IR3230STRPBF [INFINEON]

The IR3230 is a three-phase brushless DC motor controller/driver with many integrated features.; 该IR3230是三相直流无刷电机控制器/驱动器,具有许多集成功能。
IR3230STRPBF
型号: IR3230STRPBF
厂家: Infineon    Infineon
描述:

The IR3230 is a three-phase brushless DC motor controller/driver with many integrated features.
该IR3230是三相直流无刷电机控制器/驱动器,具有许多集成功能。

驱动器 电机 控制器
文件: 总22页 (文件大小:445K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
April 2, 2012  
IR3230SPbF  
3 PHASE CONTROLLER  
FOR DC BRUSHLESS MOTOR  
Features:  
Application:  
Up to 50 KHz PWM switching capability.  
E-bike  
No bootstrap capacitor.  
Fan and pump  
Actuators system  
Compressor  
Trapezoidal 120° or 60° compatibility.  
Forward and reverse direction.  
Regeneration mode.  
Programmable over current shutdown.  
Programmable over temperature shutdown.  
E.S.D protection.  
Package:  
Lead-free, RoHS compliant.  
Description:  
SOIC-28L Wide Body  
The IR3230 is a three-phase brushless DC motor  
controller/driver with many integrated features.  
They provide large flexibility in adapting the IR3230 to a  
specific system requirement and simplify the system  
design.  
Typical connection:  
+Vbat  
Cpump  
Cd  
Gnd_p  
Ground  
Tp  
Shtp  
C8  
CTN  
Rshunt  
Shtm  
Vss  
+5v  
Power_mosfet  
Out_Supply  
Ho1  
Vs1  
Lo1  
Ho2  
Vs2  
Lo2  
Ho3  
Vs3  
Lo3  
Ghs1  
Sk_ph1  
Gls1  
5.6V  
Gnd  
IR3230  
Ph1  
Ph2  
Ph3  
Ghs2  
Sk_ph2  
Gls2  
Ph1  
Ph2  
Ph3  
+5v  
Gnd  
Rdig_in  
Flt  
+5v  
Rdig_in1  
Ghs3  
Sk_ph3  
Gls3  
Flt_rst  
Sens1  
Sens2  
Sens3  
Gnd  
D igital  
I/O  
Rdig_in2  
Rdig_in3  
Rdig_in4  
Rdig_in5  
Rdig_in6  
Gnd_p  
120/60  
Rev/Fwd  
Mot/Regen  
Pwm  
Gndpwr  
+5v  
Sens1  
Sens2  
Sens3  
En  
Gnd  
* Qualification standards can be found on IR’s web  
1
© 2012 International Rectifier  
site ww.irf.com  
IR3230SPbF  
Qualification Information†  
Qualification Level  
Industrial††  
Comments: This family of ICs has passed JEDEC industrial  
qualification. IR’s Consumer qualification level is granted by extension of  
the higher Industrial level.  
MSL3 260°C  
SOIC28W  
Moisture Sensitivity Level  
(per IPC/JEDEC J-STD-020)  
Class A  
(per JEDEC standard JESD22-A115)  
Class 1C  
Machine Model  
ESD  
Human Body Model  
(
)
per JEDEC standard JESD22-A114  
Class IV  
Charged Device Model  
(per JEDEC standard JESD22-C101)  
Class II, Level A  
IC Latch-Up Test  
RoHS Compliant  
(per JEDEC standard JESD78)  
Yes  
Qualification standards can be found at International Rectifier’s web site  
http://www.irf.com/  
††  
Higher qualification ratings may be available should the user have such requirement.  
Please contact your International Rectifier sales representative for further information.  
2
www.irf.com  
IR3230 SPbF  
Absolute Maximum Ratings  
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. (Tj= -40°C..150°C,  
Vcc=6..65V unless otherwise specified).  
Symbol  
Parameter  
Maximum Gnd to Vcc voltage  
Min.  
-0.3  
-0.3  
-40  
-0.3  
-0.3  
-1.5  
-0.3  
-0.3  
-0.3  
-0.3  
Max.  
75  
Units  
V
V Gnd to Vcc  
V Gndpwr to Vcc  
V Gnd to Gndpwr  
V Latch test  
V Dig in to Vcc  
V Flt to Vcc  
V Vsx to Vcc  
V Shtp to Vcc  
V Shtm to Vcc  
