  
Finally, calculate the no-load setpoint resistor using Equation (7) and the droop resistor using Equation (8);  
VSETPT  
RVSETPT =  
(7)  
(8)  
IVSETPT  
Where:  
IVSETPT is the current into the VSETPT pin at the switching frequency,  
which is a function of ROSC. See Figure 15 on page 25.  
VSETPT is calculated by Equation (5).  
VSETPT + C  
D VSETPT  
RDRP = RFB ⋅  
Page 28 of 47  
9/14/2005  
IR3084U  
Soft Start Capacitor CSS/DEL and Resistor RSS/DEL  
Because the capacitor CSS/DEL programs three different time parameters, i.e. soft start time, over current latch  
delay time, and the frequency of hiccup mode, they should be considered together while choosing CSS/DEL.  
The soft-start ramp time (TD2) is the time required for the converter’s output voltage to rise from 0V to the DAC  
voltage (VDAC). Given a desired soft-start ramp time (TD2) and the soft-start charge current (ICHG) from the data  
sheet, the value of the external capacitor (CSS/DEL) can be calculated using Equation (9).  
70*106 *TD2  
I
CHG *TD2  
(9)  
CSS / DEL  
=
=
RFB  
RFB  
VDAC 1−  
VDAC 1−  
RFB + RDRP  
RFB + RDRP  
Where: VDAC = 1.1V in Boot Mode or the DAC voltage set by the VID pins without Boot Mode.  
RFB is the resistor from Vcore to the FB pin of the controller.  
RDRP is the resistor from VDRP to FB.  
If droop is not used, set the second term within the parenthesis to zero (RDRP = ).  
Once CSS/DEL is determined, the soft start delay time TD1, the VID sample time TD3, the VRRDY delay time TD5,  
and the over-current fault latch delay time TOCDEL are determined and can be calculated using Equations (10),  
(11), (12), and (13) respectively.  
CSS / DEL  
RFB  
(10)  
TD1 =  
1.3V +VDAC ∗  
ICHG  
RFB + RDRP  
Where: VDAC = 1.1V in Boot Mode or the DAC voltage set by the VID pins without Boot Mode.  
ICHG is the soft-start charge current, nominally 70µA.  
RFB is the resistor from Vcore to the FB pin of the controller.  
RDRP is the resistor from VDRP to FB.  
If droop is not used, set the second term within the parenthesis to zero (RDRP = ).  
CSS / DEL  
CSS / DEL  
70*106  
TD3 =  
(
3.1V 1.3V 1.1V  
)
=
0.7V  
(11)  
(12)  
(13)  
ICHG  
If Boot Mode is not used, then TD3 is zero.  
CSS / DEL *(3.85V 3.1V )  
CSS / DEL *0.75V  
TD5 =  
TD4 =  
TD4  
70*106  
ICHG  
Where: TD4 is the VID voltage rise time calculated from Equation 4.  
CSS / DEL *100mV CSS / DEL *100mV  
TOCDEL  
=
=
40*106  
IOC _ DISCHG  
Where: IOC_DISCHG is the over-current discharge current of the SS/DEL pin from the data sheet.  
Page 29 of 47  
9/14/2005  
IR3084U  
Over Current Setting Resistor ROCSET  
The inductor DC resistance is utilized to sense the inductor current. The copper wire of the inductor has a  
constant temperature coefficient of 3850 PPM, and therefore the maximum inductor DCR can be calculated from  
Equation (14), where RL_MAX and RL_ROOM are the inductor DCR at maximum temperature TL_MAX and room  
temperature T_ROOM respectively.  
RL_MAX = RL_ROOM [1 + 3850*106 (TL_MAX TROOM )]  
(14)  
The current sense amplifier gain of the IR3086A decreases with temperature at the rate of 1470 PPM, which  
compensates part of the inductor DCR increase. The phase IC die temperature is only a couple of degrees  
Celsius higher than the PCB temperature due to the low thermal impedance of MLPQ package. The minimum  
current sense amplifier gain at the maximum phase IC temperature TIC_MAX is calculated from Equation (15).  
GCS_MIN = GCS_ROOM [1 1470*106 (TIC_MAX TROOM )]  
(15)  
The over-current limit is set by the external resistor ROCSET as defined in Equation (16), where ILIMIT is the  
required over current limit. IOCSET, the bias current of the OCSET pin, changes with switching frequency setting  
resistor ROSC and is determined by the curve in Figure 14 on page 25. KP is the ratio of inductor peak current to  
average current in each phase and is calculated from Equation (17).  
GCS _ MIN  
ILIMIT  
(16)  
(17)  
ROCSET = [  
RL_MAX (1+ KP ) +VCS_TOFST ] ∗  
n
IOCSET  
(VI VO _ FL )VO _ FL /(L VI fSW 2)  
KP =  
ILIMIT /n  
Where: VI is the input voltage to the converter (nominally 12V).  
VO_FL is the output voltage of the converter with droop at the over-current threshold.  
L is the value of the output inductors.  
