IRAUDAMP11_15 [INFINEON]

120W x 3 Channel Class D Audio Power Amplifier;
IRAUDAMP11_15
型号: IRAUDAMP11_15
厂家: Infineon    Infineon
描述:

120W x 3 Channel Class D Audio Power Amplifier

文件: 总35页 (文件大小:802K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IRAUDAMP11  
120W x 3 Channel Class D Audio Power Amplifier  
Using the IRS2053M and IRF6665  
By  
Jun Honda, Liwei Zheng  
CAUTION:  
International Rectifier suggests the following guidelines for safe operation and handling of  
IRAUDAMP11 Demo board;  
Always wear safety glasses whenever operating Demo Board  
Avoid personal contact with exposed metal surfaces when operating Demo Board  
Turn off Demo Board when placing or removing measurement probes  
www.irf.com  
Page 1 of 35  
IRAUDAMP11 REV 1.0  
TABLE OF CONTENTS  
PAGE  
INTRODUCTION............................................................................................................................................... 3  
SPECIFICATIONS............................................................................................................................................ 3  
CONNECTION SETUP..................................................................................................................................... 5  
CONNECTOR DESCRIPTION ......................................................................................................................... 5  
TEST PROCEDURES....................................................................................................................................... 6  
PERFORMANCE AND TEST GRAPHS .......................................................................................................... 7  
CLIPPING CHARACTERISTICS.................................................................................................................... 10  
SOFT CLIPPING............................................................................................................................................. 10  
EFFICIENCY................................................................................................................................................... 12  
THERMAL CONSIDERATIONS..................................................................................................................... 12  
THERMAL INTERFACE MATERIALS PRESSURE CONTROL ................................................................................. 13  
POWER SUPPLY REJECTION RATIO (PSRR)............................................................................................15  
SHORT CIRCUIT PROTECTION RESPONSE ..............................................................................................16  
IRAUDAMP11 OVERVIEW ............................................................................................................................ 17  
FUNCTIONAL DESCRIPTIONS..................................................................................................................... 19  
IRS2053 GATE DRIVER IC ............................................................................................................................ 19  
SELF-OSCILLATING FREQUENCY .................................................................................................................... 20  
ADJUSTMENTS OF SELF-OSCILLATING FREQUENCY......................................................................................... 20  
SELECTABLE DEAD-TIME................................................................................................................................ 21  
PROTECTION SYSTEM OVERVIEW ............................................................................................................ 22  
CLICK AND POP NOISE REDUCTION......................................................................................................... 24  
BUS PUMPING............................................................................................................................................... 24  
INPUT SIGNAL AND GAIN SETTING ........................................................................................................... 26  
GAIN SETTING............................................................................................................................................... 26  
IRAUDAMP11 FABRICATION MATERIALS................................................................................................. 28  
IRAUDAMP11 HARDWARE .......................................................................................................................... 31  
IRAUDAMP11 PCB SPECIFICATIONS......................................................................................................... 32  
REVISION CHANGES DESCRIPTIONS........................................................................................................ 35  
www.irf.com  
Page 2 of 35  
IRAUDAMP11 REV 1.0  
Introduction  
The IRAUDAMP11 Demo board is a reference design which uses only one IC (IRS2053M) to derive  
appropriate input signals, amplify the audio input, and achieve a three-channel 120 W/ch (4, THD+N=1%)  
half-bridge Class D audio power amplifier. The reference design demonstrates how to use the IRS2053M  
Class D audio controller and gate driver IC, implement protection circuits, and design an optimum PCB  
layout using IRF6665 DirectFET MOSFETs. The reference design contains all the required housekeeping  
power supplies for ease of use. The three-channel design is scalable, for power and number of channels.  
Applications  
AV receivers  
Home theater systems  
Mini component stereos  
Powered speakers  
Sub-woofers  
Musical Instrument amplifiers  
Automotive after market amplifiers  
Features  
Output Power:  
120W x 3 channels (4, THD+N=1%)  
or 170W x 3 channels (4, THD+N=10%)  
Residual Noise:  
Distortion:  
220V, IHF-A weighted, AES-17 filter  
0.02% THD+N @ 60W, 4Ω  
Efficiency:  
Multiple Protection Features:  
90% @ 120W, 4, single-channel driven, Class D stage  
Over-current protection (OCP), high side and low side  
Over-voltage protection (OVP),  
Under-voltage protection (UVP), high side and low side  
Over-temperature protection (OTP)  
PWM Modulator:  
Self-oscillating half-bridge topology with optional clock synchronization  
Specifications  
General Test Conditions (unless otherwise noted)  
Notes / Conditions  
Supply Voltages  
±35V  
4Ω  
400kHz  
28dB  
Load Impedance  
Self-Oscillating Frequency  
Gain Setting  
No input signal, Adjustable  
1Vrms input yields rated power  
Electrical Data  
Typical  
Notes / Conditions  
IR Devices Used  
IRS2053M Audio Controller and Gate-Driver,  
IRF6665 DirectFET MOSFETs  
Modulator  
Self-oscillating, second order sigma-delta modulation, analog input  
Power Supply Range  
Output Power CH1-3: (1% THD+N)  
Output Power CH1-3: (10% THD+N)  
± 25V to ±35V  
120W  
Bipolar power supply  
1kHz, ±35V  
1kHz, ±35V  
170W  
www.irf.com  
Page 3 of 35  
IRAUDAMP11 REV 1.0  
Rated Load Impedance  
Standby Supply Current  
Total Idle Power Consumption  
Channel Efficiency  
8-4Ω  
+75/-95mA  
6W  