V Out_supply to Vcc  
V Tp to Vcc  
I flt  
Maximum Gndpwr to Vcc voltage  
Maximum Gnd to Gndpwr voltage  
Maximum power supply voltage to perform the latch test  
Maximum all digital input to Vcc voltage  
Maximum Flt to Vcc voltage  
Maximum Vsx to Vcc voltage  
Maximum Shtp to Vcc voltage  
Maximum Shtm to Vcc voltage  
Maximum Out_supply to Vcc voltage  
Maximum Tp to Vcc voltage  
65  
40  
50  
75  
75  
75  
0.3  
75  
75  
75  
4
1.5  
150  
V
V
V
V
V
V
V
V
V
V
mA  
W
°C  
Maximum continous output current on the Flt pin  
Maximum power dissipation (1)  
Max. storage & operating temperature junction temperature  
Pd 3230s  
Tj max.  
Rth=80°C/W  
-40  
Thermal Characteristics  
Symbol  
Parameter  
Typ.  
Max.  
Units  
Rth 3230s  
Thermal resistance junction to ambient  
80  
°C/W  
3
www.irf.com  
IR3230SPbF  
Recommended Operating Conditions  
These values are given for a quick design. For operation outside these conditions, please consult the application notes.  
Symbol  
Vcc opp  
Cpump  
Parameter  
Power supply voltage  
Charge pump capacitor  
Min.  
6
0.22  
Max.  
60  
Units  
V
4.7  
µF  
Max consumption  
Vss  
Maximum consumption on the Vss  
100  
µA  
Cd  
R Dig in  
Recommended capacitor between Vcc and Vss  
Recommended resistor in series with digital input pin  
Recommended pull down resistor on the Flt pin (no internal  
pull down)  
10  
0
100  
10  
nF  
k  
R pld Flt  
1.5  
-
k  
Recommended resistor in series with high side source  
(recommended RVsx = RLox)  
Recommended resistor in series with low side gate  
Maximum recommended high side MOSFET frequency  
(Hox-Vsx) load =2.2nF, Cpump = 220nF  
RVsx  
5
5
100  
100  
2
RLox  
F_Hox max  
kHz  
Maximum recommended low side MOSFET frequency  
Lox load =2.2nF, Cpump = 220nF  
F_Lox max  
50  
kHz  
Static Electrical Characteristics  
Tj=25°C, Vcc=48V (unless otherwise specified), Dig in = All except Hox, Lox, Vsx, Flt, Pmp, Tp, Shtp, Shtm, Vcc, Gnd,  
Gndpwr, Out_supply.  
Symbol  
I Gnd Slp  
I Gnd On  
I Out_supply  
I Flt  
Parameter  
Min.  
0.3  
1.2  
1
Typ.  
1
2.5  
1.7  
6.6  
5
Max. Units Test Conditions  
Supply current in low consumption mode  
Gnd current when the device is awake  
Out _supply output current  
Flt pin output current  
2
4
mA  
mA  
mA  
mA  
V
V
V
V
En = 0;  
En = 1;  
Vout_Vcc >6V  
Flt = Gnd when fault  
I Flt = 10µA  
3.1  
10  
5.8  
1.6  
3.8  
2.5  
16  
36  
7
3
V Flt  
Flt pin output voltage  
4.5  
0.6  
1.9  
1.3  
3.8  
8.8  
5.8  
5.8  
V dig_in Off  
V dig_in On  
V dig_in Hyst  
I dig_in On  
I sensor  
All digital input Low threshold voltage  
All digital input High threshold voltage  
All digital input hysteresis  
All digital input On state current  
All digital input On state current  
High side gate voltage  
1
2.8  
1.8  
8
18  
6.1  
6.5  
µA  
µA  
V
Vdig in= 5v  
Vsensx = ov  
V Hox-Vsx  
V Lox  
Low side gate voltage  
11  
V
I Hox  
Out_Gndpwr  
I Hox Out_Vcc  
High side gate output current Vsx < Vcc  
High side gate output current Vsx > Vcc  
High side gate input current  
38  
7
50  
15  
85  
19  
mA  
mA  
mA  
Hox = Vsx  
Hox = Vsx  
(Hox Vsx)=6V,  
Vsx = Vcc  
I Hox In  
70  
110  
250  
I Lox Out  
