IRF3707ZCLPBF [INFINEON]

HEXFET Power MOSFET; HEXFET功率MOSFET
IRF3707ZCLPBF
型号: IRF3707ZCLPBF
厂家: Infineon    Infineon
描述:

HEXFET Power MOSFET
HEXFET功率MOSFET

文件: 总11页 (文件大小:348K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 95464  
IRF3707ZCSPbF  
IRF3707ZCLPbF  
HEXFET® Power MOSFET  
Applications  
l High Frequency Synchronous Buck  
Converters for Computer Processor Power  
l Lead-Free  
VDSS RDS(on) max  
Qg  
9.5m:  
30V  
9.7nC  
Benefits  
l Low RDS(on) at 4.5V VGS  
l Ultra-Low Gate Impedance  
l Fully Characterized Avalanche Voltage  
and Current  
D2Pak  
TO-262  
IRF3707ZCS  
IRF3707ZCL  
Absolute Maximum Ratings  
Parameter  
Max.  
Units  
VDS  
Drain-to-Source Voltage  
30  
± 20  
59  
V
V
Gate-to-Source Voltage  
GS  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
I
I
I
@ TC = 25°C  
A
D
D
42  
@ TC = 100°C  
230  
57  
DM  
P
P
@TC = 25°C  
Maximum Power Dissipation  
Maximum Power Dissipation  
W
D
D
@TC = 100°C  
28  
Linear Derating Factor  
Operating Junction and  
0.38  
-55 to + 175  
W/°C  
°C  
T
J
T
Storage Temperature Range  
STG  
Soldering Temperature, for 10 seconds  
Mounting torque, 6-32 or M3 screw  
300 (1.6mm from case)  
10 lbf in (1.1 N m)  
Thermal Resistance  
Parameter  
Typ.  
–––  
Max.  
2.653  
40  
Units  
°C/W  
RθJC  
Junction-to-Case  
RθJA  
–––  
Junction-to-Ambient (PCB Mount)  
Notes  through † are on page 11  
www.irf.com  
1
6/29/04  
IRF3707ZCS/LPbF  
Static @ TJ = 25°C (unless otherwise specified)  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
30 ––– –––  
Conditions  
VGS = 0V, ID = 250µA  
BVDSS  
V
∆ΒVDSS/TJ  
RDS(on)  
Breakdown Voltage Temp. Coefficient ––– 0.023 ––– mV/°C Reference to 25°C, ID = 1mA  
mΩ  
Static Drain-to-Source On-Resistance  
–––  
–––  
7.5  
10  
9.5  
VGS = 10V, ID = 21A  
GS = 4.5V, ID = 17A  
VDS = VGS, ID = 250µA  
12.5  
V
VGS(th)  
Gate Threshold Voltage  
1.35 1.80 2.25  
V
VGS(th)/TJ  
IDSS  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
–––  
81  
-5.3  
–––  
–––  
–––  
––– mV/°C  
1.0  
150  
100  
µA  
V
V
DS = 24V, VGS = 0V  
DS = 24V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
nA VGS = 20V  
GS = -20V  
––– -100  
V
gfs  
–––  
9.7  
2.8  
1.0  
3.4  
2.5  
4.4  
6.2  
9.8  
41  
–––  
15  
S
VDS = 15V, ID = 17A  
Qg  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Qsw  
Qoss  
td(on)  
tr  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
VDS = 15V  
nC  
VGS = 4.5V  
ID = 17A  
Gate Charge Overdrive  
See Fig. 16  
Switch Charge (Qgs2 + Qgd)  
Output Charge  
nC  
V
V
DS = 16V, VGS = 0V  
Turn-On Delay Time  
Rise Time  
DD = 15V, VGS = 4.5V  
ID = 17A  
ns Clamped Inductive Load  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
12  
3.6  
Ciss  
Coss  
Crss  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
––– 1210 –––  
V
V
GS = 0V  
–––  
–––  
260  
130  
–––  
–––  
pF  
DS = 15V  
ƒ = 1.0MHz  
Avalanche Characteristics  
Parameter  
Typ.  
–––  
–––  
–––  
Max.  
Units  
mJ  
A
Single Pulse Avalanche Energy  
EAS  
IAR  
40  
23  
Avalanche Current  
Repetitive Avalanche Energy  
EAR  
5.7  
mJ  
Diode Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
59  
IS  
D
S
Continuous Source Current  
–––  
–––  
(Body Diode)  
Pulsed Source Current  
A
showing the  
integral reverse  
G
ISM  
–––  
–––  
230  
(Body Diode)  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
–––  
–––  
–––  
–––  
14  
1.0  
21  
V
