IR38164M [INFINEON]

OptiMOS™ IPOL DC-DC转换器,单输入电压,30A降压稳压器,配备SVIDO;
IR38164M
型号: IR38164M
厂家: Infineon    Infineon
描述:

OptiMOS™ IPOL DC-DC转换器,单输入电压,30A降压稳压器,配备SVIDO

DC-DC转换器 稳压器
文件: 总64页 (文件大小:1869K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IR38164  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Features  
Internal LDO allows single 16 V operation  
Output Voltage Range: 0.5 V to 0.875*PVin  
0.5% accurate Reference Voltage  
Intel VR12.5 (Rev 1.5), SVID (Rev 1.7) and VR13 (Rev 1.1) compliant  
Enhanced line/load regulation with Feedforward  
Frequency programmable by PMBus™ up to 1.5 MHz  
Enable input with Voltage Monitoring Capability  
Remote Sense Amplifier with True Differential Voltage Sensing  
Fast mode I2C and 400 kHz PMBus™ interface for programming, sequencing and margining output voltage,  
and for monitoring input voltage, output voltage, output current and temperature.  
PMBus™ configurable fault thresholds for input UVLO, output OVP, OCP and thermal shutdown.  
Thermally compensated pulse-by-pulse current limit and Hiccup Mode Over Current Protection  
Dedicated output voltage sensing for power good indication and over-voltage protection which remains  
active even when Enable is low.  
Enhanced Pre-Bias Start up  
Integrated MOSFET drivers and Bootstrap diode  
Operating junction temp: -40 C<Tj<125 C  
Thermal Shut Down  
PMBus™ Programmable Power Good Output  
Small Size 5 mmx 7 mm PQFN  
Pb-Free (RoHS Compliant)  
External resistor allows setting up to 16 PMBus™ addresses  
Applications  
Designed for Intel® single phase power rails requiring SVID communication such as VCCIO and VCMP on  
platforms such as VR13HC, VR13 and VR12.5.  
Servers and High End Desktop CPU VRs for non-core applications  
Telecom & Datacom Applications  
Distributed Point of Load Power Architectures  
Product validation  
Qualified for industrial applications according to the relevant tests of JEDEC47/20/22  
Final Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 1 of 64  
V2.2  
Feb 6 2019  
 
 
 
 
Description  
The IR38164 OptiMOSIPOL is an easy to use, fully integrated and highly efficient dc-dc regulator with Intel  
SVID and I2C/PMBus™ interfaces. The on-chip PWM controller and co-packaged low duty cycle optimized  
MOSFETs make the device a space-efficient solution, providing accurate power delivery for low output voltage  
and high current applications that require an Intel SVID interface.  
The IR38164 offers programmability of switching frequency, output voltage, and fault/warning thresholds and  
fault responses while operating over a wide input range. Providing flexibility as well as system level security in  
the event of fault conditions.  
The switching frequency is programmable from 500 kHz to 1.5 MHz for an optimum solution.  
The on-chip sensors and ADC along with the SVID, I2C and PMBus™ make it easy to monitor and report input  
voltage, output voltage, output current and temperature.  
Final Datasheet  
2 of 64  
V2.2  
Feb 6 2019  
 
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Table of contents  
Table of contents  
Features ........................................................................................................................................ 1  
Applications................................................................................................................................... 1  
Product validation.......................................................................................................................... 1  
Description .................................................................................................................................... 2  
Table of contents............................................................................................................................ 3  
1
2
3
4
5
6
7
Ordering information ............................................................................................................. 5  
Functional block diagram........................................................................................................ 6  
Typical application diagram .................................................................................................... 7  
Pin descriptions ..................................................................................................................... 8  
Absolute maximum ratings ....................................................................................................10  
Electrical specifications .........................................................................................................11  
Electrical characteristics........................................................................................................12  
8
Typical efficiency and power loss curves..................................................................................18  
PVin = Vin = 12 V, VCC=5 V, Fs = 600 kHz...................................................................................................18  
PVin = Vin = 12 V, VCC (Internal LDO), Fs = 600 kHz..................................................................................19  
PVin = Vin = Vcc = 5 V, Fs = 600 kHz...........................................................................................................20  
8.1  
8.2  
8.3  
9
Iout reporting curves (SVID) ...................................................................................................21  
Thermal Derating curves........................................................................................................22  
Typical application configurations ..........................................................................................23  
RDS(ON) of MOSFETs Over Temperature.......................................................................................25  
Typical operating characteristics (-40 °C to +125 °C)..................................................................26  
10  
11  
12  
13  
14  
14.1  
14.2  
14.3  
14.4  
14.5  
14.6  
14.7  
Theory of operation...............................................................................................................28  
Description ............................................................................................................................................28  
Device Power-up and Initialization.......................................................................................................28  
IꢀC and PMBUS™ Communication........................................................................................................29  
Modes for Setting Output Voltages.......................................................................................................30  
Bus Voltage UVLO ..................................................................................................................................33  
Pre-Bias startup.....................................................................................................................................34  
Soft-Start (Reference DAC ramp)..........................................................................................................34  
Operating frequency ............................................................................................................................35  
Shutdown ..............................................................................................................................................35  
Current Sensing, Telemetry and Over-Current Protection..................................................................36  
Current reporting limitation at high operating temperature ..............................................................39  
Die temperature sensing, telemetry and thermal shutdown ..............................................................40  
Remote voltage sensing........................................................................................................................40  
Feed-forward.........................................................................................................................................41  
Output voltage sensing, telemetry and faults......................................................................................41  
Power Good Output ..............................................................................................................................41  
Over-Voltage Protection (OVP) .............................................................................................................43  
Minimum On-Time Considerations.......................................................................................................44  
Maximum Duty Ratio.............................................................................................................................45  
Bootstrap Capacitor..............................................................................................................................45  
Intel SVID interface................................................................................................................................46  
All Call support ......................................................................................................................................46  
VR12.5 operation ...................................................................................................................................46  
14.8  
14.9  
14.10  
14.11  
14.12  
14.13  
14.14  
14.15  
14.16  
14.17  
14.18  
14.19  
14.20  
14.21  
14.22  
14.23  
Final Datasheet  
3 of 64  
V2.2  
Feb 6 2019  
 
