IRF3610S [INFINEON]

Power Field-Effect Transistor, 103A I(D), 100V, 0.0116ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, PLASTIC, D2PAK-3;
IRF3610S
型号: IRF3610S
厂家: Infineon    Infineon
描述:

Power Field-Effect Transistor, 103A I(D), 100V, 0.0116ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, PLASTIC, D2PAK-3

开关 脉冲 晶体管
文件: 总9页 (文件大小:252K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97638A  
IRF3610SPbF  
HEXFET® Power MOSFET  
Applications  
D
S
l High Efficiency Synchronous Rectification in SMPS  
l Uninterruptible Power Supply  
l High Speed Power Switching  
l Hard Switched and High Frequency Circuits  
VDSS  
RDS(on) typ.  
100V  
9.3m  
Ω
G
max.  
11.6m  
Ω
ID  
103A  
Benefits  
l Improved Gate, Avalanche and Dynamic dV/dt  
Ruggedness  
l Fully Characterized Capacitance and Avalanche  
D
SOA  
l Enhanced body diode dV/dt and dI/dt Capability  
l Lead-Free  
S
G
D2Pak  
IRF3610SPbF  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Symbol  
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
Parameter  
Max.  
103  
Units  
A
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
73  
410  
Pulsed Drain Current  
PD @TC = 25°C  
W
333  
Maximum Power Dissipation  
Linear Derating Factor  
2.2  
W/°C  
V
VGS  
± 20  
Gate-to-Source Voltage  
23  
Peak Diode Recovery  
dv/dt  
TJ  
V/ns  
-55 to + 175  
Operating Junction and  
TSTG  
°C  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
300 (1.6mm from case)  
Avalanche Characteristics  
Single Pulse Avalanche Energy (Thermally Limited)  
Avalanche Current  
EAS  
460  
mJ  
A
IAR  
See Fig. 14, 15, 22a, 22b  
Repetitive Avalanche Energy  
EAR  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
Max.  
0.50  
40  
Units  
°C/W  
RθJC  
Junction-to-Case  
RθJA  
–––  
Junction-to-Ambient (PCB Mount)  
www.irf.com  
1
09/23/11  
IRF3610SPbF  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
ΔV(BR)DSS/ΔTJ  
RDS(on)  
VGS(th)  
gfs  
Parameter  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
Min. Typ. Max. Units  
100 ––– –––  
––– 0.10 ––– V/°C Reference to 25°C, ID = 1.0mA  
Conditions  
VGS = 0V, ID = 250μA  
V
–––  
2.0  
9.3 11.6  
––– 4.0  
VGS = 10V, ID = 62A  
VDS = VGS, ID = 250μA  
VDS = 25V, ID = 62A  
mΩ  
V
Forward Transconductance  
110 ––– –––  
S
RG  
Internal Gate Resistance  
–––  
2.2  
–––  
20  
Ω
IDSS  
Drain-to-Source Leakage Current  
––– –––  
μA VDS = 100V, VGS = 0V  
DS = 100V, VGS = 0V, TJ = 125°C  
nA VGS = 20V  
GS = -20V  
––– ––– 250  
––– ––– 200  
––– ––– -200  
V
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
V
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
Parameter  
Total Gate Charge  
Gate-to-Source Charge  
Min. Typ. Max. Units  
––– 100 150 nC ID = 62A  
DS =50V  
VGS = 10V  
ID = 62A, VDS =0V, VGS = 10V  
ns VDD = 65V  
Conditions  
Qg  
Qgs  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
23  
42  
58  
15  
55  
77  
43  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
V
Qgd  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
Qsync  
td(on)  
Turn-On Delay Time  
tr  
Rise Time  
ID = 62A  
td(off)  
Turn-Off Delay Time  
R = 2.7  
Ω
G
tf  
Fall Time  
VGS = 10V  
Ciss  
Input Capacitance  
––– 5380 –––  
––– 690 –––  
––– 100 –––  
––– 560 –––  
––– 750 –––  
pF VGS = 0V  
Coss  
Output Capacitance  
VDS = 25V  
Crss  
Reverse Transfer Capacitance  
Effective Output Capacitance (Energy Related)  
Effective Output Capacitance (Time Related)  
ƒ = 1.0 MHz, See Fig. 5  
Coss eff. (ER)  
Coss eff. (TR)  
V
GS = 0V, VDS = 0V to 80V , See Fig. 11  
GS = 0V, VDS = 0V to 80V  
V
Diode Characteristics  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
D
IS  
Continuous Source Current  
––– –––  
––– ––– 410  
––– ––– 1.3  
A
MOSFET symbol  
103  
(Body Diode)  
Pulsed Source Current  
(Body Diode)  
Diode Forward Voltage  
Reverse Recovery Time  
showing the  
integral reverse  
G
ISM  
A
S
p-n junction diode.  
TJ = 25°C, IS = 62A, VGS = 0V  
VSD  
trr  
V
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 85V,  
––– 110 –––  
––– 120 –––  
––– 570 –––  
––– 710 –––  
––– -9.5 –––  
ns  
IF = 62A  
di/dt = 100A/μs  
Qrr  
Reverse Recovery Charge  
nC  
A
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
 Repetitive rating; pulse width limited by max. junction  
temperature.  
‚ Limited by TJmax, starting TJ = 25°C, L = 0.24mH  
† Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
.
‡ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom-  
RG = 50Ω, IAS = 62A, VGS =10V. Part not recommended for use  
above this value.  
mended footprint and soldering techniques refer to application note #AN-994.  
ˆ Rθ is measured at TJ approximately 90°C.  
‰ RθJC value shown is at time zero.  
ƒ ISD 62A, di/dt 1935A/μs, VDD V(BR)DSS, TJ 175°C.  
„ Pulse width 400μs; duty cycle 2%.  
Coss eff. (TR) is a fixed capacitance that gives the same charging  
time as Coss while VDS is rising from 0 to 80% VDSS  
.
2
www.irf.com  
IRF3610SPbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
6.0V  
5.0V  
4.7V  
4.5V  
4.2V  
4.0V  
VGS  
15V  
10V  
6.0V  
5.0V  
4.7V  
4.5V  
4.2V  
4.0V  
TOP  
TOP  
BOTTOM  
BOTTOM  
4.0V  
1
4.0V  
60μs PULSE WIDTH  
Tj = 175°C  
60μs PULSE WIDTH  
Tj = 25°C  
1
0.1  
0.1  
1