T = 25°C, I = 17A, V = 0V  
J S GS  
Reverse Recovery Time  
Reverse Recovery Charge  
ns T = 25°C, I = 17A, VDD = 15V  
J F  
Qrr  
di/dt = 100A/µs  
5.2  
7.8  
nC  
2
www.irf.com  
IRF3707ZCS/LPbF  
1000  
100  
10  
1000  
100  
10  
VGS  
10V  
VGS  
10V  
TOP  
TOP  
9.0V  
7.0V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
9.0V  
7.0V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
BOTTOM  
BOTTOM  
30V  
3.0V  
30µs PULSE WIDTH  
Tj = 175°C  
30µs PULSE WIDTH  
Tj = 25°C  
1
1
0.1  
1
10  
0.1  
1
10  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
2.0  
1.5  
1.0  
0.5  
I
= 42A  
D
V
= 10V  
GS  
T
= 25°C  
J
T
= 175°C  
J
100  
V
= 10V  
DS  
30µs PULSE WIDTH  
10.0  
2
3
4
5
6
7
8
-60 -40 -20  
T
0
20 40 60 80 100 120 140 160 180  
, Junction Temperature (°C)  
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance  
vs. Temperature  
www.irf.com  
3
IRF3707ZCS/LPbF  
100000  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 17A  
D
C
C
C
+ C , C  
SHORTED  
iss  
gs  
gd  
ds  
= C  
rss  
oss  
gd  
= C + C  
V
V
= 24V  
= 15V  
DS  
DS  
ds  
gd  
10000  
1000  
100  
C
iss  
C
C
oss  
rss  
10  
1
10  
100  
0
2
4
6
8
10  
12  
V
, Drain-to-Source Voltage (V)  
Q
Total Gate Charge (nC)  
DS  
G
Fig 6. Typical Gate Charge vs.  
Fig 5. Typical Capacitance vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
1000.00  
100.00  
10.00  
1.00  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
T
= 175°C  
J
100µsec  
1msec  
T
= 25°C  
J
1
0.10  
10msec  
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
0.01  
0.1  
0.0  
0.5  
1.0  
1.5  
2.0  
0
1
10  
100  
1000  
V
, Source-to-Drain Voltage (V)  
V
DS  
, Drain-to-Source Voltage (V)  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRF3707ZCS/LPbF  
60  
50  
40  
30  
20  
10  
0
2.5  
2.0  
1.5  
1.0  
0.5  
Limited By Package  
I
= 250µA  
D
-75 -50 -25  
0
25 50 75 100 125 150 175 200  
25  
50  
75  
100  
125  
150  
175  
T
, Temperature ( °C )  
T
, Case Temperature (°C)  
J
C
Fig 9. Maximum Drain Current vs.  
Fig 10. Threshold Voltage vs. Temperature  
Case Temperature  
10  
D = 0.50  
1
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
Ri (°C/W) τi (sec)  
0.1  
0.01  
τ
JτJ  
τ
τ
0.02  
0.01  
Cτ  
1.163  
1.073  
0.419  
0.000257  
0.001040  
0.003089  
τ
1τ1  
τ
2τ2  
3τ3  
Ci= τi/Ri  
Ci= τi/Ri  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRF3707ZCS/LPbF  
15V  
175  
150  
125  
100  
75  
I
D
TOP  
4.5A  
6.8A  
DRIVER  
L
V
DS  
BOTTOM 23A  
D.U.T  
AS  
R
G
+
-
V
DD  
I
A
V
2
GS  
0.01  
t
p
Fig 12a. Unclamped Inductive Test Circuit  
50  
V
25  
(BR)DSS  
t
p
0
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
Fig 12c. Maximum Avalanche Energy  
vs. Drain Current  
LD  
I
AS  
VDS  
Fig 12b. Unclamped Inductive Waveforms  
+
-
VDD  
D.U.T  
Current Regulator  
Same Type as D.U.T.  
VGS  
Pulse Width < 1µs  
Duty Factor < 0.1%  
50KΩ  
.2µF  
12V  
.3µF  
Fig 14a. Switching Time Test Circuit  
VDS  
+
V
DS  
D.U.T.  
-
90%  
V
GS  
3mA  
10%  
VGS  
I
I
D
G
Current Sampling Resistors  
td(on)  
td(off)  
tr  
tf  
Fig 13. Gate Charge Test Circuit  
Fig 14b. Switching Time Waveforms  
6
www.irf.com  
IRF3707ZCS/LPbF  
Driver Gate Drive  
P.W.  
Period  
Period  
D =  
D.U.T  
P.W.  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
Id  
Vds  
Vgs  
Vgs(th)  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 16. Gate Charge Waveform  
