IRF2807Z [INFINEON]

Advanced Process Technology; 先进的工艺技术
IRF2807Z
型号: IRF2807Z
厂家: Infineon    Infineon
描述:

Advanced Process Technology
先进的工艺技术

文件: 总12页 (文件大小:272K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 94659A  
IRF2807Z  
AUTOMOTIVE MOSFET  
IRF2807ZS  
Features  
IRF2807ZL  
O
O
O
O
O
O
Advanced Process Technology  
HEXFET® Power MOSFET  
Ultra Low On-Resistance  
Dynamic dv/dt Rating  
175°C Operating Temperature  
Fast Switching  
D
VDSS = 75V  
Repetitive Avalanche Allowed up to Tjmax  
RDS(on) = 9.4mΩ  
G
Description  
ID = 75A  
SpecificallydesignedforAutomotiveapplications,  
this HEXFET® Power MOSFET utilizes the latest  
processing techniques to achieve extremely low  
on-resistance per silicon area. Additional fea-  
turesofthisdesign area175°Cjunctionoperating  
temperature, fast switching speed and improved  
repetitive avalanche rating . These features com-  
bine to make this design an extremely efficient  
and reliable device for use in Automotive applica-  
tions and a wide variety of other applications.  
S
D2Pak  
TO-262  
IRF2807ZL  
TO-220AB  
IRF2807Z  
IRF2807ZS  
Absolute Maximum Ratings  
Parameter  
Max.  
89  
Units  
A
I
I
I
I
@ TC = 25°C  
@ TC = 100°C  
@ TC = 25°C  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (See Fig. 9)  
D
D
D
63  
75  
(Package Limited)  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
350  
170  
DM  
P
@TC = 25°C  
Maximum Power Dissipation  
W
D
Linear Derating Factor  
Gate-to-Source Voltage  
1.1  
W/°C  
V
V
± 20  
GS  
EAS  
Single Pulse Avalanche Energy (Thermally Limited)  
Single Pulse Avalanche Energy Tested Value  
160  
200  
mJ  
E
AS (tested)  
Avalanche Current  
IAR  
EAR  
See Fig.12a,12b,15,16  
A
Repetitive Avalanche Energy  
mJ  
°C  
T
J
Operating Junction and  
-55 to + 175  
T
Storage Temperature Range  
STG  
Soldering Temperature, for 10 seconds  
Mounting torque, 6-32 or M3 screw  
300 (1.6mm from case )  
10 lbf•in (1.1N•m)  
Thermal Resistance  
Parameter  
Typ.  
–––  
Max.  
0.90  
–––  
62  
Units  
Rθ  
Rθ  
Rθ  
Rθ  
Junction-to-Case  
°C/W  
JC  
CS  
JA  
JA  
Case-to-Sink, Flat, Greased Surface  
0.50  
–––  
Junction-to-Ambient  
–––  
40  
Junction-to-Ambient (PCB Mount, steady state)  
HEXFET® is a registered trademark of International Rectifier.  
www.irf.com  
1
09/03/03  
IRF2807Z/S/L  
Static @ TJ = 25°C (unless otherwise specified)  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
75 ––– –––  
Conditions  
VGS = 0V, ID = 250µA  
V(BR)DSS  
∆ΒVDSS/TJ  
RDS(on)  
V
Breakdown Voltage Temp. Coefficient ––– 0.073 ––– V/°C Reference to 25°C, ID = 1mA  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
–––  
2.0  
7.5  
–––  
–––  
–––  
–––  
–––  
–––  
71  
9.4  
4.0  
V
GS = 10V, ID = 53A  
m
VGS(th)  
V
VDS = VGS, ID = 250µA  
gfs  
IDSS  
Forward Transconductance  
67  
–––  
20  
S
V
V
V
V
V
DS = 25V, ID = 53A  
DS = 75V, VGS = 0V  
DS = 75V, VGS = 0V, TJ = 125°C  
GS = 20V  
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
µA  
250  
200  
-200  
110  
29  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Total Gate Charge  
nA  
nC  
GS = -20V  
Qg  
Qgs  
Qgd  
td(on)  
tr  
ID = 53A  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
19  
VDS = 60V  
28  
42  
V
GS = 10V  
DD = 38V  
18  
–––  
–––  
–––  
–––  
–––  
ns  
V
Rise Time  
79  
I
D = 53A  
G = 6.2Ω  
VGS = 10V  
td(off)  
tf  
Turn-Off Delay Time  
40  
R
Fall Time  
45  
LD  
Internal Drain Inductance  
4.5  
nH Between lead,  
D
6mm (0.25in.)  
from package  
G
LS  
Internal Source Inductance  
–––  
7.5  
–––  
S
and center of die contact  
pF VGS = 0V  
DS = 25V  
ƒ = 1.0MHz, See Fig. 5  
Ciss  
Input Capacitance  
––– 3270 –––  
Coss  
Output Capacitance  
–––  
–––  
420  
240  
–––  
–––  
V
Crss  
Reverse Transfer Capacitance  
Output Capacitance  
Coss  
––– 1590 –––  
V
GS = 0V, VDS = 1.0V, ƒ = 1.0MHz  
GS = 0V, VDS = 60V, ƒ = 1.0MHz  
Coss  
Output Capacitance  
–––  
–––  
280  
440  
–––  
–––  
V
Coss eff.  
Effective Output Capacitance  
VGS = 0V, VDS = 0V to 60V  
Diode Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
IS  
D
Continuous Source Current  