Resistive load  
No input signal  
No input signal  
Single-channel driven,  
120W, Class D stage  
90%  
.
Audio Performance  
Class D Notes / Conditions  
Output  
0.015%  
THD+N, 1W  
THD+N, 10W  
THD+N, 60W  
THD+N, 100W  
0.01%  
0.02%  
0.03%  
1kHz, Single-channel driven  
A-weighted, AES-17 filter,  
Single-channel operation  
Self-oscillating – 400kHz  
Dynamic Range  
101dB  
Residual Noise, 22Hz - 20kHzAES17  
220V  
Damping Factor  
67  
1kHz, relative to 4load  
Channel Separation  
75dB  
75dB  
70dB  
±1dB  
±3dB  
100Hz  
1kHz  
10kHz  
Frequency Response : 20Hz-20kHz  
: 20Hz-35kHz  
1W, 4- 8Load  
Physical Specifications  
Dimensions  
3.94”(L) x 2.83”(W) x 0.85”(H)  
100 mm (L) x 72 mm (W) x 21.5 mm(H)  
0.130kgm  
Weight  
www.irf.com  
Page 4 of 35  
IRAUDAMP11 REV 1.0  
Connection Setup  
Audio Signal Generator  
CH1 CH2 CH3  
Input  
Frequency adjustor  
DS1  
VCC INDICATOR  
IRF6665  
VR1  
IRS2053M  
Output  
Output  
CH2 CH1 +B GND -B CH3  
G
250W, 4,  
Non-inductive Resistors  
35 V, 5 A DC supply  
35 V, 5 A DC supply  
Fig 1 Typical Test Setup  
Connector Description  
CH1 IN  
CH2 IN  
CH3 IN  
SUPPLY  
CH1 OUT  
CH2 OUT  
CH3 OUT  
CN1  
CN1  
CN1  
P1  
P2  
P2  
Analog input for CH1  
Analog input for CH2  
Analog input for CH3  
Positive and negative supply (+B / -B)  
Output for CH1  
Output for CH2  
P3  
Output for CH3  
www.irf.com  
Page 5 of 35  
IRAUDAMP11 REV 1.0  
Test Procedures  
Test Setup:  
1. Connect 4-200 W dummy loads to 3 output connectors (P2 and P3 as shown on Fig 1)  
and an Audio Precision analyzer (AP).  
2. Connect the Audio Signal Generator to CN1 for CH1~CH3 respectively (AP).  
3. Set up the dual power supply with voltages of ±35V; current limit to 5A.  
4. TURN OFF the dual power supply before connecting to On of the unit under test (UUT).  
5. Connect the dual power supply to P1. as shown on Fig 1  
Power up:  
6. Turn ON the dual power supply. The ±B supplies must be applied and removed at the  
same time.  
7. The Blue LED should turn ON immediately and stay ON  
8. Quiescent current for the positive supply should be 75mA 10mA at +35V.  
9. Quiescent current for the negative supply should be 95mA 10mA at –35V.  
Switching Frequency test  
10. With an Oscilloscope, monitor the switching waveform at test points VS1~VS3. Adjust VR1  
to set the self oscillating frequency to 400 kHz 25 kHz when DUT in clock synchronize  
mode.  
Functionality Audio Tests:  
11. Set the signal generator to 1kHz, 20 mVRMS output.  
12. Connect the audio signal generator to CN1(Input of CH1,CH2,CH3)  
13. Sweep the audio signal voltage from 15 mVRMS to 1 VRMS  
.
14. Monitor the output signals at P2/P3 with an oscilloscope. The waveform must be a non  
distorted sinusoidal signal.  
15. Observe that a 1 VRMS input generates an output voltage of 25.52 VRMS(CH1/CH2). The  
ratio, R4x/(R3x) and R30x/(R31x), determines the voltage gain of IRAUDAMP11.  
Test Setup using Audio Precision (Ap):  
16. Use an unbalanced-floating signal from the generator outputs.  
17. Use balanced inputs taken across output terminals, P2 and P3.  
18. Connect Ap frame ground to GND at terminal P1.  
19. Select the AES-17 filter(pull-down menu) for all the testing except frequency response.  
20. Use a signal voltage sweep range from 15 mVRMS to 1 VRMS  
.
21. Run Ap test programs for all subsequent tests as shown in Fig 2- Fig 7below.  
www.irf.com  
Page 6 of 35  
IRAUDAMP11 REV 1.0  
Performance and test graphs  
10  
5
2
1
0.5  
0.2  
0.1  
%
0.05  
0.02  
0.01  
0.005  
0.002  
0.001  
100m  
200m  
500m  
Color  
1
2
5
10  
20  
50  
100  
200  
W
Sweep  
Trace  
Line Style  
Thick  
Data  
Axis  
Comment  
1
1
2
1
3
3
Red  
Blue  
Green  
Solid  
Solid  
Solid  
2
2
2
Anlr.THD+N Ratio  
Anlr.THD+N Ratio  
Anlr.THD+N Ratio  
Left  
Left  
Left  
CH1  
CH2  
±B Supply = ±35V, 4 Resistive Load  
Fig 2 IRAUDAMP11, THD+N versus Power, Stereo, 4 Ω  
.
+4  
+3  
T
+2  
+1  
-0  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
d
B
r
A
-10  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
50k  
100k 200k  
Hz  
CH1-Blue; CH2-Yellow; CH3-Red  
±B Supply = ±35V, 4 Resistive Load  
Fig 3 IRAUDAMP11, Frequency response  
www.irf.com  
Page 7 of 35  
IRAUDAMP11 REV 1.0  
Red  
Blue  
CH1, 10W Output  
CH1, 50W Output  
Fig 4 THD+N Ratio vs. Frequency  
+0  
-20  
-40  
d
B
V
-60  
-80  
-100  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
Hz  
Sweep Trace Color  
Line Style Thick Data  
Axis Comment  
1
1
2
1
2
1
Yellow Solid  
2
2
2
Fft.Ch.1 Ampl Left CH2  
Fft.Ch.2 Ampl Left CH3  
Fft.Ch.1 Ampl Left CH1  
Blue  
Red  
Solid  
Solid  
Fig 5, 1V output Frequency Spectrum  
www.irf.com  
Page 8 of 35  
IRAUDAMP11 REV 1.0  
+0  
-25  
-50  
d
B
V
-75  
-100  
-125  
-150  
10  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k  
20k  
Sweep Trace Color  
Line Style Thick Data  
Axis Comment  
1
1
2
1
2
1
Red  
Blue  
Yellow Solid  
Solid  
Solid  
2
2
2
Fft.Ch.1 Ampl Left  
Fft.Ch.2 Ampl Left  
Fft.Ch.1 Ampl Left  
CH1  
CH3  
CH2  
No signal, Self Oscillator @ 400kHz  
Fig 6, IRAUDAMP11 Noise Floor  
.
+ 0  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
d
B
r
A
-100  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
Hz  
S weep  
Trace  
Color  
Cy an  
Y ellow  
Red  
M agenta  
B lue  
Cy an  
Line S ty le  
Thic k  
Data  
A x is  
Com m ent  
1
3
4
5
6
7
1
1
1
1
1
1
S olid  
S olid  
S olid  
S olid  
S olid  
S olid  
2
2
2
2
1
1
A nlr.A m pl  
A nlr.A m pl  
A nlr.A m pl  
A nlr.A m pl  
A nlr.A m pl  
A nlr.A m pl  
Left  
Left  
Left  
Left  
Left  
Left  
CH3_on;CH1_off  
CH1_on;CH3_off  
CH2_on;CH3_off  
CH3_on;CH2_off  
CH2_on;CH1_off  
Ch1_on;CH2_off  
Fig 7, Channel separation vs. frequency  
www.irf.com  
Page 9 of 35  
IRAUDAMP11 REV 1.0  
Clipping characteristics  
Red Trace: Total Distortion + Noise Voltage  
Green Trace: Output Voltage  
60W / 4, 1kHz, THD+N=0.02%  
174W / 4, 1kHz, THD+N=10%  
Measured Output and Distortion Waveforms(CH1/CH2)  
Fig 8 Clipping Characteristics  
.
Soft Clipping  
IRS2053M has Clipping detection function, it monitors error voltage in COMP pin with a window  
comparator and pull an open drain nmos referenced to GND. Threshold to detect is at 10% and  
90% of VAA-VSS. Each channel has independent CLIP outputs. Once IRS2053M detects  
Clipping, the CLIP pin will generate pulses to trigger soft clipping circuit as Fig 9, which limits  
output’s maximum power.  
Fig10 shows 20Hz and 20 kHz THD+N versus Power graph in CH3; it shows limitation of output’s  
power with different frequency.  
www.irf.com  
Page 10 of 35  
IRAUDAMP11 REV 1.0  
Soft Clipping  
R28A  
1K  
Q5  
VAA  
DTA144EKA  
C15A  
10uF, 16V 470K  
R7A  
C6A  
1uF,50V  
R5A  
47K  
R29A  
220K  
D3A  
GND  
Audio signal INPUT  
C0A  
1N4148  
R6A  
47K  
R27A  
3.3K  
CLIP Detection  
IN-  
10uF,50V  
G
R3A  
1K  
Q6  
C5A  
MMBFJ112  
10uF, 50V  
VSS  
GND  
Fig 9 Soft Clipping Circuit  
10  
5
2
1
0.5  
0.2  
0.1  
%
0.05  
0.02  
0.01  
0.005  
0.002  
0.001  
100m 200m  
500m  
1
2
5
10  
20  
50  
100  
300  
W
Sweep Trace Color Line Style Thick Data  
Axis Comment  
1
2
1
1
Red  
Blue  