fSW is the switching frequency.  
ILIMIT is the DC output current of the converter when the over-current fault occurs.  
n is the number of phases.  
Page 30 of 47  
9/14/2005  
IR3084U  
IR3086 EXTERNAL COMPONENTS  
PWM Ramp Resistor RPWMRMP and Capacitor CPWMRMP  
PWM ramp is generated by connecting the resistor RPWMRMP between a voltage source and PWMRMP pin as  
well as the capacitor CPWMRMP between PWMRMP and LGND. Choose the desired PWM ramp magnitude  
VRAMP and the capacitor CPWMRMP in the range of 100pF and 470pF, and then calculate the resistor RPWMRMP  
from Equation (18). To achieve feedforward voltage mode control, the resistor RRAMP should be connected to  
the input of the converter.  
V
O
(18)  
R
=
PWMRMP  
V
*f  
*C  
*[ln(V V  
IN  
) ln(V V  
IN  
V  
)]  
IN SW PWMRMP  
DAC  
DAC  
PWMRMP  
Inductor Current Sensing Capacitor CCS+ and Resistors RCS+ and RCS  
The DC resistance of the inductor is utilized to sense the inductor current. Usually the resistor RCS+ and capacitor  
CCS+ in parallel with the inductor are chosen to match the time constant of the inductor, and therefore the voltage  
across the capacitor CCS+ represents the inductor current. If the two time constants are not the same, the AC  
component of the capacitor voltage is different from that of the real inductor current. The time constant mismatch  
does not affect the average current sharing among the multiple phases, but affect the current signal ISHARE as  
well as the output voltage during the load current transient if adaptive voltage positioning is adopted.  
Measure the inductance L and the inductor DC resistance RL. Preselect the capacitor CCS+ and calculate RCS+  
as follows.  
L RL  
(19)  
RCS +  
=
CCS +  
The bias current flowing out of the non-inverting input of the current sense amplifier creates a voltage drop across  
RCS+, which is equivalent to an input offset voltage of the current sense amplifier. The offset affects the accuracy  
of converter current signal ISHARE as well as the accuracy of the converter output voltage if adaptive voltage  
positioning is adopted. To reduce the offset voltage, a resistor RCSshould be added between the amplifier  
inverting input and the converter output. The resistor RCSis determined by the ratio of the bias current from the  
non-inverting input and the bias current from the inverting input.  
ICSIN +  
(20)  
RCS −  
=
RCS+  
ICSIN −  
If RCSis not used, RCS+ should be chosen so that the offset voltage is small enough. Usually RCS+ should be  
less than 2 kand therefore a larger CCS+ value is needed.  
Page 31 of 47  
9/14/2005  
IR3084U  
Over Temperature Setting Resistors RHOTSET1 and RHOTSET2  
The threshold voltage of VRHOT comparator is proportional to the die temperature TJ (ºC) of phase IC.  
Determine the relationship between the die temperature of phase IC and the temperature of the power converter  
according to the power loss, PCB layout and airflow etc, and then calculate HOTSET threshold voltage  
corresponding to the allowed maximum temperature from Equation (21).  
VHOTSET = 4.73*103*TJ + 1.241  
(21)  
There are two ways to set the over temperature threshold, central setting and local setting. In the central setting,  
only one resistor divider is used, and the setting voltage is connected to HOTSET pins of all the phase ICs. To  
reduce the influence of noise on the accuracy of over temperature setting, a 0.1uF capacitor should be placed  
next to HOTSET pin of each phase IC. In the local setting, a resistor divider per phase is needed, and the setting  
voltage is connected to HOTSET pin of each phase. The 0.1uF decoupling capacitor is not necessary. Use  
VBIAS as the reference voltage. If RHOTSET1 is preselected, RHOTSET2 can be calculated as follows.  
RHOTSET1 VHOTSET  
VBIAS VHOTSET  
RHOTSET2  
=
(22)  
Phase Delay Timing Resistors RPHASE1 and RPHASE2  
The phase delay of the interleaved multiphase converter is programmed by the resistor divider connected at  
RMPIN+ or RMPINdepending on which slope of the oscillator ramp is used for the phase delay programming of  
phase IC, as shown in Figure 4.  
If the positive slope is used, RMPIN+ pin of the phase IC should be connected to RMPOUT pin of the control IC  
