IRF6655TR1 [INFINEON]

Power Field-Effect Transistor, 4.2A I(D), 100V, 0.062ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ISOMETRIC-3;
IRF6655TR1
型号: IRF6655TR1
厂家: Infineon    Infineon
描述:

Power Field-Effect Transistor, 4.2A I(D), 100V, 0.062ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ISOMETRIC-3

文件: 总11页 (文件大小:254K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 96926D  
IRF6655  
DirectFET™ Power MOSFET ‚  
Typical values (unless otherwise specified)  
l RoHS compliant containing no lead or bromide   
l Low Profile (<0.7 mm)  
VDSS  
VGS  
RDS(on)  
53m@ 10V  
Vgs(th)  
100V max ±20V max  
l Dual Sided Cooling Compatible   
l Ultra Low Package Inductance  
Qg tot  
Qgd  
l Optimized for High Frequency Switching   
8.7nC  
2.8nC  
3.9V  
l Ideal for High Performance Isolated Converter  
Primary Switch Socket  
l Ideal for Control FET sockets in 36V – 75V in  
Synchronous Buck applications  
l Low Conduction Losses  
l Compatible with existing Surface Mount Techniques   
DirectFET™ ISOMETRIC  
SH  
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)  
SQ  
SX  
ST  
SH  
MQ  
MX  
MT  
MN  
Description  
The IRF6655 combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the  
lowest combined on-state resistance and gate charge in a package that has a footprint similar to that of a micro-8, and only 0.7mm profile. The  
DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-  
red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The  
DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by  
80%.  
The IRF6655 is optimized for low power primary side bridge topologies in isolated DC-DC applications, and for high side control FET sockets in  
non-isolated synchronous buck DC-DC applications for use in wide range universal Telecom systems (36V – 75V), and for secondary side  
synchronous rectification in regulated DC-DC topologies. The reduced total losses in the device coupled with the high level of thermal perfor-  
mance enables high efficiency and low temperatures, which are key for system reliability improvements, and makes this device ideal for high  
performance isolated DC-DC converters.  
Absolute Maximum Ratings  
Max.  
100  
±20  
4.2  
3.4  
19  
Parameter  
Units  
V
VDS  
Drain-to-Source Voltage  
V
Gate-to-Source Voltage  
GS  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
I
I
I
I
@ TA = 25°C  
D
D
D
@ TA = 70°C  
@ TC = 25°C  
A
34  
DM  
EAS  
IAR  
11  
Single Pulse Avalanche Energy  
Avalanche Current  
mJ  
A
5.0  
200  
180  
160  
140  
120  
100  
80  
12.0  
10.0  
8.0  
V
V
V
= 80V  
I = 5.0A  
D
I
= 5.0A  
DS  
DS  
DS  
D
= 50V  
= 20V  
T
= 125°C  
J
6.0  
4.0  
60  
40  
20  
0
2.0  
T
= 25°C  
12  
J
0.0  
4
6
8
10  
14  
16  
18  
0
2
4
6
8
10  
Q
Total Gate Charge (nC)  
G
V
Gate -to -Source Voltage (V)  
GS,  
Fig 2. Typical On-Resistance Vs. Gate Voltage  
Fig 1. Typical On-Resistance Vs. Gate Voltage  
Notes:  
 Click on this section to link to the appropriate technical paper.  
‚ Click on this section to link to the DirectFET MOSFETs  
ƒ Repetitive rating; pulse width limited by max. junction temperature.  
„ Starting TJ = 25°C, L = 0.89mH, RG = 25, IAS = 5.0A.  
† Surface mounted on 1 in. square Cu board, steady state.  
‰ TC measured with thermocouple mounted to top (Drain) of part.  
www.irf.com  
1
11/16/05  
IRF6655  
Static @ TJ = 25°C (unless otherwise specified)  
Conditions  