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Table of contents  
14.24  
14.25  
14.26  
14.27  
14.28  
VR13 operation ......................................................................................................................................46  
Set Work Point.......................................................................................................................................46  
Dynamic VID slew rate...........................................................................................................................47  
Loop compensation ..............................................................................................................................47  
Dynamic VID compensation..................................................................................................................47  
15  
IꢄC and PMBus™ communication protocols ..............................................................................48  
I2C Protocols .........................................................................................................................................48  
SMBus/PMBus™ protocols ....................................................................................................................48  
Supported PMBus™ commands............................................................................................................51  
15.1  
15.2  
15.3  
16  
PCB footprint and layout recommendations.............................................................................55  
Layout recommendations.....................................................................................................................55  
PCB Metal and Component Placement ................................................................................................56  
PCB copper and solder resist................................................................................................................56  
PCB solder paste stencil........................................................................................................................57  
16.1  
16.2  
16.3  
16.4  
17  
Marking and package information...........................................................................................59  
Final production marking .....................................................................................................................59  
Early production marking .....................................................................................................................59  
Package dimensions .............................................................................................................................60  
17.1  
17.2  
17.3  
18  
19  
Environmental Qualifications .................................................................................................62  
References ...........................................................................................................................63  
Final Datasheet  
4 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Ordering information  
1
Ordering information  
Table 1  
Ordering Information  
Base Part Number  
IR38164  
Package Type  
Standard Pack Form and Qty  
Orderable Part Number  
QFN 5 mm x 7 mm  
Tape and Reel  
4000  
IR38164MTRPbF  
IR38164  
PBF  
Lead Free  
Tape and Reel  
Package Type  
TR  
M
Figure 1  
Package Top View  
Final Datasheet  
5 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Functional block diagram  
2
Functional block diagram  
VCC  
Vin  
P1V8  
LDO  
VLDOref  
LDO  
LGND  
-
OT_Fault  
+
UVcc  
OC_Fault  
BOOT  
PVIN  
VCC  
UVcc  
FAULT  
CONTROL  
UVEN  
Fault  
COMP  
Fault  
VDAC2  
HDrv  
+
-
E/A  
HDin  
GATE  
DRIVE  
LOGIC  
OV_Fault  
FCCM  
SW  
FB  
VCC  
LDrv  
LDin  
Enable  
PGND  
CONTROL AND FAULT LOGIC  
Rso  
RS-  
PGood  
RS+  
ISense  
TMON  
Current Sense  
SDA  
SCL  
SVID Interface, SMBus  
Interface,  
Logic, Command and Status registers  
Temperature  
Sense  
Salert  
Vcc  
ADDR  
Vsns  
SV_ALERT  
SV_CLK SV_DIO  
Figure 2  
Block diagram  
Final Datasheet  
6 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Typical application diagram  
3
Typical application diagram  
For applications in which Pvin>14V, a 1 ohm resistor is required in series with the boot capacitor.  
5.5V <Vin<16V  
Optional placeholder for boot resistor.  
Default should be 0 ohm  
Boot  
P1V8  
PVin  
Enable  
Vin  
Vo  
Vcc/  
LDO_out  
SW  
Vsns  
RS+  
PGood  
PGood  
RS-  
SV_CLK  
SV_DIO  
RSo  
Fb  
CPU  
serial  
bus  
SV_ALERT  
ADDR  
Comp  
LGnd  
PGnd  
Placeholder  
for capacitor  
Figure 3  
IR38164 basic application circuit  
Final Datasheet  
7 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Pin descriptions  
4
Pin descriptions  
Table 2  
Pin descriptions  
Pin#  
Pin name  
Pin description  
1
PVIN  
Input voltage for power stage. Bypass capacitors between PVin and PGND should  
be connected very close to this pin and PGND. Typical applications use four 22 µF  
input capacitors and a low ESR, low ESL 0.1 µF decoupling capacitor in a  
0603/0402 case size. A 3.3 nF capacitor may also be used in parallel with these  
input capacitors to reduce ringing on the SW node.  
2
Boot  
Supply voltage for high side driver. A 0.1 µF capacitor should be connected from  
this pin to the SW pin. It is recommended to provide a placement for a 0 ohm  
resistor in series with the capacitor. For applications in which PVin>14 V, a 1 ohm  
resistor is required in series with the boot capacitor.  
3
4
ENABLE  
ADDR  
Enable pin to turn the IC on and off.  
A resistor should be connected from this pin to LGnd to set the PMBus™ address  
offset for the device. It is recommended to provide a placement for a 10 nF  
capacitor in parallel with the offset resistor.  
5
6
Vsns  
FB  
Sense pin for OVP and PGood. Typically connected to a local Vout capacitor at the  
output of the inductor.  
Inverting input to the error amplifier. This pin is connected directly to the output  
of the regulator or to the output of the remote sense amplifier, via resistor divider  
to set the output voltage and provide feedback to the error amplifier.  
Output of error amplifier. An external resistor and capacitor network is typically  
connected from this pin to FB to provide loop compensation.  
Remote Sense Amplifier Output. When the remote sense amplifier is used, this is  
connected to the feedback compensation network  
7
8
COMP  
RSo  
9
10  
11  
RS-  
RS+  
PGood  
Remote Sense Amplifier input. Connect to ground at the load.  
Remote Sense Amplifier input. Connect to output at the load.  
Power Good status pin. Output is open drain. Connect a pull up resistor from this  
pin to VCC. If the power good voltage needs to be limited to < 500 mV prior power  
supply ramps above the VCC UVLO, use a 49.9 kpullup. After VCC UVLO a 4.99 kΩ  
pullup will suffice.  
12,25 PGND  
Power ground. This pin should be connected to the system’s power ground plane.  
Bypass capacitors between PVin and PGND should be connected very close to  
PVIN pin (pin 1) and this pin.  
13  
14  
15  
LGND  
Signal ground for internal reference and control circuitry. This should be  
connected to the PGnd plane at a quiet location using a single point connection.  
SVID CLK line. This is pulled up to VDDIO/VCCIO voltage. It is recommended to  
provide a placement for a 0603 resistor between the pin and the pullup resistor.  
SVID Data line. This is pulled up to VDDIO/VCCIO voltage. It is recommended to  
provide a placement for a 0603 resistor between the pin and the pullup resistor.  
SVID Alert line. This is pulled up to VDDIO/VCCIO voltage through a resistor.  
SMBus Alert line; open drain SMBALERT# pin. This should be pulled up to 3.3 V-5 V  
with a 1 k- 5 kresistor.  
SV_CLK  
SV_DIO  
16  
17  
SV_ALERT  
SAlert#  
18  
19  
SDA  
SCL  
SMBus data serial input/output line. This should be pulled up to 3.3 V-5 V with a 1  
k- 5 kresistor.  
SMBus clock line. This should be pulled up to 3.3 V-5 V with a 1 k- 5 kresistor.  
Final Datasheet  
8 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Pin descriptions  
Pin#  
Pin name  
Pin description  
20  
P1V8  
This is the supply for the digital circuits; bypass with a 10 µF capacitor to PGnd.  
21  
22  
Vin  
Input Voltage for LDO. A 1 µF capacitor is placed from this pin to PGnd. If the  
internal bias LDO is used, tie this pin to PVin. If an external bias voltage (typically 5  
V) is available for Vcc, tie the Vin pin to Vcc.  
Bias Voltage for IC and driver section, output of LDO. Add 10 µF bypass cap from  
this pin to PGnd.  
VCC  
23,26 NC  
24 SW  
Do not connect to this pin.  
Switch node. This pin is connected to the output inductor.  
Final Datasheet  
9 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Absolute maximum ratings  
5
Absolute maximum ratings  
Table 3  
Absolute maximum ratings  
-0.3 V to 25 V  
PVin, Vin  
-0.3 V to 6 V  
Vcc/LDO_Out  
P1V8  
-0.3 V to 2 V  
-0.3 V to 25 V (dc), -4 V to 25 V (ac, 100 ns)  
-0.3 V to 31 V  
SW  
Boot  
-0.3 V to 6 V (dc) (Note 1), -0.3 V to 6.5 V (ac, 100 ns)  
-0.3 V to 6 V (Note 1)  
Boot to SW  
PGood, other Input/Output Pins  
PGnd to Gnd  
-0.3 V to + 0.3 V  
Thermal information  
Junction to ambient thermal resistance θJA  
Junction to board thermal resistance θJB  
Junction to case top thermal resistance θJC(top)  
Junction to case top thermal parameter ΨJT (top)  
Storage Temperature Range  
11.1 C/W (Note 2)  
4.16 C/W (Note 3)  
18.9 C/W (Note 4)  
0.32 C/W (Note 2)  
-55 °C to 150 °C  
-40 °C to 150 °C  
Junction Temperature Range  
(Voltage referenced to GND unless otherwise specified)  
Attention:  
Stresses beyond these listed under ꢀAbsolute Maximum Ratingsꢁ may cause permanent  
damage to the device. These are stress ratings only and not functional operation ratings of  
the device.  
Note: 1 Must not exceed 6 V  
2 Value obtained via thermal simulation under natural convection on an IR38164 demo board. 10 layer, 7” x  
5.5”x0.072” PCB with 1.5 oz copper at the top and bottom layer. Inner layers 2, 3, 8 and 9 have 1 oz copper  
and layers 4,5,6,7 have 2 oz copper. Ta = 25 C was used for the simulation.  
3 PCB from note 2 and package is considered in thermal simulation with Ta=25 C. Pin 12 is considered.  
4 Only package is considered. Simulation is used with a cold plate that fixes top of package at Ta=25 C.  
Final Datasheet  
10 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Electrical specifications  
6
Electrical specifications  
Table 4  
Recommended operating conditions for reliable operation with margin  
Input Voltage Range, PVin (Note 4)  
Input Voltage Range, Vin  
1.5 V to 16 V  
5.3 V to 16 V  
Supply Voltage Range, Vcc  
Supply Voltage Range, Boot to SW  
Output Voltage Range  
4.5 V to 5.5 V  
4.5 V to 5.5 V  
0.5 V to 0.875 x Vin  
0 to 30 A  
Output Current Range  
Switching Frequency  
500 kHz to 1500 kHz  
-40 °C to 125 °C  
Operating Junction Temperature  
(Voltages referenced to GND unless otherwise specified)  
Note:  
4 Maximum absolute SW node voltage should not exceed 25 V. A common practice is to have 20%  
margin on the maximum SW node voltage in the design. For applications requiring PVin equal to  
or above 14 V, a small resistor in series with the Boot pin should be used to ensure the maximum  
SW node spike voltage does not exceed 25 V.  
Final Datasheet  
11 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Electrical characteristics  
7
Electrical characteristics  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max Unit  
Power Stage  
VBoot Vsw= 5 V, IO = 30 A,  
Tj =25 °C  
Top Switch  
RDS(ON)_Top  
RDS(ON)_Bot  
2.2  
mΩ  
Vcc = 5 V, IO = 30 A, Tj  
=25°C  
Bottom Switch  
0.78  
300  
Bootstrap Diode  
Forward Voltage  
I(Boot) = 40 mA  
150  
450 mV  
ISW  
SW = 0 V, Enable = 0 V  
SW=0; Enable= 2 V  
1
SW Leakage Current  
µA  
ISW_EN  
18  
Supply Voltage  
PVin range  
(using external Vcc=5 V)  
Vin range  
1.5-16  
5.3-16  
V
V
Fsw=600 kHz  
Fsw=1.5 MHz  
(using internal LDO)  
5.5-16  
5.0  
4.5  
5.5  
4
V
Vin range (when Vin=Vcc)  
Supply Current  
Vin Supply Current  
(standby) (internal Vcc)  
Iin(Standby)  
Enable low, No Switching,  
Vin=16 V, low power mode  
enabled  
2.7  
mA  
Vin Supply Current  
Iin(Dyn)  
Enable high, Fs = 600 kHz,  
Vin=16 V  
Enable low, No Switching,  
Vcc=5.5 V, low power mode  
enabled  
mA  
mA  
39  
50  
5
(dynamic) (internal Vcc)  
VCC Supply Current  
(Standby)(external Vcc)  
Icc(Standby)  
2.7  
VCC Supply Current  
(Dyn)(external Vcc)  
Icc(Dyn)  
Enable high, Fs = 600 kHz,  
Vcc=5.5 V  
39  
50 mA  
Internal Regulator  
VCC\LDO)  
Vin(min) = 5.5 V, Io=0 mA,  
Cload = 10 µF  
4.8  
4.5  
5.15  
4.99  
5.4  
V
5.2  
Output Voltage  
VCC  
Vin(min) = 5.5 V, Io=70 mA,  
Cload = 10 µF  
Io=0-70 mA, Cload =10µF,  
Vin=5.1 V  
VCC Dropout  
VCCdrop  
Ishort  
0.7  
V
Short Circuit Current  
110  
mA  
Internal Regulator  
(P1V8)  
Output Voltage  
P1V8  
Vin(min) = 4.5 V, Io = 01mA 1.795 1.83 1.905  
, Cload = 10 µF  
V
V
1.8V UVLO Start  
P1V8_UVLO_Start  
1.8 V Rising Trip Level  
1.66  
1.72  
1.78  
Final Datasheet  
12 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Electrical characteristics  
Parameter  
1.8V UVLO Stop  
Oscillator  
Symbol  
P1V8_UVLO_Stop  
Conditions  
1.8 V Falling Trip Level  
Min  
1.59  
Typ  
1.63  
Max Unit  
1.68  
V
0.71  
1.84  
2.46  
0.22  
35  
PVin=5 V, D=Dmax, Note 2  
PVin=12 V, D=Dmax,Note 2  
Vramp  
Ramp Amplitude  
Vp-p  
V
PVin=16 V, D=Dmax,Note 2  
Note 2  
Ramp Offset  
Ramp(os)  
Tmin(ctrl)  
Toff  
Note 2  
50  
150  
89  
Min Pulse Width  
Fixed Off Time  
Max Duty Cycle  
Error Amplifier  
Input Bias Current  
Sink Current  
ns  
ns  
%
Note 2 Fs=1.5 MHz  
Fs=400 kHz  
100  
87.5  
86  
Dmax  
-0.5  
0.6  
8
+0.5  
1.8  
25  
IFb(E/A)  
Isink(E/A)  
Isource(E/A)  
SR  
µA  
1.1  
13  
mA  
mA  
V/µs  
MHz  
dB  
Source Current  
Slew Rate  
7
12  
20  
Note 2  
Note 2  
Note 2  
20  
100  
2.8  
30  
40  
Gain-Bandwidth Product GBWP  
DC Gain Gain  
110  
3.9  
120  
4.3  
100  
Maximum output Voltage Vmax(E/A)  
Minimum output Voltage Vmin(E/A)  
Reference Voltage  
V
mV  
1.25 V<VFB<2.555 V  
VOUT_SCALE_LOOP=1;  
-1  
+1  
0.75 V<VFB<1.25 V  
VOUT_SCALE_LOOP=1;  
-0.75  
+0.75  
Accuracy  
%
%
00C<Tj<850C  
-0.5  
-1.6  
+0.5  
+1.6  
0.45 V<VFB<0.75 V  
VOUT_SCALE_LOOP=1;  
1.25 V<VFB<2.555 V  
VOUT_SCALE_LOOP=1;  
0.75 V<VFB<1.25 V  
VOUT_SCALE_LOOP=1;  
-1.0  
-2.0  
+1.0  
+2.0  
Accuracy  
-400C<Tj<1250C  
0.45 V<VFB<0.75 V  
VOUT_SCALE_LOOP=1;  
Remote Sense Differential Amplifier  
Note 2  
Note 2  
3
6.4  
110  
0
MHz  
dB  
Unity Gain Bandwidth  
DC Gain  
BW_RS  
Gain_RS  
Offset_RS  
0.5 V<RS+<2.555 V, 4 kΩ  
-1.6  
1.6  
3
Offset Voltage  
load  
27 C<Tj<85 C  
0.5 V<RS+<2.555 V, 4kΩ  
load  
mV  
-3  
-40 C<Tj<125 C  
V_RSO=1.5 V, V_RSP=4 V  
11  
16  
2
mA  
mA  
V2.2  
Source Current  
Sink Current  
Final Datasheet  
Isource_RS  
Isink_RS  
0.4  
1
13 of 64  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Electrical characteristics  
Parameter  
Symbol  
Conditions  
Note 2, Cload = 100 pF  
Min  
2
Typ  
Max Unit  
Slew Rate  
Slew_RS  
4
8
V/µs  
V_RSO=1.5 V, V_RSP=4 V  
11  
36  
36  
0.5  
16  
74  
74  
1.5  
20  
mA  
Kohm  
Kohm  
V
Source Current  
Isource_RS  
Rin_RS+  
RS+ input impedance  
55  
Note 2  
55  
1
RS- input impedance  
Maximum Voltage  
Minimum Voltage  
Power Good  
Rin_RS-  
V(VCC) V(RS+)  
Vmax_RS  
Min_RS  
4
mV  
Power Good High  
threshold  
Power_Good_High  
Power_Good_Low  
Vsns rising,  
VOUT_SCALE_LOOP=1,  
Vout=0.5 V, PMBus™ mode  
0.45  
0.43  
V
Power Good Low  
Threshold  
Vsns falling,  
VOUT_SCALE_LOOP=1,  
V
Vout=0.5 V, PMBus™ mode  
Power Good High  
Threshold Rising Delay  
TPDLY  
Vsns rising, Vsns >  
Power_Good_High  
0
ms  
Power Good Low  
Threshold Falling delay  
VPG_low_Dly  
PG(voltage)  
Vsns falling, Vsns <  
Power_Good_Low  
150  
175  
200  
0.5  
µs  
V
Pgood Voltage Low  
Ipgood = -5 mA  
Under-Voltage Lockout  
Vcc-Start Threshold  
4.0  
3.7  
4.2  
3.9  
0.6  
0.4  
4.4  
4.1  
0.65  
0.45  
1
VCC_UVLO_Start  
VCC_UVLO_Stop  
Vcc Rising Trip Level  
Vcc Falling Trip Level  
V
Vcc-Stop Threshold  
0.55  
0.35  
Enable-Start-Threshold  
Enable-Stop-Threshold  
Enable Leakage Current  
Over-Voltage Protection  
OVP Trip Threshold  
Enable_UVLO_Start EN supply ramping up  
Enable_UVLO_Stop EN supply ramping down  
V
Ien  
Enable = 5.5 V  
µA  
OVP (trip)  
Vsns rising,  
VOUT_SCALE_LOOP=1,  
Vout=0.5V  
0.57 0.605 0.63  
V
Vsns falling,  
VOUT_SCALE_LOOP=1,  
Vout=0.5 V  
Vsns rising, Vsns-  
OVP(trip)>200 mV  
OVP Comparator Delay  
OVP Fault Prop Delay  
20  
30  
40  
mV  
ns  
OVP (hyst)  
OVP (delay)  
200  
Over-Curent Protection  
OC limit=40, VCC = 5.05 V,  
Tj=25 C  
34.5  
40  
44  
OC Trip Current  
ITRIP  
A
OCset Current  
Temperature coefficient  
-40 C to 125 C, VCC=5.05  
V, Note 2  
5900  
20  
ppm/°C  
ms  
OCSET(temp)  
Tblk_Hiccup  
Hiccup blanking time  
Note 2  
Over-Temperature  
Protection  
Thermal Shutdown  
Note 2  
145  
°C  
Final Datasheet  
14 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Electrical characteristics  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max Unit  
Hysteresis  
Note 2  
25  
Input Over-Voltage  
Protection  
PVin over-voltage  
threshold  
PVinOV  
22  
23.7  
25  
V
V
PVin over-voltage  
Hysteresis  
PVin ov hyst  
2.4  
Output Voltage  
Reporting  
Resolution  
Vout update rate  
NVout  
Note 2  
1/256  
31.25  
V
kHz  
Lowest reported Vout  
Vomon_low  
Vsns=0V  
0
V
VOUT_SCALE_LOOP=1,  
Vsns=3.3 V  
3.3  
V
V
V
V
VOUT_SCALE_LOOP=0.5,  
Vsns=3.3 V  
6.6  
Highest reported Vout  
Vomon_high  
VOUT_SCALE_LOOP=0.25,  
Vsns=3.3 V  
13.2  
26.4  
VOUT_SCALE_LOOP=0.125,  
Vsns=3.3 V  
0 C to 85 C,  
4.5 V<Vcc<5.5 V,  
1 V<Vsns1.5 V  
+/-0.6  
VOUT_SCALE_LOOP=1  
0 C to 85 C,  
+/-1  
4.5 V<Vcc<5.5 V, Vsns> 1.5 V  
VOUT_SCALE_LOOP=1  
%
Vout reporting accuracy  
0 C to 125 C,  
+/-1.5  
4.5 V<Vcc<5.5 V, Vsns>0.9 V  
VOUT_SCALE_LOOP=1  
00C to 1250C,  
4.5V<Vcc<5.5V,  
0.5V<Vsns<0.9V  
VOUT_SCALE_LOOP=1  
+/-3  
Iout Reporting  
Resolution  
NIout  
Note 2  
1/16  
A
Iout update rate  
Iout (digital) monitoring  
Range  
31.25  
kHz  
0
40  
A
0 C to 125 C,  
4.5 V<Vcc<5.5 V,  
5 A < Iout <30 A  
Iout_dig Accuracy  
+/-5  
%
I2C/PMBus™ mode  
Final Datasheet  
15 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Electrical characteristics  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max Unit  
Note 3  
Temperature Reporting  
Resolution  
NTmon  
Note 2  
1
°C  
Temperature update rate  
31.25  
kHz  
Temperature Monitoring Tmon_dig  
Range  
Thermal shutdown  
hysteresis  
Input Voltage Reporting  
-40  
150  
21  
°C  
Note 2  
Note 2  
25  
°C  
V
Resolution  
NPVin  
1/32  
Monitoring Range  
PVin update rate  
PMBVinmon  
0
V
kHz  
31.25  
0 C to 85 C  
-1.5  
-1.5  
1.5  
1.5  
4.5 V<Vcc<5.5V, PVin>10 V  
-400C to 1250C  
4.5 V<Vcc<5.5 V, PVin>14 V  
%
Monitoring accuracy  
-40 C to 125 C,  
4.5 V<Vcc<5.5 V,  
7V<PVin<14 V  
-4  
4
PMBus™ Interface  
Timing Specifications  
SMBus Operating  
frequency  
Bus Free time between  
Start and Stop condition  
Hold time after  
FSMB  
400  
kHz  
µs  
TBUF  
1.3  
0.6  
THD:STA  
(Repeated) Start  
Condition. After this  
period, the first clock is  
generated.  
µs  
Repeated start condition TSU:STA  
setup time  
0.6  
0.6  
µs  
µs  
Stop condition setup  
time  
TSU:STO  
Data Rising Threshold  
Data Falling Threshold  
1.339  
1.048  
1.766  
1.495  
V
V
Data Rising Threshold  
LVT  
0.45  
0.7  
0.65  
0.9  
V
V
V
Clock Rising Threshold  
LVT  
Clock Falling Threshold  
LVT  
0.45  
300  
0.65  
900  
Data Hold Time  
THD:DAT  
ns  
Final Datasheet  
16 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Electrical characteristics  
Parameter  
Symbol  
Conditions  
Min  
100  
Typ  
Max Unit  
ns  
Data Setup Time  
Data pulldown resistance  
TSU:DAT  
8
11  
12  
16  
17  
35  
SALERT# pulldown  
resistance  
9
Clock low time out  
Clock low period  
Clock High Period  
TTIMEOUT  
TLOW  
25  
1.3  
0.6  
ms  
µs  
µs  
THIGH  
50  
Note:  
Note:  
2 Guaranteed by design and not tested in production.  
3 Guaranteed by statistical correlation, but not tested in production.  
Final Datasheet  
17 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Typical efficiency and power loss curves  
8
Typical efficiency and power loss curves  
8.1  
PVin = Vin = ꢁꢄ V, VCC=ꢅ V, Fs = ꢂꢆꢆ kHz  
PVin = Vin = 12 V, VCC=5 V (external), Io=0-30 A, Fs= 600 kHz, Room Temperature, No Air Flow. Note that the  
efficiency and power loss curves include the losses of IR38164, the inductor losses, the losses of the input and  
output capacitors, and PCB trace losses. The table below shows the inductors used for each of the output  
voltages in the efficiency measurement.  
Table 5  
Vout (V)  
Inductors for PVin=Vin=12 V, VCC, Fs = 600 kHz  
Lout (µH)  
0.15  
P/N  
Size (mm)  
12.4 x 8.3 x 8  
12.4 x 8.3 x 8  
12.4 x 8.3 x 8  
12.4 x 8.3 x 8  
12.4 x 8.3 x 8  
12.7 x 13.4 x 8  
12.7 x 13.4 x 8  
DCR (m)  
0.15  
HCB138380D-151 (Delta)  
HCB138380D-151 (Delta)  
HCB138380D-151 (Delta)  
HCB138380D-151 (Delta)  
HCB138380D-151 (Delta)  
FP1308R3-R32-R (Cooper)  
FP1308R3-R32-R (Cooper)  
0.8  
1.0  
1.2  
1.5  
1.8  
3.3  
5
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.32  
0.32  
0.32  
0.32  
Final Datasheet  
18 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Typical efficiency and power loss curves  
8.2  
PVin = Vin = ꢁꢄ V, VCC ꢇInternal LDOꢈ, Fs = ꢂꢆꢆ kHz  
PVin = Vin = 12 V, Internal LDO, Io=0-30 A, Fs= 600 kHz, Room Temperature, No Air Flow. Note that the efficiency  
and power loss curves include the losses of IR38164, the inductor losses, the losses of the input and output  
capacitors, and PCB trace losses. The table below shows the inductors used for each of the output voltages in  
the efficiency measurement.  
Table 6  
Vout (V)  
Inductors for PVin=Vin=12 V, Internal LDO, Fs = 600 kHz  
Lout (µH)  
0.15  
P/N  
Size (mm)  
12.4 x 8.3 x 8  
12.4 x 8.3 x 8  
12.4 x 8.3 x 8  
12.4 x 8.3 x 8  
12.4 x 8.3 x 8  
12.7 x 13.4 x 8  
12.7 x 13.4 x 8  
DCR (m)  
0.15  
HCB138380D-151 (Delta)  
HCB138380D-151 (Delta)  
HCB138380D-151 (Delta)  
HCB138380D-151 (Delta)  
HCB138380D-151 (Delta)  
FP1308R3-R32-R (Cooper)  
FP1308R3-R32-R (Cooper)  
0.8  
1.0  
1.2  
1.5  
1.8  
3.3  
5
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.32  
0.32  
0.32  
0.32  
Final Datasheet  
19 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Typical efficiency and power loss curves  
8.3  
PVin = Vin = Vcc = ꢅ V, Fs = ꢂꢆꢆ kHz  
PVin = Vin = VCC = 5 V, Io=0-30 A, Fs= 600 kHz, Room Temperature, No Air Flow. Note that the efficiency and  
power loss curves include the losses of IR38164, the inductor losses, the losses of the input and output  
capacitors and PCB trace losses. The table below shows the inductors used for each of the output voltages in  
the efficiency measurement.  
Table 7  
Vout (V)  
Inductors for PVin=Vin=Vcc=5 V, Fs = 600 kHz  
Lout (µH)  
0.1  
P/N  
Size (mm)  
12.4 x 8.3 x 8  
12.4 x 8.3 x 8  
12.4 x 8.3 x 8  
12.4 x 8.3 x 8  
12.4 x 8.3 x 8  
DCR (m)  
0.15  
HCB138380D-101 (Delta)  
HCB138380D-101 (Delta)  
HCB138380D-151 (Delta)  
HCB138380D-151 (Delta)  
HCB138380D-151 (Delta)  
0.8  
1.0  
1.2  
1.5  
1.8  
0.1  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
Final Datasheet  
20 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Iout reporting curves (SVID)  
9
Iout reporting curves ꢇSVIDꢈ  
An Intel VRTT tool was used on a 38164 demo board running at 978 kHz to collect SVID Iout reporting data. This  
is shown on Figure 4 and Figure 5.  
25  
20  
15  
10  
NTC 0.03 Max Limit (6%)  
NTC 0.03 Min Limit (6%)  
5
0
0
5
10  
15  
20  
25  
Iout (A)  
Figure 4  
SVID readings from 37 units. Intel DCR 7%, NTC 3% spec.  
25  
20  
15  
10  
5
Max Sweep  
Min Sweep  
Max Limit NTC 0.03 (6%)  
Min Limit NTC 0.03 (6%)  
0
0
5
10  
15  
20  
25  
-5  
Iout (A)  
Figure 5  
Final Datasheet  
SVID readings for the min and max gain. Intel DCR 7%, NTC 3% spec.  
21 of 64  
V2.2  
Feb 6 2019  
 
