IRF2204L [INFINEON]

AUTOMOTIVE MOSFET; 汽车MOSFET
IRF2204L
型号: IRF2204L
厂家: Infineon    Infineon
描述:

AUTOMOTIVE MOSFET
汽车MOSFET

文件: 总11页 (文件大小:224K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 94502  
AUTOMOTIVE MOSFET  
IRF2204S  
IRF2204L  
Typical Applications  
HEXFET® Power MOSFET  
Electric Power Steering  
14 Volts Automotive Electrical Systems  
D
VDSS = 40V  
Features  
Advanced Process Technology  
Ultra Low On-Resistance  
Dynamic dv/dt Rating  
175°C Operating Temperature  
Fast Switching  
R
DS(on) = 3.6mΩ  
G
ID = 170A†  
S
Repetitive Avalanche Allowed up to Tjmax  
Description  
SpecificallydesignedforAutomotiveapplications,thisHEXFET®  
Power MOSFET utilizes the lastest processing techniques to  
achieveextremelylow on-resistancepersiliconarea. Additional  
featurestothisdesignarea175°Cjunctionoperatingtemperature,  
fast switching speed and improved repetitive avalanche rating.  
These features combine to make this design an extremely  
efficient and reliable device for use in Automotive applications  
and a wide variety of other applications.  
D2Pak  
IRF2204S  
TO-262  
IRF2204L  
Absolute Maximum Ratings  
Parameter  
Max.  
170†  
120†  
850  
Units  
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current   
A
PD @TC = 25°C  
Power Dissipation  
200  
W
W/°C  
V
Linear Derating Factor  
1.3  
VGS  
EAS  
IAR  
Gate-to-Source Voltage  
± 20  
460  
Single Pulse Avalanche Energy‚  
Avalanche Current  
mJ  
See Fig.12a, 12b, 15, 16  
A
EAR  
TJ  
Repetitive Avalanche Energy‡  
Operating Junction and  
mJ  
-55 to + 175  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
Mounting Torque, 6-32 or M3 screw  
°C  
300 (1.6mm from case )  
10 lbf•in (1.1N•m)  
Thermal Resistance  
Parameter  
Junction-to-Case  
Typ.  
–––  
Max.  
0.75  
Units  
RθJC  
RθJA  
°C/W  
Junction-to-Ambient  
–––  
40  
www.irf.com  
1
07/01/02  
IRF2204S/IRF2204L  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
40 ––– –––  
Conditions  
VGS = 0V, ID = 250µA  
V(BR)DSS  
Drain-to-Source Breakdown Voltage  
V
V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient ––– 0.041 ––– V/°C Reference to 25°C, ID = 1mA  
RDS(on)  
VGS(th)  
gfs  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
–––  
2.0  
3.0 3.6  
––– 4.0  
mVGS = 10V, ID = 130A „  
V
S
VDS = 10V, ID = 250µA  
VDS = 10V, ID = 130A  
VDS = 40V, VGS = 0V  
VDS = 32V, VGS = 0V, TJ = 150°C  
VGS = 20V  
Forward Transconductance  
120 ––– –––  
––– ––– 20  
––– ––– 250  
––– ––– 200  
––– ––– -200  
––– 130 200  
IDSS  
Drain-to-Source Leakage Current  
µA  
nA  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Total Gate Charge  
IGSS  
VGS = -20V  
Qg  
ID = 130A  
Qgs  
Qgd  
td(on)  
tr  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
Rise Time  
–––  
–––  
–––  
35  
39  
52  
59  
nC VDS = 32V  
VGS = 10V„  
VDD = 20V  
15 –––  
––– 140 –––  
––– 62 –––  
––– 110 –––  
ID = 130A  
ns  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
RG = 2.5Ω  
VGS = 10V „  
D
Between lead,  
4.5  
LD  
LS  
Internal Drain Inductance  
Internal Source Inductance  
–––  
–––  
–––  
–––  
6mm (0.25in.)  
nH  
G
from package  
7.5  
and center of die contact  
S
Ciss  
Input Capacitance  
––– 5890 –––  
––– 1570 –––  
––– 130 –––  
––– 8000 –––  
––– 1370 –––  
––– 2380 –––  
VGS = 0V  
Coss  
Output Capacitance  
pF  
VDS = 25V  
Crss  
Reverse Transfer Capacitance  
Output Capacitance  
ƒ = 1.0MHz, See Fig. 5  
Coss  
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz  
VGS = 0V, VDS = 32V, ƒ = 1.0MHz  
VGS = 0V, VDS = 0V to 32V  
Coss  
Output Capacitance  
Coss eff.  
Effective Output Capacitance ꢀ  
Source-Drain Ratings and Characteristics  
Parameter  
Continuous Source Current  
(Body Diode)  
Min. Typ. Max. Units  
Conditions  
D
IS  
MOSFET symbol  
––– –––  
170†  
showing the  
A
G
ISM  
Pulsed Source Current  
(Body Diode)   
integral reverse  
––– ––– 850  
S
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse RecoveryCharge  
Forward Turn-On Time  
––– ––– 1.3  
––– 68 100  
––– 120 180  
V
TJ = 25°C, IS = 130A, VGS = 0V „  
ns  
TJ = 25°C, IF = 130A  
Qrr  
ton  
nC di/dt = 100A/µs „  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