VGS = 0V, ID = 250µA  
Parameter  
Min. Typ. Max. Units  
BVDSS  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
100  
–––  
–––  
2.8  
–––  
0.12  
53  
–––  
–––  
62  
V
V/°C  
mΩ  
V
Reference to 25°C, ID = 1mA  
∆ΒVDSS/TJ  
RDS(on)  
VGS = 10V, ID = 5.0A g  
VDS = VGS, ID = 25µA  
VGS(th)  
–––  
-11  
–––  
–––  
–––  
–––  
–––  
8.7  
2.1  
0.58  
2.8  
3.2  
3.4  
4.5  
1.9  
7.4  
2.8  
14  
4.8  
VGS(th)/TJ  
IDSS  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
–––  
6.6  
––– mV/°C  
V
DS = 100V, VGS = 0V  
20  
250  
100  
-100  
–––  
11.7  
–––  
–––  
4.2  
µA  
nA  
S
VDS = 80V, VGS = 0V, TJ = 125°C  
VGS = 20V  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
VGS = -20V  
VDS = 10V, ID = 5.0A  
gfs  
Qg  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
VDS = 50V  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Qsw  
Qoss  
RG  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
Output Charge  
VGS = 10V  
ID = 5.0A  
nC  
–––  
–––  
–––  
2.9  
See Fig. 17  
VDS = 16V, VGS = 0V  
nC  
Gate Resistance  
VDD = 50V, VGS = 10Vꢁg  
td(on)  
tr  
td(off)  
tf  
Turn-On Delay Time  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
ID = 5.0A  
Rise Time  
RG=6.0Ω  
Turn-Off Delay Time  
ns  
Fall Time  
4.3  
530  
110  
29  
VGS = 0V  
Ciss  
Coss  
Crss  
Coss  
Coss  
Input Capacitance  
VDS = 25V  
ƒ = 1.0MHz  
Output Capacitance  
pF  
Reverse Transfer Capacitance  
Output Capacitance  
VGS = 0V, VDS = 1.0V, f=1.0MHz  
510  
67  
VGS = 0V, VDS = 80V, f=1.0MHz  
Output Capacitance  
Diode Characteristics  
Conditions  
MOSFET symbol  
Parameter  
Continuous Source Current  
Min. Typ. Max. Units  
D
IS  
–––  
–––  
38  
showing the  
(Body Diode)  
A
G
integral reverse  
S
ISM  
Pulsed Source Current  
(Body Diode)ꢁe  
–––  
–––  
34  
p-n junction diode.  
TJ = 25°C, IS = 5.0A, VGS = 0V g  
TJ = 25°C, IF = 5.0A, VDD = 25V  
di/dt = 100A/µs g  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
–––  
–––  
31  
1.3  
47  
56  
V
ns  
nC  
Qrr  
37  
Notes:  
Pulse width 400µs; duty cycle 2%.  
2
www.irf.com  
IRF6655  
Absolute Maximum Ratings  
Max.  
Parameter  
Units  
2.2  
P
P
P
@TA = 25°C  
@TA = 70°C  
@TC = 25°C  
Power Dissipation  
Power Dissipation  
Power Dissipation  
W
D
D
D
P
J
1.4  
42  
270  
T
T
T
Peak Soldering Temperature  
Operating Junction and  
°C  
-40 to + 150  
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Typ.  
–––  
12.5  
20  
Max.  
58  
Units  
Rθ  
Rθ  
Rθ  
Rθ  
Rθ  
Junction-to-Ambient  
JA  
Junction-to-Ambient  
Junction-to-Ambient  
Junction-to-Case  
–––  
–––  
3.0  
JA  
°C/W  
JA  
–––  
1.4  
JC  
Junction-to-PCB Mounted  
–––  
J-PCB  
100  
10  
D = 0.50  
0.20  
0.10  
0.05  
Ri (°C/W) τi (sec)  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
R5  
R5  
0.02  
0.01  
1.6195  
2.1406  
0.000126  
0.001354  
1
τ
τ
J τJ  
τ
AτA  
1 τ1  
τ
τ
τ
τ
2 τ2  
3 τ3  
4 τ4  
5 τ5  
22.2887 0.375850  
20.0457 7.410000  
Ci= τi/Ri  
Ci= τi/Ri  
0.1  
11.9144  
99  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthja + Tc  
0.01  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t
, Rectangular Pulse Duration (sec)  
1
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient  
Notes:  
‰ TC measured with thermocouple incontact with top (Drain) of part.  
† Surface mounted on 1 in. square Cu board, steady state.  
Š R is measured at TJ of approximately 90°C.  