10  
100  
0.1  
1
10  
100  
1000  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
10  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
I
= 62A  
D
V
= 10V  
GS  
T
= 175°C  
J
T
= 25°C  
J
1
V
DS  
= 50V  
60μs PULSE WIDTH  
0.1  
2
3
4
5
6
7
8
9
10 11  
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
T
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
14.0  
100000  
10000  
1000  
100  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 62A  
D
C
C
C
+ C , C  
SHORTED  
ds  
iss  
gs  
gd  
12.0  
= C  
rss  
oss  
gd  
= C + C  
V
V
V
= 80V  
= 50V  
= 20V  
DS  
DS  
DS  
ds  
gd  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
C
C
iss  
oss  
C
rss  
10  
0
20  
40  
60  
80  
100 120 140  
1
10  
, Drain-to-Source Voltage (V)  
100  
Q , Total Gate Charge (nC)  
V
G
DS  
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
www.irf.com  
3
IRF3610SPbF  
1000  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
T
= 175°C  
J
100  
10  
100μsec  
1msec  
10msec  
T
= 25°C  
J
1
Tc = 25°C  
Tj = 175°C  
DC  
V
= 0V  
GS  
Single Pulse  
1.0  
0.1  
0.0  
0.5  
1.0  
1.5  
2.0  
0.1  
1
10  
100  
V
, Source-to-Drain Voltage (V)  
V
DS  
, Drain-toSource Voltage (V)  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
125  
120  
115  
110  
105  
100  
95  
120  
100  
80  
60  
40  
20  
0
I
= 1.0mA  
D
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20 0 20 40 60 80 100120140160180  
T , Temperature ( °C )  
J
Fig 10. Drain-to-Source Breakdown Voltage  
T
, Case Temperature (°C)  
C
Fig 9. Maximum Drain Current vs.  
Case Temperature  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2000  
I
D
TOP  
13A  
27A  
BOTTOM 62A  
1600  
1200  
800  
400  
0
-20  
0
20  
40  
60  
80  
100 120  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
V
Drain-to-Source Voltage (V)  
DS,  
Fig 11. Typical COSS Stored Energy  
Fig 12. Maximum Avalanche Energy vs. DrainCurrent  
4
www.irf.com  
IRF3610SPbF  
1
0.1  
D = 0.50  
0.20  
0.10  
0.05  
0.01  
0.02  
0.01  
0.001  
SINGLE PULSE  
Notes:  
1. Duty Factor D = t1/t2  
( THERMAL RESPONSE )  
2. Peak Tj = P dm x Zthjc + Tc  
0.0001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs avalanche  
Δ
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
0.01  
0.05  
0.10  
1
Allowed avalanche Current vs avalanche  
ΔΤ  
pulsewidth, tav, assuming  
Tstart = 150°C.  
j = 25°C and  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
500  
400  
300  
200  
100  
0
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
TOP  
Single Pulse  
BOTTOM 1.0% Duty Cycle  
= 62A  
I
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
175  
Iav = 2DT/ [1.3·BV·Zth]  
Starting T , Junction Temperature (°C)  
EAS (AR) = PD (ave)·tav  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
www.irf.com  
5
IRF3610SPbF  
60  
50  
40  
30  
20  
10  
0
4.5  
4.0  
3.5  
3.0  
I = 41A  
F
V
= 85V  
R
T = 25°C  
J
T = 125°C  
J
I
I
I
= 250μA  
D
D
D
2.5  
2.0  
1.5  
= 1.0mA  
= 1.0A  
100 200 300 400 500 600 700 800 900 1000  
-100  
-50  
0
50  
100  
150  
200  
di /dt (A/μs)  
T , Temperature ( °C )  
F
J
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage vs. Temperature  
4000  
60  
I = 62A  
I = 41A  
F
F
3500  
3000  
2500  
2000  
1500  
1000  
500  
V
= 85V  
V
= 85V  
R
R
50  
40  
30  
20  
10  
0
T = 25°C  
T = 25°C  
J
J
T = 125°C  
T = 125°C  
J
J
100 200 300 400 500 600 700 800 900 1000  
100 200 300 400 500 600 700 800 900 1000  
di /dt (A/μs)  
di /dt (A/μs)  
F
F
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
4000  
I = 62A  
F
3500  
3000  
2500  
2000  
1500  
1000  
500  
V
= 85V  
R
T = 25°C  
J
T = 125°C  
J
100 200 300 400 500 600 700 800 900 1000  
di /dt (A/μs)  
F
Fig. 20 - Typical Stored Charge vs. dif/dt  
6
www.irf.com  
IRF3610SPbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
Ω
0.01  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
RD  
VDS  
V
DS  
90%  
VGS  
D.U.T.  
RG  
+
VDD  
-
VGS  
10%  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Current Regulator  
Same Type as D.U.T.  
Vds  
Vgs  
50KΩ  
.2μF  
12V  
.3μF  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
www.irf.com  
7
IRF3610SPbF  
D2Pak (TO-263AB) Package Outline  
Dimensions are shown in millimeters (inches)  
D2Pak (TO-263AB) Part Marking Information  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
8
www.irf.com  
IRF3610SPbF  
D2Pak (TO-263AB) Tape & Reel Information  
Dimensions are shown in millimeters (inches)  
TRR  
1.60 (.063)  
1.50 (.059)  
1.60 (.063)  
1.50 (.059)  
4.10 (.161)  
3.90 (.153)  
0.368 (.0145)  
0.342 (.0135)  
FEED DIRECTION  
1.85 (.073)  
11.60 (.457)  
11.40 (.449)  
1.65 (.065)  
24.30 (.957)  
23.90 (.941)  
15.42 (.609)  
15.22 (.601)  
TRL  
1.75 (.069)  
1.25 (.049)  
10.90 (.429)  
10.70 (.421)  
4.72 (.136)  
4.52 (.178)  
16.10 (.634)  
15.90 (.626)  
FEED DIRECTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
MIN.  
30.40 (1.197)  
MAX.  
NOTES :  
1. COMFORMS TO EIA-418.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION MEASURED @ HUB.  
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
26.40 (1.039)  
24.40 (.961)  
4
3
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.09/2011  
www.irf.com  
9