2
www.irf.com  
IRF2204S/IRF2204L  
10000  
1000  
100  
10  
10000  
VGS  
15V  
VGS  
15V  
TOP  
TOP  
10V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
1000  
100  
10  
BOTTOM  
BOTTOM  
4.5V  
4.5V  
20µs PULSE WIDTH  
°
20µs PULSE WIDTH  
°
T
= 25  
C
J
T
= 175  
C
J
1
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000.00  
100.00  
10.00  
2.5  
210A  
=
I
D
T
= 175°C  
J
2.0  
1.5  
1.0  
0.5  
0.0  
T
= 25°C  
J
V
= 25V  
DS  
20µs PULSE WIDTH  
V
= 10V  
GS  
-60 -40 -20  
0
20  
40  
60  
80 100 120 140 160 180  
°
4.0  
5.0  
V
6.0  
7.0  
8.0  
9.0  
10.0  
T , Junction Temperature  
(
C)  
J
, Gate-to-Source Voltage (V)  
GS  
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance  
Vs. Temperature  
www.irf.com  
3
IRF2204S/IRF2204L  
100000  
12  
10  
8
I
V
= 0V,  
f = 1 MHZ  
= 130A  
D
GS  
V
V
=
=
32V  
20V  
C
= C + C  
,
C
SHORTED  
DS  
DS  
iss  
gs  
gd  
ds  
C
= C  
rss  
gd  
C
= C + C  
oss  
ds  
gd  
10000  
1000  
100  
Ciss  
Coss  
6
Crss  
4
2
10  
0
0
30  
Q
60  
90  
120  
150  
1
10  
, Drain-to-Source Voltage (V)  
100  
, Total Gate Charge (nC)  
G
V
DS  
Fig 6. Typical Gate Charge Vs.  
Fig 5. Typical Capacitance Vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
1000  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
°
C
T
= 175  
J
100  
10  
100µsec  
1msec  
°
C
T
= 25  
J
1
10msec  
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0 V  
GS  
2.0  
1
0.1  
0.0  
0.5  
1.0  
1.5  
2.5  
1
10  
, Drain-toSource Voltage (V)  
100  
V
,Source-to-Drain Voltage (V)  
SD  
V
DS  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRF2204S/IRF2204L  
175  
150  
125  
100  
75  
RD  
VDS  
LIMITED BY PACKAGE  
VGS  
D.U.T.  
RG  
+VDD  
-
10V  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
Fig 10a. Switching Time Test Circuit  
50  
V
DS  
25  
90%  
0
25  
50  
75  
100  
125  
150  
175  
°
, Case Temperature ( C)  
T
C
10%  
V
GS  
Fig 9. Maximum Drain Current Vs.  
t
t
r
t
t
f
d(on)  
d(off)  
Case Temperature  
Fig 10b. Switching Time Waveforms  
10  
1
D = 0.50  
0.20  
P
DM  
0.1  
0.10  
0.05  
t
1
t
2
0.02  
Notes:  
SINGLE PULSE  
0.01  
(THERMAL RESPONSE)  
1. Duty factor D =  
t
/ t  
1
2
2. Peak T  
= P  
x
Z
+ T  
J
DM  
thJC  
C
0.01  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
t , Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRF2204S/IRF2204L  
900  
750  
600  
450  
300  
150  
0
1 5V  
I
D
TOP  
52A  
91A  
BOTTOM  
130A  
DRIVER  
L
V
G
DS  
D.U.T  
AS  
R
+
V
D D  
-
I
A
20V  
0.01  
t
p
Fig 12a. Unclamped Inductive Test Circuit  
V
(BR)DSS  
t
p
25  
50  
75  
100  
125  
°
( C)  
150  
175  
Starting Tj, Junction Temperature  
I
AS  
Fig 12c. Maximum Avalanche Energy  
Fig 12b. Unclamped Inductive Waveforms  
Vs. Drain Current  
Q
G
10 V  
4.0  
Q
Q
GD  
GS  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
V
G
I
= 250µA  
D
Charge  
Fig 13a. Basic Gate Charge Waveform  
Current Regulator  
Same Type as D.U.T.  
50KΩ  
.2µF  
12V  
.3µF  
+
V
DS  
D.U.T.  
-
-75 -50 -25  
0
25 50 75 100 125 150 175 200  
, Temperature ( °C )  
V
GS  
T
3mA  
J
I
I
D
G
Current Sampling Resistors  
Fig 14. Threshold Voltage Vs. Temperature  
Fig 13b. Gate Charge Test Circuit  
6
www.irf.com  
IRF2204S/IRF2204L  
1000  
100  
10  
Duty Cycle = Single Pulse  
0.01  
Allowed avalanche Current vs  
avalanche pulsewidth, tav  
assuming  
Tj = 25°C due to  
avalanche losses  
0.05  
0.10  
1
1.0E-07  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Typical Avalanche Current Vs.Pulsewidth  
500  
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 12a, 12b.  
TOP  
BOTTOM 10% Duty Cycle  
= 210A  
Single Pulse  
I
400  
300  
200  
100  
0
D
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 15, 16).  
tav = Average time in avalanche.  
25  
50  
75  
100  
125  
150  
175  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC  
Iav = 2T/ [1.3·BV·Zth]  
Fig 16. Maximum Avalanche Energy  
EAS (AR) = PD (ave)·tav  
Vs. Temperature  
www.irf.com  
7
IRF2204S/IRF2204L  
Peak Diode Recovery dv/dt Test Circuit  
+
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
D.U.T*  
ƒ
Low Leakage Inductance  
Current Transformer  
-
+
‚
-
„
-
+