Solid  
Solid  
2
2
Anlr.THD+N Ratio Left  
Anlr.THD+N Ratio Left  
20Hz  
20kHz  
±B Supply = ±35V, 4 Resistive Load  
Fig 10 IRAUDAMP11/CH3, THD+N versus Power, Stereo, 4 Ω  
www.irf.com  
Page 11 of 35  
IRAUDAMP11 REV 1.0  
Efficiency  
Fig 11 shows efficiency characteristics of the IRAUDAMP11. The high efficiency is achieved by  
following major factors:  
1) Low conduction loss due to the DirectFETs offering low RDS(ON)  
2) Low switching loss due to the DirectFETs offering low input capacitance for fast rise and  
fall times  
Secure dead-time provided by the IRS2053M, avoiding cross-conduction.  
Efficiency (%)  
100%  
90%  
80%  
70%  
60%  
AMP11 35V 4ohms  
50%  
40%  
30%  
20%  
10%  
0%  
0
50  
100  
150  
Output power (W)  
Fig 11, IRAUDAMP11 4 ohms load Stereo, ±B supply = ±35V  
Thermal Considerations  
With this high efficiency, the IRAUDAMP11 design can handle one-eighth of the continuous rated  
power, which is generally considered to be a normal operating condition for safety standards,  
without additional heatsinks or forced air-cooling.  
www.irf.com  
Page 12 of 35  
IRAUDAMP11 REV 1.0  
Thermal Interface Material’s Pressure Control  
The pressure between DirectFET & TIM (Thermal Interface Material) is controlled by depth of Heat  
Spreader’s groove. Choose TIM which is recommended by IR. (Refer to AN-1035 for more  
details). TIM’s manufacturer thickness, conductivity, & etc. determine pressure requirement.  
Below shows selection options recommended:  
Fig 12 TIM Information  
www.irf.com  
Page 13 of 35  
IRAUDAMP11 REV 1.0  
Check the TIM’s compression deflection with constant rate of strain (example as Fig.13) base on  
manufacturer’s datasheet. According to the stress requirement, find strain range for the TIM. Then,  
calculate heat spreader groove depth as below:  
Groove Depth=DirectFET’s Height +TIM’s Thickness*strain  
**DirectFET’s height should be measured from PCB to the top of DirectFET after reflow. The  
average height of IRF6665 is 0.6mm.  
Fig 13 compression deflection with constant rate of strain  
www.irf.com  
Page 14 of 35  
IRAUDAMP11 REV 1.0  
Power Supply Rejection Ratio (PSRR)  
The IRAUDAMP11 obtains good power supply rejection ratio of -68 dB at 1kHz shown in Fig 14.  
With this high PSRR, IRAUDAMP11 accepts any power supply topology when the supply voltages  
fit between the min and max range.  
+0  
-10  
-20  
-30  
-40  
d
B
V
-50  
-60  
-70  
-80  
-90  
20  
50  
100  
200  
500  
1k  
Hz  
2k  
5k  
10k  
20k  
40k  
Sweep Trace Color  
Line Style Thick Data  
Axis Comment  
1
1
Magenta Solid  
2
Anlr.Ampl Left  
Fig 14 Power Supply Rejection Ratio (PSRR)  
www.irf.com  
Page 15 of 35  
IRAUDAMP11 REV 1.0  
Short Circuit Protection Response  
Figs 15-16 show over current protection reaction time of the IRAUDAMP11 in a short circuit event.  
As soon as the IRS2053M detects an over current condition, it shuts down PWM. After one  
second, the IRS2053M tries to resume the PWM. If the short circuit persists, the IRS2053M  
repeats try and fail sequences until the short circuit is removed.  
Short Circuit in Positive and Negative Load Current  
CSD pin  
CSD pin  
VS pin  
VS pin  
Load current  
Positive OCP  
Load current  
Negative OCP  
Fig 15 Positive and Negative OCP Waveforms  
.
OCP Waveforms Showing CSD Trip and Hiccup  
CSD pin  
CSD pin  
VS pin  
VS pin  
Load current  
Load current  
Fig 16 OCP Response with Continuous Short Circuit  
www.irf.com  
Page 16 of 35  
IRAUDAMP11 REV 1.0  
IRAUDAMP11 Overview  
The IRAUDAMP11 features a 3CH self-oscillating type PWM modulator for the smallest space,  
highest performance and robust design. This topology represents an analog version of a second-  
order sigma-delta modulation having a Class D switching stage inside the loop. The benefit of the  
sigma-delta modulation, in comparison to the carrier-signal based modulation, is that all the error  
in the audible frequency range is shifted to the inaudible upper-frequency range by nature of its  
operation. Also, sigma-delta modulation allows a designer to apply a sufficient amount of error  
correction.  
The IRAUDAMP11 self-oscillating topology consists of following essential functional blocks.  
Front-end integrator  
PWM comparator  
Level shifters  
Gate drivers and MOSFETs  
Output LPF  
Integrator  
Referring to Fig 17 below, the input operational amplifier of the IRS2053M forms a front-end  
second-order integrator with R3x, C2x, C3x, and R2x. The integrator that receives a rectangular  
feedback signal from the PWM output via R4x and audio input signal via R3x generates a  
quadratic carrier signal at the COMP pin. The analog input signal shifts the average value of the  
quadratic waveform such that the duty cycle varies according to the instantaneous voltage of the  
analog input signal.  
PWM Comparator  
The carrier signal at the COMP pin is converted to a PWM signal by an internal comparator that  
has a threshold at middle point between VAA and VSS. The comparator has no hysteresis in its  
input threshold.  
Level Shifters  
The internal input level-shifter transfers the PWM signal down to the low-side gate driver section.  
The gate driver section has another level-shifter that level shifts up the high-side gate signal to the  
high-side gate driver section.  
www.irf.com  
Page 17 of 35  
IRAUDAMP11 REV 1.0  
Gate Drivers and DirectFETs  
The received PWM signal is sent to the dead-time generation block where a programmable  
amount of dead time is added into the PWM signal between the two gate output signals of LO and  
HO to prevent potential cross conduction across the output power DirectFETs. The high-side level-  
shifter shifts up the high-side gate drive signal out of the dead-time block.  
Each channel of the IRS2053M’s drives two DirectFETs, high- and low-sides, in the power stage  
providing the amplified PWM waveform.  
Output LPF  
The amplified PWM output is reconstructed back to an analog signal by the output LC LPF.  
Demodulation LC low-pass filter (LPF) formed by L1 and C13, filters out the Class D switching  
carrier signal leaving the audio output at the speaker load. A single stage output filter can be used  
with switching frequencies of 400 kHz and greater; a design with a lower switching frequency may  
require an additional stage of LPF.  
Fig 17 Simplified Block Diagram of IRAUDAMP11 Class D Amplifier  
www.irf.com  
Page 18 of 35  
IRAUDAMP11 REV 1.0  
Functional Descriptions  
IRS2053M Gate Driver IC  
The IRAUDAMP11 uses the IRS2053M, a 3 Channel high-voltage (up to 200 V), high-speed  
power MOSFET driver with internal dead-time and protection functions specifically designed for  
Class D audio amplifier applications. These functions include OCP and UVP. The IRS2053M  
integrates bi-directional over current protection for both high-side and low-side MOSFETs. The  
dead-time can be selected for optimized performance according to the size of the MOSFET,  
minimizing dead-time while preventing shoot-through. As a result, there is no gate-timing  
adjustment required externally. Selectable dead-time through the DT pin voltage is an easy and  