and RMPINpin should be connected to the resistor divider. When RMPOUT voltage is above the trip voltage at  
RMPINpin, the PWM latch is set. GATEL becomes low, and GATEH becomes high after the non-overlap time.  
If the negative slope is used, RMPINpin of the phase IC should be connected to RMPOUT pin of the control IC  
and RMPIN+ pin should be connected to the resistor divider. When RMPOUT voltage is below the trip voltage at  
RMPINpin, the PWM latch is set. GATEL becomes low, and GATEH becomes high after the non-overlap time.  
It is best to use the VBIAS voltage as the reference for the resistor dividers because the oscillator ramp  
magnitude from the control IC will track the VBIAS voltage. It is best to avoid the peak and valley of the oscillator  
ramp for better noise immunity. Determine the ratio of the programming resistors corresponding to the desired  
switching frequencies and phase numbers. If the resistor RPHASEx1 is pre-selected, the resistor RPHASEx2 is  
determined as:  
RAPHASEx RPHASEx1  
(23)  
RPHASEx2  
=
1 RAPHASEx  
Page 32 of 47  
9/14/2005  
IR3084U  
Combining the Over Temperature and Phase Delay Setting Resistors RPHASE1, RPHASE2 and RPHASE3  
The over temperature setting resistor divider can be combined with the phase delay resistor divider to save one  
resistor per phase.  
Calculate the HOTSET threshold voltage VHOTSET corresponding to the allowed maximum temperature from  
Equation (20). If the over temperature setting voltage is lower than the phase delay setting voltage,  
VBIAS*RAPHASEx, connect RMPIN+ or RMPINpin between RPHASEx1 and RPHASEx2 and connect HOTSET pin  
between RPHASEx2 and RPHASEx3 respectively. Pre-select RPHASEx1, then calculate RPHASEx2 and RPHASEx3,  
(RAPHASEx VBIAS VHOTSET )*RPHASEx1  
(24)  
(25)  
RPHASEx2  
=
=
VBIAS (1 RAPHASEx  
)
VHOTSET RPHASEx1  
VBIAS*(1RAPHASEx  
RPHASEx3  
)
If the over temperature setting voltage is higher than the phase delay setting voltage, VBIAS*RAPHASEx, connect  
HOTSET pin between RPHASEx1 and RPHASEx2 and connect RMPIN+ or RMPINbetween RPHASEx2 and  
RPHASEx3 respectively. Pre-select RPHASEx1,  
(VHOTSET RAPHASEx VBIAS )RPHASEx1  
RPHASEx2  
=
=
(26)  
(27)  
VBIAS VHOTSET  
RAPHASEx VBIAS*RPHASEx1  
VBIAS VHOTSET  
RPHASEx3  
Bootstrap Capacitor CBST  
Depending on the duty cycle and gate drive current of the phase IC, a 0.1uF to 1uF capacitor is needed for the  
bootstrap circuit.  
Decoupling Capacitors for Phase IC  
0.1uF1uF decoupling capacitors are required at VCC and VCCL pins of phase ICs.  
Page 33 of 47  
9/14/2005  
IR3084U  
VOLTAGE LOOP COMPENSATION  
The adaptive voltage positioning is used in the computer applications to meet the load line requirements. Like  
current mode control, the adaptive voltage positioning loop introduces extra zero to the voltage loop and splits the  
double poles of the power stage, which make the voltage loop compensation much easier.  
Resistors RFB and RDRP are chosen according to Equations (15) and (16), and the selection of compensation  
type depends on the capacitors used. For the applications using Electrolytic, Polymer or ALPolymer capacitors,  
Type II compensation shown in Figure 20 (a) is usually adequate. While for the applications with only ceramic  
capacitors, Type III compensation shown in Figure 20 (b) is preferred.  
CCP1  
CCP1  
RFB  
CFB  
RCP  
CCP  
VO+  
RCP  
CCP  
RFB1  
FB  
-
EAOUT  
RFB  
EAOUT  
VO+  
FB  
VDAC  
-
RDRP  
+
VDRP  
EAOUT  
EAOUT  
VDAC  
RDRP  
CDRP  
+
VDRP  
(a) Type II compensation  
(b) Type III compensation  
Figure 20: Voltage Loop Compensation Networks  
Type II Compensation  
Determine the compensation at no load, the worst case condition. Choose the crossover frequency fc between  
1/10 and 1/5 of the switching frequency per phase. Assume the time constant of the resistor and capacitor across  
the output inductors matches that of the inductor, RCP and CCP can be determined by Equations (28) and (29).  
(2π * fC )2 * LE *CE * RFB *VPWMRMP  
(28)  
(29)  
RCP  
=
=
VO * 1 + (2π * fC *CE * RCE )2  
10 * LE *CE  
CCP  
RCP  
Where LE and RCE are the equivalent output inductance and ESR of the output capacitors, respectively. CCP1 is  
optional and may be needed in some applications to reduce the jitter caused by the high frequency noise. A  
