IRF3205ZPBF [INFINEON]

AUTOMOTIVE MOSFET; 汽车MOSFET
IRF3205ZPBF
型号: IRF3205ZPBF
厂家: Infineon    Infineon
描述:

AUTOMOTIVE MOSFET
汽车MOSFET

晶体 晶体管 功率场效应晶体管 开关 脉冲 PC 局域网
文件: 总13页 (文件大小:367K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 95129  
IRF3205ZPbF  
IRF3205ZSPbF  
IRF3205ZLPbF  
AUTOMOTIVE MOSFET  
Features  
HEXFET® Power MOSFET  
l
l
l
l
l
Advanced Process Technology  
UltraLowOn-Resistance  
175°COperatingTemperature  
Fast Switching  
D
VDSS = 55V  
Repetitive Avalanche Allowed up to Tjmax  
RDS(on) = 6.5mΩ  
l
Lead-Free  
G
Description  
ID = 75A  
Specifically designed for Automotive applications,  
this HEXFET® Power MOSFET utilizes the latest  
processingtechniquestoachieveextremelylowon-  
resistance per silicon area. Additional features of  
thisdesign area175°Cjunctionoperatingtempera-  
ture, fast switching speed and improved repetitive  
avalanche rating . These features combine to make  
thisdesignanextremelyefficientandreliabledevice  
foruseinAutomotiveapplicationsandawidevariety  
of other applications.  
S
TO-220AB  
D2Pak  
TO-262  
IRF3205ZPbF IRF3205ZSPbF IRF3205ZLPbF  
Absolute Maximum Ratings  
Parameter  
Max.  
110  
78  
Units  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V (Package Limited)  
Pulsed Drain Current  
I
I
I
I
@ T = 25°C  
C
D
D
D
@ T = 100°C  
C
A
@ T = 25°C  
C
75  
440  
170  
DM  
P
@T = 25°C  
Power Dissipation  
C
W
D
Linear Derating Factor  
Gate-to-Source Voltage  
Single Pulse Avalanche Energy  
1.1  
± 20  
W/°C  
V
V
GS  
EAS (Thermally limited)  
180  
250  
mJ  
Single Pulse Avalanche Energy Tested Value  
Avalanche Current  
EAS (Tested )  
IAR  
See Fig.12a, 12b, 15, 16  
A
Repetitive Avalanche Energy  
EAR  
mJ  
T
J
Operating Junction and  
-55 to + 175  
T
Storage Temperature Range  
°C  
STG  
Soldering Temperature, for 10 seconds  
Mounting Torque, 6-32 or M3 screw  
300 (1.6mm from case )  
10 lbf in (1.1N m)  
Thermal Resistance  
Parameter  
Typ.  
–––  
Max.  
0.90  
–––  
62  
Units  
°C/W  
RθJC  
Junction-to-Case  
RθCS  
RθJA  
RθJA  
0.50  
–––  
Case-to-Sink, Flat Greased Surface  
Junction-to-Ambient  
–––  
40  
Junction-to-Ambient (PCB Mount)  
www.irf.com  
1
3/18/04  
IRF3205ZS/LPbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
55 ––– –––  
Conditions  
VGS = 0V, ID = 250µA  
V(BR)DSS  
V(BR)DSS/TJ  
RDS(on)  
V
Breakdown Voltage Temp. Coefficient ––– 0.051 ––– V/°C Reference to 25°C, ID = 1mA  
mΩ  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
–––  
2.0  
4.9  
–––  
–––  
–––  
–––  
–––  
6.5  
4.0  
–––  
20  
V
GS = 10V, ID = 66A  
VDS = VGS, ID = 250µA  
DS = 25V, ID = 66A  
VGS(th)  
V
S
gfs  
Forward Transconductance  
71  
V
IDSS  
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
µA VDS = 55V, VGS = 0V  
250  
200  
V
V
V
DS = 55V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Total Gate Charge  
nA  
nC  
GS = 20V  
GS = -20V  
––– -200  
Qg  
Qgs  
Qgd  
td(on)  
tr  
76  
21  
30  
18  
95  
45  
67  
4.5  
110  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
ID = 66A  
VDS = 44V  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
VGS = 10V  
VDD = 28V  
ID = 66A  
Rise Time  
td(off)  
tf  
Turn-Off Delay Time  
ns  
RG = 6.8 Ω  
VGS = 10V  
Fall Time  
LD  
Internal Drain Inductance  
Between lead,  
nH 6mm (0.25in.)  
from package  
LS  
Internal Source Inductance  
–––  
7.5  
–––  
and center of die contact  
VGS = 0V  
DS = 25V  
pF ƒ = 1.0MHz  
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz  
