IRF6613TR1PBF [INFINEON]

Power Field-Effect Transistor, 23A I(D), 40V, 0.0034ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-3;
IRF6613TR1PBF
型号: IRF6613TR1PBF
厂家: Infineon    Infineon
描述:

Power Field-Effect Transistor, 23A I(D), 40V, 0.0034ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-3

瞄准线 开关 脉冲 晶体管
文件: 总8页 (文件大小:230K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 95881B  
IRF6613  
HEXFET® Power MOSFET  
l Application Specific MOSFETs  
l Ideal for Synchronous Rectification in Isolated  
DC-DC Converters  
VDSS  
40V  
RDS(on) max  
3.4m@VGS = 10V  
4.1m@VGS = 4.5V  
Qg(typ.)  
42nC  
l Low Conduction Losses  
l Low Switching Losses  
l Low Profile (<0.7 mm)  
l Dual Sided Cooling Compatible  
l Compatible with existing Surface Mount Techniques  
DirectFET™ ISOMETRIC  
MT  
Applicable DirectFET Outline and Substrate Outline (see p.8,9 for details)  
SQ  
SX  
ST  
MQ  
MX  
MT  
Description  
The IRF6613 combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the  
lowest on-state resistance in a package that has the footprint of an SO-8 and only 0.7 mm profile. The DirectFET package is compatible with  
existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques,  
when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided  
cooling to maximize thermal transfer in power systems, IMPROVING previous best thermal resistance by 80%.  
The IRF6613 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching  
losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors  
operating at higher frequencies. The IRF6613 has been optimized for parameters that are critical in synchronous buck converters including  
Rds(on), gate charge and Cdv/dt-induced turn on immunity. The IRF6613 offers particularly low Rds(on) and high Cdv/dt immunity for synchro-  
nous FET applications.  
Absolute Maximum Ratings  
Max.  
Parameter  
Units  
VDS  
40  
Drain-to-Source Voltage  
V
±20  
V
Gate-to-Source Voltage  
GS  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
150  
I
I
I
I
@ TC = 25°C  
D
D
D
23  
@ TA = 25°C  
@ TA = 70°C  
A
18  
180  
DM  
89  
P
P
P
@TC = 25°C  
@TA = 25°C  
@TA = 70°C  
Power Dissipation  
D
D
D
2.8  
Power Dissipation  
1.8  
Power Dissipation  
W
mJ  
A
EAS  
IAR  
200  
Single Pulse Avalanche Energy  
Avalanche Current  
18  
0.022  
-40 to + 150  
Linear Derating Factor  
W/°C  
°C  
T
T
Operating Junction and  
J
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Typ.  
–––  
12.5  
20  
Max.  
45  
Units  
RθJA  
Junction-to-Ambient  
Junction-to-Ambient  
Junction-to-Ambient  
Junction-to-Case  
RθJA  
–––  
–––  
1.4  
RθJA  
°C/W  
RθJC  
–––  
1.0  
RθJ-PCB  
Junction-to-PCB Mounted  
–––  
Notes  through ˆare on page 2  
www.irf.com  
1
9/30/05  
IRF6613  
Static @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
VGS = 0V, ID = 250µA  
BVDSS  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
40  
–––  
–––  
–––  
1.35  
–––  
–––  
–––  
–––  
–––  
93  
–––  
–––  
V
∆ΒVDSS/TJ  
RDS(on)  
38  
––– mV/°C Reference to 25°C, ID = 1mA  
mΩ  
2.6  
3.1  
–––  
-5.8  
–––  
–––  
–––  
–––  
–––  
42  
3.4  
4.1  
V
GS = 10V, ID = 23A e  
VGS = 4.5V, ID = 18A e  
DS = VGS, ID = 250µA  
VGS(th)  
Gate Threshold Voltage  
2.25  
V
V
VGS(th)/TJ  
IDSS  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
––– mV/°C  
1.0  
150  
100  
-100  
–––  
63  
µA VDS = 32V, VGS = 0V  
V
V
V
DS = 32V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
nA  
S
GS = 20V  
GS = -20V  
gfs  
VDS = 15V, ID = 18A  
Qg  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Qsw  
Qoss  
td(on)  
tr  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
Output Charge  
11.5  
3.3  
12.6  
14.6  
15.9  
22  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