‡ Used double sided cooling , mounting pad.  
ˆ Mounted on minimum footprint full size board with metalized  
back and with small clip heatsink.  
θ
ˆ Mounted on minimum  
† Surface mounted on 1 in. square Cu  
‡ Mounted to a PCB with a  
footprint full size board with  
metalized back and with small  
clip heatsink (still air)  
board (still air).  
thin gap filler and heat sink.  
(still air)  
www.irf.com  
3
IRF6655  
100  
100  
10  
1
VGS  
15V  
10V  
9.0V  
8.0V  
7.0V  
6.0V  
VGS  
15V  
TOP  
TOP  
10V  
9.0V  
8.0V  
7.0V  
6.0V  
BOTTOM  
BOTTOM  
10  
1
6.0V  
6.0V  
60µs PULSE WIDTH  
Tj = 150°C  
60µs PULSE WIDTH  
Tj = 25°C  
0.1  
0.1  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 4. Typical Output Characteristics  
Fig 5. Typical Output Characteristics  
100  
2.0  
1.5  
1.0  
0.5  
I
= 5.0A  
D
V
= 10V  
GS  
10  
T
T
T
= -40°C  
= 25°C  
= 150°C  
J
J
J
1
V
= 25V  
DS  
60µs PULSE WIDTH  
10  
, Gate-to-Source Voltage (V)  
0.1  
2
4
6
8
12  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
T
J
, Junction Temperature (°C)  
V
GS  
Fig 6. Typical Transfer Characteristics  
Fig 7. Normalized On-Resistance vs. Temperature  
10000  
120  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
C
C
C
+ C , C  
SHORTED  
iss  
gs  
gd  
ds  
= C  
rss  
oss  
gd  
= C + C  
T
= 125°C  
ds  
gd  
J
100  
80  
1000  
100  
10  
C
iss  
C
oss  
T
= 25°C  
J
60  
C
rss  
Vgs = 10V  
8 10  
40  
1
10  
, Drain-to-Source Voltage (V)  
100  
0
2
4
6
V
I , Drain Current (A)  
DS  
D
Fig 9. Normalized Typical On-Resistance vs.  
Fig 8. Typical Capacitance vs. Drain-to-Source Voltage  
Drain Current and Gate Voltage  
4
www.irf.com  
IRF6655  
100  
10  
1
1000  
100  
10  
Tc = 25°C  
Tj = 175°C  
Single Pulse  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
100µsec  
100msec  
1msec  
T
T
T
= -40°C  
= 25°C  
= 150°C  
1
J
J
J
10msec  
0.1  
0.01  
V
= 0V  
GS  
0.4  
0.6  
V
0.8  
1.0  
1.2  
1.4  
1.6  
0
1
10  
100  
1000  
, Source-to-Drain Voltage (V)  
V
, Drain-to-Source Voltage (V)  
SD  
DS  
Fig 10. Typical Source-Drain Diode Forward Voltage  
Fig11. Maximum Safe Operating Area  
5.5  
5
5
4
3
2
1
0
4.5  
4
3.5  
3
I
I
I
I
= 25µA  
= 250µA  
= 1.0mA  
= 1.0A  
D
D
D
D
2.5  
2
-75 -50 -25  
0
25 50 75 100 125 150 175  
25  
50  
75  
100  
125  
150  
T
, Ambient Temperature (°C)  
T , Temperature ( °C )  
A
J
Fig 12. Maximum Drain Current vs. Ambient Temperature  
Fig 13. Threshold Voltage vs. Temperature  
50  
I
D
TOP  
0.86A  
1.3A  
40  
30  
20  
10  
0
BOTTOM 5.0A  
25  
50  
75  
100  
125  
150  
Starting T , Junction Temperature (°C)  
J
Fig 14. Maximum Avalanche Energy vs. Drain Current  
www.irf.com  
5
IRF6655  
Current Regulator  
Same Type as D.U.T.  
Id  
Vds  
50KΩ  
Vgs  
.2µF  
.3µF  
12V  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 15a. Gate Charge Test Circuit  
Fig 15b. Gate Charge Waveform  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
VGS  
0.01  
t
p
I
AS  
Fig 16b. Unclamped Inductive Waveforms  
Fig 16a. Unclamped Inductive Test Circuit  
RD  
VDS  
VDS  
90%  
VGS  
D.U.T.  
RG  
+
-
VDD  
10%  
VGS  
10V  
td(on)  
td(off)  
tr  
tf  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
Fig 17a. Switching Time Test Circuit  
Fig 17b. Switching Time Waveforms  
6
www.irf.com  
IRF6655  
D.U.T  
+
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
-
+
‚
„
-
+
-