ceramic capacitor between 10pF and 220pF is usually enough.  
Page 34 of 47  
9/14/2005  
IR3084U  
Type III Compensation  
Determine the compensation at no load, the worst case condition. Choose the crossover frequency fc between  
1/10 and 1/5 of the switching frequency per phase. Assume the time constant of the resistor and capacitor across  
the output inductors matches that of the inductor, RCP and CCP can be determined by Equations (30) and (31),  
where CE is equivalent output capacitance.  
(2π * fC )2 * LE *CE *VPWMRMP  
(30)  
(31)  
RCP  
=
=
Vo  
10 * LE *CE  
CCP  
RCP  
Choose resistor RFB1 according to Equation (33), and determine CFB and RDRP from Equations (32) and (33).  
1
2
RFB1 = * RFB  
to  
RFB1 = * RFB  
(32)  
(33)  
2
3
1
CFB  
=
4π * fC1 * RFB1  
CCP1 is optional and may be needed in some applications to reduce the jitter caused by the high frequency noise.  
A ceramic capacitor between 10pF and 220pF is usually enough.  
CURRENT SHARE LOOP COMPENSATION  
The crossover frequency of the current share loop should be at least one decade lower than that of the voltage  
loop in order to eliminate the interaction between the two loops. A capacitor from SCOMP to LGND is usually  
enough for most of the applications. Choose the crossover frequency of current share loop (fCI) based on the  
crossover frequency of voltage loop (fC), and determine the CSCOMP,  
0.65 * RPWMRMP *VI * IO *GCS_ROOM * RLE * [1 + 2π * fCI *CE *( VO IO )] * FMI  
CSCOMP  
=
(34)  
VO * 2π * fCI *1.05*106  
Where FMI is the PWM gain in the current share loop,  
RPWMRMP *CPWMRMP * fSW *VPWMRMP  
FMI =  
(35)  
(VO VPWMRMP VDAC )*(VI VDAC  
)
Page 35 of 47  
9/14/2005  
IR3084U  
DESIGN EXAMPLE: VRM 11 7PHASE CONVERTER  
SPECIFICATIONS  
Input Voltage: VI = 12V  
DAC Voltage: VDAC = 1.3V  
No Load Output Voltage Offset: VO_NLOFST = 15mV  
Output Current: IO = 130 ADC  
Maximum Output Current: IOMAX = 150 ADC  
Load Line Slope: RO = 1.20 mΩ  
VRM11 Startup Boot Voltage = 1.100V  
Soft Start Time: TD2 = 1.1ms  
VCC Ready to VCC Power Good Delay: TD5 = 1.0ms  
Over Current Delay: TOCDEL = 250µs  
Dynamic VID Negative Slew Rate: SRDOWN = 2.5mV/us  
Over Temperature Threshold: TPCB = 115 ºC  
POWER STAGE  
Phase Number: n = 7  
Switching Frequency: fSW=400 kHz  
Output Inductors: L = 220 nH, RL = 0.60 mΩ  
Output Capacitors: C = 560uF, RC = 7m, Number Cn = 10  
IR3084 EXTERNAL COMPONENTS  
Oscillator Resistor Rosc  
The switching frequency sets the value of ROSC as shown by the curve in Figure 13 on page 25. In this design,  
the switching frequency of 400kHz per phase requires ROSC to be 30.1k.  
VDAC Slew Rate Programming Capacitor CVDAC and Resistor RVDAC  
From Figure 17 on page 25, the sink current of the VDAC pin at 400kHz (ROSC=30.1k) is 80uA. Calculate the  
VDAC slew-rate programming capacitor from the specified negative slew rate using Equation (1).  
80*106  
2.5*103 /106  
ISINK  
CVDAC  
=
=
= 32.0nF ,  
Choose CVDAC = 33nF  
SRDOWN  
Calculate the VDAC compensation resistor from Equation (2);  
3.2*1015  
3.2*1015  
RVDAC = 0.5 +  
= 0.5 +  
= 3.5  
2
2
(33*109  
)
CVDAC  
From Figure 17 on page 25, the source current of the VDAC pin is 90uA at ROSC = 30.1K. The VDAC positive  
slew rate is can be calculated using Equation (3);  
90*106  
ISOURCE  
SRUP  
=
=
= 2.7mV/uS  
33*109  
CVDAC  
Page 36 of 47  
9/14/2005  
IR3084U  
Using the calculated value of CVDAC, find the positive VID voltage rise time (TD4) to the specified nominal DAC  
voltage of 1.300V during startup with Boot Mode using Equation 4a;  
CVDAC  
33nF  
90uA  
TD4 =  
(
VDAC 1.1V  
)
=
*
(
1.300V 1.1V = 73.3us  
)
ISOURCE  
No Load Output Voltage Setting Resistor RVSETPT, RFB and Adaptive Voltage Positioning Resistor RDRP  
First, use Equations (19) and (20) to calculate the current sense resistors RCS+ and RCS, respectively. For this  
design, in the next section, RCS+ is determined to be 10Kand RCSis found to be 6.19K.  
Second, calculate the total input offset voltage (VCS_TOFST) of the current sense amplifiers using Equation (6).  
From the IR3086A data sheet, typical values for the ICSIN+ and ICSINbias currents are determined to be 0.25µA  
and 0.40µA, respectively.  
VCS_TOFST = VCS_OFST  