Ciss  
Coss  
Crss  
Coss  
Coss  
Input Capacitance  
––– 3450 –––  
Output Capacitance  
–––  
–––  
550  
310  
–––  
–––  
V
Reverse Transfer Capacitance  
Output Capacitance  
––– 1940 –––  
Output Capacitance  
–––  
–––  
430  
640  
–––  
–––  
V
V
GS = 0V, VDS = 44V, ƒ = 1.0MHz  
GS = 0V, VDS = 0V to 44V  
Coss eff.  
Effective Output Capacitance  
Source-Drain Ratings and Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
I
Continuous Source Current  
–––  
–––  
75  
MOSFET symbol  
S
(Body Diode)  
A
showing the  
I
Pulsed Source Current  
–––  
–––  
440  
integral reverse  
SM  
(Body Diode)  
p-n junction diode.  
V
t
Diode Forward Voltage  
–––  
–––  
–––  
–––  
28  
1.3  
42  
38  
V
T = 25°C, I = 66A, V = 0V  
SD  
J
S
GS  
Reverse Recovery Time  
Reverse Recovery Charge  
Forward Turn-On Time  
ns T = 25°C, I = 66A, VDD = 25V  
J F  
rr  
di/dt = 100A/µs  
Q
t
25  
nC  
rr  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
on  
2
www.irf.com  
IRF3205ZS/LPbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8ꢀ0V  
7ꢀ0V  
6ꢀ0V  
5ꢀ5V  
5ꢀ0V  
VGS  
15V  
10V  
8ꢀ0V  
7ꢀ0V  
6ꢀ0V  
5ꢀ5V  
5ꢀ0V  
TOP  
TOP  
BOTTOM 4ꢀ5V  
BOTTOM 4ꢀ5V  
4.5V  
4.5V  
20µs PULSE WIDTH  
Tj = 25°C  
20µs PULSE WIDTH  
Tj = 175°C  
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
120  
1000  
T
= 175°C  
J
T
= 25°C  
J
100  
80  
60  
40  
20  
0
T
= 175°C  
J
100  
10  
1
T
= 25°C  
J
V
= 10V  
DS  
20µs PULSE WIDTH  
V
DS  
= 25V  
20µs PULSE WIDTH  
8.0 9.0 10.0  
, Gate-to-Source Voltage (V)  
4.0  
5.0  
6.0  
7.0  
11.0  
0
20  
D,  
40  
60  
80  
100  
I
Drain-to-Source Current (A)  
V
GS  
Fig 3. Typical Transfer Characteristics  
Fig 4. Typical Forward Transconductance  
Vs. Drain Current  
www.irf.com  
3
IRF3205ZS/LPbF  
6000  
20  
16  
12  
8
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I
= 66A  
D
C
C
C
+ C , C  
SHORTED  
iss  
gs  
gd  
ds  
V
= 44V  
DS  
= C  
5000  
4000  
3000  
2000  
1000  
0
rss  
oss  
gd  
VDS= 28V  
VDS= 11V  
= C + C  
ds  
gd  
Ciss  
4
Coss  
Crss  
0
0
20  
40  
60  
80  
100  
120  
1
10  
, Drain-to-Source Voltage (V)  
100  
Q
Total Gate Charge (nC)  
G
V
DS  
Fig 6. Typical Gate Charge Vs.  
Fig 5. Typical Capacitance Vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
1000.0  
100.0  
10.0  
1.0  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
T
= 175°C  
J
100µsec  
1msec  
T
= 25°C  
J
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
10msec  
V
= 0V  
GS  
0.1  
0.1  
1
10  
100  
1000  
0.2  
0.6  
1.0  
1.4  
1.8  
2.2  
V
, Drain-toSource Voltage (V)  
V
, Source-toDrain Voltage (V)  
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRF3205ZS/LPbF  
120  
100  
80  
60  
40  
20  
0
2.5  
2.0  
1.5  
1.0  
0.5  
LIMITED BY PACKAGE  
I
= 66A  
D
V
= 10V  
GS  
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20  
T
0
20 40 60 80 100 120 140 160 180  
T
, Case Temperature (°C)  
C
, Junction Temperature (°C)  
J
Fig 10. Normalized On-Resistance  
Fig 9. Maximum Drain Current Vs.  
Vs. Temperature  
Case Temperature  
1
D = 0.50  
0.20  
0.1  
0.10  
0.05  
0.02  
0.01  
0.01  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRF3205ZS/LPbF  
350  
300  
250  
200  
150  
100  
50  
15V  
ID  
27A  
47A  
TOP  
BOTTOM 66A  
DRIVER  
L
V
DS  
D.U.T  
AS  
R
G
+
-
V
DD  
I
A
V
20V  
GS  
0.01  
t
p
Fig 12a. Unclamped Inductive Test Circuit  
V
(BR)DSS  
t
p
0
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
I
AS  