 
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Thermal Derating curves  
10  
Thermal Derating curves  
The measurements were done on an IR38164 demo board. The PCB is ꢁ.ꢂꢃ x ꢄ.ꢄꢃ x ꢂ.ꢂꢁꢀꢃ with 10-layers, FR4  
material and 2 oz. copper.  
IR38164 Thermal Derating Curves)  
PVin=12V, Vout=1V, Fsw=978kHz  
31  
29  
27  
25  
23  
0 LFM  
200 LFM  
400 LFM  
21  
19  
17  
15  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
TAmb (˚C)  
Figure 6  
PVin = 12 V, Vout=1 V, Vcc = Internal LDO, Fs = 978 kHz  
Final Datasheet  
22 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Typical application configurations  
11  
Typical application configurations  
For applications in which Pvin>14V, a 1 ohm resistor is required in series with the boot capacitor.  
5.5V <Vin<16V  
Optional placeholder for boot resistor.  
Default should be 0 ohm  
Boot  
P1V8  
PVin  
Enable  
Vin  
Vo  
Vcc/  
LDO_out  
SW  
Vsns  
RS+  
PGood  
PGood  
RS-  
SV_CLK  
SV_DIO  
RSo  
Fb  
CPU  
serial  
bus  
SV_ALERT  
ADDR  
Comp  
LGnd  
PGnd  
Placeholder  
for capacitor  
Figure 7  
Using the internal LDO, Vo < 2.555 V  
For applications in which Pvin>14V, a 1 ohm resistor is required in series with the boot capacitor.  
5.5V <Vin<16V  
Optional placeholder for boot resistor.  
Default should be 0 ohm  
Boot  
P1V8  
PVin  
Enable  
Vin  
Vo  
Vcc/  
LDO_out  
SW  
Vsns  
RS+  
PGood  
R2  
PGood  
RS-  
SV_CLK  
SV_DIO  
CPU  
serial  
bus  
RSo  
Fb  
Recommend R2=499 ohm  
SV_ALERT  
Comp  
LGnd  
ADDR  
PGnd  
Placeholder  
for capacitor  
Figure 8  
Using the internal LDO, Vo > 2.555 V  
Final Datasheet  
23 of 64  
V2.2  
Feb 6 2019  
 
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Typical application configurations  
For applications in which Pvin>14V, a 1 ohm resistor is required in series with the boot capacitor.  
1.5V <PVin<16V  
Optional placeholder for boot resistor.  
Default should be 0 ohm  
Boot  
P1V8  
PVin  
Enable  
Vin  
Vcc=5V  
PGood  
Vo  
Vcc/  
LDO_out  
SW  
Vsns  
RS+  
PGood  
RS-  
SV_CLK  
SV_DIO  
CPU  
serial  
bus  
RSo  
Fb  
SV_ALERT  
Comp  
LGnd  
ADDR  
PGnd  
Placeholder  
for capacitor  
Figure 9  
Using external Vcc, Vo<2.555 V  
PVin=Vin=Vcc= 5V  
Optional placeholder for boot resistor.  
Default should be 0 ohm  
Boot  
P1V8  
PVin  
Enable  
Vin  
Vo  
Vcc/  
LDO_out  
SW  
Vsns  
RS+  
PGood  
PGood  
RS-  
SV_CLK  
SV_DIO  
RSo  
Fb  
CPU  
serial  
bus  
SV_ALERT  
ADDR  
Comp  
LGnd  
PGnd  
Placeholder  
for capacitor  
Figure 10  
Single 5 V application, Vo<2.555 V  
Final Datasheet  
24 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
RDS(ON) of MOSFETs Over Temperature  
12  
RDSꢇONꢈ of MOSFETs Over Temperature  
Figure 11  
RDS(on) of MOSFETs over Temperature  
Final Datasheet  
25 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Typical operating characteristics (-40 C to +125 C)  
13  
Typical operating characteristics ꢇ-ꢃꢆ °C to +ꢁꢄꢅ °Cꢈ  
Figure 12  
Typical operating characteristics (set 1 of 2)  
Final Datasheet  
26 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Typical operating characteristics (-40 C to +125 C)  
Figure 13  
Typical operating characteristics (set 2of 2)  
Final Datasheet  
27 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Theory of operation  
14  
Theory of operation  
14.1  
Description  
The IR38164 is a 30 A rated synchronous buck converter that supports PMBus™ and I2C digital interfaces  
respectively. This device is Intel SVID compliant and can support VR12.5 as well as VR13. It uses an externally  
compensated fast, analog, PWM voltage mode control scheme to provide good noise immunity as well as fast  
dynamic response in a wide variety of applications. At the same time, the digital communication interfaces  
allow complete configurability of output setting and fault functions, as well as telemetry.  
The switching frequency is programmable from 500 kHz to 1.5 MHz and provides the capability of optimizing  
the design in terms of size and performance.  
The IR38164 provides precisely regulated output voltages from 0.5 V to 0.875*PVin programmed via two  
external resistors or through the communication interfaces. They operate with an internal bias supply (LDO),  
typically 5.2 V. This allows operation with a single supply. The output of this LDO is brought out at the Vcc pin  
and must be bypassed to the system power ground with a 10 µF decoupling capacitor. The Vcc pin may also be  
connected to the Vin pin, and an external Vcc supply between 4.5 V and 5.5 V may be used, allowing an  
extended operating bus voltage (PVin) range from 1.5 V to 16 V.  
The device utilizes the on-resistance of the low side MOSFET (synchronous MOSFET) as the current sense  
element. This method enhances the converter’s efficiency and reduces cost by eliminating the need for external  
current sense components.  
The IR38164 includes two low RDS(ONꢅ MOSFETs using Infineon’s OptiMOSTM technology. These are specifically  
designed for low duty cycle, high efficiency applications.  
14.2  
Device Power-up and Initialization  
During the power-up sequence, when Vin is brought up, the internal LDO converts it to a regulated 5.2 V at Vcc.  
There is another LDO which further converts this down to 1.8 V to supply the internal digital circuitry. An under-  
voltage lockout circuit monitors the voltage of VCC pin and the P1V8 pin, and holds the Power-on-reset (POR)  
low until these voltages exceed their thresholds and the internal 48 MHz oscillator is stable. When the device  
comes out of reset, it initializes a multiple times programmable (MTP) memory load cycle, where the contents  
of the MTP are loaded into the working registers. Once the registers are loaded from MTP, the designer can use  
PMBus™ commands to re-configure the various parameters to suit the specific VR design requirements if  
desired, irrespective of the status of Enable.  
The typical default configuration utilizes the internal LDO to supply the VCC rail when PVin is brought up. For  
this configuration power conversion is enabled only when the Enable pin voltage exceeds its under-voltage  
threshold, the PVin bus voltage exceeds its under-voltage threshold, the contents of the MTP have been fully  
loaded into the working registers and the device address has been read. The initialization sequence is shown in  
Figure 14. Another common default configuration uses an external power supply for the VCC rail. While in this  
configuration it is recommended to ensure the VCC rail reaches its target voltage prior the enable signal goes  
high.  
Additional options are available to enable the device power conversion through software and these options  
may be configured to override the default by using the I2C interface or PMBus™. For further details, see the  
UN0075 IR3816x PMBus™ commandset user note.  
Final Datasheet  
28 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Theory of operation  
PVIN=VIN  
VCC  
P1V8  
UVOK  
clkrdy  
POR  
Initialization  
done  
Enable  
Vout  
Figure 14 Initialization sequence showing PVin, Vin, Vcc, 1.8V, Enable and Vout signals as well as the  
internal logic signals  
14.3  
IꢄC and PMBUS™ Communication  
All the devices in this family have two 7-bit registers that are used to set the base I2C address and base PMBus™  
address of the device, as shown below in Table 8 .  
Table 8  
Register  
Registers used to set device base address  
Description  
I2c_address[6:0]  
The chip I2C address. An address  
of 0 will disable I2C  
communication. Note that  
disabling I2C does not disable  
PMBus™.  
PMBus™_address[6:0]  
The chip PMBus™ address. An  
address of 0 will disable PMBus™  
communication. Note that  
disabling PMBus™ does not  
disable I2C.  
In addition, a resistor may be connected between the ADDR and LGND pins to set an offset from the default  
preconfigured I2C address (0x10) /PMBus™ address (0x40) in the MTP. Up to 16 different offsets can be set,  
allowing 16 devices with unique addresses in a single system. This offset, and hence, the device address, is read  
by the internal 10-bit ADC during the initialization sequence.  
Table 9 below provides the resistor values needed to set the 16 offsets from the base address.  
*Do not use these values for applications with ambient temperatures <0°C.  
Table 9  
Address offset vs External Resistor(RADDR)  
ADDR Resistor (Ohm)  
Address Offset  
499  
+0  
+1  
+2  
+3  
+4  
+5  
+6  
1050  
1540  
2050  
2610  
3240  
3830  
Final Datasheet  
29 of 64  
V2.2  
Feb 6 2019  
 