VDS = 20V  
nC  
VGS = 4.5V  
ID = 18A  
See Fig. 6 and 16  
nC VDS = 16V, VGS = 0V  
DD = 16V, VGS = 4.5Vꢁe  
Turn-On Delay Time  
18  
V
Rise Time  
47  
ID = 18A  
td(off)  
tf  
Turn-Off Delay Time  
27  
ns Clamped Inductive Load  
Fall Time  
4.9  
Ciss  
Coss  
Crss  
Input Capacitance  
––– 5950 –––  
VGS = 0V  
Output Capacitance  
–––  
–––  
990  
460  
–––  
–––  
pF  
VDS = 15V  
Reverse Transfer Capacitance  
ƒ = 1.0MHz  
Diode Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
D
S
IS  
Continuous Source Current  
–––  
–––  
110  
MOSFET symbol  
(Body Diode)  
A
showing the  
G
ISM  
Pulsed Source Current  
–––  
–––  
180  
integral reverse  
(Body Diode)ꢁc  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
–––  
–––  
–––  
–––  
38  
1.0  
57  
63  
V
TJ = 25°C, IS = 18A, VGS = 0V e  
Reverse Recovery Time  
Reverse Recovery Charge  
ns TJ = 25°C, IF = 18A  
di/dt = 100A/µs e  
nC  
Qrr  
42  
Notes:  
Used double sided cooling, mounting pad.  
† Mounted on minimum footprint full size board with metalized  
back and with small clip heatsink.  
‡ TC measured with thermal couple mounted to top (Drain) of  
part.  
 Repetitive rating; pulse width limited by  
max. junction temperature.  
‚ Starting TJ = 25°C, L = 1.2mH,  
RG = 25, IAS = 18A.  
ƒ Pulse width 400µs; duty cycle 2%.  
„ Surface mounted on 1 in. square Cu board.  
ˆ R is measured at TJ of approximately 90°C.  
θ
2
www.irf.com  
IRF6613  
1000  
100  
10  
1000  
100  
10  
VGS  
10V  
VGS  
10V  
TOP  
TOP  
7.0V  
4.5V  
4.0V  
3.5V  
3.2V  
2.9V  
2.7V  
7.0V  
4.5V  
4.0V  
3.5V  
3.2V  
2.9V  
2.7V  
BOTTOM  
BOTTOM  
2.7V  
2.7V  
60µs PULSE WIDTH  
60µs PULSE WIDTH  
Tj = 25°C  
Tj = 150°C  
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
DS  
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000.0  
2.0  
1.5  
1.0  
0.5  
I
= 23A  
D
V
= 10V  
GS  
100.0  
10.0  
1.0  
T
= 150°C  
J
T
= 25°C  
= 15V  
J
V
DS  
60µs PULSE WIDTH  
0.1  
1.5  
2.0  
2.5  
3.0  
3.5  
-60 -40 -20  
T
0
20 40 60 80 100 120 140 160  
V
, Gate-to-Source Voltage (V)  
GS  
, Junction Temperature (°C)  
J
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance vs. Temperature  
100000  
10000  
1000  
12  
V
C
= 0V,  
f = 1 MHZ  
GS  
I = 18A  
= C + C , C SHORTED  
D
V
= 32V  
iss  
gs  
gd ds  
DS  
VDS= 20V  
C
= C  
10  
8
rss  
gd  
C
= C + C  
ds  
oss  
gd  
Ciss  
6
Coss  
Crss  
4
2
0
100  
0
20  
40  
60  
80  
100  
1
10  
100  
Q
Total Gate Charge (nC)  
G
V
, Drain-to-Source Voltage (V)  
DS  
Fig 5. Typical Capacitance vs.Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage  
www.irf.com  
3
IRF6613  
1000.0  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
100.0  
T
= 150°C  
J
100µsec  
10.0  
1.0  
1
T
= 25°C  
J
0.1  
0.01  
Tc = 25°C  
Tj = 150°C  
Single Pulse  
1msec  
V
= 0V  
GS  
10msec  
0.1  
0.2  
0.4  
V
0.6  
0.8  
1.0  
1.2  
1.4  
0
1
10  
100  
1000  
, Source-to-Drain Voltage (V)  
V
, Drain-toSource Voltage (V)  
SD  
DS  
Fig 7. Typical Source-Drain Diode Forward Voltage  
Fig 8. Maximum Safe Operating Area  
150  
2.5  
2.0  
1.5  
1.0  
0.5  
120  
90  
60  
30  
0
I
= 250µA  
D
25  
50  
75  
100  
125  
150  
-75 -50 -25  
0
25  
50  
75 100 125 150  
T
J
, Junction Temperature (°C)  
T
, Temperature ( °C )  
J
Fig 10. Threshold Voltage vs. Temperature  
Fig 9. Maximum Drain Current vs. Case Temperature  
100  
D = 0.50  
10  
1
0.20  
0.10  
0.05  
0.02  
0.01  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
0.1  
0.6784  
17.299  
17.566  
9.4701  
0.00086  
0.57756  
8.94  
τ
τ
J τJ  
τ
A
τ
τ
τ
1τ1  
τ
τ
2τ2  
3τ3  
4τ4  
0.01  
0.001  
0.0001  
Ci= τi/Ri  
106  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthja + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient  