reliable function which requires only two external resistors, R12 and R13 as shown on Fig 18 or  
Fig 24 below.  
The IRS2053M offers the following functions.  
PWM modulator  
Dead-time insertion  
Over current protection  
Under voltage protection  
Level shifters  
Refer to IRS2053M datasheet and AN-1158 for more details.  
L1A  
CH3 OUTPUT  
GND  
22uH  
R24A 2.2K  
R14A  
4.7R  
R32A 10R  
RpA 95C  
GND  
R28A  
C6A  
Q5  
Q1A  
IRF6665  
R32B 10R  
R32C 10R  
RpB 95C  
RpC 95C  
R20A  
22R  
R12A  
N/A  
1K  
DTA144EKA  
R4A  
100K 1%  
Q2A  
IRF6665  
R9A  
22R  
R7A  
R5A  
47K  
470K  
1uF,50V  
D3A R6A  
GND  
GND  
C12A  
C15A  
R15A  
10K R17A  
R29A  
220K  
10uF, 16V  
1N4148 47K  
C2A 2.2nF,50V  
C3A 2.2nF,50V  
37  
38  
39  
40  
41  
10K  
DS  
24  
R1A  
22K  
1K  
VB3  
R16A  
220pF  
10K  
10K  
R27A  
3.3K  
R31A  
R30A  
C4A  
1nF,50V  
CH3 INPUT  
C1A 100pF, 50V  
R3A  
R2A 120R  
COMP3  
IN3  
23  
22  
21  
20  
3.9K  
CSH3  
NC  
GND  
R31B  
10K  
R30B  
15K  
L1B  
R24B 2.2K  
R24C 2.2K  
R18A  
4.7R  
C5A 10uF, 16V  
D2A 1N4148  
CH2 OUTPUT  
G
GND  
GND  
VSS  
LO3  
22uH  
L1C  
CN1  
CH3  
C12B  
220pF  
IC3  
IC1  
GND  
GND  
7
6
5
4
3
2
1
8
9
GND  
R6 10R  
6
2OUT  
2IN-  
2IN+  
VDD  
1IN+  
1IN-  
3OUT  
C6 4.7uF,10V  
C7  
IRS2053  
COM2  
GND  
VSS  
C9B  
10uF,16V  
R14B  
GND5  
GND4  
3IN-  
3IN+  
GND  
4IN+  
4IN-  
42  
10  
11  
12  
13  
14  
-B  
19  
18  
VCC2  
LO2  
GND  
VAA  
43  
CH1 OUTPUT  
CH2  
GND2  
CH1  
3
R7 10R  
R2B  
VAA  
IN2  
22uH  
R3B  
5.6K  
22K  
5.6K  
22K  
4.7uF,10V  
4.7R  
1
CH2 INPUT  
44  
45  
46  
47  
48  
17  
16  
15  
14  
13  
C2B  
C5B  
C1B  
C5C  
C1C  
10uF, 16V  
R1B  
1nF,50V C4B  
C3B  
LO1  
NC  
1OUT  
4OUT  
Q1B  
IRF6665  
GND  
R20B  
22R  
120R  
TLC084  
COMP2  
IN1  
R18C  
D2C  
100pF, 50V  
R3C  
2.2nF,50V  
15K  
2.2nF,50V  
C2C  
R31C  
10K  
R30C  
4.7R  
CSH1  
VB1  
HO1  
R2C  
CH1 INPUT  
C4C  
1nF,50V  
1N4148  
C12C  
10uF, 16V  
R1C  
120R  
Q2B  
IRF6665  
C10  
C11  
4.7uF,10V  
C3C  
2.2nF,50V  
COMP1  
CSD  
R9B  
22R  
220pF  
R16C  
3.9K  
4.7uF,10V  
GND  
100pF, 50V  
2.2nF,50V  
+B  
GND  
R17C  
10K  
R23A  
100k  
C17A  
1000uF,35V  
C17C  
0.1uF,50V  
R15C  
10K  
R14  
10R  
R15  
10R  
R1  
Q1C  
IRF6665  
R20C  
22R  
R22  
10R  
GND  
-B  
0R0 or N/A  
CSD  
R12B  
N/A  
R4C  
100K 1%  
R23B  
100k  
C17B  
1000uF,35V  
DSA DSB DSC PROT  
Q2C  
IRF6665  
R9C  
22R  
C17D  
0.1uF,50V  
R4B  
100K 1%  
D2B  
1N4148  
R18B  
4.7R  
D1B  
R12C  
N/A  
C10B  
R17B  
10K  
R15B  
D4  
1N4148  
R4 0R0 or N/A  
10K  
0.1uF,50V  
R16B  
3.9K  
P3  
1N4148  
SD  
VAA  
1
R22B 10K  
GND  
GND  
CH3 OUTPUT  
2
3
4
R51 10k Z7 39V  
+B  
-B  
+5v  
R52 10k  
Z8 39V  
OVP  
R43  
R47  
Q8 ZX5T853  
C1  
0.1uF,50V  
330R,1W  
R45  
330R,1W  
R25A 100K  
CH3 OUTPUT  
CH2 OUTPUT  
CH1 OUTPUT  
R25B 100K  
R25C 100K  
33k  
Z5  
5.6V  
R3  
22k  
C40  
IC2  
N/A  
LTC1799  
VR1  
10K  
1
2
3
5
4
VCC OUT  
GND  
SET DIT  
C41  
N/A  
Z6  
5.6V  
P2  
CH1 OUTPUT  
GND  
4CH2  
3
R46  
33k  
R44  
GND  
CH2 OUTPUT  
2
1CH1  
Q9  
ZX5T953  
1
2
3
4
8
7
6
5
510R,1W  
1A VCC  
-5v  
Z2  
R36  
5.1k  
1B  
2Y  
1Y  
2B  
15V  
Z4  
18V  
R54  
10k  
R57  
47k  
R37  
47k  
R56  
47k  
IC9  
GND 2A  
IC8  
VCC  
Q1  
L5 220uH  
R49 10R  
R50  
47k  
1
2
8
7
6
5
SW  
BST  
VIN  
Z3  
39V  
TC7W00FFCT-ND  
R53  
C35  
2.2nF,50V  
Q2  
R39  
100k  
C34  
VCC  
R31  
5.1k  
10k  
MMBT5401  
R42  
3.3k  
3
4
0.01uF, 25V  
RCL RON/SD  
FX491  
R41  
120k  
P1  
RTN  
FB  
Q4  
C32  
2.2uF, 50V  
C61  
+B  
GND  
-B  
3
2
1
D7  
R40  
100k  
MMBT5551  
C36  
R58  
47k  
R32  
1k  
R38  
10R  
LM5007  
Z1  
24V  
0.01uF, 50V  
R55  
47k  
C33  
0.1uF, 50V  
0.01uF, 50V  
OVP  
UVP  
10k  
C62  
R61  
0.01uF, 50V  
10k  
R62  
GND  
GND  
For EMI  
Fig 18 System-level View of IRAUDAMP11  
www.irf.com  
Page 19 of 35  
IRAUDAMP11 REV 1.0  
Self-Oscillating Frequency  
Self-oscillating frequency is determined by the total delay time along the control loop of the  
system; the propagation delay of the IRS2053M, the DirectFETs switching speed, the time-  
constant of front-end integrator (R2, R3, R4, C2, C3 ). Variations in +B and –B supply voltages  
also affect the self-oscillating frequency.  
The self-oscillating frequency changes with the duty ratio. The frequency is highest at idling. It  
drops as duty cycle varies away from 50%.  
Adjustments of Self-Oscillating Frequency  
Use R2 to set different self-oscillating frequencies. The PWM switching frequency in this type of  
self-oscillating switching scheme greatly impacts the audio performance, both in absolute  
frequency and frequency relative to the other channels. In absolute terms, at higher frequencies,  
distortion due to switching-time becomes significant, while at lower frequencies, the bandwidth of  
the amplifier suffers. In relative terms, interference between channels is most significant if the  
relative frequency difference is within the audible range.  
Normally, when adjusting the self-oscillating frequency of the different channels, it is suggested to  
either match the frequencies accurately, or have them separated by at least 25kHz. Under the  
normal operating condition with no audio input signal, the switching-frequency is set around  
400kHz in the IRAUDAMP11.  
www.irf.com  
Page 20 of 35  
IRAUDAMP11 REV 1.0  
Selectable Dead-time  
The dead-time of the IRS2053 is set based on the voltage applied to the DT pin. Fig 19 lists the  
suggested component value for each programmable dead-time between 45 and 105 ns.  
All the IRAUDAMP11 models use DT1 (45ns) dead-time.  
Dead-time Mode  
R1  
R2  
DT/SD Voltage  
Vcc  
DT1  
DT2  
DT3  
DT4  
<10k  
5.6k  
8.2k  
Open  
Open  
4.7k  
3.3k  
<10k  
0.46 x Vcc  
0.29 x Vcc  
COM  
Recommended Resistor Values for Dead Time Selection  
Dead-time  
IRS2053M  
Vcc  
45nS  
65nS  
>0.5mA  
R1  
85nS  
DT  
105nS  
R2  
VDT  
COM  
0.23xVcc 0.36xVcc 0.57xVcc  
Vcc  
Fig 19 Dead-time Settings vs. VDT Voltage  
www.irf.com  
Page 21 of 35  
IRAUDAMP11 REV 1.0  
Protection System Overview  
The IRS2053M integrates over current protection (OCP) inside the IC. The rest of the protections,  
such as over-voltage protection (OVP), under-voltage protection (UVP), and over temperature  
protection (OTP), are detected externally to the IRS2053M (Fig 20).  
The external shutdown circuit will disable the output by pulling down CSD pins, (Fig 21). If the  
fault condition persists, the protection circuit stays in shutdown until the fault is removed.  
R60  
15k  
SD  
GND  
Q5  
MMBT5551  
Z4  
R54  
10k  
18V  
R57  
47k  
IC6  
R51  
22k  
R56  
47k  
LM26CIM5-XHA  
1
5
4
OS  
HT  
GND  
R50  
47k  
2
3
Z3  
39V  
R59  
22k  
VCC VT  
R53  
10k  
OTP  
R52  
15k  
D51  
4.7V  
Q4  
MMBT5551  
R58  
47k  
R55  
47k  
OVP  
UVP  
-B  
Fig 20 DCP, OTP, UVP and OVP Protection Circuits  
.
Fig 21 Simplified Functional Diagram of OCP  
www.irf.com  
Page 22 of 35  
IRAUDAMP11 REV 1.0  
Over-Current Protection (OCP)  
Low-Side Current Sensing  
The low-side current sensing feature protects the low side DirectFET from an overload condition  