www.irf.com  
7
IRF3707ZCS/LPbF  
Power MOSFET Selection for Non-Isolated DC/DC Converters  
Synchronous FET  
Control FET  
The power loss equation for Q2 is approximated  
by;  
Special attention has been given to the power losses  
in the switching elements of the circuit - Q1 and Q2.  
Power losses in the high side switch Q1, also called  
the Control FET, are impacted by the Rds(on) of the  
MOSFET, but these conduction losses are only about  
one half of the total losses.  
P = P  
+ P + P*  
loss  
conduction  
drive  
output  
P = Irms 2 × Rds(on)  
loss ( )  
Power losses in the control switch Q1 are given  
by;  
+ Q × V × f  
(
)
g
g
Qoss  
Ploss = Pconduction+ Pswitching+ Pdrive+ Poutput  
+
×V × f + Q × V × f  
(
)
in  
rr  
in  
2  
This can be expanded and approximated by;  
*dissipated primarily in Q1.  
P
= I 2 × Rds(on)  
(
)
loss  
rms  
For the synchronous MOSFET Q2, Rds(on) is an im-  
portant characteristic; however, once again the im-  
portance of gate charge must not be overlooked since  
it impacts three critical areas. Under light load the  
MOSFET must still be turned on and off by the con-  
trol IC so the gate drive losses become much more  
significant. Secondly, the output charge Qoss and re-  
verse recovery charge Qrr both generate losses that  
are transfered to Q1 and increase the dissipation in  
that device. Thirdly, gate charge will impact the  
MOSFETs’ susceptibility to Cdv/dt turn on.  
Qgd  
ig  
Qgs2  
ig  
+ I ×  
× V × f + I ×  
× V × f  
in  
in  
+ Q × V × f  
(
)
g
g
Qoss  
+
×V × f  
in  
2
This simplified loss equation includes the terms Qgs2  
The drain of Q2 is connected to the switching node  
of the converter and therefore sees transitions be-  
tween ground and Vin. As Q1 turns on and off there is  
a rate of change of drain voltage dV/dt which is ca-  
pacitively coupled to the gate of Q2 and can induce  
a voltage spike on the gate that is sufficient to turn  
the MOSFET on, resulting in shoot-through current .  
The ratio of Qgd/Qgs1 must be minimized to reduce the  
potential for Cdv/dt turn on.  
and Qoss which are new to Power MOSFET data sheets.  
Qgs2 is a sub element of traditional gate-source  
charge that is included in all MOSFET data sheets.  
The importance of splitting this gate-source charge  
into two sub elements, Qgs1 and Qgs2, can be seen from  
Fig 16.  
Qgs2 indicates the charge that must be supplied by  
the gate driver between the time that the threshold  
voltage has been reached and the time the drain cur-  
rent rises to Idmax at which time the drain voltage be-  
gins to change. Minimizing Qgs2 is a critical factor in  
reducing switching losses in Q1.  
Qoss is the charge that must be supplied to the out-  
put capacitance of the MOSFET during every switch-  
ing cycle. Figure A shows how Qoss is formed by the  
parallel combination of the voltage dependant (non-  
linear) capacitance’s Cds and Cdg when multiplied by  
the power supply input buss voltage.  
Figure A: Qoss Characteristic  
8
www.irf.com  
IRF3707ZCS/LPbF  
D2Pak Package Outline  
Dimensions are shown in millimeters (inches)  
D2Pak Part Marking Information (Lead-Free)  
T H IS IS AN IR F 530S WIT H  
P AR T N U MB E R  
D AT E COD E  
L OT COD E 8024  
AS S E MB L E D ON WW 02, 2000  
IN T H E AS S E MB L Y L IN E "L "  
IN T E R N AT IONAL  
R E CT IF IE R  
L OGO  
F 530S  
N ote: "P " in as s embly line  
pos ition indicates "L ead-F ree"  