+
(
I
CSIN+ RCS+  
)
(
I
CSINRCS−  
)
= 0.55mV +  
(
0.25*106 *10KΩ  
)
(
0.40*106 *6.19KΩ  
)
= 0.574mV  
Next, derive the intermediate calculations (A,B,C,D) as shown below before finally calculating RVSETPT and RDRP  
using Equations (7) and (8). From Figure 15 on page Error! Bookmark not defined., the IVSETPT bias current is  
determined to be 40µA at ROSC=30.1kand a typical value for the offset voltage of the error amplifier is 0.0mV.  
CSA +VCS _ TOFST *GCSA +VOS _ EA  
*G  
=
+ 0.574*103 *34 + 0.0mV  
Io* R  
L
130*0.60*103 *34  
7
A =  
= 0.3984  
n
B = VO _ NLOFST + Io* Ro VOS _ EA = 15*103 +130*1.20*103 0.0mV = 0.1710  
C = VCS_TOFST*GCSA +VOS_EA = 0.574*103*34 + 0.0mV = 0.0.0195  
D = VO _ NLOFST VOS _ EA = 15*103 0.0mV = 0.015  
A* D C * B  
0.3984*0.015 0.0195*0.1710  
VSETPT =  
=
= 0.00494V  
(A + B C D) 0.3984 + 0.1710 0.0195 0.015  
VSETPT 0.00494  
RVSETPT =  
=
= 123.5ohms  
40x106  
IVSETPT  
Choose the closest standard resistor value to this with 1% tolerance or RVESTPT = 124ohms.  
Page 37 of 47  
9/14/2005  
IR3084U  
Select RFB = 324 ohms and then calculate the droop resistor,  
VSETPT + C  
D VSETPT  
0.00494 + 0.0195  
0.015 0.00494  
RDRP = RFB ⋅  
= 324⋅  
= 787.1ohms  
Choose the next standard value higher than this with 1% tolerance or RDRP = 787ohms.  
Soft Start Capacitor CSS/DEL and Startup Times  
Calculate the soft start capacitor from the required soft start time using Equation (9) with Boot Mode;  
70*106 *TD2  
70*106 *1.1*103  
CSS / DEL  
=
=
= 0.0988uF or 0.1uF  
RFB  
324  
VDAC 1−  
1.1V * 1−  
RFB + RDRP  
324 + 787  
The soft start delay time can be calculated using Equation (10) with Boot mode;  
0.1*106  
70*106  
324  
CSS/DEL  
RFB  
TD1 =  
1.3V +VDAC ∗  
=
* 1.3V +1.1V *  
ICHG  
RFB + RDRP  
324 + 787  
= 2.31ms  
The VID sample time can be found using Equation (11);  
0.1*106 0.7  
CSS / DEL 0.7V  
TD3 =  
=
= 1.00ms  
70*106  
ICHG  
The power good delay time can be found using Equation (12);  
0.1*106 *0.75V  
C
SS / DEL *0.75V  
TD5 =  
TD4 =  
73us = 0.998ms  
70*106  
ICHG  
Finally, use Equation (13) to calculate the over-current fault latch delay time;  
0.1*106 *100*103  
CSS / DEL *100mV  
TOCDEL  
=
=
= 250us  
40*106  
40*106  
Page 38 of 47  
9/14/2005  
IR3084U  
Over Current Setting Resistor ROCSET  
Assume that room temperature is 25ºC and the target PCB temperature is 100 ºC. The phase IC die temperature  
is usually about 1 ºC higher than that of phase IC and the inductor temperature is close to PCB temperature.  
Calculate the Inductor’s DC resistance at 100 ºC using Equation (14);  
6  
6  
RL_MAX = RL_ROOM [1+3850*10 (TL_MAX TROOM )] =0.60*103 [1+3850*10 (10025)] = 0.77mΩ  
The current sense amplifier gain is 34 at 25ºC, and its gain at 101ºC is calculated using Equation (15),  
GCS_MIN = GCS_ROOM [1 1470*10 6 (TIC_MAX TROOM )] = 34 [1 1470*10 6 (101 25)] = 30.2  
Here we will set the over current shutdown threshold to 155A at maximum operating temperature. From Figure  
14 on page Error! Bookmark not defined., the bias current of the OCSET pin (IOCSET) is 42.5µA with  
ROSC=30.1k. The total current sense amplifier input offset voltage calculated previously is 0.574mV, which  
includes the offset created by the current sense amplifier input resistor mismatch.  
Calculate the constant KP, the ratio of inductor peak current over average current in each phase using Equation  
(17);  
(12 1.18) 1.18/(220*109 12 400*103 2)  
(VI VO ) VO /(L VI fSW 2)  
KP =  
=
= 0.273  
ILIMIT / n  
155/ 7  
Finally, calculate the over-current setting resistor using Equation (16);  
GCS _ MIN  
ILIMIT  
ROCSET = [  
RL_MAX (1+ KP ) +VCS_TOFST ] ∗  
n
IOCSET  
155  
30.2  
42.5*103  
= (  
0.77 *103 ∗  
(
1+ 0.273  
)
+ 0.574 *103 ) ∗  
= 15.8KΩ  
7
Page 39 of 47  
9/14/2005  
IR3084U  
IR3086 PHASE IC COMPONENTS  
PWM Ramp Resistor RRAMP and Capacitor CRAMP  
Set the PWM ramp magnitude VPWMRMP to 0.8V. Choose 220pF for the PWM ramp capacitor CPWMRMP and  
calculate the resistor RPWMRMP using Equation (18);  
VO  
RPWMRMP  
=
VIN fSW CPWMRMP [ln(VIN VDAC ) ln(VIN VDAC VPWMRMP )]  
1.30  
=
= 15.8k ,  
3
12  
12 400*10 220*10  
[ln(12 1.30) ln(12 1.30 0.8)]  
Choose a standard resistor value, RPWMRMP=15.8k.  