RG  
dv/dt controlled by RG  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
+
-
VDD  
VGS  
* Reverse Polarity of D.U.T for P-Channel  
Driver Gate Drive  
P.W.  
Period  
Period  
D =  
P.W.  
V
[
=10V  
] ***  
GS  
D.U.T. I Waveform  
SD  
Reverse  
Recovery  
Current  
Body Diode Forward  
Current  
di/dt  
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  
V
DD  
[
[
]
Re-Applied  
Voltage  
Body Diode  
Forward Drop  
Inductor Curent  
I
]
SD  
Ripple 5%  
*** VGS = 5.0V for Logic Level and 3V Drive Devices  
Fig 17. For N-channel HEXFET® power MOSFETs  
8
www.irf.com  
IRF2204S/IRF2204L  
D2Pak Package Outline  
D2Pak Part Marking Information  
THIS IS AN IRF530S WITH  
LOT CODE 8024  
PART NUMBER  
INTERNATIONAL  
ASSEMBLED ON WW 02,  
RECTIFIER  
LOGO  
2000  
F530S  
IN THE ASSEMBLY LINE "  
L"  
DAT E CODE  
YEAR 0 = 2000  
WEEK 02  
ASSEMBLY  
LOT CODE  
LINE L  
www.irf.com  
9
IRF2204S/IRF2204L  
TO-262 Package Outline  
TO-262 Part Marking Information  
EXAMPLE: THIS IS AN IRL3103L  
LOT CODE 1789  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
ASSEMBLED ON WW 19, 1997  
IN THE ASSEMBLYLINE "C"  
DATE CODE  
YEAR 7 = 1997  
WEEK 19  
ASSEMBLY  
LOT CODE  
LINE C  
10  
www.irf.com  
IRF2204S/IRF2204L  
D2Pak Tape & Reel Information  
TR R  
1 .60 (.0 63)  
1 .50 (.0 59)  
1.60 (.063)  
4.10 (.161)  
3.90 (.153)  
1.50 (.059)  
0.368 (.0145)  
0.342 (.0135)  
FEE D D IREC TIO N  
TR L  
11.60 (.457)  
11.40 (.449)  
1 .85 (.0 73)  
1 .65 (.0 65)  
24.30 (.957)  
15.42 (.609)  
23.90 (.941)  
15.22 (.601)  
1.75 (.069)  
10.90 (.429)  
10.70 (.421)  
1.25 (.049)  
4.72 (.136)  
4.52 (.178)  
16.10 (.634)  
15.90 (.626)  
FEED D IRE CTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
M IN.  
30.40 (1.197)  
M AX.  
NO TES  
1. CO MFORM S TO EIA-418.  
2. CO NTROLLING DIM ENSIO N: M ILLIM ETER.  
3. DIM ENSION M EASURED  
:
26.40 (1.039)  
24.40 (.961)  
4
@ HUB.  
3
4. INCLUDES FLANGE DISTORTION  
@
O UTER EDGE.  
Notes:  
Repetitive rating; pulse width limited by  
max. junction temperature. (See fig. 11).  
‚Starting TJ = 25°C, L = 0.06mH  
RG = 25, IAS = 130A. (See Figure 12).  
ƒISD 130A, di/dt 170A/µs, VDD V(BR)DSS  
TJ 175°C.  
Coss eff. is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
.
†
Calculated continuous current based on maximum allowable  
junction temperature. Package limitation current is 75A.  
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive  
avalanche performance.  
,
‡
„Pulse width 400µs; duty cycle 2%.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.07/02  
www.irf.com  
11  