 
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Theory of operation  
ADDR Resistor (Ohm)  
Address Offset  
4530  
5230  
+7  
+8  
6040  
+9  
6980  
7870  
8870  
9760  
10700  
>11800  
+10  
+11  
+12  
+13  
+14  
+15  
The device will then respond to I2C/PMBus™ commands sent to this address. There is also a register bit  
i2c_disable_addr_offset that may be set in order to instruct the device to ignore the resistor offset for both I2C  
and PMBus™. If this bit is set, the device will always respond to commands sent to the base address. For  
applications with junction temperatures below 0°C, offsets +0, +1, and +2 are not available.  
14.4  
Modes for Setting Output Voltages  
These devices provide a configuration bit that allows the user to choose between PMBus™ and SVID modes.  
When this bit is set, SVID mode, the output voltage will ramp to the configured boot voltage and subsequently,  
respond to voltage set commands issued by the CPU on the Serial VID (SVID) interface. The VID tables for 5 mV  
and 10 mV VID steps are shown in the tables below. A VID code of 0 corresponds to 0 V as well as the regulator  
shutdown code in SVID mode. Vboot which is utilized in the SVID mode should not be set to 0 V as this will  
shutdown the regulator. When this bit is zero, the regulation is determined by the output voltage set by the  
PMBus™ commands. It should be noted that irrespective of the mode used to set the output voltage, telemetry  
information always remains available on both the communications busses.  
Final Datasheet  
30 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Theory of operation  
Table 10  
Intel 5 mV VID table  
VID  
Voltage  
VID  
Voltage  
VID  
Voltage  
(V)  
VID  
Voltage  
(V)  
VID  
Voltage  
(V)  
(Hex)  
(V)  
(Hex)  
(V)  
(Hex)  
(Hex)  
(Hex)  
FF  
FE  
FD  
FC  
FB  
FA  
F9  
F8  
F7  
F6  
F5  
F4  
F3  
F2  
F1  
F0  
EF  
EE  
ED  
EC  
EB  
EA  
E9  
E8  
E7  
E6  
E5  
E4  
E3  
E2  
E1  
E0  
DF  
DE  
DD  
DC  
DB  
DA  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
CF  
CE  
CD  
CC  
CB  
CA  
C9  
C8  
C7  
C6  
1.52  
C5  
C4  
C3  
C2  
C1  
C0  
BF  
BE  
BD  
BC  
BB  
BA  
B9  
B8  
B7  
B6  
BB  
BA  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
AF  
AE  
AD  
AC  
AB  
AA  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
9F  
9E  
9D  
9C  
9B  
9A  
99  
98  
97  
96  
95  
94  
93  
92  
1.23  
91  
90  
8F  
8E  
8D  
8C  
8B  
8A  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
7F  
7E  
7D  
7C  
7B  
7A  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
6F  
6E  
6D  
6C  
6B  
6A  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
5F  
5E  
5D  
5C  
5B  
5A  
59  
58  
0.97  
0.965  
0.96  
57  
56  
55  
54  
53  
52  
51  
50  
4F  
4E  
4D  
4C  
4B  
4A  
49  
48  
47  
58  
57  
56  
55  
54  
53  
52  
51  
50  
4F  
4E  
4D  
4C  
4B  
4A  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
3F  
3E  
3D  
3C  
3B  
3A  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
0.68  
0.675  
0.67  
2F  
2E  
2D  
2C  
2B  
2A  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
1F  
1E  
1D  
1C  
1B  
1A  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
0F  
0E  
0D  
0C  
0B  
0A  
09  
08  
07  
06  
05  
04  
03  
02  
01  
00  
0.48  
0.475  
0.47  
0.465  
0.46  
0.455  
0.45  
0.445  
0.44  
0.435  
0.43  
0.425  
0.42  
0.415  
0.41  
0.405  
0.4  
1.515  
1.51  
1.505  
1.5  
1.495  
1.49  
1.485  
1.48  
1.475  
1.47  
1.465  
1.46  
1.455  
1.45  
1.445  
1.44  
1.435  
1.43  
1.425  
1.42  
1.415  
1.41  
1.405  
1.4  
1.395  
1.39  
1.385  
1.38  
1.375  
1.37  
1.365  
1.36  
1.355  
1.35  
1.345  
1.34  
1.335  
1.33  
1.325  
1.32  
1.315  
1.31  
1.305  
1.3  
1.295  
1.29  
1.285  
1.28  
1.275  
1.27  
1.265  
1.26  
1.255  
1.25  
1.245  
1.24  
1.235  
1.225  
1.22  
1.215  
1.21  
1.205  
1.2  
1.195  
1.19  
1.185  
1.18  
1.175  
1.17  
1.165  
1.16  
1.155  
1.18  
1.175  
1.17  
1.165  
1.16  
1.155  
1.15  
1.145  
1.14  
1.135  
1.13  
1.125  
1.12  
1.115  
1.11  
1.105  
1.1  
1.095  
1.09  
1.085  
1.08  
1.075  
1.07  
1.065  
1.06  
1.055  
1.05  
1.045  
1.04  
1.035  
1.03  
1.025  
1.02  
1.015  
1.01  
1.005  
1
0.995  
0.99  
0.985  
0.98  
0.975  
0.955  
0.95  
0.945  
0.94  
0.935  
0.93  
0.925  
0.92  
0.915  
0.91  
0.905  
0.9  
0.895  
0.89  
0.885  
0.88  
0.875  
0.87  
0.865  
0.86  
0.855  
0.85  
0.845  
0.84  
0.835  
0.83  
0.825  
0.82  
0.815  
0.81  
0.805  
0.8  
0.795  
0.79  
0.785  
0.78  
0.775  
0.77  
0.765  
0.76  
0.755  
0.75  
0.745  
0.74  
0.735  
0.73  
0.725  
0.72  
0.715  
0.71  
0.705  
0.7  
0.695  
0.69  
0.685  
0.665  
0.66  
0.655  
0.65  
0.645  
0.64  
0.635  
0.63  
0.625  
0.62  
0.615  
0.61  
0.605  
0.6  
0.685  
0.68  
0.675  
0.67  
0.665  
0.66  
0.655  
0.65  
0.645  
0.64  
0.635  
0.63  
0.625  
0.62  
0.615  
0.61  
0.605  
0.6  
0.595  
0.59  
0.585  
0.58  
0.575  
0.57  
0.565  
0.56  
0.555  
0.55  
0.545  
0.54  
0.535  
0.53  
0.525  
0.52  
0.515  
0.51  
0.505  
0.5  
0.495  
0.49  
0.485  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Final Datasheet  
31 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Theory of operation  
Table 11  
Intel 10 mV VID table  
VID  
Voltage  
VID  
Voltage  
VID  
Voltage  
(V)  
VID  
Voltage  
(V)  
VID  
Voltage  
(V)  
(Hex)  
(V)  
(Hex)  
(V)  
(Hex)  
(Hex)  
(Hex)  
FF  
FE  
FD  
FC  
FB  
FA  
F9  
F8  
F7  
F6  
F5  
F4  
F3  
F2  
F1  
F0  
EF  
EE  
ED  
EC  
EB  
EA  
E9  
E8  
E7  
E6  
E5  
E4  
E3  
E2  
E1  
E0  
DF  
DE  
DD  
DC  
DB  
DA  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
CF  
CE  
CD  
CC  
CB  
CA  
C9  
C8  
C7  
C6  
3.04  
3.03  
3.02  
3.01  
3.00  
2.99  
2.98  
2.97  
2.96  
2.95  
2.94  
2.93  
2.92  
2.91  
2.90  
2.89  
2.88  
2.87  
2.86  
2.85  
2.84  
2.83  
2.82  
2.81  
2.80  
2.79  
2.78  
2.77  
2.76  
2.75  
2.74  
2.73  
2.72  
2.71  
2.70  
2.69  
2.68  
2.67  
2.66  
2.65  
2.64  
2.63  
2.62  
2.61  
2.60  
2.59  
2.58  
2.57  
2.56  
2.55  
2.54  
2.53  
2.52  
2.51  
2.50  
2.49  
2.48  
2.47  
C5  
C4  
C3  
C2  
C1  
C0  
BF  
BE  
BD  
BC  
BB  
BA  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
AF  
AE  
AD  
AC  
AB  
AA  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
9F  
9E  
9D  
9C  
9B  
9A  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
8F  
8E  
8D  
8C  
2.46  
2.45  
2.44  
2.43  
2.42  
2.41  
2.40  
2.39  
2.38  
2.37  
2.36  
2.35  
2.34  
2.33  
2.32  
2.31  
2.30  
2.29  
2.28  
2.27  
2.26  
2.25  
2.24  
2.23  
2.22  
2.21  
2.20  
2.19  
2.18  
2.17  
2.16  
2.15  
2.14  
2.13  
2.12  
2.11  
2.10  
2.09  
2.08  
2.07  
2.06  
2.05  
2.04  
2.03  
2.02  
2.01  
2.00  
1.99  
1.98  
1.97  
1.96  
1.95  
1.94  
1.93  
1.92  
1.91  
1.90  
1.89  
8B  
8A  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
7F  
7E  
7D  
7C  
7B  
7A  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
6F  
6E  
6D  
6C  
6B  
6A  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
5F  
5E  
5D  
5C  
5B  
5A  
59  
58  
57  
56  
55  
54  
53  
52  
1.88  
1.87  
1.86  
1.85  
1.84  
1.83  
1.82  
1.81  
1.80  
1.79  
1.78  
1.77  
1.76  
1.75  
1.74  
1.73  
1.72  
1.71  
1.70  
1.69  
1.68  
1.67  
1.66  
1.65  
1.64  
1.63  
1.62  
1.61  
1.60  
1.59  
1.58  
1.57  
1.56  
1.55  
1.54  
1.53  
1.52  
1.51  
1.50  
1.49  
1.48  
1.47  
1.46  
1.45  
1.44  
1.43  
1.42  
1.41  
1.40  
1.39  
1.38  
1.37  
1.36  
1.35  
1.34  
1.33  
1.32  
1.31  
51  
50  
4F  
4E  
4D  
4C  
4B  
4A  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
3F  
3E  
3D  
3C  
3B  
3A  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
2F  
2E  
2D  
2C  
2B  
2A  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
1F  
1E  
1D  
1C  
1B  
1A  
19  
18  
1.30  
1.29  
1.28  
1.27  
1.26  
1.25  
1.24  
1.23  
1.22  
1.21  
1.20  
1.19  
1.18  
1.17  
1.16  
1.15  
1.14  
1.13  
1.12  
1.11  
1.10  
1.09  
1.08  
1.07  
1.06  
1.05  
1.04  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
0.96  
0.95  
0.94  
0.93  
0.92  
0.91  
0.90  
0.89  
0.88  
0.87  
0.86  
0.85  
0.84  
0.83  
0.82  
0.81  
0.80  
0.79  
0.78  
0.77  
0.76  
0.75  
0.74  
0.73  
17  
16  
15  
14  
13  
12  
11  
10  
0F  
0E  
0D  
0C  
0B  
0A  
09  
08  
07  
06  
05  
04  
03  
02  
01  
0.72  
0.71  
0.70  
0.69  
0.68  
0.67  
0.66  
0.65  
0.64  
0.63  
0.62  
0.61  
0.60  
0.59  
0.58  
0.57  
0.56  
0.55  
0.54  
0.53  
0.52  
0.51  
0.50  
Final Datasheet  
32 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Theory of operation  
14.5  
Bus Voltage UVLO  
If the input to the Enable pin is derived from the bus voltage by a suitably programmed resistive divider, it can  
be ensured that the device does not turn on until the bus voltage reaches the desired level as shown in Figure  
15. Only after the bus voltage reaches or exceeds this level and voltage at the Enable pin exceeds its threshold  
(typically 0.6 V) will the device be enabled. Therefore, in addition to being logic input pin to enable the  
converter, the Enable feature, with its precise threshold, also allows the user to override the default 8 V under-  
voltage lockout for the bus voltage (PVin). This is desirable particularly for high output voltage applications,  
where we might want the device to be disabled at least until PVin exceeds the desired output voltage level.  
Alternatively, the default 8 V PVin UVLO threshold may be reconfigured/overridden using the VIN_ON and  
VIN_OFF PMBus™ commands or the corresponding registers. It should be noted that the input voltage is also  
fed to an ADC through a 21:1 internal resistive divider. However, the digitized input voltage is used only for the  
purposes of reporting the input voltage through the READ_VIN PMBus™ command. It has no impact on the bus  
voltage UVLO, input over-voltage faults and input under-voltage warnings, all of which are implemented by  
using analog comparators to compare the input voltage to the corresponding thresholds programmed by the  
PMBus™ commands VIN_ON, VIN_OFF, VIN_OV_FAULT_LIMIT and VIN_UV_WARN_LIMIT respectively. The bus  
voltage reading as reported by READ_VIN has no effect on the input feedforward function either.  
12V  
10.2V  
1 V  
PVin  
Vcc  
> 0.6V  
0.6V  
EN_UVLO_START  
EN  
DAC2 (Reference DAC)  
Figure 15 Normal Start up, device turns on when the bus voltage reaches 10.2 V. A resistor divider is  
used at EN pin from PVin to turn on the device at 10.2 V.  
PVin=Vin  
Vcc  
> 0.6V  
EN  
DAC2 (Reference DAC)  
Figure 16 Recommended startup for Normal operation  
Figure 16 shows the recommended startup sequence for the normal operation of the device, when Enable is  
used as logic input.  
Final Datasheet  
33 of 64  
V2.2  
Feb 6 2019  
 
 
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Theory of operation  
14.6  
Pre-Bias startup  
The IR38164 is able to start up into pre-charged output, without oscillations or other disturbance of the output  
voltage.  
The output starts in asynchronous fashion and keeps the synchronous MOSFET (sync FET) off until the first gate  
signal for the control MOSFET (ctrl FET) is generated. Figure 17 shows a typical pre-bias condition at start up.  
[V]  
Vo  
Pre-Bias  
Voltage  
[Time]  
Figure 17  
Pre-Bias startup  
The sync FET always starts with a narrow pulse width (12.5% of a switching period) and gradually increases its  
duty cycle with a step of 12.5% until it reaches the steady state value. There are 16 pulses in each step. This  
value is internally programmed. Figure 18 shows the series of 16x8 startup pulses.  
...  
HDRv  
...  
...  
...  
...  
87.5%  
12.5%  
16  
25%  
...  
LDRv  
...  
...  
...  
End of  
PB  
...  
16  
Figure 18  
Pre-bias startup pulses  
14.7  
Soft-Start ꢇReference DAC rampꢈ  
This device has an internal soft starting DAC to control the output voltage rise and to limit the current surge at  
the start-up. To ensure correct start-up, the DAC sequence initiates only after power conversion is enabled  
when the Enable pin voltage exceeds its under-voltage threshold, the PVin bus voltage exceeds its under-  
voltage threshold and the contents of the MTP have been fully loaded into the working registers. Figure 19  
shows the waveforms during soft start. It should be noted that the part may also be configured to require  
software Enable (set through the PMBus™ or the corresponding MTP register) instead of or in addition to a  
ꢆhardwareꢃ signal at the Enable pin. In PMBus™ mode, the reference DAC soft-start may be delayed from the  
time power conversion is enabled. The range for this programmable delay is 0 ms to 127 ms, and the resolution  
is 1 ms. Further, in this mode, the soft start time may be configured from 1 ms to 127 ms with 1 ms resolution.  
In SVID mode, the rise time is determined by the slow slew rate specified by Intel, and may be programmed to  
one of four values: 0.625 mV/µs, 1.25 mV/µs, 2.5 mV/µs and 5 mV/µs. In this mode, the device uses 2.5 mV/µs by  
default. It should be noted, however, that if Vboot is 0, the output voltage does not ramp until the CPU issues a  
voltage setting command at either the fast slew rate or slow slew rate specified by the CPU.  
Final Datasheet  
34 of 64  
V2.2  
Feb 6 2019  
 