from negative load current by measuring drain-to-source voltage across RDS(ON) during its on state.  
OCP shuts down the switching operation if the drain-to-source voltage exceeds a preset trip level.  
The voltage setting on the OCSET pin programs the threshold for low-side over-current sensing.  
When the VS voltage becomes higher than the OCSET voltage during low-side conduction, the  
IRS2053 turns the outputs off and pulls CSD down to -VSS.  
High-Side Current Sensing  
The high-side current sensing protects the high side DirectFET from an overload condition from  
positive load current by measuring drain-to-source voltage across RDS(ON) during its on state. OCP  
shuts down the switching operation if the drain-to-source voltage exceeds a preset trip level.  
High-side over-current sensing monitors drain-to-source voltage of the high-side DirectFET during  
the on state through the CSH and VS pins. The CSH pin detects the drain voltage with reference  
to the VS pin, which is the source of the high-side DirectFET. In contrast to the low-side current  
sensing, the threshold of the CSH pin to trigger OC protection is internally fixed at 1.2V. An  
external resistive divider R15, R16 and R17 are used to program a threshold as shown in Fig 20.  
An external reverse blocking diode D1 is required to block high voltage feeding into the CSH pin  
during low-side conduction. By subtracting a forward voltage drop of 0.6V at D1, the minimum  
threshold which can be set for the high-side is 0.6V across the drain-to-source.  
Over-Voltage Protection (OVP)  
OVP is provided externally to the IRS2053M. OVP shuts down the amplifier if the bus voltage  
between GND and -B exceeds 39V. The threshold is determined by a Zener diode Z3. OVP  
protects the board from harmful excessive supply voltages, such as due to bus pumping at very  
low frequency-continuous output in stereo mode.  
Under-Voltage Protection (UVP)  
UVP is provided externally to the IRS2053M. UVP prevents unwanted audible noise output from  
unstable PWM operation during power up and down. UVP shuts down the amplifier if the bus  
voltage between GND and -B falls below a voltage set by Zener diode Z4.  
www.irf.com  
Page 23 of 35  
IRAUDAMP11 REV 1.0  
Offset Null (DC Offset) Adjustment  
The IRAUDAMP11 requires no output-offset adjustment. DC offsets are tested to be less than ±20  
mV.  
Over-Temperature Protection (OTP)  
A Preset Thermostat IC, IC6 in Fig 19, is placed in close proximity to the heatsink which has 6  
DirectFETs under it; and monitors heatsink temperature. If the heatsink temperature rises above  
100 C, the OTP shuts down all 3 channels by pulling down the CSD pins of the IRS2053M. OTP  
recovers once the temperature has cooled down.  
Click and POP Noise Reduction  
Thanks to the click and pop elimination function built into the IRS2053M, the IRAUDAMP11 does  
not require any additional components for this function.  
Power Supply Requirements  
For convenience, the IRAUDAMP11 has all the necessary housekeeping power supplies onboard  
and only requires a pair of symmetric power supplies. Or use the IRAUDPS1 reference design  
which is a 12 volt systems Audio Power Supply for automotive applications designed to provide  
voltage rails (+B and –B) for Class D audio power amplifiers .  
House Keeping Power Supply  
The internally-generated housekeeping power supplies include ±5V for analog signal processing,  
and +12V supply (VCC) referred to the negative supply rail -B for DirectFET gate drive. The gate  
driver section of the IRS2053M uses VCC to drive gates of the DirectFETs. VCC is referenced to –  
B (negative power supply). D2, R18 and C10 form a bootstrap floating supply for the HO gate  
driver.  
Bus Pumping  
When the IRAUDAMP11 is running in stereo mode, the bus pumping effect takes place with low  
frequency, high output. Since the energy flowing in the Class D switching stage is bi-directional,  
there is a period where the Class D amplifier feeds energy back to the power supply. The majority  
of the energy flowing back to the supply is from the energy stored in the inductor in the output LPF.  
www.irf.com  
Page 24 of 35  
IRAUDAMP11 REV 1.0  
Usually, the power supply has no way to absorb the energy coming back from the load.  
Consequently the bus voltage is pumped up, creating bus voltage fluctuations.  
Following conditions make bus pumping worse:  
1. Lower output frequencies (bus-pumping duration is longer per half cycle)  
2. Higher power output voltage and/or lower load impedance (more energy transfers between  
supplies)  
3. Smaller bus capacitance (the same energy will cause a larger voltage increase)  
The OVP protects IRAUDAMP11 from failure in case of excessive bus pumping. One of the  
easiest counter measures of bus pumping is to drive both of the channels in a stereo configuration  
out-of-phase so that one channel consumes the energy flow from the other and does not return it  
to the power supply. Bus voltage detection monitors only +B supply, assuming the bus pumping  
on the supplies is symmetric in +B and -B supplies.  
Blue: VS of CH3;Cyan: VS of CH2;Magenta: Voltage of +B;Green:Current of C13A  
Fig 22 Auto-phase sync clock’s BUS Pumping when idling  
www.irf.com  
Page 25 of 35  
IRAUDAMP11 REV 1.0  
Load Impedance  
Each channel is optimized for a 4 speaker load in half bridge.  
Input Signal and Gain Setting  
A proper input signal is an analog signal ranging from 20Hz to 20kHz with up to 3 VRMS amplitude  
with a source impedance of no more than 600 . Input signal with frequencies from 30kHz to  
60kHz may cause LC resonance in the output LPF, causing a large reactive current flowing  
through the switching stage, especially with greater than 8 load impedances, and the LC  
resonance can activate OCP.  
The IRAUDAMP11 has an RC network called a Zobel network (R21 and C14) to damp the  
resonance and prevent peaking frequency response with light loading impedance. (Fig 23)  
Fig 23 Output Low Pass Filter and Zobel Network  
Gain Setting  
The ratio of resistors R4A~C/R1A~C in Fig 24 sets voltage gain. The IRAUDAMP11 has no on board  
volume control. To change the voltage gain, change the input resistor term R1A~C. Changing R4A~C  
affects PWM control loop design and may result poor audio performance.  
www.irf.com  
Page 26 of 35  
IRAUDAMP11 REV 1.0  
L1A  
CH3 OUTPUT  
GND  
Schematic  
22uH  
R24A 2.2K  
R14A  
4.7R  
R32A 10R  
RpA 95C  
GND  
R28A  
C6A  
Q5  
Q1A  
IRF6665  
R32B 10R  
R32C 10R  
RpB 95C  
RpC 95C  
R20A  
22R  
R12A  
N/A  
1K  
DTA144EKA  
R4A  
100K 1%  
Q2A  
IRF6665  
R9A  
22R  
R7A  
R5A  
47K  
470K  
1uF,50V  
D3A R6A  
GND  
GND  
C12A  
C15A  
R15A  
10K R17A  
R29A  
220K  
10uF, 16V  
1N4148 47K  
C2A 2.2nF,50V  
C3A 2.2nF,50V  
37  
38  
39  
40  
41  
10K  
DS  
24  
R1A  
22K  
1K  
VB3  
R16A  
220pF  
10K  
10K  
R27A  
3.3K  
R31A  
R30A  
C4A  
1nF,50V  
CH3 INPUT  
C1A 100pF, 50V  
R3A  
R2A 120R  
COMP3  
IN3  
23  
22  
21  
20  
3.9K  
CSH3  
NC  
GND  
R31B  
10K  
R30B  
15K  
L1B  
R24B 2.2K  
R24C 2.2K  
R18A  
4.7R  
C5A 10uF, 16V  
D2A 1N4148  
CH2 OUTPUT  