Fig 12c. Maximum Avalanche Energy  
Fig 12b. Unclamped Inductive Waveforms  
Vs. Drain Current  
Q
G
10 V  
Q
Q
GD  
GS  
4.0  
3.0  
2.0  
1.0  
V
G
I
= 250µA  
D
Charge  
Fig 13a. Basic Gate Charge Waveform  
L
VCC  
DUT  
0
-75 -50 -25  
0
25 50 75 100 125 150 175  
, Temperature ( °C )  
1K  
T
J
Fig 14. Threshold Voltage Vs. Temperature  
Fig 13b. Gate Charge Test Circuit  
6
www.irf.com  
IRF3205ZS/LPbF  
1000  
100  
10  
Duty Cycle = Single Pulse  
0.01  
Allowed avalanche Current vs  
avalanche pulsewidth, tav  
assuming  
Tj = 25°C due to  
avalanche losses. Note: In no  
case should Tj be allowed to  
exceed Tjmax  
0.05  
0.10  
1
0.1  
1.0E-08  
1.0E-07  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Typical Avalanche Current Vs.Pulsewidth  
200  
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 12a, 12b.  
TOP  
BOTTOM 10% Duty Cycle  
= 66A  
Single Pulse  
I
160  
120  
80  
40  
0
D
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 15, 16).  
tav = Average time in avalanche.  
25  
50  
75  
100  
125  
150  
175  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Iav = 2DT/ [1.3·BV·Zth]  
Fig 16. Maximum Avalanche Energy  
EAS (AR) = PD (ave)·tav  
Vs. Temperature  
www.irf.com  
7
IRF3205ZS/LPbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
DꢀUꢀT  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as DꢀUꢀTꢀ  
ISD controlled by Duty Factor "D"  
DꢀUꢀTꢀ - Device Under Test  
Inductor Curent  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
RD  
VDS  
VGS  
DꢀUꢀTꢀ  
RG  
+VDD  
-
10V  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
Fig 18a. Switching Time Test Circuit  
V
DS  
90%  
10%  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 18b. Switching Time Waveforms  
8
www.irf.com  
IRF3205ZS/LPbF  
TO-220AB Package Outline  
Dimensions are shown in millimeters (inches)  
10.54 (.415)  
3.78 (.149)  
- B -  
10.29 (.405)  
2.87 (.113)  
2.62 (.103)  
4.69 (.185)  
4.20 (.165)  
3.54 (.139)  
1.32 (.052)  
1.22 (.048)  
- A -  
6.47 (.255)  
6.10 (.240)  
4
15.24 (.600)  
14.84 (.584)  
LEAD ASSIGNMENTS  
1.15 (.045)  
MIN  
HEXFET  
IGBTs, CoPACK  
1
2
3
1- GATE  
1- GATE  
2- DRAIN  
3- SOURCE  
2- COLLECTOR  
3- EMITTER  
4- COLLECTOR  
4- DRAIN  
14.09 (.555)  
13.47 (.530)  
4.06 (.160)  
3.55 (.140)  
0.93 (.037)  
0.69 (.027)  
0.55 (.022)  
0.46 (.018)  
3X  
3X  
1.40 (.055)  
3X  
1.15 (.045)  
0.36 (.014)  
M
B A M  
2.92 (.115)  
2.64 (.104)  
2.54 (.100)  
2X  
NOTES:  
1
2
DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.  
CONTROLLING DIMENSION : INCH  
3
4
OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.  
HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.  
TO-220AB Part Marking Information  
EXAMPLE: T HIS IS AN IRF1010  
LOT CODE 1789  
PART NUMBER  
AS S EMBLED ON WW 19, 1997  
IN THE AS S EMBLY LINE "C"  
INTERNATIONAL  
RECTIFIER  
LOGO  
Note: "P" in assembly line  
position indicates "Lead-Free"  
DATE CODE  
YEAR 7 = 1997  
WEEK 19  
AS S E MB LY  
LOT CODE  
LINE C  
www.irf.com  
9
IRF3205ZS/LPbF  
D2Pak Package Outline  
Dimensions are shown in millimeters (inches)  
D2Pak Part Marking Information (Lead-Free)  
T H IS IS AN IR F 530S WIT H  
P AR T N U MB E R  
D AT E COD E  
L OT COD E 8024  
AS S E MB L E D ON WW 02, 2000  
IN T H E AS S E MB L Y L IN E "L "  
IN T E R N AT IONAL  
R E CT IF IE R  
L OGO  
F 530S  
N ote: "P " in as s embly line  
pos ition indicates "L ead-F ree"  
YE AR  
WE E K 02  
L IN E  
0 = 2000  
AS S E MB L Y  
