IRF3808 [INFINEON]

Power MOSFET(Vdss=75V, Rds(on)=0.007ohm, Id=140A); 功率MOSFET ( VDSS = 75V , RDS(ON) = 0.007ohm ,ID = 140A )
IRF3808
型号: IRF3808
厂家: Infineon    Infineon
描述:

Power MOSFET(Vdss=75V, Rds(on)=0.007ohm, Id=140A)
功率MOSFET ( VDSS = 75V , RDS(ON) = 0.007ohm ,ID = 140A )

晶体 晶体管 功率场效应晶体管 开关 脉冲 局域网
文件: 总9页 (文件大小:132K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 94291B  
IRF3808  
AUTOMOTIVE MOSFET  
HEXFET® Power MOSFET  
Typical Applications  
Integrated Starter Alternator  
D
42 Volts Automotive Electrical Systems  
VDSS = 75V  
Benefits  
Advanced Process Technology  
Ultra Low On-Resistance  
Dynamic dv/dt Rating  
175°C Operating Temperature  
Fast Switching  
Repetitive Avalanche Allowed up to Tjmax  
R
DS(on) = 0.007Ω  
G
ID = 140A†  
S
Description  
Designed specifically for Automotive applications, this Advanced  
Planar Stripe HEXFET ® Power MOSFET utilizes the latest process-  
ing techniques to achieve extremely low on-resistance per silicon  
area.AdditionalfeaturesofthisHEXFETpowerMOSFETarea175°C  
junction operating temperature, low RθJC, fast switching speed and  
improved repetitive avalanche rating. This combination makes the  
design an extremely efficient and reliable choice for use in higher  
power Automotive electronic systems and a wide variety of other  
applications.  
TO-220AB  
Absolute Maximum Ratings  
Parameter  
Max.  
140†  
97†  
550  
Units  
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current   
A
PD @TC = 25°C  
Power Dissipation  
330  
W
W/°C  
V
Linear Derating Factor  
2.2  
VGS  
EAS  
IAR  
Gate-to-Source Voltage  
± 20  
430  
Single Pulse Avalanche Energy‚  
Avalanche Current  
mJ  
A
82  
EAR  
dv/dt  
TJ  
Repetitive Avalanche Energy‡  
Peak Diode Recovery dv/dt ƒ  
Operating Junction and  
See Fig.12a, 12b, 15, 16  
mJ  
5.5  
V/ns  
-55 to + 175  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
Mounting Torque, 6-32 or M3 screw  
°C  
300 (1.6mm from case )  
10 lbfin (1.1Nm)  
Thermal Resistance  
Parameter  
Junction-to-Case  
Typ.  
–––  
Max.  
Units  
RθJC  
RθCS  
RθJA  
0.45  
–––  
62  
Case-to-Sink, Flat, Greased Surface  
Junction-to-Ambient  
0.50  
–––  
°C/W  
HEXFET(R) is a registered trademark of International Rectifier.  
www.irf.com  
1
02/06/02  
IRF3808  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
75 ––– –––  
Conditions  
VGS = 0V, ID = 250µA  
V(BR)DSS  
Drain-to-Source Breakdown Voltage  
V
V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient ––– 0.086 ––– V/°C Reference to 25°C, ID = 1mA  
RDS(on)  
VGS(th)  
gfs  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
–––  
5.9 7.0  
mVGS = 10V, ID = 82A „  
2.0  
––– 4.0  
V
S
VDS = 10V, ID = 250µA  
VDS = 25V, ID = 82A  
VDS = 75V, VGS = 0V  
VDS = 60V, VGS = 0V, TJ = 150°C  
VGS = 20V  
Forward Transconductance  
100 ––– –––  
––– ––– 20  
––– ––– 250  
––– ––– 200  
––– ––– -200  
––– 150 220  
IDSS  
Drain-to-Source Leakage Current  
µA  
nA  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Total Gate Charge  
IGSS  
VGS = -20V  
Qg  
ID = 82A  
Qgs  
Qgd  
td(on)  
tr  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
Rise Time  
–––  
–––  
–––  
31  
50  
47  
76  
nC VDS = 60V  
VGS = 10V„  
VDD = 38V  
16 –––  
––– 140 –––  
––– 68 –––  
––– 120 –––  
ID = 82A  
ns  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
RG = 2.5Ω  
VGS = 10V „  
D
Between lead,  
4.5  
LD  
LS  
Internal Drain Inductance  
Internal Source Inductance  
–––  
–––  
–––  
–––  
6mm (0.25in.)  
nH  
G
from package  
7.5  
and center of die contact  
S
Ciss  
Input Capacitance  
––– 5310 –––  
––– 890 –––  
––– 130 –––  
––– 6010 –––  
––– 570 –––  
––– 1140 –––  
VGS = 0V  
Coss  
Output Capacitance  
pF  
VDS = 25V  
Crss  
Reverse Transfer Capacitance  
Output Capacitance  
ƒ = 1.0MHz, See Fig. 5  
Coss  
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz  
VGS = 0V, VDS = 60V, ƒ = 1.0MHz  
VGS = 0V, VDS = 0V to 60V  
Coss  
Output Capacitance  
Coss eff.  
Effective Output Capacitance ꢀ  
Source-Drain Ratings and Characteristics  
Parameter  
Continuous Source Current  
(Body Diode)  
Min. Typ. Max. Units  
Conditions  
D
IS  
MOSFET symbol  
––– –––  
140†  
showing the  
A
G
ISM  
Pulsed Source Current  
(Body Diode)   
integral reverse  
––– ––– 550  
S
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse RecoveryCharge  
Forward Turn-On Time  
––– ––– 1.3  
––– 93 140  
––– 340 510  
V
TJ = 25°C, IS = 82A, VGS = 0V „  
TJ = 25°C, IF = 82A  
ns  
Qrr  
ton  
nC di/dt = 100A/µs „  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
