IRF6156PBF [INFINEON]

Power Field-Effect Transistor, 20V, 0.04ohm, 2-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, FLIPFET-6;
IRF6156PBF
型号: IRF6156PBF
厂家: Infineon    Infineon
描述:

Power Field-Effect Transistor, 20V, 0.04ohm, 2-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, FLIPFET-6

晶体 晶体管 功率场效应晶体管 开关
文件: 总13页 (文件大小:248K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 94592A  
IRF6156  
l Ultra Low RSS(on) per Footprint Area  
FlipFETPower MOSFET  
l Low Thermal Resistance  
l Bi-Directional N-Channel Switch  
l Super Low Profile (<.8mm)  
l Available Tested on Tape & Reel  
VSS  
20V  
RSS(on) max  
40m @VGS1,2 = 4.5V  
IS  
±6.5  
60m @VGS1,2 = 2.5V  
±5.2  
†
l ESD Protection Diode  
Description  
True chip-scale packaging is available from International Recti-  
fier. Through the use of advanced processing techniques and a  
unique packaging concept, extremely low on-resistance and the  
highestpowerdensitiesintheindustryhavebeenmadeavailable  
for battery and load management applications. These benefits,  
combined with the ruggedized device design that International  
Rectifier is well known for, provide the designer with an  
extremely efficient and reliable device.  
TheFlipFET™ package, isone-fifththefootprintofacomparable  
TSSOP-8 package and has a profile of less than .8mm. Com-  
bined with the low thermal resistance of the die level device, this  
makes the FlipFET™ the best device for applications where  
printed circuit board space is at a premium and in extremely thin  
application environments such as battery packs, mobile phones  
and PCMCIA cards.  
Absolute Maximum Ratings  
Parameter  
Max.  
20  
Units  
VSS  
Source-to-Source Voltage  
Continuous Current, VGS1 = VGS2 = 4.5V  
Continuous Current, VGS1 = VGS2 = 4.5V  
Pulsed Current  
V
IS @ TA = 25°C  
IS @ TA = 70°C  
ISM  
±6.5  
±5.2  
33  
A
Power Dissipation  
P
P
@TA = 25°C  
@TA = 70°C  
2.5  
W
D
D
Power Dissipation  
1.6  
Linear Derating Factor  
Gate-to-Source Voltage  
20  
mW/°C  
V
V
T
±12  
GS  
Operating Junction and  
-55 to + 150  
°C  
J
T
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Junction-to-Ambient  
Typ.  
–––  
35  
Max.  
50  
Units  
RθJA  
°C/W  
RθJ-PCB  
Junction-to-PCB  
–––  
www.irf.com  
1
09/25/03  
IRF6156  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
V(BR)SSS  
V
GS=0V, IS=250µA,See Fig. 23a&b  
Source-to-Source Breakdown Voltage 20 ––– –––  
V
Fig.23a&b  
V(BR)SSS/TJ  
RSS(on)  
Reference to 25°C,IS=1mA,  
––– mV/°C  
Breakdown Voltage Temp. Coefficient ––– 16  
Static Source-to-Source On-Resistance ––– 27  
––– 43  
m
V
GS1,2 = 4.5V, IS = 6.5A Fig.11a&b  
VGS1,2 = 2.5V, IS = 5.2A  
SS = VGS, IS = 250µA Fig. 10a&b  
VSS = 10V, IS = 6.5A, See Fig. 4  
SS = 20V, VGS = 0V,See Fig.23a&b  
VSS = 16V, VGS = 0V, TJ = 125°C  
SS = 4.5V, VGS = 0V, TJ = 25°C  
40  
60  
VGS(th)  
gfs  
V
Gate Threshold Voltage  
0.45 ––– 1.2  
18 ––– –––  
––– ––– 1.0  
V
Forward Transconductance  
S
V
µA  
ISSS  
Zero Gate Voltage Source Current  
––– –––  
––– 50  
25  
V
–––  
nA  
µA  
µA  
VSS = 4.5V, VGS = 0V, TJ = 60°C  
VGS = 12V, See Fig. 22  
VGS = -12V  
––– 100 –––  
––– 8.0 20  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Total Gate Charge  
––– -8.0 -20  
––– 0.20 0.5  
––– -0.20 -0.5  
V
GS = 4.5V  
VGS = -4.5V  
Qg  
IS = 6.5A  