I Lox In  
Low side gate output current  
Low side gate input current  
250  
250  
350  
350  
700  
700  
mA  
mA  
Lox = Gndpwr  
Lox = 6V  
4
www.irf.com  
IR3230 SPbF  
Switching Electrical Characteristics  
Vcc=48V, Tj=25°C (unless otherwise specified)  
Motor & Regen mode  
Symbol  
Parameter  
Min.  
Typ. Max.  
Units Conditions  
Cpump = 220nF from  
EN = hi to (Vcpump-  
Vcc) = 5.3v  
Time to charge the pump  
capacitor  
Cpump  
1.5  
5
8
ms  
Tpwr_on_rst  
Tr1 Hox-Vsx  
Power on reset time  
Rise time high side gate with  
Vsx = gndpwr  
180  
0.1  
600  
0.3  
1200  
0.5  
µs  
µs  
Cpump = 6V  
(Hox-Vsx) load =2.2nF  
From 10% to 90%  
Rise time high side gate with  
Vsx = Vcc  
Fall time high side gate with  
Vsx = Gndpwr  
Fall time high side gate with  
Vsx = Vcc  
(Hox-Vsx) load =2.2nF  
From 10% to 90%  
(Hox-Vsx) load =2.2nF  
From 90% to 10%  
(Hox-Vsx) load =2.2nF  
From 90% to 10%  
Tr2 Hox-Vsx  
Tf1 Hox-Vsx  
Tf2 Hox-Vsx  
0.8  
2.5  
0.15  
0.7  
5
µs  
µs  
µs  
0.05  
0.15  
0.25  
1.4  
Motor to Regen mode High  
side turn-off delay time  
Vsx = gndpwr  
Motor to Regen mode High  
side turn-off delay time  
Vsx = Vcc  
Regen to Motor mode High  
side turn-on delay time  
Vsx = gndpwr  
Regen to Motor mode High  
side turn-on delay time  
Vsx = Vcc  
(Hox-Vsx) load =2.2nF  
from 50% of Reg/mot  
to 90% of (Hox Vsx)  
(Hox-Vsx) load =2.2nF  
from 50% of Reg/mot  
to 90% of (Hox Vsx)  
(Hox-Vsx) load =2.2nF  
from 50% of Reg/mot  
to 10% of (Hox Vsx)  
(Hox-Vsx) load =2.2nF  
from 50% of Reg/mot  
to 10% of (Hox Vsx)  
Td1 MtoR Hox off  
Td2 MtoR Hox off  
Td1 RtoM Hox on  
Td2 RtoM Hox on  
0.1  
0.8  
0.1  
0.8  
0.3  
2.5  
0.3  
2.5  
0.5  
5
µs  
µs  
µs  
µs  
0.5  
5
Lox load =2.2nF  
From 10% to 90%  
Lox load =2.2nF  
From 90% to 10%  
Lox load =2.2nF  
from 50% of Reg/mot  
to 10% of Lox  
Lox load =2.2nF  
from 50% of Reg/mot  
to 10% of Lox  
Tr Lox  
Tf Lox  
Low side rise time to turn on  
Low side fall time to turn off  
0.04  
0.04  
0.1  
0.1  
0.3  
0.3  
µs  
µs  
Motor to Regen mode low  
side turn-on delay time  
Td MtoR Lox on  
Td RtoM Lox off  
0.1  
0.1  
0.25  
0.25  
0.5  
0.5  
µs  
µs  
Regen to Motor mode low  
side turn-off delay time  
5
www.irf.com  
IR3230SPbF  
Regen mode  
Min.  
Symbol  
Parameter  
Typ. Max.  
Units Conditions  
Lox load =2.2nF  
from 50% of Pwm to  
10% of Lox  
Pwm to low side turn-on  
delay time  
Td Pwm Lox on  
0.1  
0.25  
0.5  
µs  
Lox load =2.2nF  
from 50% of Pwm to  
90% of Lox  
Pwm to low side turn-off  
delay time  
Td Pwm Lox off  
0.1  
0.25  
0.5  
µs  
Motor Mode  
Min.  
Symbol  
Parameter  
Typ. Max.  
Units Conditions  
(Hox-Vsx) load =2.2nF  
Sensor to high side turn-on  
delay time Vsx = gndpwr  
Td1 Sensx Hox on  
0.1  
0.8  
0.1  
0.8  
0.1  
0.1  
0.1  
0.1  
0.25  
0.5  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
from 50% of Sensx to  
10% of (Hox - Vsx)  
(Hox-Vsx) load =2.2nF  
from 50% of Sensx to  
10% of (Hox Vsx)  
(Hox-Vsx) load =2.2nF  
from 50% of Sensx to  
90% of (Hox Vsx)  
(Hox-Vsx) load =2.2nF  
from 50% of Sensx to  
90% of (Hox Vsx)  
Lox load =2.2nF  
from 50% of Pwm to  
10% of Lox  
Lox load =2.2nF  
from 50% of Pwm to  