Repetitive rating; pulse width limited by  
max. junction temperature. (See fig. 11).  
‚Starting TJ = 25°C, L = 0.130mH  
RG = 25, IAS = 82A. (See Figure 12).  
ƒISD 82A, di/dt 310A/µs, VDD V(BR)DSS  
TJ 175°C  
Coss eff. is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
.
†
‡
Calculated continuous current based on maximum allowable  
junction temperature. Package limitation current is 75A.  
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive  
avalanche performance.  
,
„Pulse width 400µs; duty cycle 2%.  
2
www.irf.com  
IRF3808  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
VGS  
15V  
10V  
TOP  
TOP  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
BOTTOM  
BOTTOM  
4.5V  
4.5V  
20µs PULSE WIDTH  
20µs PULSE WIDTH  
°
°
T
= 25  
C
J
T
= 175  
C
J
1
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
3.0  
1000.00  
100.00  
10.00  
137A  
=
I
D
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
T = 175°C  
J
T = 25°C  
J
V
= 15V  
DS  
20µs PULSE WIDTH  
V
= 10V  
GS  
-60 -40 -20  
0
20  
40 60  
80 100 120 140 160 180  
1.0  
3.0  
5.0  
7.0  
9.0  
11.0  
13.0  
15.0  
°
T , Junction Temperature  
( C)  
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance  
Vs. Temperature  
www.irf.com  
3
IRF3808  
100000  
12  
10  
8
D
I
=
82A  
V
C
= 0V,  
f = 1 MHZ  
GS  
V
V
V
=
=
=
60V  
37V  
15V  
DS  
DS  
DS  
= C + C  
,
C
SHORTED  
iss  
gs  
gd  
ds  
C
= C  
rss  
gd  
C
= C + C  
oss  
ds  
gd  
10000  
1000  
Ciss  
6
Coss  
4
2
Crss  
0
100  
1
0
40  
80  
120  
160  
10  
, Drain-to-Source Voltage (V)  
100  
Q
, Total Gate Charge (nC)  
G
V
DS  
Fig 6. Typical Gate Charge Vs.  
Fig 5. Typical Capacitance Vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
1000.00  
100.00  
10.00  
1.00  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
T
= 175°C  
J
100µsec  
1msec  
T
= 25°C  
J
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
10msec  
100  
GS  
1
0.10  
1
10  
1000  
0.0  
0.5  
1.0  
1.5  
2.0  
V
, Drain-toSource Voltage (V)  
V
, Source-toDrain Voltage (V)  
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRF3808  
140  
120  
100  
80  
RD  
VDS  
LIMITED BY PACKAGE  
VGS  
10V  
D.U.T.  
RG  
+VDD  
-
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
60  
Fig 10a. Switching Time Test Circuit  
40  
V
DS  
20  
90%  
0
25  
50  
75  
100  
125  
150  
175  
°
( C)  
T
, Case Temperature  
C
10%  
V
GS  
Fig 9. Maximum Drain Current Vs.  
t
t
r
t
t
f
d(on)  
d(off)  
Case Temperature  
Fig 10b. Switching Time Waveforms  
1
D = 0.50  
0.20  
0.1  
0.10  
0.05  
SINGLE PULSE  
0.02  
(THERMAL RESPONSE)  
0.01  
P
DM  
0.01  
t
1
t
2
Notes:  
1. Duty factor D =  
t
/ t  
1
2
2. Peak T  
= P  
x
Z
+ T  
J
DM  
thJC  
C
0.001  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
t , Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRF3808  
800  
640  
480  
320  
160  
0
1 5V  
I
D
TOP  
34A  
58A  
82A  
DRIVER  
BOTTOM  
L
V
G
DS  
D.U.T  
AS  
R
+
V
D D  
-
I
A
20V  
0.01  
t
p
Fig 12a. Unclamped Inductive Test Circuit  
V
(BR)DSS  
t
p
25  
50  
75  
100  
125  
150  
°
( C)  
Starting Tj, Junction Temperature  
I
AS  
Fig 12c. Maximum Avalanche Energy  
Fig 12b. Unclamped Inductive Waveforms  
Vs. Drain Current  
Q
G
10 V  
Q
Q
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
GS  
GD  
V
G
I
= 250µA  
D
Charge  
Fig 13a. Basic Gate Charge Waveform  
Current Regulator  
Same Type as D.U.T.  
50KΩ  
.2µF  
12V  
.3µF  
+
V
DS  
D.U.T.  
-
-75 -50 -25  
0
25 50 75 100 125 150 175 200  
V
GS  
T
, Temperature ( °C )  
3mA  
J
I
I
D
G
Current Sampling Resistors  
Fig 14. Threshold Voltage Vs. Temperature  
Fig 13b. Gate Charge Test Circuit  
6
www.irf.com  
IRF3808  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs  
avalanche pulsewidth, tav  
assuming Tj = 25°C due to  
0.01  
avalanche losses  
0.05  
0.10  
1
1.0E-07  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Typical Avalanche Current Vs.Pulsewidth  
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 12a, 12b.  
500  
400  
300  
200  
100  
0
TOP  
BOTTOM 10% Duty Cycle  
= 140A  
Single Pulse  
I
D
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 15, 16).  
tav = Average time in avalanche.  
25  
50  
75  
100  
125  
150  
175  
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC  
Iav = 2T/ [1.3·BV·Zth]  
Fig 16. Maximum Avalanche Energy  
EAS (AR) = PD (ave)·tav  
Vs. Temperature  
www.irf.com  
7
IRF3808  
Peak Diode Recovery dv/dt Test Circuit  
+
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
D.U.T*  
ƒ
-
+
‚
-
„
-
+