Inductor Current Sensing Capacitor CCS+ and Resistors RCS+ and RCS−  
Choose CCS+=47nF and calculate RCS+ using Equation (19);  
220*109 /(0.47 *103 )  
L RL  
RCS+  
=
=
= 10.0k  
47 *109  
CCS+  
The bias currents of CSIN+ and CSINare 0.25uA and 0.4uA respectively. Calculate resistor RCSusing  
Equation (20);  
0.25  
0.4  
0.25  
0.4  
RCS  
=
RCS +  
=
10.0*103 = 6.2kΩ ,  
choose RCS= 6.19kΩ  
Over Temperature Setting Resistors RHOTSET1 and RHOTSET2  
Use central over temperature setting and set the temperature threshold at 115 ºC, which corresponds the IC die  
temperature of 116 ºC. Calculate the HOTSET threshold voltage corresponding to the temperature thresholds  
using Equations (21) and (22);  
VHOTSET = 4.73*103 *TJ +1.241 = 4.73*103 116 +1.241 =1.79V , choose RHOTSET1=20.0k,  
20*103 1.79  
RHOTSET1 VHOTSET  
VBIAS VHOTSET  
RHOTSET 2  
=
=
= 7.14kΩ  
6.8 1.79  
Page 40 of 47  
9/14/2005  
IR3084U  
Phase Delay Timing Resistors RPHASEx1 to RPHASEx2 (x=1,2,…,7)  
The phase delay resistor ratios for phases 1 to 7 at 400kHz are (from the XPhase Excel based design  
spreadsheet); RAPHASE1=0.580, RAPHASE2=0.397, RAPHASE3=0.215, RAPHASE4=0.206,  
RAPHASE5=0.353 RAPHASE6=0.5 and RAPHASE7=0.647.  
Preselect RPHASE11=RPHASE21=RPHASE31=RPHASE41=RPHASE51=RPHASE61=RPHASE71=20k,  
RAPHASE1  
0.58  
RPHASE12  
=
RPHASE11  
=
20*103 = 27.6kΩ  
1RAPHASE1  
10.58  
Calculating the other resistors from the same formula results in; RPHASE22=13.2k, RPHASE32=5.48k,  
RPHASE42=5.2k, PPHASE52=10.9k, RPHASE62=20k, RPHASE72=36.6k.  
Phase ICs 13 should have the RMPOUT voltage from the 3084 controller connected to their RMPINpin so  
they will trigger on the negative slope of the RMPOUT waveform. Phase ICs 47 should have the RMPOUT  
voltage from the 3084 controller connected to their RMPIN+ pin so they will trigger on the positive slope of the  
RMPOUT waveform.  
Bootstrap Capacitor CBST  
Choose CBST=0.1uF.  
Decoupling Capacitors for Phase IC and Power Stage  
Choose CVCC=0.1uF, CVCCL=0.1uF  
VOLTAGE LOOP COMPENSATION  
ALPolymer output capacitors are used in the design, for instructional purposes Type III compensation as shown  
in Figure 18(b) will be demonstrated here. First, choose the desired crossover frequency as 1/10 of the switching  
frequency, fC =40 kHz, and determine Rcp and CCP using Equations (30) and (31):  
(2π * fC )2 * LE *CE * RFB *VPWMRMP  
(2π *40*103 )2 *(220*109 / 7)*(560*106 *10)*324*0.8  
1.30 0.015130*1*103  
RCP  
=
=
Vo  
= 2.49KΩ  
10* (220*109 / 7)*(560*106 *10)  
2.49*103  
10* LE *CE  
,
Choose CCP=56nF  
CCP  
=
=
= 53nF  
RCP  
1
1
RFB1 = * RFB = *324 = 162Ω  
Choose RFB1=162ꢀ  
2
2
1
1
Choose CFB=10nF  
CFB  
=
=
= 12.3nF  
4π *40*103 *162  
4π * fC * RFB1  
Choose CCP1=100pF to reduce high frequency noise.  
Page 41 of 47  
9/14/2005  
IR3084U  
CURRENT SHARE LOOP COMPENSATION  
The crossover frequency of the current share loop (fCI) should be at least one decade lower than that of the  
voltage loop fC. Choose the crossover frequency of current share loop fCI =4kHz, and calculate FMI and CSCOMP  
using Equations (34) and (35);  
15.8*103 * 220*1012 * 400*103 *0.8  
R
PWMRMP *CPWMRMP * fSW *V PWMRMP  
FMI  
=
=
= 0.0105  
(VI VPWMRMP VDAC )*(VI VDAC  
)
(12 0.8 1.30)*(12 1.30)  
0.65* RPWMRMP *VI * IO *GCS _ ROOM * RLE *[1+ 2π * fCI *CE *(VO IO )]* FMI  
VO * 2π * fCI *1.05*106  
CSCOMP  
=
0.65*15.8*103 *12*130*34*(0.47*103 7)*[1+ 2π *4*103 *5600*106 *(1.30 130*1.0*103 ) 130]*0.0105  
(1.30 130*1.0*103 )*2π *4*103 *1.05*106  
=
36574*[2.266]*0.0105  
30.859*109  
=
= 28.2nF  
Choose CSCOMP=22nF with 5% tolerance for best current sharing between phases.  
Page 42 of 47  
9/14/2005  
IR3084U  
LAYOUT GUIDELINES  
The following layout guidelines are recommended to reduce the parasitic inductance and resistance of the PCB  
layout, therefore minimizing the noise coupled to the IC.  
Dedicate at least one middle layer for a ground plane LGND.  
Connect the ground tab under the control IC to LGND plane through a via.  
Place the following critical components on the same layer as control IC and position them as close as  
possible to the respective pins, ROSC, ROCSET, RVDAC, CVDAC, CVCC, CSS/DEL and RCC/DEL. Avoid using any  
via for the connection.  