G
GND  
GND  
VSS  
LO3  
22uH  
L1C  
CN1  
C12B  
220pF  
IC3  
IC1  
GND  
GND  
7
6
5
4
3
2
1
8
9
10  
11  
12  
13  
14  
GND  
R6 10R  
CH3 6  
GND5  
GND4  
CH2 3  
GND2  
CH1 1  
2OUT  
2IN-  
2IN+  
VDD  
1IN+  
1IN-  
3OUT  
C6 4.7uF,10V  
C7  
IRS2053  
COM2  
GND  
VSS  
C9B  
10uF,16V  
R14B  
3IN-  
3IN+  
GND  
4IN+  
4IN-  
42  
-B  
19  
18  
VCC2  
LO2  
GND  
VAA  
43  
CH1 OUTPUT  
R7 10R  
R2B  
VAA  
IN2  
22uH  
R3B  
5.6K  
22K  
5.6K  
22K  
4.7uF,10V  
4.7R  
CH2 INPUT  
44  
45  
46  
47  
48  
17  
16  
15  
14  
13  
C2B  
C5B  
C1B  
C5C  
C1C  
10uF, 16V  
R1B  
1nF,50V C4B  
C3B  
LO1  
NC  
1OUT  
4OUT  
Q1B  
IRF6665  
GND  
R20B  
22R  
120R  
TLC084  
COMP2  
IN1  
R18C  
D2C  
100pF, 50V  
R3C  
2.2nF,50V  
15K  
2.2nF,50V  
C2C  
R31C  
10K  
R30C  
4.7R  
CSH1  
VB1  
HO1  
R2C  
CH1 INPUT  
C4C  
1nF,50V  
1N4148  
C12C  
10uF, 16V  
R1C  
120R  
Q2B  
IRF6665  
C10  
C11  
4.7uF,10V  
C3C  
2.2nF,50V  
COMP1  
CSD  
R9B  
22R  
220pF  
R16C  
3.9K  
4.7uF,10V  
GND  
100pF, 50V  
2.2nF,50V  
+B  
GND  
R17C  
10K  
R23A  
100k  
C17A  
1000uF,35V  
C17C  
0.1uF,50V  
R15C  
10K  
R14  
10R  
R15  
10R  
R1  
Q1C  
IRF6665  
R20C  
22R  
R22  
10R  
GND  
-B  
0R0 or N/A  
CSD  
R12B  
N/A  
R4C  
100K 1%  
R23B  
100k  
C17B  
1000uF,35V  
DSA DSB DSC PROT  
Q2C  
IRF6665  
R9C  
22R  
C17D  
0.1uF,50V  
R4B  
100K 1%  
D2B  
1N4148  
R18B  
4.7R  
D1B  
R12C  
N/A  
C10B  
R17B  
10K  
R15B  
D4  
1N4148  
R4 0R0 or N/A  
10K  
0.1uF,50V  
R16B  
3.9K  
P3  
1N4148  
SD  
VAA  
1
R22B 10K  
GND  
GND  
CH3 OUTPUT  
2
3
4
R51 10k Z7 39V  
+B  
-B  
+5v  
R52 10k  
Z8 39V  
OVP  
R43  
R47  
Q8 ZX5T853  
C1  
0.1uF,50V  
330R,1W  
R45  
330R,1W  
R25A 100K  
CH3 OUTPUT  
CH2 OUTPUT  
CH1 OUTPUT  
R25B 100K  
R25C 100K  
33k  
Z5  
5.6V  
R3  
22k  
C40  
IC2  
N/A  
LTC1799  
VR1  
10K  
1
2
3
5
4
VCC OUT  
GND  
SET DIT  
C41  
N/A  
Z6  
5.6V  
P2  
CH1 OUTPUT  
GND  
4CH2  
3
R46  
33k  
R44  
GND  
CH2 OUTPUT  
2
1CH1  
Q9  
ZX5T953  
1
2
3
4
8
7
6
5
510R,1W  
1A VCC  
-5v  
Z2  
R36  
5.1k  
1B  
2Y  
1Y  
2B  
15V  
Z4  
18V  
R54  
10k  
R57  
47k  
R37  
47k  
R56  
47k  
IC9  
GND 2A  
IC8  
VCC  
Q1  
L5 220uH  
R49 10R  
R50  
47k  
1
2
8
7
6
5
SW  
BST  
VIN  
Z3  
39V  
TC7W00FFCT-ND  
R53  
C35  
2.2nF,50V  
Q2  
R39  
100k  
C34  
VCC  
R31  
5.1k  
10k  
MMBT5401  
R42  
3.3k  
3
4
0.01uF, 25V  
RCL RON/SD  
FX491  
R41  
120k  
P1  
RTN  
FB  
Q4  
C32  
2.2uF, 50V  
C61  
+B  
GND  
-B  
3
2
1
D7  
R40  
100k  
MMBT55 51  
C36  
R58  
47k  
R32  
1k  
R38  
10R  
LM5007  
Z1  
24V  
0.01uF, 50V  
R55  
47k  
C33  
0.1uF, 50V  
0.01uF, 50V  
OVP  
UVP  
10k  
C62  
R61  
0.01uF, 50V  
10k  
R62  
GND  
GND  
For EMI  
Fig 24 IRAUDAMP11 Schematic  
www.irf.com  
Page 27 of 35  
IRAUDAMP11 REV 1.0  
IRAUDAMP11 Fabrication Materials  
Table 1 IRAUDAMP11 Electrical Bill of Materials  
Quantity  
Value  
Description  
CAP CER .1UF 50V 10% X7R  
0603  
CAP CERAMIC 100PF 50V NP0  
0603  
Designator  
Part Number  
490-1519-1-ND  
399-1061-1-ND  
Vender  
Murata Electronics  
North America  
1
3
0.1uF,50V  
100pF, 50V  
C1  
C1A, C1B, C1C  
C2A, C2B, C2C,  
C3A, C3B,  
Kemet  
CAP CER 2200PF 50V 10%  
X7R 0603  
Murata Electronics  
North America  
7
2.2nF,50V  
C3C, C35  
490-1500-1-ND  
CAP 1000PF 50V  
CERAMICX7R 0603  
3
3
1nF,50V  
C4A, C4B, C4C  
C5A, C5B, C5C  
399-1082-1-ND  
PCE4179CT-ND  
Kemet  
10uF, 16V  
CAP 10UF 16V HA ELECT SMD  
CAP CERM 4.7UF 10V Y5V  
0805  
Panasonic - ECG  
4
1
2
1
2
3
3
3
3
4
2
2
3
1
1
4.7uF,10V  
1uF,50V  
C6, C7, C10, C11  
C6A  
478-1429-1-ND  
490-4736-1-ND  
445-1601-1-ND  
493-2079-1-ND  
490-3347-1-ND  
311-1140-1-ND  
490-1483-1-ND  
495-1315-ND  
AVX Corporation  
Murata Electronics  
North America  
CAP CER 1UF 50V X7R 0805  
CAP CER 10UF 16V X7R 20%  
1206  
CAP 100UF 4V ELECT WX  
SMD  
10uF, 16V  
100uF,4V  
10uF,16V  
0.1uF,50V  
220pF  
C8, C15A  
TDK Corporation  
C9  
Nichicon  
Murata Electronics  
North America  
CAP CER 10UF 16V Y5V 0805  
CAP .10UF 50V CERAMIC X7R  
0805  
CAP CER 220PF 50V 10% X7R  
0603  
CAP .47UF 400V METAL  
POLYPRO  
CAP FILM MKP .1UF 63VDC  
2%  
CAP 10000PF 25V CERM X7R  
0603  
CAP 1000UF 35V ELECT SMG  
RAD  
C9A, C9B  
C10A, C10B, C10C  
C12A, C12B, C12C  
C13A, C13B, C13C  
Yageo  
Murata Electronics  
North America  
0.47uF, 400V  
0.1uF, 63V  
0.01uF, 25V  
1000uF,35V  
0.1uF,50V  
0.1uF,100V  
2.2uF, 50V  
0.1uF, 50V  
EPCOS Inc  
Vishay/BC  
Components  
C14A, C14B, C14C  
C16A, C16B,  
C16C,C34  
BC2054-ND  
PCC1763CT-ND  
565-1086-ND  
Panasonic - ECG  
United Chemi-Con  
Kemet  
C17A, C17B  
C17C, C17D  
C19A, C19B, C19C  
C32  
CAP .10UF 50V CERAMIC X7R  
1206  
CAP CER .10UF 100V X7R  
10% 0805  
399-1249-1-ND  
445-1418-1-ND  
490-3367-1-ND  
490-1666-1-ND  
TDK Corporation  
Murata Electronics  
North America  
Murata Electronics  
North America  
CAP CER 2.2UF 50V X7R 1206  
CAP CER .1UF 50V 10% X7R  
0805  
C33  
CAP CER 10000PF 50V 20%  
X7R 0603  
Murata Electronics  
North America  
1
1
2
0.01uF, 50V  
22uF, 16V  
N/A  
C36  
C37  
490-1511-1-ND  
445-3945-1-ND  
N/A  
CAP CER 22UF 16V X7R 1210  
TDK Corporation  
C40, C41  
CAP 10000PF 50V CERAMIC  
X7R 0603  
TERMINAL BLOCK 3.5MM  
6POS PCB  
2
1
0.01uF, 50V  
Header 6  
C61, C62  
399-1091-1-ND  
ED1518-ND  
Kemet  
On Shore Technology  
Inc  
CN1  
D1A, D1B, D1C,  
D2A, D2B, D2C,  
D3, D3A, D4  
DIODE SWITCH 100V 400MW  
9
1
1N4148  
DIODE1  
SOD-123  
DIODE SCHOTTKY 100V 1.5A  
SMA  
LED 468NM BLUE CLEAR 0603  
SMD  
1N4148W-FDICT-ND  
10MQ100NPBFCT-ND  
160-1646-1-ND  
Diodes Inc  
D7  
DS1, DSA, DSB,  
DSC  
Vishay/Semiconductors  
4
1
BLUE LED  
IRS2053  
Lite-On Inc  
3ch Audio Class D Controller  
IC OSCILLATOR RES SET  
TSOT23-5  
IC OPAMP GP 10MHZ QUAD  
14SOIC  
IC1  
IC2  
IC3  
IR2053MPBF  
LTC1799CS5#TRMPBFCT-  
ND  
International Rectifier  
1
1
LTC1799  
TLC084  
Linear Technology  
Texas Instruments  
296-7287-1-ND  
www.irf.com  
Page 28 of 35  
IRAUDAMP11 REV 1.0  
TC7W00FFCT-  
ND  
IC GATE NAND DUAL 2INPUT  
8-SOP  
1
IC8  
TC7W00FFCT-ND  
Toshiba  
National  
1
3
LM5007  
22uH  
IC BUCK ADJ .5A 8LLP  
IC9  
LM5007SDCT-ND  
7G14A-220M-B  
Semiconductor  
Class D inductor, 22uH  
POWER INDUCTOR 220UH  
0.49A SMD  
CONN TERM BLOCK PCB  
5.0MM 3POS  
L1A, L1B, L1C  
Inductors,Inc.  
SUMIDA AMERICA  
COMPONENTS INC  
1
1
220uH  
L5  
308-1538-1-ND  
281-1415-ND  
Header 3  
P1  
Weidmuller  
On Shore Technology  
Inc  
TERMINAL BLOCK 3.5MM  
4POS PCB  
2
1
SP OUT  
P2, P3  
PROT  
ED1516-ND  
RED LED  
LED RED CLEAR 0603 SMD  
TRANS HP NPN 60V 1000MA  
SOT23-3  
160-1181-1-ND  
Lite-On Inc  
1
FX491  
Q1  
Q1A, Q1B, Q1C,  
Q2A,  
FMMT491CT-ND  
Diodes/Zetex  
MOSFET N-CH 100V 4.2A  
DIRECTFET  
TRANS PNP 150V 350MW  
SMD SOT23-3  
TRANS NPN 160V 350MW  
SMD SOT23-3  
TRAN DIGITL PNP 50V 30MA  
SOT-346  
IC SWITCH ANALOG N-CH  
SOT-23  
TRANSISTOR 4.5A 100V SOT-  
89  
6
1
2
1
1
1
IRF6665  
MMBT5401  
MMBT5551  
DTA144EKA  
MMBFJ112  
ZX5T853  
Q2B, Q2C  
IRF6665  
International Rectifier  
Diodes Inc  
Q2  
Q3, Q4  
Q5  
MMBT5401-FDICT-ND  
MMBT5551-FDICT-ND  
DTA144EKAT146CT-ND  
MMBFJ112CT-ND  
Diodes Inc  