––– 12  
––– 1.6  
––– 4.4  
18  
2.4  
6.6  
Qgs  
QG1-S2  
td(on)  
tr  
VSS = 16V  
Gate-to-Source Charge  
Miller Charge  
nC  
ns  
VGS = 5.0V, See Fig. 14a,b&c  
VSS = 10V  
Turn-On Delay Time  
––– 8.0 –––  
IS = 1.0A  
Rise Time  
––– 13  
––– 33  
––– 26  
–––  
–––  
–––  
td(off)  
tf  
RG = 3.0Ω  
Turn-Off Delay Time  
VGS = 5.0V, See Fig. 21a,b&c  
VGS = 0V  
Fall Time  
Ciss  
Coss  
Crss  
Vssf  
Input Capacitance  
––– 950 –––  
––– 210 –––  
––– 150 –––  
––– ––– 1.2  
VSS = 15V  
Output Capacitance  
pF  
V
Reverse Transfer Capacitance  
Source-to-Source Diode Forward  
Voltage, One Device On  
ƒ = 1.0KHz, See Fig. 13a,b,c,d,e&f  
See Fig. 17a&b  
Iss = 2.5A  
Notes:  
 Repetitive rating; pulse width limited by max. junction temperature.  
‚ Pulse width 400µs; duty cycle 2%. Gate voltage applied to both gates.  
ƒ When mounted on 1 inch square 2oz copper on FR-4.  
„ Figures 1, 2 and 3: One Fet is biased with VGS = 9.0V and curves show response of the second FET.  
See Fig.4.  
Figures 5, 6 and 7: G1 and G2 are shorted. See Fig.9a&b.  
† The diode connected between the gate and source serves only as protection against ESD.  
No gate over voltage rating is implied.  
2
www.irf.com  
IRF6156  
100  
10  
1
100  
10  
VGS  
VGS  
7.0V  
5.0V  
4.5V  
2.5V  
1.8V  
1.5V  
1.2V  
1.0V  
TOP  
7.0V  
5.0V  
4.5V  
2.5V  
1.8V  
1.5V  
1.2V  
1.0V  
TOP  
BOTTOM  
BOTTOM  
1
1.0V  
1.0V  
0.1  
0.01  
20µs PULSE WIDTH  
Tj = 150°C  
20µs PULSE WIDTH  
Tj = 25°C  
0.1  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
V
, Source-to-Source Voltage (V)  
V
, Source-to-Source Voltage (V)  
SS  
SS  
Fig 2. Typical Output Characteristics. „  
Fig 1. Typical Output Characteristics. „  
100.00  
10.00  
1.00  
S2  
-
Q2  
9V  
+
T
= 25°C  
J
G2  
G1  
+
-
T
= 150°C  
J
VSS  
Q1  
S1  
V
= 15V  
SS  
20µs PULSE WIDTH  
1.0  
1.5  
2.0 2.5  
V
, Gate-to-Source Voltage (V)  
GS  
Fig 3. Typical Transfer Characteristics. „  
Fig 4. Output and Transfer Test Circuit.  
www.irf.com  
3
IRF6156  
60  
50  
40  
30  
20  
1200  
1000  
800  
600  
400  
200  
0
V
= 2.5V  
GS  
V
GS  
= 4.5V  
I
= 6.5A  
4.0  
D
0
5
10  
15  
20  
25  
30  
35  
1.0  
2.0  
3.0  
5.0  
6.0  
7.0  
V
Gate -to -Source Voltage (V)  
I
, Source Current (A)  
GS,  
S
Fig 6. Typical On-Resistance vs. Source  
Current. ꢀ  
Fig 5. Typical On-Resistance vs. Gate  
Voltage. ꢀ  
100000  
10  
9
8
7
6
5
4
3
2
1
0
10000  
1000  
100  
10  
T
= 150°C  
J
1
T
= 25°C  
15  
J
0.1  
0.01  
0
5
10  
20  
25  
0
5
10  
15  
20  
V
, Gate-to-Source Voltage (V)  
V
, Gate-to-Source Voltage (V)  
GS  
GS  
Fig 7a. Gate-Current vs. Gate-Source  
Fig 7b. Gate-Current vs. Gate-Source  
Voltage  
Voltage  
4
www.irf.com  
IRF6156  
7
6
5
4
3
2
1
0
2.0  
1.5  
1.0  
0.5  
I
= 6.5A  
D
V
= 4.5V  
GS  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
25  
50  
T
75  
100  
125  
150  
T
J
, Junction Temperature (°C)  
, Case Temperature (°C)  
C
Fig 8. Normalized On-Resistance  
vs. Temperature. ꢀ  
Fig 9. Maximum Source Current vs.  
Case Temperature.  
To Drain  
To Drain  
S1  
Q1  
S2  
Q2  
G2  
Q1  
G1  
Q2  
G1  
S1  
G2  
S2  
To Source  
To Source  
Fig 10b. VGS(th) is symmetrical and  
can be measured when connected  
as shown on figure 10b.  
Fig 10a. VGS(th) is symmetrical and  
can be measured when connected  