YE AR  
WE E K 02  
L IN E  
0 = 2000  
AS S E MB L Y  
L OT COD E  
L
OR  
P AR T N U MB E R  
IN T E R N AT ION AL  
R E CT IF IE R  
L OGO  
F 530S  
D AT E CODE  
P
=
DE S IGN AT E S L E AD -F R E E  
P R OD U CT (OP T ION AL )  
AS S E MB L Y  
L OT CODE  
YE AR  
W E E K 02  
A = AS S E M B L Y S IT E CODE  
0 = 2000  
www.irf.com  
9
IRF3707ZCS/LPbF  
TO-262 Package Outline  
IGBT  
1- GATE  
2- COLLECTOR  
3- EMITTER  
TO-262 Part Marking Information  
EXAMPLE: THIS IS AN IRL3103L  
LOT CODE 1789  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
ASSEMBLED ON WW 19, 1997  
IN THE ASSEMBLY LINE "C"  
DATE CODE  
YEAR 7 = 1997  
WEEK 19  
Note: "P" in assembly line  
position indicates "Lead-Free"  
AS S E MB LY  
LOT CODE  
LINE C  
OR  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
DATE CODE  
P = DESIGNATES LEAD-FREE  
PRODUCT (OPTIONAL)  
YEAR 7 = 1997  
AS S E MB LY  
LOT CODE  
WEEK 19  
A= ASSEMBLY SITE CODE  
10  
www.irf.com  
IRF3707ZCS/LPbF  
D2Pak Tape & Reel Infomation  
Dimensions are shown in millimeters (inches)  
TRR  
1.60 (.063)  
1.50 (.059)  
1.60 (.063)  
1.50 (.059)  
4.10 (.161)  
3.90 (.153)  
0.368 (.0145)  
0.342 (.0135)  
FEED DIRECTION  
TRL  
11.60 (.457)  
11.40 (.449)  
1.85 (.073)  
1.65 (.065)  
24.30 (.957)  
23.90 (.941)  
15.42 (.609)  
15.22 (.601)  
1.75 (.069)  
1.25 (.049)  
10.90 (.429)  
10.70 (.421)  
4.72 (.136)  
4.52 (.178)  
16.10 (.634)  
15.90 (.626)  
FEED DIRECTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
MIN.  
30.40 (1.197)  
MAX.  
NOTES :  
1. COMFORMS TO EIA-418.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION MEASURED @ HUB.  
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
26.40 (1.039)  
24.40 (.961)  
4
3
Notes:  
 Repetitive rating; pulse width limited by  
max. junction temperature.  
‚ Starting TJ = 25°C, L = 0.15mH, RG = 25,  
IAS = 23A.  
ƒ Pulse width 400µs; duty cycle 2%.  
„ Coss eff. is a fixed capacitance that gives the same  
This is applied to D2Pak, when mounted on 1" square PCB (FR-  
4 or G-10 Material). For recommended footprint and soldering  
techniques refer to application note #AN-994.  
† Calculated continuous current based on maximum allowable  
junction temperature. Package limitation current is 42A.  
charging time as Coss while VDS is rising from 0 to  
80% VDSS  
.
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Consumer market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 6/04  
www.irf.com  
11  

相关型号:

IRF3707ZCS

HEXFET Power MOSFET
INFINEON

IRF3707ZCSPBF

HEXFET Power MOSFET
INFINEON

IRF3707ZCSTRL

暂无描述
INFINEON

IRF3707ZCSTRLP

Power Field-Effect Transistor, 42A I(D), 30V, 0.0095ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRF3707ZCSTRLPBF

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET,
INFINEON

IRF3707ZCSTRR

Power Field-Effect Transistor, 59A I(D), 30V, 0.0095ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, D2PAK-3
INFINEON

IRF3707ZCSTRRP

Power Field-Effect Transistor, 42A I(D), 30V, 0.0095ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRF3707ZCSTRRPBF

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET,
INFINEON

IRF3707ZL

High Frequency Synchronous Buck Converters for Computer Processor Power
INFINEON

IRF3707ZLPBF

HEXFET Power MOSFET
INFINEON

IRF3707ZPBF

HEXFET Power MOSFET
INFINEON

IRF3707ZS

High Frequency Synchronous Buck Converters for Computer Processor Power
INFINEON