90% of Lox  
Sensor to high side turn-on  
delay time Vsx = Vcc  
Td2 Sensx Hox on  
Td1 Sensx Hox off  
Td2 Sensx Hox off  
Td Pwm Lox on  
2.5  
5
Sensor to high side turn-off  
delay time Vsx = gndpwr  
0.25  
2
0.5  
5
Sensor to high side turn-off  
delay time Vsx = Vcc  
Pwm to low side turn-on  
delay time  
0.25  
0.25  
0.25  
0.25  
0.5  
0.5  
0.5  
0.5  
Pwm to low side turn-off  
delay time  
Td Pwm Lox off  
Lox load =2.2nF  
from 50% of Sensx to  
10% of Lox  
Lox load =2.2nF  
from 50% of sensx to  
90% of Lox  
Sensor to low side turn-off  
delay time  
Td Sensx Lox on  
Td Sensx Lox off  
Sensor to low side turn-off  
delay time  
Protection Characteristics  
Vcc=48V, Tj=25°C (unless otherwise specified).  
Symbol  
Parameter  
Min.  
Typ.  
Max. Units Conditions  
Maximum over current shutdown  
threshold between Shtp and Shtm  
Rshunt =5 m  Imax  
=20A  
Vth Isd  
65  
80  
97  
mV  
(Vtemp-VSht+)/(Vss-  
VSht+)  
External over temperature  
threshold  
Vth Tsd  
45  
150  
0.3  
50  
165  
1
55  
%
°C  
µs  
Internal over temperature threshold  
Tsd int  
Guaranteed by design  
Delay fault from  
Vth(Isd) = 200mV  
Dly Latch set  
Delay to set the latch  
3
Delay to reset the latch by Flt_rst  
pin  
Dly Latch reset  
5
25  
60  
µs  
6
www.irf.com  
IR3230 SPbF  
Shtp Pmp charge pump under  
voltage on  
Shtp Pmp charge pump under  
voltage off  
Shtp Pmp charge pump under  
voltage hysteresis  
UV Pump on  
UV Pump off  
UV Pump hyst  
4.9  
4.5  
0.2  
5.3  
4.9  
5.75  
5.4  
V
V
V
0.37  
0.6  
UV Vss  
UV Vcc gnd  
UV Vcc gndpwr Vcc-Gndpwp under voltage  
Vcc (Shtp)- Vss under voltage  
Vcc (Shtp)-Gnd under voltage  
3.9  
4.6  
4.6  
4.8  
5.4  
5.4  
5.7  
6
6
V
V
V
Lead Assignments 4.6  
Part number  
IR3230SPbF  
Lead assignments  
1
2
3
4
5
6
7
8
9
120/60  
Rev/Fwd  
Mot/Regen 13  
Pwm  
En  
Flt_rst  
Flt  
11  
12  
Shtm  
Tp  
Vss  
Lo1  
Lo2  
Lo3  
21  
22  
23  
24  
25  
26  
Vs1  
Ho2  
Vs2  
Ho3  
Vs3  
Sens3  
Sens2  
Sens1  
14  
15  
16  
17 Gndpwr 27  
Out_supply 18  
Vcc  
Pmp  
Ho1  
28  
Gnd  
Shtp  
19  
20  
SOIC-28L Wide Body  
10  
7
www.irf.com  
IR3230SPbF  
Typical Schematic:  
+Vbat  
Cpump  
Cd  
Gnd_p  
Ground  
Tp  
Shtp  
C8  
CTN  
Rshunt  
Shtm  
Vss  
+5v  
Power_mosfet  
Out_Supply  
Ho1  
Vs1  
Lo1  
Ho2  
Vs2  
Lo2  
Ho3  
Vs3  
Lo3  
Ghs1  
Sk_ph1  
Gls1  
5.6V  
Gnd  
IR3230  
Ph1  
Ph2  
Ph3  
Ghs2  
Sk_ph2  
Gls2  
Ph1  
Ph2  
Ph3  
Gnd  
Rdig_in  
Flt  
+5v  
Rdig_in1  
Ghs3  
Sk_ph3  
Gls3  
+5v  
Flt_rst  
Sens1  
Sens2  
Sens3  
Gnd  
D igital  
Rdig_in2  
Gnd_p  
120/60  
Rev/Fwd  
Mot/Regen  
Pwm  
Rdig_in3  
I/O  
Gndpwr  
Rdig_in4  
Rdig_in5  
Rdig_in6  
+5v  
Sens1  
Sens2  
Sens3  
En  
Gnd  
High side source connection for high current application:  
Vcc  
IRFB3207z  
R43  
10  
Ghsx  
Vsx  
1
U3  
D1  
Schottky  
R46  
60V low Vf  
100k  
R55  
10  
Phx  
C20  
1u  
IRFB3207z  
R49  
20  
Glox  
1
U6  
R52  
100k  
Ground  
8
www.irf.com  
IR3230 SPbF  
Functional Block Diagram  
All values are typical  
9
www.irf.com  
IR3230SPbF  
Vcc  
Pm p  
Vcc  
Internal Power supply  
IR 3230  
Vcc  
Flt_rst  
C harge  
UV Vss&Vcc  
Pmp  
pum  
p
Vss  
En  
Out  