VDD  
di/dt controlled by RG  
RG  
Driver same type as D.U.T.  
+
-
ISD controlled by Duty Factor "D"  
Driver Gate Drive  
P.W.  
P.W.  
Period  
Period  
D =  
*
V
=10V  
GS  
D.U.T. I Waveform  
SD  
Reverse  
Recovery  
Current  
Body Diode Forward  
Current  
di/dt  
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  
V
DD  
Re-Applied  
Voltage  
Body Diode  
Forward Drop  
Inductor Current  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 18. Diode Reverse Recovery Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
www.irf.com  
7
IRF6655  
DirectFETSubstrate and PCB Layout, SH Outline  
(Small Size Can, H-Designation).  
Please see DirectFET application note AN-1035 for all details regarding PCB assembly using DirectFET.  
This includes all recommendations for stencil and substrate designs.  
8
www.irf.com  
IRF6655  
DirectFET™ Outline Dimension, SH Outline  
(Small Size Can, H-Designation).  
Please see DirectFET application note AN-1035 for all details regarding PCB assembly using DirectFET. This  
includes all recommendations for stencil and substrate designs.  
DIMENSIONS  
IMPERIAL  
MIN  
METRIC  
MAX  
CODE  
MIN  
4.75  
3.70  
2.75  
0.35  
0.58  
0.58  
0.63  
0.83  
0.99  
2.29  
0.59  
0.03  
0.08  
MAX  
0.191  
0.156  
0.112  
0.018  
0.024  
0.024  
0.026  
0.034  
0.041  
0.092  
0.028  
0.003  
0.007  
4.85  
3.95  
2.85  
0.45  
0.62  
0.62  
0.67  
0.87  
1.03  
2.33  
0.70  
0.08  
0.17  
0.187  
0.146  
0.108  
0.014  
0.023  
0.023  
0.025  
0.033  
0.039  
0.090  
0.023  
0.001  
0.003  
A
B
C
D
E
F
Note: Controlling  
dimensions are in mm.  
G
H
K
L
M
N
P
DirectFET™ Part Marking  
www.irf.com  
9
IRF6655  
DirectFET™ Tape & Reel Dimension (Showing component orientation).  
NOTE: Controlling dimensions in mm  
Std reel quantity is 4800 parts. (ordered as IRF6655). For 1000 parts on 7" reel,  
order IRF6655TR1  
REEL DIMENSIONS  
STANDARD OPTION (QTY 4800)  
TR1 OPTION (QTY 1000)  
METRIC  
MAX  
IMPERIAL  
METRIC  
MIN  
MAX  
IMPERIAL  
CODE  
MIN  
MAX  
N.C  
MIN  
6.9  
MAX  
N.C  
N.C  
0.50  
N.C  
N.C  
0.53  
N.C  
N.C  
MIN  
A
B
C
D
E
F
330.0  
20.2  
12.8  
1.5  
12.992  
0.795  
0.504  
0.059  
3.937  
N.C  
177.77  
19.06  
13.5  
1.5  
N.C  
N.C  
13.2  
N.C  
N.C  
18.4  
14.4  
15.4  
N.C  
0.75  
0.53  
0.059  
2.31  
N.C  
N.C  
N.C  
0.520  
N.C  
12.8  
N.C  
100.0  
N.C  
58.72  
N.C  
N.C  
N.C  
0.724  
0.567  
0.606  
13.50  
12.01  
12.01  
G
H
0.488  
0.469  
0.47  
0.47  
12.4  
11.9  
11.9  
11.9  
Loaded Tape Feed Direction  
NOTE: CONTROLLING  
DIMENSIONS IN MM  
DIMENSIONS  
METRIC  
IMPERIAL  
MIN  
MAX  
CODE  
MIN  
7.90  
3.90  
11.90  
5.45  
4.00  
5.00  
1.50  
1.50  
MAX  
8.10  
4.10  
12.30  
5.55  
4.20  
5.20  
N.C  
A
B
C
D
E
F
0.311  
0.319  
0.161  
0.484  
0.219  
0.165  
0.205  
N.C  
0.154  
0.469  
0.215  
0.157  
0.197  
0.059  
0.059  
G
H
1.60  
0.063  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Consumer market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.11/05  
10  
www.irf.com  
Note: For the most current drawings please refer to the IR website at:  
http://www.irf.com/package/  

相关型号:

IRF6655TR1PBF

Application Specific MOSFETs
INFINEON

IRF6655TRPBF

DirectFET Power MOSFET
INFINEON

IRF6662

DirectFet Power MOSFET Typical values (unless otherwise specified)
INFINEON

IRF6662PBF

Power Field-Effect Transistor, 8.3A I(D), 100V, 0.022ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-3
INFINEON

IRF6662TR1PBF

Power Field-Effect Transistor, 8.3A I(D), 100V, 0.022ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-3
INFINEON

IRF6662TRPBF

Benchmark MOSFETs Product Selection Guide
INFINEON

IRF6665

DIGITAL AUDIO MOSFET
INFINEON

IRF66651PBF

Latest MOSFET Silicon technology
INFINEON

IRF6665PBF

Latest MOSFET Silicon technology
INFINEON

IRF6665PBF_15

Latest MOSFET Silicon technology
INFINEON

IRF6665TR1

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
INFINEON

IRF6665TR1PBF

Power Field-Effect Transistor, 4.2A I(D), 100V, 0.062ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-2
INFINEON