as shown on figure 10a.  
www.irf.com  
5
IRF6156  
-
-
S2  
S1  
2.5V  
4.5V  
2.5V  
4.5V  
Q2  
Q1  
+
+
G2  
G1  
Q2  
Q1  
G1  
G2  
S1  
S2  
Fig 11a  
Fig 11b  
RSS(on) is symmetrical and can be measured when connected as shown  
in either figures 11a or 11b.  
10000  
V
= 0V,  
f = 1 MHZ  
GS  
C
= C + C  
,
C
SHORTED  
iss  
gs  
gd  
ds  
C
= C  
rss  
gd  
C
= C + C  
oss  
ds  
gd  
Ciss  
1000  
Coss  
Crss  
100  
0
5
10  
15  
20  
V
, Source-to-Source Voltage (V)  
SS  
Fig 12. Typical Capacitance vs.  
Source-to-Source Voltage.  
6
www.irf.com  
IRF6156  
33K  
-
Low  
Capacitance  
33K  
4.5V  
S2  
+
10MΩ  
S2  
Bridge  
-
G2  
G1  
High  
G2  
G1  
16V  
+
-
1µF  
1µF  
1µF  
1µF  
16V  
+
High  
+
-
Capacitance  
Bridge  
S1  
S1  
4.5V  
10MΩ  
33K  
Low  
33K  
Fig 13b  
Fig 13a  
Ciss capacitance is symmetrical and can be measured as shown either in figures 13a or 13b.  
-
33K  
4.5V  
+
H
S2  
33K  
S2  
+
Capacitance  
Bridge  
16V  
G2  
G1  
L
1µF  
G2  
G1  
Capacitance  
Bridge  
1µF  
-
L
-
H
16V  
+
S1  
S1  
+
33K  
4.5V  
33K  
-
Fig 13c  
Fig 13d  
Coss capacitance is symmetrical and can be measured as shown either in figures 13c or 13d.  
-
33K  
4.5V  
+
Common  
33K  
S2  
+
S2  
16V  
G2  
G1  
L
H
Capacitance  
Bridge  
-
G2  
G1  
1µF  
Capacitance  
Bridge  
1µF  
H
-
L
16V  
S1  
+
S1  
33K  
+
-
Common  
4.5V  
33K  
Fig 13f  
Fig 13e  
Crss capacitance is symmetrical and can be measured as shown either in figures 13e or 13f.  
www.irf.com  
7
IRF6156  
6.0  
I
= 6.5A  
D
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
V
V
= 16V  
= 10V  
DS  
DS  
Q
G
Q
Q
GD  
QG1-S2  
GS  
V
G
Charge  
0
2
4
6
8
10  
12  
14  
Q
Total Gate Charge (nC)  
G
Fig 14. Typical Gate Charge vs.  
Fig 14a. Basic Gate Charge Waveform.  
Gate-to-Source Voltage.  
Current Regulator  
-
Current Regulator  
S2  
4.5  
+
V
S2  
.5µF  
G2  
G1  
-
2µF  
12V  
+
G2  
G1  
50K  
+
-
50K  
2µ  
F
12V  
.5µF  
+
-
+
-
+
-
S1  
S2  
4.5  
16V  
V
16V  
S1  
S2  
-
I
I
G
D
4.5V  
+
3mA  
G2  
G1  
G2  
G1  
+
S1  
4.5V  
3mA  
S1  
-
I
I
D
G
Fig 14b  
Fig 14c  
Gate Charge is symmetrical and can be measured as shown in either figures 14b or 14c.  
8
www.irf.com  
IRF6156  
100.00  
10.00  
1.00  
100  
10  
1
OPERATION IN THIS AREA  
LIMITED BY R (on)  
SS  
100µsec  
T
= 150°C  
J
1msec  
10msec  
T
= 25°C  
A
T
= 25°C  
J
Tj = 150°C  
V
= 0V  
GS  
Single Pulse  
0.10  
0.1  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
1
10  
, Source-to-Source Voltage (V)  
100  
V
, Source-to-Source Diode Forward Voltage (V)  
V
ssf  
SS  
Fig 15. Maximum Safe Operating  
Fig 16. Typical Source-Source Diode  
Forward Voltage.  
Area.  
(See Fig.17a&b for Connection)  
(-VS)  
(-VS)  
To Drain  
To Drain  
-
-
S1  
S2  
Q1  
Q2  
4.5V  
4.5V  
+
+
G1  
Q2  
G2  
Q1  
G2  
G1  
S2  
S1  
To Source  
To Source  
Fig 17a  
Fig 17b  
Vssf is symmetrical and can be measured when connected as shown  
either in figures 17a or 17b.  
www.irf.com  
9
IRF6156  
50  
40  
30  
20  
10  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
I
= 250µA  
D
0
1.00  
10.00  
100.00  
1000.00  
-75 -50 -25  
0
25  
50  
75 100 125 150  
Time (sec)  
T
, Temperature ( °C )  
J
Fig 18. Typical Power vs. Time.  
Fig 19. Threshold Voltage vs. Temperature.  
100  
10  
D = 0.50  