–––  
–––  
89  
MOSFET symbol  
(Body Diode)  
Pulsed Source Current  
A
V
showing the  
integral reverse  
ISM  
G
–––  
–––  
350  
S
(Body Diode)  
p-n junction diode.  
VSD  
T = 25°C, I = 53A, V = 0V  
J S GS  
Diode Forward Voltage  
–––  
–––  
1.3  
trr  
Qrr  
T = 25°C, I = 53A, VDD = 25V  
J F  
di/dt = 100A/µs  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
46  
80  
69  
120  
ns  
nC  
ton  
Forward Turn-On Time  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
 Repetitive rating; pulse width limited by  
max. junction temperature. (See fig. 11).  
‚ Limited by TJmax, starting TJ = 25°C, L = 0.12mH,  
RG = 25, IAS = 53A, VGS =10V. Part not  
Coss eff. is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
.
† Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive  
avalanche performance.  
recommended for use above this value.  
‡ This value determined from sample failure population. 100%  
ƒ ISD 53A, di/dt 420A/µs, VDD V(BR)DSS  
TJ 175°C.  
„ Pulse width 1.0ms; duty cycle 2%.  
,
tested to this value in production.  
ˆ This is applied to D2Pak, when mounted on 1" square PCB  
( FR-4 or G-10 Material ). For recommended footprint and  
soldering techniques refer to application note #AN-994.  
2
www.irf.com  
IRF2807Z/S/L  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
TOP  
TOP  
BOTTOM  
BOTTOM  
1
4.5V  
4.5V  
0.1  
0.01  
20µs PULSE WIDTH  
Tj = 175°C  
20µs PULSE WIDTH  
Tj = 25°C  
1
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
10  
150  
125  
T
= 175°C  
J
T
= 25°C  
J
100  
75  
50  
25  
0
T
= 175°C  
J
T
= 25°C  
J
1
V
= 25V  
DS  
20µs PULSE WIDTH  
0.1  
4
6
8
10  
12  
0
25  
50  
75  
100  
125  
150  
V
, Gate-to-Source Voltage (V)  
I ,Drain-to-Source Current (A)  
D
GS  
Fig 3. Typical Transfer Characteristics  
Fig 4. Typical Forward Transconductance  
vs. Drain Current  
www.irf.com  
3
IRF2807Z/S/L  
12.0  
10.0  
8.0  
100000  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 53A  
D
C
C
C
+ C , C  
SHORTED  
iss  
gs  
gd  
ds  
V
V
V
= 60V  
= 38V  
= 15V  
= C  
DS  
DS  
DS  
rss  
oss  
gd  
= C + C  
ds  
gd  
10000  
1000  
100  
C
iss  
C
C
6.0  
oss  
rss  
4.0  
2.0  
0.0  
10  
1
10  
100  
0
10 20 30 40 50 60 70 80  
Total Gate Charge (nC)  
Q
V
, Drain-to-Source Voltage (V)  
G
DS  
Fig 6. Typical Gate Charge vs.  
Fig 5. Typical Capacitance vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
1000  
100  
10  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
T = 175°C  
J
100µsec  
T
= 25°C  
J
1
1msec  
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
10msec  
V
= 0V  
GS  
0
0.1  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8  
, Source-to-Drain Voltage (V)  
1
10  
100  
1000  
V
V
, Drain-to-Source Voltage (V)  
SD  
DS  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRF2807Z/S/L  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.5  
2.0  
1.5  
1.0  
0.5  
I
= 53A  
D
Limited By Package  
V
= 10V  
GS  
-60 -40 -20  
T
0
20 40 60 80 100 120 140 160 180  
25  
50  
75  
100  
125  
150  
175  
T
, Case Temperature (°C)  
, Junction Temperature (°C)  
C
J
Fig 10. Normalized On-Resistance  
Fig 9. Maximum Drain Current vs.  
vs. Temperature  
Case Temperature  
10  
1
0.1  
D = 0.50  
0.20  
0.10  
0.05  
0.02  
0.01  
0.01  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRF2807Z/S/L  
15V  
300  
250  
200  
150  
100  
50  
I
D
TOP  
22A  
38A  
DRIVER  
+
L
V
DS  
BOTTOM 53A  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
20V  
GS  
0.01  
t
p
Fig 12a. Unclamped Inductive Test Circuit  
V
(BR)DSS  
t
p
0
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
I
AS  
Fig 12c. Maximum Avalanche Energy  
Fig 12b. Unclamped Inductive Waveforms  
vs. Drain Current  
Q
G
10 V  
Q
Q
GD  
GS  
5.0  
4.0  
3.0  
2.0  
1.0  
V
G
Charge  
I
= 250µA  
D
Fig 13a. Basic Gate Charge Waveform  
Current Regulator  
Same Type as D.U.T.  
50KΩ  
.2µF  
12V  
.3µF  
+
V
DS  
D.U.T.  
-
-75 -50 -25  
0
25 50 75 100 125 150 175 200  
V
GS  
T , Temperature ( °C )  
J
3mA  
I
I
D
G
Current Sampling Resistors  
Fig 14. Threshold Voltage vs. Temperature  
Fig 13b. Gate Charge Test Circuit  