 
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Theory of operation  
For more details on the PMBus™ commands TON_DELAY and TON_RISE used to program the startup sequence,  
please see the UN0075 IR3816x PMBus™ commandset user note.  
Internal Enable  
Reference  
DAC  
Vout  
Ton_delay  
t1  
Ton_rise  
t3  
t
2
Figure 19 DAC2 (VREF) Soft start  
During the startup sequence the over-current protection (OCP) and over-voltage protection (OVP) are active to  
protect the device against any short circuit or over voltage conditions.  
14.8  
Operating frequency  
Using the FREQUENCY_SWITCH PMBus™ command, or the corresponding registers, the switching frequency  
may be programmed between 500 kHz and 1.5 MHz. For best telemetry accuracy, it is recommended that the  
following switching frequencies be avoided: 500 kHz, 600 kHz, 750 kHz, 800 kHz, 1 MHz, 1.2 MHz and 1.5 MHz.  
Instead the following values are recommended, 505 kHz, 607 kHz, 762 kHz, 813 kHz, 978 kHz, 1171 kHz and 1454  
kHz respectively.  
14.9  
Shutdown  
In the default configuration, the device can be shutdown by pulling the Enable pin below its 0.4 V threshold.  
During shutdown the high side and the low side drivers are turned off. By default, the device exhibits an  
immediate shutdown with no delay and no soft stop.  
Alternatively, the part may be configured to allow shutdown using the OPERATION PMBus™ command or the  
corresponding register. It may also be configured to allow a soft or controlled turned off. In PMBus™ mode, if  
the soft-off option is used, the turn off may be delayed from the time the power conversion is disabled. The  
range for this programmable delay is 0 ms to 127 ms, and the resolution is 1 ms. Further, in this mode, the soft  
stop time may be configured from 1ms to 127 ms with 1 ms resolution. The programmable turn off delay only  
applies in PMBus™ mode.  
If VCC voltage supply is used to shutdown the system, a continuous ramp from 5V to 0V should be utilized.  
Shutdown via the Enable pin is the recommended shutdown method.  
Final Datasheet  
35 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Theory of operation  
14.10  
Current Sensing, Telemetry and Over-Current Protection  
Current sensing for both telemetry as well as over-current protection is done by sensing the voltage across the  
sync FET RDS(ON). This method enhances the converter’s efficiency, reduces cost by eliminating a current sense  
resistor and any minimizes sensitivity to layout related noise issues. A novel, patented scheme allows  
reconstruction of the average inductor current from the voltage sensed across the Sync FET RDS(ON). It should  
be noted here that it is this reconstructed average inductor current that is digitized by the ADC and used for  
output current reporting as well as for over-current warning, the threshold for which may be set using the  
IOUT_OC_WARN_LIMIT command. The current is reported in 1/16 A resolution using the READ_IOUT PMBus™  
command. The current information may also be read back using I2C, through the 8-bit register  
output_current_byte, which reports the current in 1/4 A resolution.  
The Over current (OC) fault protection circuit also uses the voltage sensed across the RDS(ON) of the  
Synchronous MOSFET; however, the protection mechanism relies on a fast comparator to compare the sensed  
signal to the over-current threshold and does not depend on the ADC or reported current. The current limit  
scheme uses an internal temperature compensated current source that has the same temperature coefficient  
as the RDS(ON) of the Synchronous MOSFET. As a result, the over-current trip threshold remains almost constant  
over temperature.  
Over Current Protection circuitry senses the inductor current flowing through the Synchronous FET closer to  
the valley point. The OCP circuit samples this current for 75 ns typically after the rising edge of the PWM set  
pulse which is an internal signal that has a width of 12.5% of the switching period. The PWM pulse that turns on  
the high side FET starts at the falling edge of the PWM set pulse. This makes valley current sense more robust as  
current is sensed close to the bottom of the inductor downward slope where transient and switching noise is  
low. This helps to prevent false tripping due to noise and transients.  
The actual DC output current limit point will be greater than the valley point by an amount equal to  
approximately half of the peak to peak inductor ripple current. The current limit point will be a function of the  
inductor value, input voltage, output voltage and the frequency of operation. On equation 1, ILimit is the value  
set when configuring the 38164 OCP value. The user should account for the inductor ripple to obtain the actual  
DC output current limit.  
i  
IOCP ILIMIT  
(1)  
2
IOCP  
ILIMIT  
Δi  
= DC current limit hiccup point  
= Current Limit Valley Point  
= Inductor ripple current  
Final Datasheet  
36 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Theory of operation  
Over Current Limit  
Hiccup Blanking Time  
IL  
0
HDrv  
0
...  
...  
LDrv  
0
PGood  
0
Figure 20  
Timing diagram for current limit hiccup  
In the default configuration, if the over-current detection trips the OCP comparator for a total of 8 cycles, the  
device goes into a hiccup mode. The hiccup is performed by de-asserting the internal Enable signal to the  
analog and power conversion circuitry and holding it low for 20 ms.  
Following this, the OCP signal resets and the converter recovers. After every hiccup cycle, the converter stays in  
this mode until the overload or short circuit is removed. This behavior is shown in Figure 20.  
Note that the user can override the default over-current threshold using the PMBus™ command  
IOUT_OC_FAULT_LIMIT. This command can be used to program the over-current threshold from a minimum  
recommended 16 A setting to a maximum of 56 A, in 4 A steps. While the IR38164 will still offer over-current  
protection below 16 A and at magnitudes that are not multiples of 4, these thresholds will not be as accurate.  
Therefore it’s recommended to keep the current limit setting from 16A to 56A with 4A increments. Systems with  
a high inductor current ripple will affect the accuracy, refer to (1).  
Also, using the PMBus™ command IOUT_OC_FAULT_RESPONSE or the corresponding registers, the part may be  
configured to respond to an over-current fault in one of two ways:  
1)  
Pulse by pulse current limiting for a programmed number of eight switching cycles followed by a  
latched shutdown.  
2)  
Pulse by pulse current limiting for a programmed number of eight switching cycles followed by hiccup.  
The pulse-by-pulse or constant current limiting mechanism is briefly explained below.  
Final Datasheet  
37 of 64  
V2.2  
Feb 6 2019  
 
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Theory of operation  
IOUT_OC_FAULT_LIMIT  
IL  
20 ms  
0
HDrv  
0
LDrv  
0
CLK  
Fs  
0
OCP High  
1
2
3
4
5
6
7
8
Internal  
Enable  
Figure 21  
Pulse by pulse current limiting for 8 cycles, followed by hiccup  
In Figure 21 above, with the over-current response set to pulse-by-pulse current limiting for 8 cycles followed  
by hiccup, the converter is operating at D<0.125 when the overcurrent condition occurs. In such a case, no duty  
cycle limiting is applied.  
IOUT_OC_ FAULT_ LIMIT  
IL  
0
HDrv  
0
LDrv  
0
CLK  
Fs  
0
1
2
3
4
5
6
7
8
9
10  
11  
...  
Internal  
Enable  
Figure 22 Constant current limiting  
Figure 22 depicts a case where the over-current condition happens when the converter is operating at D>0.5  
and the over-current response has been set to constant current operation through pulse by pulse current  
limiting. In such a case, after 3 consecutive over-current cycles are recognized, the pulse width is dropped such  
that D=0.5 and then after 3 more consecutive OCP cycles, to 0.25 and then finally to 0.125 at which it keeps  
running until the total OCP count reaches the programmed maximum following which the part enters hiccup  
mode. Conversely, when the over-current condition disappears, the pulse width is restored to its nominal value  
gradually, by a similar mechanism in reverse; every sequence of 4 consecutive cycles in which the current is  
below the over-current threshold doubles the duty cycle, so that D goes from 0.125 to 0.25, then to 0.5 and  
finally to its nominal value.  
Final Datasheet  
38 of 64  
V2.2  
Feb 6 2019  
 
 
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Theory of operation  
14.11  
Current reporting limitation at high operating temperature  
The IR38164 is designed to give the industry’s highest accuracy output current reporting across a range of ꢂ to  
30 Amps. To achieve the goal of highest possible accuracy particularly at Iout up to 30Amps, a high gain was  
used in the Rds_on current sensing circuit. As the operating temperature increases the Rds_on of the low side  
MOSFET increases and at the rated current of 30A with junction temperatures around 90 °C, the ADC saturates  
and no longer reads higher values of the MOSFET RDS_on. The result is that at a high operating junction  
temperature condition the maximum PMBus™ and SVID current reporting is clamped as shown in Figure 23  
below.  
Maximum Iout reported verses IR38164 internal temperature  
35  
30  
25  
Typical (based on measured data)  
20  
Calculated worst case  
15  
10  
5
0
0
20  
40  
60  
80  
IC die Temp , PMBUS reported ,C  
100  
120  
Figure 23 Maximum Iout reported versus IR38164 reported die temperature  
Note that Infineon does not recommend operating the part with a reading of the ADC being clamped, because  
other readings of the ADC can be compromised. If higher Iout readings are needed, the IR38163 with a lower  
gain in the Rds_on detection circuit is recommended to be used. Lastly, please note that the current limit  
ability of the IR38164 is not affected by the ADC clamping. The IR38164 current limit function is performed by  
an analog circuit and does not use the ADC. The OCP warn function (PMBUS setting) is however based on the  
ADC output and will not function properly at a high temperature if the threshold is set higher than the  
maximum current reported shown above.  
Final Datasheet  
39 of 64  
V2.2  
Feb 6 2019  
 
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Theory of operation  
14.12  
Die temperature sensing, telemetry and thermal shutdown  
On die temperature sensing is used for accurate temperature reporting and over-temperature detection. The  
READ_TEMEPRATURE PMBus™ command reports this temperature in 10 C resolution. The temperature may  
also be read back using I2C through the 8-bit register temp_byte, which reports the die temperature in 1 °C  
resolution, offset by 40 °C. Thus, the temperature is given by temp_byte +40 °C.  
The trip threshold is set by default to 125 °C. The default over temperature response of the device is to inhibit  
power conversion while the fault is present, followed by automatic restart after the fault condition is cleared.  
Hence, in the default configuration, when the trip threshold is exceeded, the internal Enable signal to the  
power conversion circuitry is de-asserted, turning off both MOSFETs.  
Automatic restart is initiated when the sensed temperature drops within the operating range. There is a 25 °C  
hysteresis in the thermal shutdown threshold.  
The default over-temperature threshold as well as over-temperature response may be re-configured or  
overridden using the OT_FAULT_LIMIT and OT_FAULT_RESPONSE PMBus™ commands respectively or the  
corresponding registers may be used. The devices support three types of responses to an over-temperature  
fault:  
1)  
2)  
Ignore  
Inhibit when the over-temperature condition exists and auto-restart when the over-temperature  
condition disappears  
3) Latched shutdown.  
14.13  
Remote voltage sensing  
True differential remote sensing in the feedback loop is critical to high current applications where the output  
voltage across the load may differ from the output voltage measured locally across an output capacitor at the  
output inductor, and to applications that require die voltage sensing.  
The RS+ and RS- pins form the inputs to a remote sense differential amplifier with high speed, low input offset  
and low input bias current, which ensure accurate voltage sensing and fast transient response in such  
applications.  
The input range for the differential amplifier is limited to 1.5 V below the VCC rail. Therefore, for applications in  
which the output voltage is more than 2.55 V, it is recommended to use local sensing, or if remote sensing is a  
must, then the voltage between the RS+ and RS-pins must be divided down to less than 2.55 V using a resistive  
voltage divider. It’s recommended that the divider be placed at the input of the remote sense amplifier and that  
a low impedance such as 499 Ω be used between the RS+ and RS- nodes. A typical schematic for this setup is  
shown on Figure 8 Please note, however, that this modifies the open loop transfer function and requires a  
change in the compensation network to optimally stabilize the loop.  
Final Datasheet  
40 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Theory of operation  
14.14  
Feed-forward  
Feed-Forward (F.F.) is an important feature, because it can keep the converter stable and preserve its load  
transient performance when PVin varies over a wide range. The PWM ramp amplitude (Vramp) is  
proportionally changed with PVin to maintain PVin/Vramp almost constant throughout PVin variation range (as  
shown in Figure 24). Thus, the control loop bandwidth and phase margin can be maintained constant. The  
feed-forward function can also minimize impact on output voltage from fast PVin changes. The feedforward is  
disabled for PVin<4.7 V. Hence, for PVin<4.7 V, a re-calculation of control loop parameters is needed for re-  
compensation.  
21V  
12V  
12V  
5V  
PVin  
0
PWM Ramp  
Ramp Offset  
0
Figure 24  
Timing diagram for feed-forward (F.F.) function  
14.15  
Output voltage sensing, telemetry and faults  
For this family of devices, the voltage sense and regulation circuits are decoupled, enabling ease of testing as  
well as redundancy. In order to do this, the device uses the sense voltage at the dedicated Vsns pin for output  
voltage reporting (in 1/256 V resolution, using the READ_VOUT PMBus™ command) as well as for power good  
detection and output over-voltage protection.  
Power good detection and output over-voltage detection rely on fast analog comparator circuits, whereas over-  
voltage warnings as well as under-voltage faults and warnings rely on comparing the digitized Vsns to the  
corresponding thresholds programmed using PMBus™ commands VOUT_OV_WARN_LIMIT,  
VOUT_UV_FAULT_LIMIT and VOUT_UV_WARN_LIMIT respectively or the corresponding.  
14.16  
Power Good Output  
The Vsns voltage is an input to the window comparator with programmable thresholds. The PGood signal is  
high whenever Vsns voltage is within the PGood comparator window thresholds. The PGood pin is open drain  
and it needs to be externally pulled high. High state indicates that output is in regulation. The Power Good  
thresholds may be changed through the POWER_GOOD_ON and POWER_GOOD_OFF commands, which set the  
rising and falling PGood thresholds respectively. The thresholds may also be programmed using the  
corresponding MTP registers. However, when no resistive divider is used, such as for output voltages lower  
than 2.555 V, the Power Good thresholds must be programmed to within 630 mV of the output voltage,  
otherwise, the effective power good threshold changes from an absolute threshold to one that tracks the  
output voltage with a 630 mV offset. By default, the PGood signal will assert as soon as the Vsns signal enters  
the regulation window. In digital mode, this delay is programmable from 0 to 10 ms with a 1 ms resolution,  
using the MFR_TPGDLY command.  
Final Datasheet  
41 of 64  
V2.2  
Feb 6 2019  
 