相关型号:

IRF2204LPBF

HEXFET㈢ Power MOSFET ( VDSS = 40V , RDS(on) = 3.6mヘ , ID = 170A )
INFINEON

IRF2204PBF

Power Field-Effect Transistor, 75A I(D), 40V, 0.0036ohm, 1-Element, N-Channel, Silicon, Metal-Oxide Semiconductor FET, TO-220AB, LEAD FREE, PLASTIC PACKAGE-3
INFINEON

IRF2204S

AUTOMOTIVE MOSFET
INFINEON

IRF2204SPBF

HEXFET㈢ Power MOSFET ( VDSS = 40V , RDS(on) = 3.6mヘ , ID = 170A )
INFINEON

IRF2204STRL

TRANSISTOR | MOSFET | N-CHANNEL | 40V V(BR)DSS | 170A I(D) | TO-263AB
ETC

IRF2204STRR

TRANSISTOR | MOSFET | N-CHANNEL | 40V V(BR)DSS | 170A I(D) | TO-263AB
ETC

IRF2204STRRPBF

暂无描述
INFINEON

IRF220E

Power Field-Effect Transistor, 200V, 0.8ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-204AA,
INFINEON

IRF220EA

Power Field-Effect Transistor, 200V, 0.8ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-204AA,
INFINEON

IRF220EB

Power Field-Effect Transistor, 200V, 0.8ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-204AA
INFINEON

IRF220EC

Power Field-Effect Transistor, 200V, 0.8ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-204AA
INFINEON

IRF220ECPBF

Power Field-Effect Transistor, 200V, 0.8ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-204AA
INFINEON