Rohm Semiconductor  
Fairchild  
Q6  
Semiconductor  
Q8  
ZX5T853ZCT-ND  
Diodes/Zetex  
TRANSISTOR PNP 3.5A 100V  
SOT-89  
1
1
ZX5T953  
0R0  
Q9  
R1  
ZX5T953ZCT-ND  
P0.0GCT-ND  
Diodes/Zetex  
RES 0.0 OHM 1/10W 0603 SMD  
Panasonic - ECG  
RES 22K OHM 1/10W 5% 0603  
4
3
3
2
3
22K  
120R  
1K  
SMD  
R1A, R1B, R1C, R3  
R2A, R2B, R2C  
R3A, R13, R32  
R3B, R3C  
RHM22KGCT-ND  
RHM120GCT-ND  
RHM1.0KGCT-ND  
RHM5.6KGCT-ND  
RHM100KCRCT-ND  
Rohm Semiconductor  
Rohm Semiconductor  
Rohm Semiconductor  
Rohm Semiconductor  
Rohm Semiconductor  
RES 120 OHM 1/10W 5% 0603  
SMD  
RES 1.0K OHM 1/10W 5% 0603  
SMD  
RES 5.6K OHM 1/10W 5% 0603  
5.6K  
SMD  
RES 100K OHM 1/8W 1% 0805  
SMD  
100K 1%  
R4A, R4B, R4C  
R5A, R6A, R37,  
R50, R55, R56,  
R57, R58  
RES 47K OHM 1/10W 5% 0603  
SMD  
8
47K  
RHM47KGCT-ND  
Rohm Semiconductor  
R6, R7, R14, R15,  
R22,  
RES 10 OHM 1/10W 5% 0603  
SMD  
RES 470K OHM 1/10W 5%  
0603 SMD  
R32A, R32B,  
R32C, R38, R49  
10  
1
10R  
RHM10GCT-ND  
Rohm Semiconductor  
Rohm Semiconductor  
470K  
R7A  
R9A, R9B, R9C,  
R20A,  
RHM470KGCT-ND  
RES 22 OHM 1/10W 5% 0603  
6
1
22R  
SMD  
R20B, R20C  
RHM22GCT-ND  
Rohm Semiconductor  
Rohm Semiconductor  
Rohm Semiconductor  
RES 2.2K OHM 1/10W 5% 0603  
2.2K  
SMD  
RES 8.2K OHM 1/10W 5% 0603  
SMD  
R10  
RHM2.2KGCT-ND  
1
1
3
8.2K  
NC  
R11  
R12  
RHM8.2KGCT-ND  
N/A  
N/A  
N/A  
R12A, R12B, R12C  
R14A, R14B, R18A,  
R18B, R18C  
R15A, R15B, R15C,  
R17A, R17B,  
R17C,R22A, R22B,  
R22C, R28A, R29A,  
R30A,R31A, R31B,  
R31C, R51, R52,  
RES 4.7 OHM 1/10W 5% 0603  
SMD  
5
4.7R  
RHM4.7GCT-ND  
Rohm Semiconductor  
Rohm Semiconductor  
RES 10K OHM 1/10W 5% 0603  
SMD  
25  
10K  
RHM10KGCT-ND  
www.irf.com  
Page 29 of 35  
IRAUDAMP11 REV 1.0  
R53, R54,R61, R62,  
R104, R26A, R26B,  
R26C  
RES 3.9K OHM 1/10W 5% 0603  
3
3
3
3.9K  
1R  
SMD  
RES 1.0 OHM 1/8W 5% 0805  
SMD  
RES 10 OHM 1W 1% 2512  
SMD  
R16A, R16B, R16C  
R19A, R19B, R19C  
RHM3.9KGCT-ND  
RHM1.0ARCT-ND  
PT10AECT-ND  
Rohm Semiconductor  
Rohm Semiconductor  
Panasonic - ECG  
10R,1W  
R21A, R21B, R21C  
R23A, R23B, R25A,  
R25B, R25C, R39,  
R40  
RES 100K OHM 1/10W 5%  
0603 SMD  
RES 2.2K OHM 1/8W 5% 0805  
7
3
2
2
1
1
1
2
1
2
3
1
1
1
3
1
2
100k  
2.2K  
3.3K  
15K  
RHM100KGCT-ND  
RHM2.2KARCT-ND  
RHM3.3KGCT-ND  
RHM15KGCT-ND  
RHM5.1KARCT-ND  
RHM5.1KGCT-ND  
RHM120KGCT-ND  
PT330XCT-ND  
Rohm Semiconductor  
Rohm Semiconductor  
Rohm Semiconductor  
Rohm Semiconductor  
Rohm Semiconductor  
Rohm Semiconductor  
Rohm Semiconductor  
Panasonic - ECG  
SMD  
R24A, R24B, R24C  
R27A, R42  
R30B, R30C  
R31  
RES 3.3K OHM 1/10W 5% 0603  
SMD  
RES 15K OHM 1/10W 5% 0603  
SMD  
RES 5.1K OHM 1/8W 5% 0805  
SMD  
RES 5.1K OHM 1/10W 5% 0603  
SMD  
RES 120K OHM 1/10W 5%  
0603 SMD  
RES 330 OHM 1W 5% 2512  
SMD  
RES 510 OHM 1W 5% 2512  
SMD  
RES 33K OHM 1/10W 5% 0603  
SMD  
THERMISTOR PTC 470 OHM  
95C SMD  
5.1k  
5.1k  
R36  
120k  
330R,1W  
510R,1W  
33k  
R41  
R43, R47  
R44  
PT510XCT-ND  
Panasonic - ECG  
R45, R46  
RpA, RpB, RpC  
VR1  
RHM33KGCT-ND  
490-2465-1-ND  
Rohm Semiconductor  
Murata Electronics  
North America  
Vishay/BC  
95C  
10K  
TRIM POT ST-32TB 10 KOHMS  
DIODE ZENER 24V 500MW  
SOD-123  
DIODE ZENER 15V 500MW  
SOD-123  
DIODE ZENER 39V 500MW  
SOD-123  
DIODE ZENER 18V 500MW  
SOD-123  
ST32ETB103CT-ND  
BZT52C24-FDICT-ND  
BZT52C15-FDICT-ND  
BZT52C39-FDICT-ND  
BZT52C18-FDICT-ND  
MMSZ5V6T1GOSCT-ND  
Components  
24V  
Z1  
Diodes Inc  
Diodes Inc  
15V  
Z2  
39V  
Z3, Z7, Z8  
Z4  
Diodes Inc  
18V  
Diodes Inc  
DIODE ZENER 5.6V 500MW  
SOD-123  
5.6V  
Z5, Z6  
ON Semiconductor  
Table 2 IRAUDAMP11 Mechanical Bill of Materials  
Quantity  
7
Value  
Description  
Designator  
Digikey P/N  
Vendor  
Lock washer 1, Lock washer 2,  
Lock washer 3, Lock washer 4,  
Lock washer 5, Lock washer 6  
Lock washer 7  
WASHER LOCK INTERNAL  
#4 SS  
Building  
Fasteners  
Washer #4 SS  
H729-ND  
Print Circuit Board  
IRAUDAM11 Rev 3.0 .PCB  
1
7
PCB  
PCB 1  
Custom  
Screw 1, Screw 2, Screw 3,  
Screw 4, Screw 5, Screw 6,  
Screw 7,  
Screw 4-  
40X5/16  
SCREW MACHINE PHILLIPS  
4-40X5/16  
Building  
Fasteners  
H343-ND  
Keystone  
Electro-  
nics  
Therm-  
alloy  
STANDOFF HEX 4-  
40THR .500"L ALUM  
Stand Off 1, Stand Off 2, Stand  
Off 3, Stand Off 4  
4
Stand off 0.5"  
AAVID 4880G  
1893K-ND  
THERMAL PAD .080" 4X4"  
GAPPAD  
1/16  
thermal pad under heatsink  
BER164-ND  
www.irf.com  
Page 30 of 35  
IRAUDAMP11 REV 1.0  
IRAUDAMP11 Hardware  
Note:  
IRAUDAMP11 Heat Spreader  
All dimensions are in millimeters  
Tolerances are ±0.1mm  
Material:ALUMINUM  
All thread holes are 4-40 X 8mm dip ,minimum  
3
4.5  
3
4.5  
16  
10.5  
6
1.6  
12  
14  
12  
6
8
27  
27  
10  
Fig 25 Heat Spreader  
.
Screw  
H343-ND  
Screw  
H343-ND  
Thermal Pad  
Lock washer  
Lock washer  
Th  
l
d
Screw  
H343-ND  
Screw  
H343-ND  
Stand Off 3  
1893K-ND  
Stand Off 2  
1893K-ND  
Lock washer  
Lock washer  
Lock washer  
Screw  
Lock washer  
Screw  
Screw  
Lock washers  
H729-ND  
Stand Off 4  
1893K-ND  
Stand Off 1  
1893K-ND  
Screws  
H343-ND  
Fig 26 Hardware Assemblies  
www.irf.com  
Page 31 of 35  
IRAUDAMP11 REV 1.0  
IRAUDAMP11 PCB Specifications  
PCB:  
1. Two Layers SMT PCB with through holes  
2. 1/16 thickness  
3. 2/0 OZ Cu  
4. FR4 material  
5. 10 mil lines and spaces  
6. Solder Mask to be Green enamel EMP110 DBG (CARAPACE) or Enthone Endplate  
DSR-3241or equivalent.  
7. Silk Screen to be white epoxy non conductive per IPC–RB 276 Standard.  
8. All exposed copper must finished with TIN-LEAD Sn 60 or 63 for 100u inches thick.  
9. Tolerance of PCB size shall be 0.010 –0.000 inches  
10. Tolerance of all Holes is -.000 + 0.003”  
11. PCB acceptance criteria as defined for class II PCB’S standards.  
Gerber Files Apertures Description:  
All Gerber files stored in the attached CD-ROM were generated from Protel Altium Designer  
Altium Designer 6. Each file name extension means the following:  
1. .gtl  
2. .gbl  
3. .gto  
Top copper, top side  
Bottom copper, bottom side  
Top silk screen  
4. .gbo Bottom silk screen  
5. .gts Top Solder Mask  
6. .gbs Bottom Solder Mask  
7. .gko Keep Out,  
8. .gm1 Mechanical1  
9. .gd1 Drill Drawing  
10. .gg1 Drill locations  
11. .txt  
CNC data  
12. .apr  
Apertures data  
Additional files for assembly that may not be related with Gerber files:  
13. .pcb PCB file  
14. .bom Bill of materials  
15. .cpl Components locations  
16. .sch Schematic  
17. .csv Pick and Place Components  
18. .net Net List  
19. .bak Back up files  
20. .lib  
PCB libraries  
www.irf.com  
Page 32 of 35  
IRAUDAMP11 REV 1.0  
Fig 27 IRAUDAMP11 PCB Top Overlay (Top View)  
www.irf.com  
Page 33 of 35  
IRAUDAMP11 REV 1.0  
Fig 28 IRAUDAMP11 PCB Bottom Layer (Top View)  
www.irf.com  
Page 34 of 35  
IRAUDAMP11 REV 1.0  
Revision changes descriptions  
Revision  
Rev 1.0  
Changes description  
Date  
Oct, 08 2010  
Released  
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105  
Data and specifications subject to change without notice. 01/29/2009  
www.irf.com  
Page 35 of 35  
IRAUDAMP11 REV 1.0  