4
www.irf.com  
IRF6613  
1000  
800  
600  
400  
200  
0
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
I
I
= 23A  
D
D
TOP  
6.7A  
8.1A  
18A  
BOTTOM  
T
T
= 125°C  
J
= 25°C  
8.0  
J
2.0  
4.0  
6.0  
10.0  
25  
50  
75  
100  
125  
150  
V
, Gate-to-Source Voltage (V)  
GS  
Starting T , Junction Temperature (°C)  
J
Fig 12. On-Resistance Vs. Gate Voltage  
Fig 13c. Maximum Avalanche Energy Vs. Drain Current  
15V  
LD  
VDS  
DRIVER  
+
L
V
DS  
+
-
VDD  
D.U.T  
AS  
R
G
V
DD  
-
D.U.T  
I
A
V
GS  
VGS  
0.01Ω  
t
p
Pulse Width < 1µs  
Duty Factor < 0.1%  
Fig 13a. Unclamped Inductive Test Circuit  
Fig 14a. Switching Time Test Circuit  
VDS  
V
(BR)DSS  
t
p
90%  
10%  
VGS  
td(on)  
td(off)  
tr  
tf  
I
AS  
Fig 14b. Switching Time Waveforms  
Fig 13b. Unclamped Inductive Waveforms  
Current Regulator  
Same Type as D.U.T.  
Id  
Vds  
50KΩ  
Vgs  
.2µF  
12V  
.3µF  
+
V
DS  
D.U.T.  
-
V
GS  
Vgs(th)  
3mA  
I
I
D
G
Current Sampling Resistors  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 15. Gate Charge Test Circuit  
Fig 16. Gate Charge Waveform  
www.irf.com  
5
IRF6613  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
V
=10V  
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
Reverse  
Recovery  
Current  
‚
Body Diode Forward  
„
Current  
di/dt  
-
+
-
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
di/dt controlled by RG  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Re-Applied  
Voltage  
RG  
+
-
Body Diode  
Inductor Current  
Forward Drop  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 17. Diode Reverse Recovery Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
DirectFET™ Substrate and PCB Layout, MT Outline  
(Medium Size Can, T-Designation).  
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.  
This includes all recommendations for stencil and substrate designs.  
G = GATE  
D = DRAIN  
S = SOURCE  
D
D
D
D
S
S
G
6
www.irf.com  
IRF6613  
DirectFET™ Outline Dimension, MT Outline  
(Medium Size Can, T-Designation).  
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.  
This includes all recommendations for stencil and substrate designs.  
DIMENSIONS  
IMPERIAL  
METRIC  
MAX  
MIN  
CODE MIN  
MAX  
0.250  
0.199  
0.156  
0.018  
0.032  
0.036  
0.072  
0.040  
0.026  
0.039  
0.104  
0.028  
0.003  
0.007  
6.35  
5.05  
A
B
C
D
E
F
0.246  
0.189  
6.25  
4.80  
3.85  
0.35  
0.78  
0.88  
1.78  
0.98  
0.63  
0.88  
2.46  
0.59  
0.03  
0.08  
NOTE: CONTROLLING  
DIMENSIONS ARE IN MM  
3.95 0.152  
0.45 0.014  
0.82  
0.92  
1.82  
1.02  
0.67  
0.031  
0.035  
0.070  
0.039  
0.025  
G
H
J
1.01 0.035  
2.63 0.097  
K
L
0.70  
0.08  
0.17  
M
N
P
0.023  
0.001  
0.003  
DirectFET™ Part Marking  
www.irf.com  
7
IRF6613  
DirectFET™ Tape & Reel Dimension (Showing component orientation).  
NOTE: Controlling dimensions in mm  
Std reel quantity is 4800 parts. (ordered as IRF6613). For 1000 parts on 7" reel,  
order IRF6613TR1  
REEL DIMENSIONS  
STANDARD OPTION (QTY 4800)  
TR1 OPTION (QTY 1000)  
METRIC  
MAX  
IMPERIAL  
METRIC  
MIN  
MAX  
IMPERIAL  
CODE  
MIN  
12.992  
0.795  
0.504  
0.059  
3.937  
N.C  
MAX  
N.C  
MIN  
6.9  
MAX  
N.C  
N.C  
0.50  
N.C  
N.C  
0.53  
N.C  
N.C  
MIN  
A
B
C
D
E
F
330.0  
20.2  
12.8  
1.5  
N.C  
N.C  
13.2  
N.C  
N.C  
18.4  
14.4  
15.4  
177.77 N.C  
0.75  
0.53  
0.059  
2.31  
N.C  
N.C  
19.06  
13.5  
1.5  
N.C  
0.520  
N.C  
12.8  
N.C  
100.0  
N.C  
58.72  
N.C  
N.C  
N.C  
0.724  
0.567  
0.606  
13.50  
12.01  
12.01  
G
H
0.488  
0.469  
0.47  
0.47  
12.4  
11.9  
11.9  
11.9  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Consumer market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.9/05  
8
www.irf.com  