6
www.irf.com  
IRF2807Z/S/L  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs  
avalanche pulsewidth, tav  
assuming Tj = 25°C due to  
0.01  
avalanche losses  
0.05  
0.10  
1
0.1  
1.0E-08  
1.0E-07  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Typical Avalanche Current vs.Pulsewidth  
200  
150  
100  
50  
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 12a, 12b.  
TOP  
BOTTOM 10% Duty Cycle  
= 53A  
Single Pulse  
I
D
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 15, 16).  
tav = Average time in avalanche.  
0
25  
50  
75  
100  
125  
150  
175  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Fig 16. Maximum Avalanche Energy  
vs. Temperature  
www.irf.com  
7
IRF2807Z/S/L  
Driver Gate Drive  
P.W.  
P.W.  
Period  
Period  
D =  
D.U.T  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
-
+
di/dt  
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
RG  
+
-
Body Diode  
Forward Drop  
Inductor Curent  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
RD  
VDS  
VGS  
D.U.T.  
RG  
+VDD  
-
10V  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
Fig 18a. Switching Time Test Circuit  
V
DS  
90%  
10%  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 18b. Switching Time Waveforms  
8
www.irf.com  
IRF2807Z/S/L  
TO-220AB Package Outline  
Dimensions are shown in millimeters (inches)  
10.54 (.415)  
10.29 (.405)  
- B -  
3.78 (.149)  
3.54 (.139)  
2.87 (.113)  
2.62 (.103)  
4.69 (.185)  
4.20 (.165)  
1.32 (.052)  
1.22 (.048)  
- A -  
6.47 (.255)  
6.10 (.240)  
4
15.24 (.600)  
14.84 (.584)  
1.15 (.045)  
MIN  
LEAD ASSIGNMENTS  
1 - GATE  
1
2
3
2 - DRAIN  
3 - SOURCE  
4 - DRAIN  
14.09 (.555)  
13.47 (.530)  
4.06 (.160)  
3.55 (.140)  
0.93 (.037)  
0.69 (.027)  
0.55 (.022)  
3X  
3X  
0.46 (.018)  
1.40 (.055)  
3X  
1.15 (.045)  
0.36 (.014)  
M
B A M  
2.92 (.115)  
2.64 (.104)  
2.54 (.100)  
2X  
NOTES:  
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.  
2 CONTROLLING DIMENSION : INCH  
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.  
4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.  
TO-220AB Part Marking Information  
EXAMPLE : THIS IS AN IRF1010  
WITH ASSEMBLY  
A
INTERNATIONAL  
RECTIFIER  
PART NUMBER  
LOT CODE 9B1M  
IRF1010  
9246  
LOGO  
9B 1M  
DATE CODE  
(YYWW)  
ASSEMBLY  
LOT CODE  
YY = YEAR  
WW = WEEK  
www.irf.com  
9
IRF2807Z/S/L  
D2Pak Package Outline  
Dimensions are shown in millimeters (inches)  
D2Pak Part Marking Information  
THIS IS AN IRF530S WITH  
LOT CODE 8024  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
ASSEMBLED ON WW 02, 2000  
IN THE ASSEMBLY LINE "L"  
F530S  
DATE CODE  
YEAR 0 = 2000  
WEE K 02  
AS S E MBL Y  
LOT CODE  
LINE L  
10  
www.irf.com  
IRF2807Z/S/L  
TO-262 Package Outline  
Dimensions are shown in millimeters (inches)  
IGBT  
1- GATE  
2- COLLECTOR  
3- EMITTER  
TO-262 Part Marking Information  
EXA  
MPLE:  
THIS  
IS AN IRL3103L  
LOT CODE 178  
PART NUMBER  
9
INTERNATIONAL  
RECTIFI  
ASSEMBLED ON WW19, 1  
997  
IN THE ASSEMBLY LINE "C"  
ER  
LOGO  
DATE CODE  
YEAR 7 = 1997  
WEEK 19  
ASSEMB  
LY  
LOT CODE  
L
INE C  
www.irf.com  
11  
IRF2807Z/S/L  
D2Pak Tape & Reel Information  
Dimensions are shown in millimeters (inches)  
TRR  
1.60 (.063)  
1.50 (.059)  
1.60 (.063)  
1.50 (.059)  
4.10 (.161)  
3.90 (.153)  
0.368 (.0145)  
0.342 (.0135)  
FEED DIRECTION  
TRL  
11.60 (.457)  
11.40 (.449)  
1.85 (.073)  
1.65 (.065)  
24.30 (.957)  
23.90 (.941)  
15.42 (.609)  
15.22 (.601)  
1.75 (.069)  
1.25 (.049)  
10.90 (.429)  
10.70 (.421)  
4.72 (.136)  
4.52 (.178)  
16.10 (.634)  
15.90 (.626)  
FEED DIRECTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
MIN.  
30.40 (1.197)  
MAX.  
NOTES :  
1. COMFORMS TO EIA-418.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION MEASURED @ HUB.  
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
26.40 (1.039)  
24.40 (.961)  
4
3
TO-220AB package is not recommended for Surface Mount Application.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Automotive [Q101] market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 09/03  
12  
www.irf.com  