UVPmp  
UVVss  
Vss  
UVvcc  
Gnd  
En+rst+UV  
Pwr on rst  
On_off/ Cp  
Pwronrst  
Out_supply  
Pwonrst  
0
D river1  
H
o1  
Hs1  
Ls1  
In_hs  
In_ls  
Ghs  
Sk  
Sens1  
Sens2  
Sens3  
Vs1  
Lo1  
In1 Out1  
In2 Out2  
In3 Out3  
S1  
S2  
S3  
Gls  
0_p  
Decoder  
Hs2  
Ls2  
D river2  
H
o2  
In_hs  
In_ls  
Ghs  
Sk  
Vs2  
Lo2  
Gls  
Hs3  
Ls3  
0_p  
D river3  
H
o3  
In_hs  
In_ls  
Ghs  
Sk  
En  
Vs3  
Lo3  
Gls  
Flt_rst  
Pow er  
Out_supply  
supply  
Spply_drv  
Reset  
0_p  
O
ut_supply  
G
ndpw r  
Latch_iso  
0_p  
LevelShifter  
Pwronrst  
R
ev/Fw  
120/60  
ot/R egen  
d
M
Pw  
En  
m
O ver_tem perature  
protection  
O ver_current  
protection  
G
nd  
Vcc  
0
Diag  
Shtp  
Shtm  
0.5mA  
Flt  
Flt_rst  
Vss  
Tp  
Vss  
0
10  
www.irf.com  
IR3230 SPbF  
Simplified schematic:  
Cp  
Vcc  
75v  
75v  
Dz11  
6
Dig_in  
I = 5mA  
100k  
Vdd  
6v  
Gnd  
300k  
I = 40mA  
Hox  
DZ10  
75v  
U2  
Dz9  
Figure 1: Digital input  
6v  
I = 200mA  
Vsx  
Vcc  
Figure 5: Hox output  
7.5k  
75v  
I
= 20µA  
2M  
Fault  
Vcc  
6v  
6v  
Gnd  
3
Shtp  
Figure 2: Fault output  
75v  
6v  
Vcc  
Vss  
75v  
I = 1.6mA  
I = 1mA  
Gnd  
Out_supply  
Figure 6: Vss pin  
Figure 3: Out_supply  
Shtp  
Vcc  
10  
Vcc  
75v  
I = 40mA  
Lox  
300k  
-
11v  
+
6v  
I = 200mA  
Gnd_pwr  
Shtm  
8
0
m
V
100k  
Figure 4: Lo output  
Figure 7: Sht_in  
11  
www.irf.com  
IR3230SPbF  
Decoder Table:  
Inputs  
Operating mode selection  
Outputs  
Motor  
Sensor electrical phasing  
Diagnostic  
Top drives  
Bottom drives  
120/60 =0  
120/60 =1  
Ph1 Ph2 Ph3  
Direction  
60° mode 120° mode  
S1 S2 S3 S1 S2 S3 Rev/Fwd  
Mot/Regen  
En  
Flt  
Ho1 Ho2 Ho3 Lo1 Lo2 Lo3  
Motor mode  
0
1
1
1
0
0
0
1
1
1
0
0
0
0
1
1
1
0
0
0
1
1
1
0
0
0
0
1
1
1
0
0
0
1
1
1
1
1
1
0
0
0
1
1
1
0
0
0
0
0
1
1
1
0
0
0
1
1
1
0
1
0
0
0
1
1
1
0
0
0
1
1
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
0
0
0
0
0
0
0
1
1
0
0
0
1
1
0
0
1
0
0
0
0
1
0
0
0
0
1
1
0
1
1
0
0
0
0
0
Pwm  
0
0
0
0
Pwm  
0
0
1
1
0
Hz  
1
1
Hz  
0
Hz  
0
0
Hz  
1
Pwm  
Pwm Hz  
0
0
0
Pwm  
Pwm  
0
0
0
0
0
0
Hz  
0
0
Hz  
1
1
1
0
0
0
0
Pwm  
Pwm  
0
0
0
0
0
0
1
Hz  
0
0
Hz  
1
Hz  
1
1
Hz  
0
0
Pwm  
Pwm  
0
0
0
Pwm  
0
0
0
Pwm Hz  
0
Regen mode  
Buck converter  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
x
1
0
0
0
0
0
0
0
0
Pwm Pwm Pwm  
Generator  
Off  
Disable mode  
0
0
0
0
Hz  
Hz  
Hz  
Fault mode  
1
0
0
1
1
0
1
0
1
0
1
0
x
x
x
x
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
Hz  
Hz  
Hz  
Hz  
Hz  
Hz  
Off  
Keys  
Don't care  
x
Active  
1
0
not active  
High impedance  
Hz  
Pwm  
Signal on the pwm input  
Fault Table:  
latched fault  
If [V(Sht+) - V(Sht-)] > 80mv  
or  
If [V(Vcc) - V(Tp)] > 50% of  
[V(Vcc) -V(Vss)]  
Flt = 1  
or  
If the sensor code is wrong  
Not latched fault  
If Flt_rst = 5v  
or  
If one of all UV is activated  
Flt = 1  
or  
If En is not activated  
or  
If the Tpwr_on_rst is activated  
12  
www.irf.com  
IR3230 SPbF  
Logical equation:  
1) 120° mode:  
Forward direction:  
o
o
o
Ho1S1S2  
Ho2 S2S3  
Ho3S3S1  
o
o
o
Lo1S1S2  
Lo2 S2S3  
Lo3S3S1  
Reverse direction:  
o
o
o
Ho1S1S2  
Ho2 S2S3  
Ho3S3S1  
o
o
o
Lo1S1S2  
Lo2 S2S3  
Lo3S3S1  