相关型号:

IRF3610SPBF

High Efficiency Synchronous Rectification in SMPS, Uninterruptible Power Supply
INFINEON

IRF3610STRL

Power Field-Effect Transistor, 103A I(D), 100V, 0.0116ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, PLASTIC, D2PAK-3
INFINEON

IRF3610STRLPBF

Power Field-Effect Transistor, 103A I(D), 100V, 0.0116ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRF3610STRPBF

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET,
INFINEON

IRF3610STRR

Power Field-Effect Transistor, 103A I(D), 100V, 0.0116ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, PLASTIC, D2PAK-3
INFINEON

IRF362

TRANSISTOR | MOSFET | N-CHANNEL | 400V V(BR)DSS | 22A I(D) | TO-204AE
ETC

IRF36ER101K

General Fixed Inductor, 1 ELEMENT, 100 uH, FERRITE-CORE, GENERAL PURPOSE INDUCTOR, AXIAL LEADED, HALOGEN FREE AND ROHS COMPLIANT
VISHAY

IRF36ER1R5J

General Fixed Inductor, 1 ELEMENT, 1.5 uH, FERRITE-CORE, GENERAL PURPOSE INDUCTOR, AXIAL LEADED, HALOGEN FREE AND ROHS COMPLIANT
VISHAY

IRF36ER271K

General Fixed Inductor, 1 ELEMENT, 270 uH, FERRITE-CORE, GENERAL PURPOSE INDUCTOR, AXIAL LEADED, HALOGEN FREE AND ROHS COMPLIANT
VISHAY

IRF36ER2R2K

General Fixed Inductor, 1 ELEMENT, 2.2 uH, FERRITE-CORE, GENERAL PURPOSE INDUCTOR, AXIAL LEADED, HALOGEN FREE AND ROHS COMPLIANT
VISHAY

IRF36ER330K

General Fixed Inductor, 1 ELEMENT, 33 uH, FERRITE-CORE, GENERAL PURPOSE INDUCTOR, AXIAL LEADED, HALOGEN FREE AND ROHS COMPLIANT
VISHAY

IRF36ER331K

General Fixed Inductor, 1 ELEMENT, 330 uH, FERRITE-CORE, GENERAL PURPOSE INDUCTOR, AXIAL LEADED, HALOGEN FREE AND ROHS COMPLIANT
VISHAY