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Theory of operation  
The threshold is set differently in SVID mode. In this mode, the thresholds set by the POWER_GOOD_ON and  
POWER_GOOD_OFF commands (or the corresponding registers) are ignored. Power Good is asserted when the  
output voltage is within the tolerance band of the boot voltage. Following this, the Power Good signal remains  
asserted irrespective of any output voltage transitions and is de-asserted only in the event of a fault that shuts  
down power conversion, or, if so programmed, in the event of a command by the CPU to change the output  
voltage to 0 V.  
Fault DAC  
0
Reference DAC  
0
Power Good upper threshold  
Vsns  
0
Power Good lower threshold  
PGD  
0
160us  
Figure 25  
Power good in PMBus™ mode  
Fault DAC  
0
Reference DAC  
0
Vboot+/-TOB  
Vsns  
0
PGD  
0
Figure 26  
Power Good in SVID mode, Vboot>0 V  
Final Datasheet  
42 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Theory of operation  
14.17  
Over-Voltage Protection ꢇOVPꢈ  
Over-voltage protection is achieved by comparing sense pin voltage Vsns to a configurable over-voltage  
threshold.  
The OVP threshold may be reprogrammed to within 655 mV of the output voltage (for output voltages lower  
than 2.555 V, without any resistive divider on the Fb pin), using the VOUT_OV_FAULT_LIMIT PMBus™ command  
or the corresponding registers. For an OVP threshold programmed to be more than 655 mV greater than the  
output voltage, the effective OV threshold ceases to be an absolute value and instead tracks the output voltage  
with a 655 mV offset.  
When Vsns exceeds the over-voltage threshold, an over-voltage trip signal asserts after 200 ns (typ.) delay. The  
default response is that the high side drive signal HDrv is latched off immediately and PGood flags are set low.  
The low side drive signal is kept on until the Vsns voltage drops below the threshold. HDrv remains latched off  
until a reset is performed by cycling either Vcc or Enable or the OPERATION command. The device allows the  
user to reconfigure this response by the use of the VOUT_OV_FAULT_RESPONSE PMBus™ command. In addition  
to the default response described above, this command can be used to configure the device such that Vout  
over-voltage faults are ignored and the converter remains enabled. (However, they will still be flagged in the  
STATUS_REGISTERS and by SAlert). For further details on the corresponding PMBus™ commands related to  
OVP, please refer to the UN0075 IR3816x PMBus™ commandset user note.  
Vsns voltage is set by an external resistive voltage divider connected to the output. This divider ratio must  
match the divider used on the feedback pin or on the RS+ pin.  
It should be noted that the over-voltage threshold applies in PMBus™ mode as well as SVID mode.  
DAC1+OV_OFFSET_DAC  
Vout  
DAC1  
hysteresis  
0
HDrv  
0
LDrv  
0
Comp  
0
PGood  
0
200 ns  
200 ns  
Figure 27  
Timing diagram for OVP in non-tracking mode  
Final Datasheet  
43 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Theory of operation  
14.18  
Minimum On-Time Considerations  
The minimum ON time is the shortest amount of time for the Control FET to be reliably turned on. This is a very  
critical parameter for low duty cycle, high frequency applications. In the conventional approach, when the error  
amplifier output is near the bottom of the ramp waveform with which it is compared to generate the PWM  
output, propagation delays can be high enough to cause pulse skipping, and hence limit the minimum pulse  
width that can be realized. Moreover, in the conventional approach, the bottom of the ramp often presents a  
high gain region to the error amplifier output, making the modulator more susceptible to noise and requiring  
the use of lower control loop bandwidth to prevent noise, jitter and pulse skipping.  
Infineon has developed a proprietary scheme to improve and enhance the minimum pulse width which  
minimizes these delays and hence, allows stable operation with small pulse-widths. At the same time, this  
scheme also has greater noise immunity, thus allowing stable, jitter free operation down to very low pulse  
widths even with a high control loop bandwidth, thus reducing the required output capacitance.  
Any design or application using this IC must ensure operation with a pulse width that is higher than the  
minimum on-time and at least 70 ns of on-time is recommended in the application. This is necessary for the  
circuit to operate without jitter and pulse-skipping, which can cause high inductor current ripple and high  
output voltage ripple.  
Vout  
Fs PV Fs  
D
ton   
(2)  
in  
In any application that uses this IC, the following condition must be satisfied:  
ton(min) ton  
(3)  
Vout  
ton(min)  
(4)  
(5)  
PV Fs  
in  
Vout  
PV Fs   
in  
ton(min)  
The minimum output voltage is limited by the reference voltage and hence Vout(min) = 0.5 V. Therefore, for  
Vout(min) = 0.5 V,  
Vout  
(6)  
PV Fs   
in  
ton(min)  
Therefore, at the maximum recommended input voltage of 16V with the minmum recommended frequency of  
500 kHz the minimum output voltage should be => 0.56 V. Conversely for operation at a high frequency of 1 MHz  
and minimum output voltage (0.5 V), the input voltage (PVin) should not exceed 7.1 V, otherwise pulse skipping  
may happen. Pulse skipping is not an issue except that the ripple maybe slighty higher in this operating mode.  
Final Datasheet  
44 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Theory of operation  
14.19  
Maximum Duty Ratio  
An upper limit on the operating duty ratio is imposed by the larger of a) fixed off time (dominant at high  
switching frequencies) b) blanking provided by the PWMSet or clock pulse, which has a pulse width that is 1/8  
of the switching period. The latter mechanism is dominant at lower switching frequencies (typically below 1.25  
MHz). This upper limit ensures that the Sync FET turns on for a long enough duration to allow recharging the  
bootstrap capacitor and also allows current sensing. Figure 28 shows a plot of the maximum duty ratio vs. the  
switching frequency with built in input voltage feed-forward mechanism.  
Figure 28  
Maximum duty cycle vs. switching frequency with Vin feedforward  
14.20  
Bootstrap Capacitor  
To drive the Control FET, it is necessary to supply a gate voltage at least 4 V greater than the voltage at the SW  
pin, which is connected to the source of the Control FET. This is achieved by using a bootstrap configuration,  
which comprises the internal bootstrap diode and an external bootstrap capacitor (C1) as shown in Figure 29.  
Typically a 0.1 µF capacitor is used. A layout placement for a 0 ohm resistor in series with the capacitor is also  
recommended. For applications where PVin>14 V, a 1 ohm resistor is required. The operation of the circuit is as  
follows: When the sync FET is turned on, the capacitor node connected to SW is pulled down to ground. The  
capacitor charges towards Vcc through the internal bootstrap diode which has a forward voltage drop VD. The  
voltage Vc across the bootstrap capacitor C1 is approximately given as:  
(7)  
Vc Vcc VD  
When the Control FET turns on in the next cycle, the capacitor node connected to SW rises to the bus voltage  
PVin. However, if the value of C1 is appropriately chosen, the voltage Vc across C1 remains approximately  
unchanged and the voltage at the Boot pin becomes:  
(8)  
VBoot PV V VD  
in  
cc  
Final Datasheet  
45 of 64  
V2.2  
Feb 6 2019  
 
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Theory of operation  
Cvin  
PVIN  
+ VD  
-
Boot  
V
cc  
+
Vc  
-
C1  
SW  
L
IR38164  
PGnd  
Figure 29  
Bootstrap circuit to generate high side drive voltage  
14.21  
Intel SVID interface  
The IR38164 implements a fully compliant Intel® VR 13, and VR 12.5 Serial VID (SVID) interface. This is a three-  
wire interface between an Intel processor and a VR that consists of clock, data and alert# signals.  
The IR38164 implements all the required SVID registers and commands per Intel specifications. For the selected  
Intel mode, the IC also implements most of the optional commands and registers with very few exceptions.  
The default SVID addresses of the devices is 02h. This address can be re-programmed in MTP or via GUI.  
14.22  
All Call support  
All Call for the IR38164 can be configured in the following ways:  
0E and 0F.  
0E only.  
0F only.  
No All Call  
The devices can be configured to be used as VR for CPU which is All Call 0F or Memory which is All Call 0E.  
14.23  
VRꢁꢄ.ꢅ operation  
VR 12.5 mode is selectable via MTP bit. The boot voltage in VR 12.5 is also selectable and can be taken from the  
boot registers. The resolution is programmable via MTP bit to 10 mV to be compatible to VR12.5 mode.  
14.24  
VRꢁꢀ operation  
VR 13 mode is selectable via MTP bit. The boot voltage in VR13 mode is configured in the boot register. The  
resolution is programmable via MTP bit to 5 mV or 10 mV, to be compatible to VR13 mode.  
14.25  
Set Work Point  
This family of devices supports SVID Set WP command to Set VID voltage for all rails through all call address.  
When the processor asserts a Set WP command, all the rails of the VR settle to the corresponding new set  
voltage encoded in WP registers. Slew rate and power state of all the rails are identical during a set work point  
operation.  
Final Datasheet  
46 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Theory of operation  
14.26  
Dynamic VID slew rate  
The device provides the VR designer 16 fast slew rates that govern the rate of VID transitions. The slow slew rate  
is also programmable as a function of the fast slew rate, and 4 different options are available for each setting  
of the fast slew rate as shown below in Table 12.  
Table 12  
Slew Rates  
Fast Rate  
x 1/2  
x 1/4  
x 1/8 Factor  
x 1/16 Factor  
mV/us  
Factor  
Factor  
10  
5.0  
7.5  
10  
2.50  
3.75  
5.00  
6.25  
7.5  
1.25  
1.875  
2.50  
3.125  
3.75  
4.375  
5.0  
0.0625  
0.94  
1.25  
1.56  
1.88  
2.19  
2.5  
15  
20  
25  
12.5  
15  
30  
35  
17.5  
20  
8.75  
10  
40  
45  
22.5  
25  
11.25  
12.5  
13.75  
15  
5.625  
6.25  
6.875  
7.5  
2.81  
3.125  
3.4375  
3.75  
4.0625  
4.375  
5
50  
55  
27.5  
30  
60  
65  
32.5  
35  
16.25  
17.5  
20  
8.125  
8.75  
10  
70  
80  
40  
14.27  
Loop compensation  
Feedback loop compensation is achieved using standard Type III techniques and the compensation values can  
be easily calculated using Infineon’s design tool. The design tool can also be used to predict the control  
bandwidth and phase margin for the loop for any set of user defined compensation component values. For a  
theoretical understanding of the calculations used, please refer to Infineon’s Application Note AN-1162  
ꢆCompensator Design Procedure for Buck Converter with Voltage-Mode Error-Amplifierꢃ.  
14.28  
Dynamic VID compensation  
This family of devices uses an analog control scheme with voltage mode control. In this scheme, the  
compensator acts on the Vout signal and not just on the error signal. For load and line transients, with a steady  
and unchanging reference voltage, this has the same dynamic characteristics as for a compensator that acts on  
only the error signal. However, for reference voltage changes, as in the case of Dynamic VID, the dynamics are  
altered. A proprietary dynamic VID compensation scheme allows the dynamic VID response to be tuned  
optimally to the feedback compensator values. Once properly optimized, the output voltage will follow the DAC  
more closely during a positive dynamic VID, and provide better dynamic VID alert timing, as required by Intel®  
processors. Infineon’s SupIRBuck design tool will allow the user to quickly and conveniently calculate the  
dynamic VID compensation parameters for optimal dynamic VID response.  
Final Datasheet  
47 of 64  
V2.2  
Feb 6 2019  
 
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
IꢄC and PMBus™ communication protocols  
15  
IꢄC and PMBus™ communication protocols  
15.1  
IꢄC Protocols  
All registers may be accessed using either I2C or PMBus™ protocols. I2C allows the use of a simple format  
whereas PMBus™ provides error checking capability. Figure 30 shows the I2C format employed by IC.  
S: Start Condition  
1
S
7
Slave  
Address  
1
1
8
1
8
1
1
P
A: Acknowledge (0')  
N: Not Acknowledge (1')  
Sr: Repeated Start Condition  
P: Stop Condition  
Register  
Address  
WRITE  
READ  
A
A
A
W
Data Byte  
R: Read (1')  
1
7
1
1
P
1
S
7
Slave  
Address  
1
8
1
S
1
R
8
W: Write (0')  
Register  
Address  
Slave  
Address  
A
Data Byte  
A
A
N
W
PEC: Packet Error Checking  
*: Present if PEC is enabled  
: Master to Slave  
: Slave to Master  
Figure 30  
I2C format  
15.2  
SMBus/PMBus™ protocols  
To access IR’s configuration and monitoring registers, ꢇ different protocols are required:  
the SMBus Read/Write Byte/Word protocol with/without PEC (for status and monitoring)  
the SMBus Send Byte protocol with/without PEC (for CLEAR_FAULTS only)  
the SMBus Block Read protocol for accessing Model and Revision information  
the SMBus Process call (for accessing Configuration Registers)  
In addition, IC supports:  
Alert Response Address (ARA)  
Bus timeout  
Group Command for writing to many VRs within one command  
These various commands are illustrated in Figure 31 through Figure 37 below.  
Final Datasheet  
48 of 64  
V2.2  
Feb 6 2019  
 