2) 60° mode:  
Forward direction:  
Lo1S2S3  
Lo2 S1S2  
Lo3S1S3  
o
o
o
o
o
Ho1S2S3  
Ho2 S1S2  
Ho3S1S3  
o
Reverse direction:  
Ho1S2S3  
Ho2 S1S2  
Ho3S1S3  
o
o
o
o
o
Lo1S2S3  
Lo2 S1S2  
Lo3S1S3  
o
13  
www.irf.com  
IR3230SPbF  
Shtp & Shtm, over Current protection:  
The IR3230 has shunt interface input: Shtp & Shtm. This shunt measurement is referenced to the Vcc (measurement on  
the battery line). Thanks to the shunt value and an external divider resistor, the user can adjust the maximum current in  
the motor. The internal threshold is Vth Isd. This protection is latched so the Flt output is activated (High state) to provide  
a diagnostic to the µP. This protection can be reset by activating Flt_rst high for more than Trst time. This protection works  
only in the motor mode.  
Tp & Vss, over temperature protection:  
The IR3230 has CTN interface input: Tp, Vss. This CTN is referenced to the Vss. Thanks to an external resistor in series  
with the CTN resistor; the user can adjust the maximum temperature threshold. The internal threshold is Vth Tsd. This  
protection is latched so the Flt output is activated (high state) to provide a diagnostic to the µP. This protection can be  
reset by activating Flt_rst high for more than Trst time.  
Mot/Regen:  
This digital input allows selecting the motor mode or the regeneration mode (braking mode). The µP needs to implement a  
delay to switch from one to the other to avoid shoot through short circuit and activate the over current fault. This can be  
calculating by using the “Td xxx xx” parameters in the Switching electrical characteristics. Use the following parameters as  
a simple rule:  
Delay to go from the motor mode to the regen mode: use the maximum of the Td2 MtoR Hox off + the  
maximum of the Tf2_Hox-Vsx parameter.  
Delay to go from the regen mode to the motor mode: use the maximum of the Td1 RtoM Lox off + the  
maximum of theTf Lox parameter.  
Pwm:  
In motion mode, through the pwm input, the µp controls the speed of the motor. This input provides duty cycle and the  
frequency to the low side switches in order of the sensor table selected by logical sensor input.  
In regen mode (buck converter operation), It provides the duty cycle and the frequency to the 3 low side switches in same  
time independently of the sensor input sequence. So the µP can controls the regeneration current level in the battery and  
breaking the motor.  
En:  
The input Pin enable allows switching off all output power Mosfets and the Charge pump. This reduces the consumption  
of the device. The Out_supply output stays active to power supply the µP even if the Enable is set at 0V. En pin high wake  
up the device. When the voltage of charge pump capacitor reaches the UV pump threshold, the device wait for the power  
reset (Pwr on rst) and then it is ready to operate.  
120/60°:  
This digital input selects the right sensor table in order to the sensor electrical position 120° or 60°.  
Out_supply:  
This output provides a 1.6mA regulated current. This output can be used as a biasing to create a power supply thanks to  
an external zener diode and a bipolar ballast transistor. The created voltage of this power supply is defined by the value of  