RG  
dv/dt controlled by RG  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
+
-
VDD  
VGS  
* Reverse Polarity of D.U.T for P-Channel  
Driver Gate Drive  
P.W.  
Period  
Period  
D =  
P.W.  
V
[
=10V  
] ***  
GS  
D.U.T. I Waveform  
SD  
Reverse  
Recovery  
Current  
Body Diode Forward  
Current  
di/dt  
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  
V
DD  
[
[
]
Re-Applied  
Voltage  
Body Diode  
Forward Drop  
Inductor Curent  
I
]
SD  
Ripple 5%  
*** VGS = 5.0V for Logic Level and 3V Drive Devices  
Fig 17. For N-channel HEXFET® power MOSFETs  
8
www.irf.com  
IRF3808  
TO-220AB Package Outline  
Dimensions are shown in millimeters (inches)  
10.54 (.415)  
10.29 (.405)  
-
B
-
3.78 (.149)  
3.54 (.139)  
2.87 (.113)  
2.62 (.103)  
4.69 (.185)  
4.20 (.165)  
1.32 (.052)  
1.22 (.048)  
- A  
-
6.47 (.255)  
6.10 (.240)  
4
15.24 (.600)  
14.84 (.584)  
1.15 (.045)  
M IN  
LEAD ASSIG NM ENTS  
1
2
3
4
- GATE  
1
2
3
- DRAIN  
- SOU RC E  
- DRAIN  
14.09 (.555)  
13.47 (.530)  
4.06 (.160)  
3.55 (.140)  
0.93 (.037)  
0.69 (.027)  
0.55 (.022)  
0.46 (.018)  
3X  
3X  
1.40 (.055)  
3X  
1.15 (.045)  
0.36 (.014)  
M
B
A
M
2.92 (.115)  
2.64 (.104)  
2.54 (.100)  
2X  
N OTES:  
1
2
D IMENSIONING  
&
TOLERANCING PER ANSI Y14.5M, 1982.  
3
4
O UTLINE CONFOR MS TO JEDEC OUTLIN E TO-220AB.  
HEATSINK LE AD MEASUREMENTS DO N OT INCLU DE BURRS.  
C ONTROLLING DIMENSION : INC H  
&
TO-220AB Part Marking Information  
EXAMPLE: THIS IS AN IRF1010  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
LOT CODE 1789  
ASSEMBLED ON WW19, 1997  
IN THE ASSEMBLYLINE "C"  
DATE CODE  
YEAR 7 = 1997  
WE E K 19  
ASSEMBLY  
LOT CODE  
LINE C  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Automotive (Q101) market.  
Qualification Standards can be found on IRs Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.02/02  
www.irf.com  
9