相关型号:

IRF2807ZHR

暂无描述
INFINEON

IRF2807ZL

Advanced Process Technology
INFINEON

IRF2807ZL

AUTOMOTIVE MOSFET Advanced Process Technology
KERSEMI

IRF2807ZLPBF

AUTOMOTIVE MOSFET (75V, 94mOHM, 75A)
INFINEON

IRF2807ZPBF

AUTOMOTIVE MOSFET (75V, 94mOHM, 75A)
INFINEON

IRF2807ZS

Advanced Process Technology
INFINEON

IRF2807ZS

AUTOMOTIVE MOSFET Advanced Process Technology
KERSEMI

IRF2807ZSPBF

AUTOMOTIVE MOSFET (75V, 94mOHM, 75A)
INFINEON

IRF2807ZSTRL

Power Field-Effect Transistor, 75A I(D), 75V, 0.0094ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, PLASTIC, D2PAK-3
INFINEON

IRF2807ZSTRLPBF

Power Field-Effect Transistor, 75A I(D), 75V, 0.0094ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRF2807ZSTRR

Power Field-Effect Transistor, 75A I(D), 75V, 0.0094ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, PLASTIC, D2PAK-3
INFINEON

IRF2807ZSTRRPBF

Power Field-Effect Transistor, 75A I(D), 75V, 0.0094ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, LEAD FREE, PLASTIC, D2PAK-3
INFINEON