the zener diode implemented. This power supply could be used to supply all external circuitries (Sensor, µP…).  
Rev/Fwd:  
This digital input selects the right sensor table in order to choose the motor direction forward and reverse.  
14  
www.irf.com  
IR3230 SPbF  
Fault:  
A minimum pull down resistor to gnd must be used to limit the current on this output. Please refer to the Absolute  
maximum ratings table. There is no internal pull down: value is undefined when not in fault if no external pull down resistor  
is used.  
Refer to Fault table to check witch event will be latched or not.  
15  
www.irf.com  
IR3230SPbF  
Parameters curves:  
I Hox Gnd  
I Hox Vcc  
I Hox in  
I Lox  
I Lox in  
0 -25  
0
25 50 75 100 125 150  
0 -25  
0
25 50 75 100 125 150  
Temperature in °C  
Temperature in °C  
Figure 1: High side gate current vs.  
temperature  
Figure 2: Low side gate current vs.  
temperature  
V Hox -Vsx  
V Lox  
Vth Isd  
0 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
Temperature in °C  
Tj, junction temperature in °C  
Figure3: Output gate voltage vs.  
temperature  
Figure4: Vth Isd Vs Tj  
16  
www.irf.com  
IR3230 SPbF  
Package outline:  
17  
www.irf.com  
IR3230SPbF  
C
CARRIER TAPE DIMENSION FOR 28SOICW  
Metric Imperial  
Min  
Code  
A
B
C
D
E
F
G
H
Min  
11.90  
3.90  
23.70  
11.40  
10.80  
18.20  
1.50  
Max  
12.10  
4.10  
24.30  
11.60  
11.00  
18.40  
n/a  
Max  
0.476  
0.161  
0.956  
0.456  
0.433  
0.724  
n/a  
0.468  
0.153  
0.933  
0.448  
0.425  
0.716  
0.059  
0.059  
1.50  
1.60  
0.062  
18  
www.irf.com  
IR3230 SPbF  
REEL DIMENSIONS FOR 28SOICW  
Metric  
Imperial  
Min  
Code  
A
B
C
D
E
F
G
H
Min  
329.60  
20.95  
12.80  
1.95  
98.00  
n/a  
26.50  
24.40  
Max  
330.25  
21.45  
13.20  
2.45  
102.00  
30.40  
29.10  
26.40  
Max  
13.001  
0.844  
0.519  
0.096  
4.015  
1.196  
1.145  
1.039  
12.976  
0.824  
0.503  
0.767  
3.858  
n/a  
1.04  
0.96  
19  
www.irf.com  
IR3230SPbF  
Part Marking Information  
Ordering Information  
Standard Pack  
Form  
Base Part Number  
Package Type  
Complete Part Number  
Quantity  
Tube/Bulk  
25  
IR3230SPBF  
SOIC28W  
IR3230SPBF  
Tape and Reel  
1000  
IR3230STRPBF  
20  
www.irf.com  
IR3230 SPbF  
IMPORTANT NOTICE  
Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR)  
reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and  
services at any time and to discontinue any product or services without notice. Part numbers designated with the “AU”  
prefix follow automotive industry and / or customer specific requirements with regards to product discontinuance and  
process change notification. All products are sold subject to IR’s terms and conditions of sale supplied at the time of order  
acknowledgment.  
IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with  
IR’s standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to  
support this warranty. Except where mandated by government requirements, testing of all parameters of each product is  
not necessarily performed.  
IR assumes no liability for applications assistance or customer product design. Customers are responsible for their  