相关型号:

IRAUDAMP12

130W/4 x 2 Channel Class D Audio Power Amplifier
INFINEON

IRAUDAMP12_15

130W/4 x 2 Channel Class D Audio Power Amplifier
INFINEON

IRAUDAMP15

35W/4 x 2 Channel Class D Audio Power Amplifier
INFINEON

IRAUDAMP15_15

35W/4 x 2 Channel Class D Audio Power Amplifier
INFINEON

IRAUDAMP16

70W/4 x 2 Channel Class D Audio Power Amplifier
INFINEON

IRAUDAMP16_15

70W/4 x 2 Channel Class D Audio Power Amplifier
INFINEON

IRAUDAMP17

100W/4 x 2 Channel Class D Audio Power Amplifier
INFINEON

IRAUDAMP17_15

100W/4 x 2 Channel Class D Audio Power Amplifier
INFINEON

IRAUDAMP18

35W/4 x 2 Channel Class D Audio Power Amplifier
INFINEON

IRAUDAMP18_15

35W/4 x 2 Channel Class D Audio Power Amplifier
INFINEON

IRAUDAMP19

100W/4 x 2 Channel Class D Audio Power Amplifier
INFINEON

IRAUDAMP19_15

100W/4 x 2 Channel Class D Audio Power Amplifier
INFINEON