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
IꢄC and PMBus™ communication protocols  
S: Start Condition  
8
1
S
7
Slave  
Address  
1
1
8
1
8
1
1
1
P
A: Acknowledge (0')  
N: Not Acknowledge (1')  
Sr: Repeated Start Condition  
P: Stop Condition  
Command  
Code  
A*  
BYTE  
A
A
Data Byte  
A
PEC*  
W
1
S
1
R: Read (1')  
7
Slave  
Address  
1
8
8
1
Command  
Code  
Data Byte  
Low  
W: Write (0')  
WORD  
A
A
A
W
PEC: Packet Error Checking  
*: Present if PEC is enabled  
: Master to Slave  
1
8
1
1
P
8
Data Byte  
High  
A*  
PEC*  
A
: Slave to Master  
Figure 31  
SMBus write byte/word  
1
1
P
1
1
1
8
1
1
7
Slave  
Address  
1
R
1
8
1
7
Slave  
Address  
8
Command  
Code  
Data Byte  
A*  
A
A
A
PEC*  
N
BYTE  
S
W
Sr  
1
S
7
Slave  
Address  
1
1
8
1
1
7
Slave  
Address  
1
R
1
8
1
Command  
Code  
Data Byte  
Low  
A
A
Sr  
A
A
WORD  
W
1
1
8
1
8
Data Byte  
High  
A*  
PEC*  
N
P
Figure 32  
Figure 33  
SMbus read byte/word  
1
S
7
Slave  
Address  
1
1
8
1
8
1
1
P
Command  
Code  
PEC*  
A
A*  
A
W
SMBus send byte  
1
S
7
Slave  
Address  
1
1
8
1
Command  
Code  
W
A
A
1
7
Slave  
Address  
1
R
1
8
8
8
1
1
1
1
Byte Count =1  
Data Byte  
A*  
A
A
PEC*  
N
P
Sr  
Figure 34  
Figure 35  
SMBus block read with byte count = 1  
PMBus  
Address  
Command  
D1h  
Register  
Address  
Data Byte  
PEC*  
S
W
A
A
A
A
A
P
MFR specific command to write an internal register  
Final Datasheet  
49 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
IꢄC and PMBus™ communication protocols  
PMBus  
Address  
Command  
D0h  
Register  
Address  
S
W
A
A
A
...  
PMBus  
Address  
Address+1  
Data Byte  
Data Byte  
PEC*  
Sr  
R
A
A
A*  
N
P
Figure 36  
SMBus custom protocol call to read an internal register  
1
S
7
Slave  
Address 1  
1
1
8
1
8
Low  
Data Byte  
1
8
High  
Data Byte  
1
8
1
Command  
Code 1  
A*  
A
A
A
W
A
PEC1*  
1 or more bytes  
7
Slave  
Address 2  
1
1
1
8
1
8
Low  
Data Byte  
1
8
High  
Data Byte  
1
8
1
Command  
Code 2  
A
A*  
A
A
A
Sr  
W
PEC2*  
1 or more bytes  
1
7
1
1
1
8
1
8
1
8
1
8
1
Low  
Data Byte  
Slave  
Address n  
Command  
Code n  
High  
Data Byte  
A
A
A
P
Sr  
W
A
A
PECn*  
1 or more bytes  
Figure 37  
Group command  
Final Datasheet  
50 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
IꢄC and PMBus™ communication protocols  
15.3  
Supported PMBus™ commands  
Table 13  
Command  
Code  
SMBus  
transaction bytes  
No. of  
Resolutio  
n
Default  
Value  
Command Name  
Range  
Description  
01h  
02h  
OPERATION  
ON_OFF_CONFIG  
R/W Byte  
R/W Byte  
1
1
Enables or disables the device and controls margining  
Configures the combination of Enable pin input and  
serial bus commands needed to turn the unit on and off.  
Clear contents of Fault registers  
03h  
10h  
CLEAR_FAULTS  
Send Byte  
R/W Byte  
0
1
WRITE_PROTECT  
Used to control writing to the PMBus™ device. The  
intent of this command is to provide protection against  
accidental changes.  
15h  
16h  
STORE_USER_ALL  
Send Byte  
Send Byte  
0
0
Burns the User section registers into OTP memory  
RESTORE_USER_A  
LL  
Copies the OTP registers into User memory  
19h  
1Bh  
CAPABILITY  
Read Byte  
1
2
Returns 1011xxxx to indicate Packet Error Checking is  
supported, maximum bus speed is 400 kHz and  
SMBAlert# is supported.  
May be used to prevent a warning or fault condition  
from asserting the SMBALERT# signal.  
SMBALERT_MASK  
VOUT_COMMAND16  
Write  
word/Block  
read  
Process call  
R/W Word  
21h  
2
0-  
2.555V/  
VS  
-128-  
+128V  
5mV/VS  
1V  
Causes the device to set its output voltage to the  
commanded value.  
VS= VOUT_SCALE_LOOP  
22h  
24h  
VOUT_TRIM16  
VOUT_MAX16  
R/W Word  
R/W Word  
2
2
0V  
2V  
Available to the device user to trim the output voltage  
Sets an upper limit on the output voltage the unit can  
command regardless of any other commands or  
combinations.  
25h  
26h  
27h  
29h  
VOUT_MARGIN_HI  
GH16  
R/W Word  
R/W Word  
2
2
2
2
0-  
2.555V/  
VS  
0-  
2.555V/  
VS  
5mV/VS  
5mV/VS  
Sets the MARGIN high voltage when commanded by  
OPERATION  
VS= VOUT_SCALE_LOOP  
Sets the MARGIN low voltage when commanded by  
OPERATION  
VL= VOUT_SCALE_LOOP  
VOUT_MARGIN_LO  
W16  
VOUT_TRANSITION R/W Word  
_RATE11  
0-  
0.0625mV/ 0.0625mV/us Sets the rate in mV/μs at which the output should  
63.9mV/ us  
us  
0.125-1  
change voltage. Exponent 0 to -4 allowed.  
VOUT_SCALE_LOO  
P11  
R/W Word  
1
Compensates for external resistor divider in feedback  
path and in the sense path. Values 1, 0.5, 0.25, 0.125  
allowed. Exponent -3 allowed.  
33h  
35h  
FREQUENCY_SWIT  
CH11  
R/W Word  
R/W Word  
2
2
504-  
1500kHz  
0-16.5V  
978kHz  
8.0V  
Sets the switching frequency, in kHz. Exponent 0 to 1  
allowed.  
Sets the value of the input voltage, in volts, at which the  
unit should start power conversion. Exponent -1  
allowed.  
Sets the value of the input voltage, in volts, at which the  
unit, once operation has started, should stop power  
conversion. Exponent -1 allowed.  
VIN_ON11  
0.5V  
0.5V  
36h  
VIN_OFF11  
R/W Word  
2
0-16V  
7.0V  
39h  
40h  
IOUT_CAL_OFFSET  
R/W Word  
R/W Word  
2
2
-128A-  
+127.5A  
(25-  
655mV)/  
VS  
0.25A  
0A  
Used to null out any offsets in the output current  
sensing circuit. Exponent -2 allowed.  
Sets the value of the output voltage measured at the  
sense pin that causes an output over-voltage fault.  
VS= VOUT_SCALE_LOOP  
11  
VOUT_OV_FAULT_  
LIMIT16  
10mV/VS  
2.102V  
41h  
VOUT_OV_FAULT_  
RESPONSE  
R/W Byte  
1
Ignore/S  
hutdow  
n
Shutdown Instructs the device on what action to take in response  
to an output over-voltage fault. Ignore =0x00h,  
Shutdown = 0x80h.  
42h  
43h  
VOUT_OV_WARN_L R/W Word  
2
2
3.9mV  
3.9mV  
1.902V  
Sets the value of the output voltage at the  
sense pin that causes an output voltage high warning.  
Sets the value of the output voltage at the  
sense pin that causes an output voltage low warning.  
IMIT16  
VOUT_UV_WARN_L R/W Word  
0.902V  
IMIT16  
Final Datasheet  
51 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
IꢄC and PMBus™ communication protocols  
Command  
Code  
SMBus  
transaction bytes  
No. of  
Resolutio  
n
Default  
Value  
Command Name  
Range  
Description  
44h  
VOUT_UV_FAULT_  
LIMIT16  
VOUT_UV_FAULT_  
RESPONSE  
R/W Word  
R/W Byte  
2
1
3.9mV  
0.898V  
Sets the value of the output voltage at the  
sense pin that causes an output under-voltage fault.  
Instructs the device on what action to  
45h  
46h  
Ignore/S  
hutdow  
n
Ignore  
40A  
take in response to an output under-voltage fault.  
IOUT_OC_FAULT_L R/W Word  
IMIT11  
2
1
3-40A  
0.5A  
Sets the value of ILimit (valley), allowing user to set the  
output current in amperes, that causes the over-  
current detector to indicate an over-current fault.  
Exponent -1 allowed.  
47h  
IOUT_OC_FAULT_  
RESPONSE  
R/W Byte  
Pulse by  
Instructs the device on what action to  
pulse for 8 take in response to an output over-current fault.  
cycles  
followed by  
hiccup, retry  
after 20 ms  
4Ah  
4Fh  
50h  
IOUT_OC_WARN_L  
IMIT11  
R/W Word  
R/W Word  
R/W Byte  
2
2
1
0-63.5A  
0.5A  
35A  
Sets the value of the output current, in  
amperes, that causes the over-current detector to  
indicate an over-current warning. Exponent -1 allowed.  
Set the temperature, in degrees Celsius, of the unit at  
which it should indicate an over-temperature fault.  
Exponent 0 allowed.  
OT_FAULT_LIMIT11  
0-150°C  
1°C  
125°C  
OT_FAULT_RESPO  
NSE  
Ignore/S  
hutdow  
n/ Auto-  
start  
Auto-start Instructs the device on what action to take in response  
to an over-temperature fault.  
51h  
OT_WARN_LIMIT11  
R/W Word  
2
0-150°C  
1°C  
100°C  
Set the temperature, in degrees Celsius, of the unit at  
which it should indicate an over-temperature warning  
alarm. Exponent 0 allowed.  
55h  
56h  
VIN_OV_FAULT_LI  
MIT11  
VIN_OV_FAULT_RE  
SPONSE  
R/W Word  
R/W Byte  
2
1
6.25V-  
24V  
Ignore/S  
hutdow  
n
0.25V  
15V  
Sets the value of the input voltage that causes an input  
over-voltage fault. Exponent -2 allowed.  
Instructs the device on what action to take  
in response to an input over-voltage fault.  
Ignore  
58h  
5Eh  
5Fh  
60h  
VIN_UV_WARN_LIM R/W Word  
IT11  
2
2
2
2
0-16V  
0.5V  
10mV/VS  
10mV/VS  
1ms  
7.5V  
0.5V  
Sets the value of the input voltage PVin, in volts,  
that causes an input over-voltage fault. Exponent -1  
allowed.  
Sets the output voltage at which an optional  
POWER_GOOD signal should be asserted.  
VS=VOUT_SCALE_LOOP  
Sets the output voltage at which an optional  
POWER_GOOD signal should be negated.  
VS=VOUT_SCALE_LOOP  
Sets the time, in milliseconds, from when a start  
condition is received (as programmed by the  
ON_OFF_CONFIG command) until the output voltage  
starts to rise. Exponent 0 allowed.  
POWER_GOOD_ON  
R/W Word  
R/W Word  
R/W Word  
(0-  
0.63V)/V  
16  
S
POWER_GOOD_OF  
F16  
(0-  
0.63V)/V  
S
0.25V  
0ms  
TON_DELAY11  
0-127ms  
61h  
62h  
TON_RISE11  
R/W Word  
R/W Word  
2
2
0-127ms  
0-127ms  
1ms  
1ms  
1ms  
Sets the time, in milliseconds, from when the output  
starts to rise until the voltage has entered the  
regulation band. Exponent 0 allowed.  
TON_MAX_FAULT_  
LIMIT11  
0 (Disabled) Sets an upper limit, in milliseconds, on how long the  
unit can attempt to power up the output without  
reaching the output under-voltage fault limit. Exponent  
0 allowed.  
63h  
64h  
TON_MAX_FAULT_  
RESPONSE  
R/W Byte  
R/W Word  
1
2
Ignore/S  
hutdow  
n
Ignore  
Instructs the device on what action to  
take in response to a TON_MAX fault.  
TOFF_DELAY  
0-127ms  
1ms  
1ms  
0ms  
Sets the time, in milliseconds, from a stop condition is  
received (as programmed by the ON_OFF_CONFIG  
command) until the unit stops transferring energy to  
the output. Exponent 0 allowed.  
Sets the time, in milliseconds, in which the reference  
voltage ramps down to zero (If a soft off is allowed by  
the configuration of the ON_OFF_CONFIG command).  
Exponent 0 allowed.  
65h  
78h  
TOFF_FALL  
R/W Word  
Read Byte  
2
1
0-127ms  
1ms  
STATUS BYTE  
Returns 1 byte where the bit meanings are:  
Bit <7> device busy fault  
Final Datasheet  
52 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
IꢄC and PMBus™ communication protocols  
Command  
Code  
SMBus  
transaction bytes  
No. of  
Resolutio  
n
Default  
Value  
Command Name  
Range  
Description  
Bit <6> output off (due to fault or enable)  
Bit <5> Output over-voltage fault  
Bit <4> Output over-current fault  
Bit <3> Input under-voltage fault  
Bit <2> Temperature fault  
Bit <1> Communication/Memory/Logic fault  
Bit <0>: None of the above  
79h  
STATUS WORD  
Read Word  
2
Returns 2 bytes where the Low byte is the same as the  
STATUS_BYTE data. The High byte has bit meanings are:  
Bit <7> Output high or low fault  
Bit <6> Output over-current fault  
Bit <5> Input under-voltage fault  
Bit <4> Reserved; hardcoded to 0  
Bit <3> Output power not good  
Bit <2:0> Hardcoded to 0  
7Ah  
7Bh  
7Ch  
7Dh  
STATUS_VOUT  
STATUS_IOUT  
STATUS_INPUT  
Read Byte  
Read Byte  
Read Byte  
Read Byte  
1
1
1
1
Reports types of VOUT related faults.  
Reports types of IOUT related faults.  
Reports types of INPUT related faults.  
STATUS_TEMPERA  
TURE  
Returns over- temperature warning and over-  
temperature fault (OTP level). Does not report under-  
temperature warning/fault. The bit meanings are:  
Bit <7> Over-Temperature Fault  
Bit <6> Over-Temperature Warning  
Bit <5> Under-Temperature Warning  
Bit <4> Under-Temperature Fault  
Bit <3:0> Reserved  
7Eh  
STATUS_CML  
Read Byte  
1
Returns 1 byte where the bit meanings are:  
Bit <7> Command not Supported  
Bit <6> Invalid data  
Bit <5> PEC fault  
Bit <4> OTP fault  
Bit <3:2> Reserved  
Bit<1> Other communication fault  
Bit<0> Other memory or logic fault; hardcoded to 0  
Returns the input voltage in volts  
88h  
8Bh  
8Ch  
8Dh  
READ_VIN11  
READ_VOUT16  
READ_IOUT11  
Read Word  
Read Word  
Read Word  
2
2
2
2
Returns the output voltage in volts  
Returns the output current in amperes  
Returns the device temperature in degrees Celsius  
READ_TEMPERATU Read Word  
RE11  
96h  
98h  
READ_POUT11  
Read Word  
2
1
Returns the output power in watts  
PMBUS™_REVISIO  
Read Byte  
Reports PMBus™ Part I rev 1.2 & PMBus™  
Part II rev 1.2  
N
99h  
9Ah  
MFR_ID  
Block  
Read/Write  
Block  
2
3
IR  
Returns ꢀ bytes used to read the manufacturer’s ID.  
User can overwrite with any value.  
MFR_MODEL  
Set 000000 If set to 000000h, returns a 1 byte code corresponding to  
IC_DEVICE_ID. Alternatively, user can set to any non-zero  
value  
Read/Write  
9Bh  
ADh  
MFR_REVISION  
Block  
Read/Write  
3
Set 000000 If set to 000000h, returns a 1 byte code corresponding to  
IC_DEVICE_REV.  
Alternatively, user can set to any non-zero value  
Used to read the type or part number of an IC.  
IR38164: 6Dh  
IC_DEVICE_ID  
Block Read  
Block Read  
2
1
AEh  
IC_DEVICE_REV  
Used to read the revision of the IC  
Final Datasheet  
53 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
IꢄC and PMBus™ communication protocols  
Command  
Code  
SMBus  
transaction bytes  
No. of  
Resolutio  
n
Default  
Value  
Command Name  
Range  
Description  
D0h  
MFR_READ_REG  
Custom  
Write Word  
R/W Word  
2
2
2
Manufacturer Specific: Read from configuration  
registers  
D1h  
D8h  
MFR_WRITE_REG  
MFR_TPGDLY  
Manufacturer Specific: Write to configuration & status  
registers  
0-10ms  
0-1  
1ms  
0ms  
CCM  
10h  
Sets the delay in milliseconds, between the output  
voltage entering the regulation window and the  
assertion of the PGood signal. Exponent 0 allowed.  
Allows the user to choose between forced continuous  
conduction mode and adaptive on-time operation at  
light load.  
D9h  
MFR_FCCM  
R/W Byte  
R/W Word  
1
D6h  
DBh  
MFR_I2C_address  
MFR_VOUT_PEAK16 Read Word  
1
2
0-7Fh  
Sets and returns the device I2C base address  
Continuously records and reports the highest value of  
Read Vout.  
Continuously records and reports the highest value of  
Read Iout.  
Continuously records and reports the highest value of  
Read_Temperature  
DCh  
DDh  
MFR_IOUT_PEAK11 Read Word  
2
2
MFR_TEMPERATUR Read Word  
E_PEAK11  
Notes  
11 Uses LINEAR11 format  
16 Uses LINEAR16 format with exponent set to-8  
Final Datasheet  
54 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
PCB footprint and layout recommendations  
16  
PCB footprint and layout recommendations  
16.1  
Layout recommendations  
PCB layout is very important when designing high frequency switching converters. Layout will affect noise  
pickup and can cause a good design to perform with less than expected results.  
Make the connections for the power components on the top layer with wide, copper filled areas or shapes. In  
general, it is desirable to make proper use of power planes and polygons for power distribution and heat  
dissipation.  
The input capacitors, inductor, output capacitors and the IR38164 should be as close to each other as possible.  
This helps to reduce the EMI radiated by the power traces due to the high switching currents through them.  
Place the input capacitor directly at the PVin pin of IR38164. The feedback part of the system should be kept  
away from the inductor and other noise sources. The critical bypass components such as capacitors for Vin,  
Vcc, and 1.8 V should be close to their respective pins. It is important to place the feedback components  
including feedback resistors and compensation components close to Fb and Comp pins.  
In a multilayer PCB, use one layer as a power ground plane and have a control circuit ground (analog ground) to  
which all signals are referenced. The goal is to localize the high current path to a separate loop that does not  
interfere with the more sensitive analog control functions. These two grounds must be connected together on  
the PC board layout at a single point. It is recommended to place all the compensation parts over the analog  
ground plane in top layer.  
IR38164 has three pins, SCL, SDA and SALERT# that are used for I2C/PMBus™ communication. It is  
recommended that the traces used for these communication lines be at least 10 mils wide with spacing  
between the SCL and SDA traces that is at least 2-3 times the trace width. Follow the Intel® recommended PCB  
routing techniques for the SVID interface.  
The Power QFN is a thermally enhanced package. To effectively remove heat from the device, the exposed pad  
should be connected to the ground planes using multiple vias.  
As shown in the PCB layout:  
Allow enough copper for PVin, GND and Vout  
All bypass capacitors are placed as close as possible to their connecting pins  
Components for loop compensation are placed as close as possible to the COMP pin  
AGND is connected to the inner PGND plane through via holes  
Resistor Rt is placed as close as possible to the Rt pin  
SW node copper should only be routed on the top layer to minimize switching noises  
Fb and Vsns trace routing are kept away from SW node  
Thermal via holes are placed on PVIN and PGND pads to aid thermal dissipation  
Final Datasheet  
55 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
PCB footprint and layout recommendations  
16.2  
PCB Metal and Component Placement  
Evaluation has shown that the best overall performance is achieved using the substrate/PCB layout as shown in  
the following figures. PQFN devices should be placed to an accuracy of 0.050 mm on both X and Y axes. Self-  
centering behavior is highly dependent on solders and processes, and experiments should be run to confirm  
the limits of self-centering on specific processes.  
For further information, please refer to ꢆSupIRBuck™ Multi-Chip Module (MCM) Power Quad Flat No-Lead  
(PQFN) Board Mounting Application Note.ꢃ ꢈANꢉꢉꢊꢀꢅ.  
All dimensions in the following figures are in mm.  
The PCB pads and component footprint are shown in Figure 38.  
Figure 38  
PCB pads and component  
16.3  
PCB copper and solder resist  
Infineon recommends that larger Power or Land Area pads are Solder Mask Defined (SMD.) This allows the  
underlying copper traces to be as large as possible, which helps in terms of current carrying capability and  
device cooling capability.  
When using SMD pads, the underlying copper traces should be at least 0.05 mm larger (on each edge) than the  
Solder Mask window, in order to accommodate any layer to layer misalignment (i.e. 0.1 mm in X & Y).  
For smaller signal type leads around the edge of the device, Infineon recommends that these are Non Solder  
Mask Defined (NSMD) or Copper Defined.  
When using NSMD pads, the Solder Resist Window should be larger than the Copper Pad by at least 0.025 mm  
on each edge, (i.e. 0.05 mm in X&Y,) in order to accommodate any layer to layer misalignment.  
Ensure that the solder resist in-between the smaller signal lead areas is at least 0.15 mm wide, due to the high  
x/y aspect ratio of the solder mask strip.  
Recommendations are shown in Figure 39 and Figure 40.  
Final Datasheet  
56 of 64  
V2.2  
Feb 6 2019  
 