products and applications using IR components. To minimize the risks with customer products and applications,  
customers should provide adequate design and operating safeguards.  
Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and  
is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with  
alterations is an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation.  
Information of third parties may be subject to additional restrictions.  
Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or  
service voids all express and any implied warranties for the associated IR product or service and is an unfair and  
deceptive business practice. IR is not responsible or liable for any such statements.  
IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into  
the body, or in other applications intended to support or sustain life, or in any other application in which the failure of the  
IR product could create a situation where personal injury or death may occur. Should Buyer purchase or use IR products  
for any such unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers,  
employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that IR was negligent regarding the design or manufacture of  
the product.  
Only products certified as military grade by the Defense Logistics Agency (DLA) of the US Department of Defense, are  
designed and manufactured to meet DLA military specifications required by certain military, aerospace or other  
applications. Buyers acknowledge and agree that any use of IR products not certified by DLA as military-grade, in  
applications requiring military grade products, is solely at the Buyer’s own risk and that they are solely responsible for  
compliance with all legal and regulatory requirements in connection with such use.  
IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR  
products are designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the  
designation “AU”. Buyers acknowledge and agree that, if they use any non-designated products in automotive  
applications, IR will not be responsible for any failure to meet such requirements.  
For technical support, please contact IR’s Technical Assistance Center  
http://www.irf.com/technical-info/  
WORLD HEADQUARTERS:  
101 N. Sepulveda Blvd., El Segundo, California 90245  
Tel: (310) 252-7105  
21  
www.irf.com  
IR3230SPbF  
Revision History  
Revision  
Date  
26/03/12  
August 7, 2012  
Notes/Changes  
First release  
Typo correction front page  
A
B
22  
www.irf.com  

相关型号:

IR323C

Infrared LED,
EVERLIGHT

IR323C/H0

Infrared LED
EVERLIGHT

IR32A00000

DIGITAL TEMPERATURE & PROCESS CONTROLLERS
ETC

IR32A7LR20

DIGITAL TEMPERATURE & PROCESS CONTROLLERS
ETC

IR32D0L000

DIGITAL TEMPERATURE & PROCESS CONTROLLERS
ETC

IR32D7LR20

DIGITAL TEMPERATURE & PROCESS CONTROLLERS
ETC

IR32V0L000

DIGITAL TEMPERATURE & PROCESS CONTROLLERS
ETC

IR32W00000

DIGITAL TEMPERATURE & PROCESS CONTROLLERS
ETC

IR32W7LR20

DIGITAL TEMPERATURE & PROCESS CONTROLLERS
ETC

IR32Z00000

DIGITAL TEMPERATURE & PROCESS CONTROLLERS
ETC

IR32Z7LR20

DIGITAL TEMPERATURE & PROCESS CONTROLLERS
ETC

IR3310

PROGRAMMABLE CURRENT SENSING HIGH SIDE SWITCH
INFINEON