相关型号:

IRF3808L

Power MOSFET(Vdss=75V, Rds(on)=0.007ohm, Id=106A)
INFINEON

IRF3808LPBF

Power Field-Effect Transistor, 75A I(D), 75V, 0.007ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-262AA, LEAD FREE, PLASTIC, TO-262, 3 PIN
INFINEON

IRF3808PBF

HEXFET Power MOSFET
INFINEON

IRF3808S

AUTOMOTIVE MOSFET
INFINEON

IRF3808SLPBF

Advanced Process Technology
INFINEON

IRF3808SPBF

AUTOMOTIVE MOSFET
INFINEON

IRF3808SPBF_15

Advanced Process Technology
INFINEON

IRF3808STRL

TRANSISTOR | MOSFET | N-CHANNEL | 75V V(BR)DSS | 106A I(D) | TO-262
ETC

IRF3808STRLPBF

Power Field-Effect Transistor, 75A I(D), 75V, 0.007ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRF3808STRR

TRANSISTOR | MOSFET | N-CHANNEL | 75V V(BR)DSS | 106A I(D) | TO-263AB
ETC

IRF3808STRRPBF

Power Field-Effect Transistor, 75A I(D), 75V, 0.007ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, PLASTIC, D2PAK-3
INFINEON

IRF3N25

POWER MOSFET
SUNTAC