Place the compensation components on the same layer as control IC and position them as close as possible  
to EAOUT, FB and VDRP pins. Avoid using any via for the connection.  
Use Kelvin connections for the remote voltage sense signals, VOSNS+ and VOSNS-, and avoid crossing  
over the fast transition nodes, i.e. switching nodes, gate drive signals and bootstrap nodes.  
Control bus signals, VDAC, RMPOUT, IIN, VBIAS, and especially EAOUT, should not cross over the fast  
transition nodes.  
LGND PLANE  
RSETPT  
To VIN  
CVCC  
ROCSET  
RVDAC  
ROSC  
LGND  
REGFB  
VSETPT  
OCSET  
VDAC  
RVCC  
REGDRV  
GND  
GND  
REGSET  
SS/DEL  
ROSC  
RREGSET  
CSS/DEL  
VOSNS-  
VRRDY  
VID0  
VID1  
CVDAC  
ENABLE  
To Voltage  
Remote Sense  
To SYSTEM  
Page 43 of 47  
9/14/2005  
IR3084U  
METAL AND SOLDER RESIST  
The solder resist should be pulled away from the metal lead lands by a minimum of 0.06mm. The  
solder resist mis-alignment is a maximum of 0.05mm and it is recommended that the lead lands are all  
Non Solder Mask Defined (NSMD). Therefore pulling the S/R 0.06mm will always ensure NSMD  
pads.  
The minimum solder resist width is 0.13mm, therefore it is recommended that the solder resist is  
completely removed from between the lead lands forming a single opening for each “group” of lead  
lands.  
At the inside corner of the solder resist where the lead land groups meet, it is recommended to  
provide a fillet so a solder resist width of 0.17mm remains.  
The land pad should be Solder Mask Defined (SMD), with a minimum overlap of the solder resist onto  
the copper of 0.06mm to accommodate solder resist mis-alignment. In 0.5mm pitch cases it is  
allowable to have the solder resist opening for the land pad to be smaller than the part pad.  
Ensure that the solder resist in-between the lead lands and the pad land is 0.15mm due to the high  
aspect ratio of the solder resist strip separating the lead lands from the pad land.  
The single via in the land pad should be tented with solder resist 0.4mm diameter, or 0.1mm larger  
than the diameter of the via.  
Page 44 of 47  
9/14/2005  
IR3084U  
PCB METAL AND COMPONENT PLACEMENT  
Lead land width should be equal to nominal part lead width. The minimum lead to lead spacing  
should be 0.2mm to minimize shorting.  
Lead land length should be equal to maximum part lead length + 0.2 mm outboard extension +  
0.05mm inboard extension. The outboard extension ensures a large and inspectable toe fillet, and  
the inboard extension will accommodate any part misalignment and ensure a fillet.  
Center pad land length and width should be equal to maximum part pad length and width. However,  
the minimum metal to metal spacing should be 0.17mm for 2 oz. Copper (0.1mm for 1 oz. Copper  
and 0.23mm for 3 oz. Copper)  
A single 0.30mm diameter via shall be placed in the center of the pad land and connected to ground  
to minimize the noise effect on the IC.  
Page 45 of 47  
9/14/2005  
IR3084U  
STENCIL DESIGN  
The stencil apertures for the lead lands should be approximately 80% of the area of the lead lands.  
Reducing the amount of solder deposited will minimize the occurrence of lead shorts. Since for  
0.5mm pitch devices the leads are only 0.25mm wide, the stencil apertures should not be made  
narrower; openings in stencils < 0.25mm wide are difficult to maintain repeatable solder release.  
The stencil lead land apertures should therefore be shortened in length by 80% and centered on the  
lead land.  
The land pad aperture should be striped with 0.25mm wide openings and spaces to deposit  
approximately 50% area of solder on the center pad. If too much solder is deposited on the center  
pad the part will float and the lead lands will be open.  
The maximum length and width of the land pad stencil aperture should be equal to the solder resist  
opening minus an annular 0.2mm pull back to decrease the incidence of shorting the center land to  
the lead lands when the part is pushed into the solder paste.  
Page 46 of 47  
9/14/2005  
IR3084U  
PACKAGE INFORMATION  
28L MLPQ (5 x 5 mm Body) θJA = 30oC/W, θJC = 3oC/W  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Consumer market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.  
www.irf.com  
Page 47 of 47  
9/14/2005  