0.20  
0.10  
0.05  
0.02  
0.01  
1
P
DM  
t
1
t
2
0.1  
0.01  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty factor D =  
t
/ t  
1 2  
2. Peak T  
= P  
x
Z
+ T  
J
DM  
thJA  
A
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t
, Rectangular Pulse Duration (sec)  
1
Fig 20. Typical Effective Transient Thermal Impedance, Junction-to-Ambient.  
10  
www.irf.com  
IRF6156  
R
= 10ohm  
4.5V  
S
S2  
S2  
6ohm  
V
G2  
G1  
+
-
-
GS  
10V  
V
G2  
G1  
GS  
10V  
6ohm  
+
S1  
S1  
R
= 10ohm  
4.5V  
S
Fig 21b  
Fig 21a  
Switching times are symmetrical and can be measured as shown  
in either figures 21a or 21b.  
t
t
r
t
t
f
d(on)  
d(off)  
V
GS  
10%  
90%  
V
DS  
Fig 21c. Switching Time Waveforms.  
www.irf.com  
11  
IRF6156  
S1  
S2  
Q1  
Q2  
G2  
G1  
Q2  
Q1  
G1  
G2  
S1  
S2  
Fig 22b  
Fig 22a  
IGSS Test Connection  
S2  
S1  
Q1  
Q2  
G2  
Q1  
G1  
Q2  
G1  
G2  
S1  
S2  
Fig 23a  
Fig 23b  
ISSS and V(BR)SSS are symmetrical and can be measured when connected  
either as figures 23a or 23b.  
12  
www.irf.com  
IRF6156  
Bi-Directional MOSFET Pinout Outline Dimension and Tape and Reel Information  
Drawing No. 01-0115  
A1 B AL L  
LOCATIONMARK  
NOT ES:  
1. DIMENSIONING& TOLERANCINGPER ASME Y14.5M-1994.  
PART NUMBER  
LOT NUMBER  
DATE CODE  
2. CONTROLLINGDIMENSION: MILLIMET ER  
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].  
0.10 [.004]  
C
0.05 [.002]  
C
1.524  
[.060]  
0.280 [.0110]  
0.240 [.0094]  
A
B
C
0.10 [.004]  
C
PADASSIGNMENTS  
A1 = G1  
A2 = G2  
B1= S1  
B2= S2  
C1 = S 1  
C2 = S 2  
0.80  
[.032]  
2X  
2.324  
[.092]  
0.537 [.0211]  
0.507 [.0199]  
0.388 [.0153]  
0.338 [.0133]  
6X Ø  
0.812 [.032]  
0.752 [.029]  
0.15 [.006]  
0.08 [.003]  
C A B  
C
0.20 [.008]  
C
0.800 [.032]  
Gate 1  
A1  
Gate 2  
A2  
Ø 13"  
0.800 [.032]  
2x  
S ource 1  
B1  
S ource 2  
B2  
S ource 1  
C1  
S ource 2  
C2  
12mm  
6X Ø 0.25 [.010]  
A1 B AL L  
LOCAT ION  
RECOMMENDED FOOTPRINT  
12mm  
FEED DIRECT ION  
4mm  
NOT ES:  
1. T APE AND REEL OUT LINE CONF ORMS T O EIA-481 & EIA-541.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Consumer market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.09/03  
www.irf.com  
13  

相关型号:

IRF620

5.0A, 200V, 0.800 Ohm, N-Channel Power MOSFET
INTERSIL

IRF620

N-Channel Power MOSFETs, 7A, 150-200V
FAIRCHILD

IRF620

N - CHANNEL ENHANCEMENT MODE POWER MOS TRANSISTORS
STMICROELECTR

IRF620

Power MOSFET
TRSYS

IRF620

Power MOSFET
VISHAY

IRF620

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
ZETEX

IRF620-001

Power Field-Effect Transistor, 5.2A I(D), 200V, 0.8ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET
INFINEON

IRF620-001PBF

Power Field-Effect Transistor, 5.2A I(D), 200V, 0.8ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET,
INFINEON

IRF620-002

Power Field-Effect Transistor, 5.2A I(D), 200V, 0.8ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB
VISHAY

IRF620-002PBF

Power Field-Effect Transistor, 5.2A I(D), 200V, 0.8ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB,
VISHAY

IRF620-013PBF

Power Field-Effect Transistor, 5.2A I(D), 200V, 0.8ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB,
VISHAY

IRF620-019PBF

Power Field-Effect Transistor, 5.2A I(D), 200V, 0.8ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB,
VISHAY