相关型号:

IRF6613TRPBF

Benchmark MOSFETs Product Selection Guide
INFINEON

IRF6614

DirectFET Power MOSFET
INFINEON

IRF6614PBF

Power Field-Effect Transistor, 12.7A I(D), 40V, 0.0083ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, LEAD FREE, ISOMETRIC-3
INFINEON

IRF6614TR1PBF

Power Field-Effect Transistor, 12.7A I(D), 40V, 0.0083ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, LEAD FREE, ISOMETRIC-3
INFINEON

IRF6614TRPBF

Benchmark MOSFETs Product Selection Guide
INFINEON

IRF6616

DirectFET Power MOSFET
INFINEON

IRF6616PBF

RoHS compliant containing no lead or bormide
INFINEON

IRF6616PBF_15

RoHS compliant containing no lead or bormide
INFINEON

IRF6616TR1PBF

Power Field-Effect Transistor, 19A I(D), 40V, 0.005ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-3
INFINEON

IRF6616TRPBF

Benchmark MOSFETs Product Selection Guide
INFINEON

IRF6617

HEXFET Power MOSFET
INFINEON

IRF6617PBF

Power Field-Effect Transistor, 14A I(D), 30V, 0.0081ohm, 1-Element, N-Channel, Silicon, Metal-Oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-3
INFINEON