L OT COD E  
L
OR  
P AR T N U MB E R  
IN T E R N AT ION AL  
R E CT IF IE R  
L OGO  
F 530S  
D AT E COD E  
P
=
D E S IGN AT E S L E AD-F R E E  
P R OD U CT (OP T ION AL )  
AS S E M B L Y  
L OT CODE  
YE AR  
W E E K 02  
A = AS S E MB L Y S IT E CODE  
0 = 2000  
10  
www.irf.com  
IRF3205ZS/LPbF  
TO-262 Package Outline  
IGBT  
1- GATE  
2- COLLECTOR  
3- EMITTER  
TO-262 Part Marking Information  
EXAMPLE: THIS IS AN IRL3103L  
LOT CODE 1789  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
ASSEMBLED ON WW 19, 1997  
IN THE ASSEMBLY LINE "C"  
DATE CODE  
YEAR 7 = 1997  
WEEK 19  
Note: "P" in assembly line  
position indicates "Lead-Free"  
ASSEMBLY  
LOT CODE  
LINE C  
OR  
PART NUMBER  
DATE CODE  
INTERNATIONAL  
RECTIFIER  
LOGO  
P = DESIGNATES LEAD-FREE  
PRODUCT (OPTIONAL)  
YEAR 7 = 1997  
ASSEMBLY  
LOT CODE  
WEEK 19  
A= ASSEMBLY SITE CODE  
www.irf.com  
11  
IRF3205ZS/LPbF  
D2Pak Tape & Reel Infomation  
TRR  
1.60 (.063)  
1.50 (.059)  
1.60 (.063)  
1.50 (.059)  
4.10 (.161)  
3.90 (.153)  
0.368 (.0145)  
0.342 (.0135)  
FEED DIRECTION  
TRL  
11.60 (.457)  
11.40 (.449)  
1.85 (.073)  
1.65 (.065)  
24.30 (.957)  
23.90 (.941)  
15.42 (.609)  
15.22 (.601)  
1.75 (.069)  
1.25 (.049)  
10.90 (.429)  
10.70 (.421)  
4.72 (.136)  
4.52 (.178)  
16.10 (.634)  
15.90 (.626)  
FEED DIRECTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
MIN.  
30.40 (1.197)  
MAX.  
NOTES :  
1. COMFORMS TO EIA-418.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION MEASURED @ HUB.  
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
26.40 (1.039)  
24.40 (.961)  
4
3
Notes:  
†
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive  
avalanche performance.  
 Repetitive rating; pulse width limited by  
max. junction temperature. (See fig. 11).  
‚ Limited by TJmax, starting TJ = 25°C, L = 0.08mH  
This value determined from sample failure population. 100%  
tested to this value in production.  
RG = 25, IAS = 66A, VGS =10V. Part not  
recommended for use above this value.  
‡ This is only applied to TO-220AB pakcage.  
ƒ Pulse width 1.0ms; duty cycle 2%.  
„ Coss eff. is a fixed capacitance that gives the  
same charging time as Coss while VDS is rising  
ˆ This is applied to D2Pak, when mounted on 1" square PCB (FR-  
4 or G-10 Material). For recommended footprint and soldering  
techniques refer to application note #AN-994.  
from 0 to 80% VDSS  
.
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Automotive [Q101]market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 03/04  
12  
www.irf.com  
Note: For the most current drawings please refer to the IR website at:  
http://www.irf.com/package/  

相关型号:

IRF3205ZS

AUTOMOTIVE MOSFET
INFINEON

IRF3205ZS

HEXFET® Power MOSFET
FREESCALE

IRF3205ZS

Advanced Process Technology Ultra Low On-Resistance
KERSEMI

IRF3205ZSPBF

AUTOMOTIVE MOSFET
INFINEON

IRF3205ZSTRL

Power Field-Effect Transistor, 75A I(D), 55V, 0.0065ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, PLASTIC, D2PAK-3
INFINEON

IRF3205ZSTRLPBF

Power Field-Effect Transistor, 75A I(D), 55V, 0.0065ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRF320LSPBF

HEXFET㈢ Power MOSFET
INFINEON

IRF321

N-Channel Power MOSFETs, 3.0 A, 350-400 V
FAIRCHILD

IRF321

N-CHANNEL POWER MOSFETS
SAMSUNG

IRF321

2.8A and 3.3A, 350V and 400V, 1.8 and 2.5 Ohm, N-Channel Power MOSFETs
INTERSIL

IRF322

N-Channel Power MOSFETs, 3.0 A, 350-400 V
FAIRCHILD

IRF322

N-CHANNEL POWER MOSFETS
SAMSUNG