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
PCB footprint and layout recommendations  
Figure 39  
PCB copper and solder resist (pad sizes)  
Figure 40  
PCB copper and solder resist (pad spacing)  
16.4  
PCB solder paste stencil  
Stencils for PQFN packages can be used with thicknesses of 0.100-0.250 mm (0.004-ꢂ.ꢂꢉꢂꢃꢅ. Stencils thinner  
than 0.100 mm are unsuitable because they deposit insufficient solder paste to make good solder joints with  
the ground pad; high reductions sometimes create similar problems. Stencils in the range of 0.125 mm-0.200  
mm (0.005-ꢂ.ꢂꢂꢋꢃꢅ, with suitable reductions, give the best results.  
A recommended stencil design is shown in Figure 41 and Figure 42. This design is for a stencil thickness of 0.127  
mm ꢈꢂ.ꢂꢂꢄꢃꢅ. The reduction should be adjusted for stencils of other thicknesses.  
Final Datasheet  
57 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
PCB footprint and layout recommendations  
Figure 41  
Solder paste stencil (pad sizes)  
Figure 42  
Solder paste stencil (pad spacing)  
Final Datasheet  
58 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Marking and package information  
17  
Marking and package information  
17.1  
Final production marking  
Figure 43  
Package marking  
17.2  
Early production marking  
Figure 44  
Package marking  
Final Datasheet  
59 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Marking and package information  
17.3  
Package dimensions  
Package dimensions are shown in Figure 45 through Figure 47.  
Figure 45  
Package dimensions  
Final Datasheet  
60 of 64  
V2.2  
Feb 6 2019  
 
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Marking and package information  
Figure 46  
Package dimensions  
Figure 47  
Package dimensions  
Final Datasheet  
61 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Environmental Qualifications  
18  
Environmental Qualifications  
Table 14  
Qualification Level  
Industrial  
Moisture Sensitivity  
5mm x 7mm PQFN  
MSL 2 260C  
Human Body Model  
(JESD22-A114-F)  
JEDEC Class 1C  
ESD  
Charged Device Model  
(JESD22-C101-F)  
JEDEC Class 3  
RoHS Compliant  
Yes (with Exemption 7a)  
Final Datasheet  
62 of 64  
V2.2  
Feb 6 2019  
IRꢀ8ꢁꢂꢃ OptiMOS™ iPOL  
30A Single-voltage Synchronous Buck Regulator with SVID  
Table of contents  
19  
References  
[1] UN7005 IR3816x_ PMBus™ Command Set  
[2] Application Note AN-1162. Compensator Design Procedure for Buck Converter with Voltage-Mode Error-  
Amplifier.  
[3] Application Note AN-ꢉꢉꢊꢀ. SupIRBuck™ Multi-Chip Module (MCM) Power Quad Flat No-Lead (PQFN)  
Board Mounting Application Note.  
Final Datasheet  
63 of 64  
V2.2  
Feb 6 2019  
OptiMOSꢀiPOL  
IR38164  
RevisionꢀHistory  
IR38164  
Revision:ꢀ2019-03-25,ꢀRev.ꢀ2.2  
Previous Revision  
Revision Date  
Subjects (major changes since last revision)  
1.0  
1.1  
2.0  
2.1  
2.2  
Release of preliminary version  
Updated OCP limit.  
2018-01-23  
2018-02-13  
2018-05-23  
2018-09-26  
2019-03-25  
Release of final version  
Updated package drawings.  
Current reporting limation and corrected PMBUS spec revision.  
Trademarks  
Allꢀreferencedꢀproductꢀorꢀserviceꢀnamesꢀandꢀtrademarksꢀareꢀtheꢀpropertyꢀofꢀtheirꢀrespectiveꢀowners.  
WeꢀListenꢀtoꢀYourꢀComments  
Anyꢀinformationꢀwithinꢀthisꢀdocumentꢀthatꢀyouꢀfeelꢀisꢀwrong,ꢀunclearꢀorꢀmissingꢀatꢀall?ꢀYourꢀfeedbackꢀwillꢀhelpꢀusꢀtoꢀcontinuously  
improveꢀtheꢀqualityꢀofꢀthisꢀdocument.ꢀPleaseꢀsendꢀyourꢀproposalꢀ(includingꢀaꢀreferenceꢀtoꢀthisꢀdocument)ꢀto:  
erratum@infineon.com  
Publishedꢀby  
InfineonꢀTechnologiesꢀAG  
81726ꢀMünchen,ꢀGermany  
©ꢀ2018ꢀInfineonꢀTechnologiesꢀAG  
AllꢀRightsꢀReserved.  
LegalꢀDisclaimer  
Theꢀinformationꢀgivenꢀinꢀthisꢀdocumentꢀshallꢀinꢀnoꢀeventꢀbeꢀregardedꢀasꢀaꢀguaranteeꢀofꢀconditionsꢀorꢀcharacteristicsꢀ  
(“Beschaffenheitsgarantie”)ꢀ.  
Withꢀrespectꢀtoꢀanyꢀexamples,ꢀhintsꢀorꢀanyꢀtypicalꢀvaluesꢀstatedꢀhereinꢀand/orꢀanyꢀinformationꢀregardingꢀtheꢀapplicationꢀofꢀthe  
product,ꢀInfineonꢀTechnologiesꢀherebyꢀdisclaimsꢀanyꢀandꢀallꢀwarrantiesꢀandꢀliabilitiesꢀofꢀanyꢀkind,ꢀincludingꢀwithoutꢀlimitation  
warrantiesꢀofꢀnon-infringementꢀofꢀintellectualꢀpropertyꢀrightsꢀofꢀanyꢀthirdꢀparty.  
Inꢀaddition,ꢀanyꢀinformationꢀgivenꢀinꢀthisꢀdocumentꢀisꢀsubjectꢀtoꢀcustomer’sꢀcomplianceꢀwithꢀitsꢀobligationsꢀstatedꢀinꢀthis  
documentꢀandꢀanyꢀapplicableꢀlegalꢀrequirements,ꢀnormsꢀandꢀstandardsꢀconcerningꢀcustomer’sꢀproductsꢀandꢀanyꢀuseꢀofꢀthe  
productꢀofꢀInfineonꢀTechnologiesꢀinꢀcustomer’sꢀapplications.  
Theꢀdataꢀcontainedꢀinꢀthisꢀdocumentꢀisꢀexclusivelyꢀintendedꢀforꢀtechnicallyꢀtrainedꢀstaff.ꢀItꢀisꢀtheꢀresponsibilityꢀofꢀcustomer’s  
technicalꢀdepartmentsꢀtoꢀevaluateꢀtheꢀsuitabilityꢀofꢀtheꢀproductꢀforꢀtheꢀintendedꢀapplicationꢀandꢀtheꢀcompletenessꢀofꢀtheꢀproduct  
informationꢀgivenꢀinꢀthisꢀdocumentꢀwithꢀrespectꢀtoꢀsuchꢀapplication.  
Information  
Forꢀfurtherꢀinformationꢀonꢀtechnology,ꢀdeliveryꢀtermsꢀandꢀconditionsꢀandꢀpricesꢀpleaseꢀcontactꢀyourꢀnearestꢀInfineon  
TechnologiesꢀOfficeꢀ(www.infineon.com).  
Warnings  
Dueꢀtoꢀtechnicalꢀrequirements,ꢀcomponentsꢀmayꢀcontainꢀdangerousꢀsubstances.ꢀForꢀinformationꢀonꢀtheꢀtypesꢀinꢀquestion,  
pleaseꢀcontactꢀtheꢀnearestꢀInfineonꢀTechnologiesꢀOffice.  
TheꢀInfineonꢀTechnologiesꢀcomponentꢀdescribedꢀinꢀthisꢀDataꢀSheetꢀmayꢀbeꢀusedꢀinꢀlife-supportꢀdevicesꢀorꢀsystemsꢀand/or  
automotive,ꢀaviationꢀandꢀaerospaceꢀapplicationsꢀorꢀsystemsꢀonlyꢀwithꢀtheꢀexpressꢀwrittenꢀapprovalꢀofꢀInfineonꢀTechnologies,ꢀifꢀa  
failureꢀofꢀsuchꢀcomponentsꢀcanꢀreasonablyꢀbeꢀexpectedꢀtoꢀcauseꢀtheꢀfailureꢀofꢀthatꢀlife-support,ꢀautomotive,ꢀaviationꢀand  
aerospaceꢀdeviceꢀorꢀsystemꢀorꢀtoꢀaffectꢀtheꢀsafetyꢀorꢀeffectivenessꢀofꢀthatꢀdeviceꢀorꢀsystem.ꢀLifeꢀsupportꢀdevicesꢀorꢀsystemsꢀare  
intendedꢀtoꢀbeꢀimplantedꢀinꢀtheꢀhumanꢀbodyꢀorꢀtoꢀsupportꢀand/orꢀmaintainꢀandꢀsustainꢀand/orꢀprotectꢀhumanꢀlife.ꢀIfꢀtheyꢀfail,ꢀitꢀis  
reasonableꢀtoꢀassumeꢀthatꢀtheꢀhealthꢀofꢀtheꢀuserꢀorꢀotherꢀpersonsꢀmayꢀbeꢀendangered.  
64  
Rev.ꢀ2.2,ꢀꢀ2019-03-25  

相关型号:

IR38165M

OptiMOS™ IPOL DC-DC converter single-input voltage, 30 A buck regulators with SVID
INFINEON

IR38165MTRPbF

Single-input Voltage, 15A & 30A Buck Regulators with SVID
INFINEON

IR3820AMPBF

HIGHLY INTEGRATED 14A WIDE-INPUT VOLTAGE, SYNCHRONOUS BUCK REGULATOR
INFINEON

IR3820AMPBF_08

HIGHLY INTEGRATED 14A WIDE-INPUT VOLTAGE, SYNCHRONOUS BUCK REGULATOR
INFINEON

IR3820AMTRPBF

Switching Regulator, Voltage-mode, 14A, 330kHz Switching Freq-Max, 5 X 6 MM, ROHS COMPLIANT, QFN-15
INFINEON

IR3820MPBF

HIGHLY INTEGRATED 12A WIDE-INPUT VOLTAGE, SYNCHRONOUS BUCK REGULATOR
INFINEON

IR3820MPBF_08

HIGHLY INTEGRATED 12A WIDE-INPUT VOLTAGE, SYNCHRONOUS BUCK REGULATOR
INFINEON

IR3820MTR1PBF

Switching Regulator, Voltage-mode, 12A, 660kHz Switching Freq-Max, 5 X 6 MM, ROHS COMPLIANT, QFN-15
INFINEON

IR3820MTRPBF

Switching Regulator, Voltage-mode, 12A, 660kHz Switching Freq-Max, 5 X 6 MM, ROHS COMPLIANT, QFN-15
INFINEON

IR3821AMPBF

HIGHLY INTEGRATED 9A WIDE-INPUT VOLTAGE, SYNCHRONOUS BUCK REGULATOR
INFINEON

IR3821AMPBF_08

HIGHLY INTEGRATED 9A WIDE-INPUT VOLTAGE, SYNCHRONOUS BUCK REGULATOR
INFINEON

IR3821AMTR1PBF

Switching Regulator/Controller, Voltage-mode, 11A, 330kHz Switching Freq-Max
INFINEON