相关型号:

IR3084UMPBF

XPHASETM VR10, VR11 & OPTERON/ATHLON64 CONTROL IC
INFINEON

IR3084UMTRPBF

XPHASETM VR10, VR11 & OPTERON/ATHLON64 CONTROL IC
INFINEON

IR3086

PHASE IC WITH OVP, FAULT AND OVERTEMP DETECT
INFINEON

IR3086A

XPHASETM PHASE IC WITH OVP, FAULT AND OVERTEMP DETECT
INFINEON

IR3086AM

XPHASETM PHASE IC WITH OVP, FAULT AND OVERTEMP DETECT
INFINEON

IR3086AMPBF

XPHASE PHASE IC WITH OVP, FAULT AND OVERTEMP DETECT
INFINEON

IR3086AMTR

XPHASETM PHASE IC WITH OVP, FAULT AND OVERTEMP DETECT
INFINEON

IR3086AMTRPBF

XPHASE PHASE IC WITH OVP, FAULT AND OVERTEMP DETECT
INFINEON

IR3086APBF

XPHASE PHASE IC WITH OVP, FAULT AND OVERTEMP DETECT
INFINEON

IR3086M

PHASE IC WITH OVP, FAULT AND OVERTEMP DETECT
INFINEON

IR3086MTR

PHASE IC WITH OVP, FAULT AND OVERTEMP DETECT
INFINEON

IR3087

XPHASE PHASE IC WITH OPTI-PHASE, OVP, AND OVERTEMP DETECT
INFINEON